sched_fair.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. /* return depth at which a sched entity is present in the hierarchy */
  123. static inline int depth_se(struct sched_entity *se)
  124. {
  125. int depth = 0;
  126. for_each_sched_entity(se)
  127. depth++;
  128. return depth;
  129. }
  130. static void
  131. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  132. {
  133. int se_depth, pse_depth;
  134. /*
  135. * preemption test can be made between sibling entities who are in the
  136. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  137. * both tasks until we find their ancestors who are siblings of common
  138. * parent.
  139. */
  140. /* First walk up until both entities are at same depth */
  141. se_depth = depth_se(*se);
  142. pse_depth = depth_se(*pse);
  143. while (se_depth > pse_depth) {
  144. se_depth--;
  145. *se = parent_entity(*se);
  146. }
  147. while (pse_depth > se_depth) {
  148. pse_depth--;
  149. *pse = parent_entity(*pse);
  150. }
  151. while (!is_same_group(*se, *pse)) {
  152. *se = parent_entity(*se);
  153. *pse = parent_entity(*pse);
  154. }
  155. }
  156. #else /* CONFIG_FAIR_GROUP_SCHED */
  157. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  158. {
  159. return container_of(cfs_rq, struct rq, cfs);
  160. }
  161. #define entity_is_task(se) 1
  162. #define for_each_sched_entity(se) \
  163. for (; se; se = NULL)
  164. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  165. {
  166. return &task_rq(p)->cfs;
  167. }
  168. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  169. {
  170. struct task_struct *p = task_of(se);
  171. struct rq *rq = task_rq(p);
  172. return &rq->cfs;
  173. }
  174. /* runqueue "owned" by this group */
  175. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  176. {
  177. return NULL;
  178. }
  179. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  180. {
  181. return &cpu_rq(this_cpu)->cfs;
  182. }
  183. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  184. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  185. static inline int
  186. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  187. {
  188. return 1;
  189. }
  190. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  191. {
  192. return NULL;
  193. }
  194. static inline void
  195. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  196. {
  197. }
  198. #endif /* CONFIG_FAIR_GROUP_SCHED */
  199. /**************************************************************
  200. * Scheduling class tree data structure manipulation methods:
  201. */
  202. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  203. {
  204. s64 delta = (s64)(vruntime - min_vruntime);
  205. if (delta > 0)
  206. min_vruntime = vruntime;
  207. return min_vruntime;
  208. }
  209. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta < 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  217. {
  218. return se->vruntime - cfs_rq->min_vruntime;
  219. }
  220. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  221. {
  222. u64 vruntime = cfs_rq->min_vruntime;
  223. if (cfs_rq->curr)
  224. vruntime = cfs_rq->curr->vruntime;
  225. if (cfs_rq->rb_leftmost) {
  226. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  227. struct sched_entity,
  228. run_node);
  229. if (!cfs_rq->curr)
  230. vruntime = se->vruntime;
  231. else
  232. vruntime = min_vruntime(vruntime, se->vruntime);
  233. }
  234. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  235. }
  236. /*
  237. * Enqueue an entity into the rb-tree:
  238. */
  239. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  240. {
  241. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct sched_entity *entry;
  244. s64 key = entity_key(cfs_rq, se);
  245. int leftmost = 1;
  246. /*
  247. * Find the right place in the rbtree:
  248. */
  249. while (*link) {
  250. parent = *link;
  251. entry = rb_entry(parent, struct sched_entity, run_node);
  252. /*
  253. * We dont care about collisions. Nodes with
  254. * the same key stay together.
  255. */
  256. if (key < entity_key(cfs_rq, entry)) {
  257. link = &parent->rb_left;
  258. } else {
  259. link = &parent->rb_right;
  260. leftmost = 0;
  261. }
  262. }
  263. /*
  264. * Maintain a cache of leftmost tree entries (it is frequently
  265. * used):
  266. */
  267. if (leftmost)
  268. cfs_rq->rb_leftmost = &se->run_node;
  269. rb_link_node(&se->run_node, parent, link);
  270. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  271. }
  272. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  273. {
  274. if (cfs_rq->rb_leftmost == &se->run_node) {
  275. struct rb_node *next_node;
  276. next_node = rb_next(&se->run_node);
  277. cfs_rq->rb_leftmost = next_node;
  278. }
  279. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  280. }
  281. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  282. {
  283. struct rb_node *left = cfs_rq->rb_leftmost;
  284. if (!left)
  285. return NULL;
  286. return rb_entry(left, struct sched_entity, run_node);
  287. }
  288. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  289. {
  290. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  291. if (!last)
  292. return NULL;
  293. return rb_entry(last, struct sched_entity, run_node);
  294. }
  295. /**************************************************************
  296. * Scheduling class statistics methods:
  297. */
  298. #ifdef CONFIG_SCHED_DEBUG
  299. int sched_nr_latency_handler(struct ctl_table *table, int write,
  300. struct file *filp, void __user *buffer, size_t *lenp,
  301. loff_t *ppos)
  302. {
  303. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  304. if (ret || !write)
  305. return ret;
  306. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  307. sysctl_sched_min_granularity);
  308. return 0;
  309. }
  310. #endif
  311. /*
  312. * delta /= w
  313. */
  314. static inline unsigned long
  315. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  316. {
  317. if (unlikely(se->load.weight != NICE_0_LOAD))
  318. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  319. return delta;
  320. }
  321. /*
  322. * The idea is to set a period in which each task runs once.
  323. *
  324. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  325. * this period because otherwise the slices get too small.
  326. *
  327. * p = (nr <= nl) ? l : l*nr/nl
  328. */
  329. static u64 __sched_period(unsigned long nr_running)
  330. {
  331. u64 period = sysctl_sched_latency;
  332. unsigned long nr_latency = sched_nr_latency;
  333. if (unlikely(nr_running > nr_latency)) {
  334. period = sysctl_sched_min_granularity;
  335. period *= nr_running;
  336. }
  337. return period;
  338. }
  339. /*
  340. * We calculate the wall-time slice from the period by taking a part
  341. * proportional to the weight.
  342. *
  343. * s = p*P[w/rw]
  344. */
  345. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  346. {
  347. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  348. for_each_sched_entity(se) {
  349. struct load_weight *load;
  350. cfs_rq = cfs_rq_of(se);
  351. load = &cfs_rq->load;
  352. if (unlikely(!se->on_rq)) {
  353. struct load_weight lw = cfs_rq->load;
  354. update_load_add(&lw, se->load.weight);
  355. load = &lw;
  356. }
  357. slice = calc_delta_mine(slice, se->load.weight, load);
  358. }
  359. return slice;
  360. }
  361. /*
  362. * We calculate the vruntime slice of a to be inserted task
  363. *
  364. * vs = s/w
  365. */
  366. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  367. {
  368. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  369. }
  370. /*
  371. * Update the current task's runtime statistics. Skip current tasks that
  372. * are not in our scheduling class.
  373. */
  374. static inline void
  375. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  376. unsigned long delta_exec)
  377. {
  378. unsigned long delta_exec_weighted;
  379. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  380. curr->sum_exec_runtime += delta_exec;
  381. schedstat_add(cfs_rq, exec_clock, delta_exec);
  382. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  383. curr->vruntime += delta_exec_weighted;
  384. update_min_vruntime(cfs_rq);
  385. }
  386. static void update_curr(struct cfs_rq *cfs_rq)
  387. {
  388. struct sched_entity *curr = cfs_rq->curr;
  389. u64 now = rq_of(cfs_rq)->clock;
  390. unsigned long delta_exec;
  391. if (unlikely(!curr))
  392. return;
  393. /*
  394. * Get the amount of time the current task was running
  395. * since the last time we changed load (this cannot
  396. * overflow on 32 bits):
  397. */
  398. delta_exec = (unsigned long)(now - curr->exec_start);
  399. if (!delta_exec)
  400. return;
  401. __update_curr(cfs_rq, curr, delta_exec);
  402. curr->exec_start = now;
  403. if (entity_is_task(curr)) {
  404. struct task_struct *curtask = task_of(curr);
  405. cpuacct_charge(curtask, delta_exec);
  406. account_group_exec_runtime(curtask, delta_exec);
  407. }
  408. }
  409. static inline void
  410. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  411. {
  412. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  413. }
  414. /*
  415. * Task is being enqueued - update stats:
  416. */
  417. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  418. {
  419. /*
  420. * Are we enqueueing a waiting task? (for current tasks
  421. * a dequeue/enqueue event is a NOP)
  422. */
  423. if (se != cfs_rq->curr)
  424. update_stats_wait_start(cfs_rq, se);
  425. }
  426. static void
  427. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. schedstat_set(se->wait_max, max(se->wait_max,
  430. rq_of(cfs_rq)->clock - se->wait_start));
  431. schedstat_set(se->wait_count, se->wait_count + 1);
  432. schedstat_set(se->wait_sum, se->wait_sum +
  433. rq_of(cfs_rq)->clock - se->wait_start);
  434. schedstat_set(se->wait_start, 0);
  435. }
  436. static inline void
  437. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  438. {
  439. /*
  440. * Mark the end of the wait period if dequeueing a
  441. * waiting task:
  442. */
  443. if (se != cfs_rq->curr)
  444. update_stats_wait_end(cfs_rq, se);
  445. }
  446. /*
  447. * We are picking a new current task - update its stats:
  448. */
  449. static inline void
  450. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. /*
  453. * We are starting a new run period:
  454. */
  455. se->exec_start = rq_of(cfs_rq)->clock;
  456. }
  457. /**************************************************
  458. * Scheduling class queueing methods:
  459. */
  460. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  461. static void
  462. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  463. {
  464. cfs_rq->task_weight += weight;
  465. }
  466. #else
  467. static inline void
  468. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  469. {
  470. }
  471. #endif
  472. static void
  473. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  474. {
  475. update_load_add(&cfs_rq->load, se->load.weight);
  476. if (!parent_entity(se))
  477. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  478. if (entity_is_task(se)) {
  479. add_cfs_task_weight(cfs_rq, se->load.weight);
  480. list_add(&se->group_node, &cfs_rq->tasks);
  481. }
  482. cfs_rq->nr_running++;
  483. se->on_rq = 1;
  484. }
  485. static void
  486. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  487. {
  488. update_load_sub(&cfs_rq->load, se->load.weight);
  489. if (!parent_entity(se))
  490. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  491. if (entity_is_task(se)) {
  492. add_cfs_task_weight(cfs_rq, -se->load.weight);
  493. list_del_init(&se->group_node);
  494. }
  495. cfs_rq->nr_running--;
  496. se->on_rq = 0;
  497. }
  498. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. #ifdef CONFIG_SCHEDSTATS
  501. if (se->sleep_start) {
  502. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  503. struct task_struct *tsk = task_of(se);
  504. if ((s64)delta < 0)
  505. delta = 0;
  506. if (unlikely(delta > se->sleep_max))
  507. se->sleep_max = delta;
  508. se->sleep_start = 0;
  509. se->sum_sleep_runtime += delta;
  510. account_scheduler_latency(tsk, delta >> 10, 1);
  511. }
  512. if (se->block_start) {
  513. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  514. struct task_struct *tsk = task_of(se);
  515. if ((s64)delta < 0)
  516. delta = 0;
  517. if (unlikely(delta > se->block_max))
  518. se->block_max = delta;
  519. se->block_start = 0;
  520. se->sum_sleep_runtime += delta;
  521. /*
  522. * Blocking time is in units of nanosecs, so shift by 20 to
  523. * get a milliseconds-range estimation of the amount of
  524. * time that the task spent sleeping:
  525. */
  526. if (unlikely(prof_on == SLEEP_PROFILING)) {
  527. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  528. delta >> 20);
  529. }
  530. account_scheduler_latency(tsk, delta >> 10, 0);
  531. }
  532. #endif
  533. }
  534. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  535. {
  536. #ifdef CONFIG_SCHED_DEBUG
  537. s64 d = se->vruntime - cfs_rq->min_vruntime;
  538. if (d < 0)
  539. d = -d;
  540. if (d > 3*sysctl_sched_latency)
  541. schedstat_inc(cfs_rq, nr_spread_over);
  542. #endif
  543. }
  544. static void
  545. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  546. {
  547. u64 vruntime = cfs_rq->min_vruntime;
  548. /*
  549. * The 'current' period is already promised to the current tasks,
  550. * however the extra weight of the new task will slow them down a
  551. * little, place the new task so that it fits in the slot that
  552. * stays open at the end.
  553. */
  554. if (initial && sched_feat(START_DEBIT))
  555. vruntime += sched_vslice(cfs_rq, se);
  556. if (!initial) {
  557. /* sleeps upto a single latency don't count. */
  558. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  559. unsigned long thresh = sysctl_sched_latency;
  560. /*
  561. * Convert the sleeper threshold into virtual time.
  562. * SCHED_IDLE is a special sub-class. We care about
  563. * fairness only relative to other SCHED_IDLE tasks,
  564. * all of which have the same weight.
  565. */
  566. if (sched_feat(NORMALIZED_SLEEPER) &&
  567. task_of(se)->policy != SCHED_IDLE)
  568. thresh = calc_delta_fair(thresh, se);
  569. vruntime -= thresh;
  570. }
  571. /* ensure we never gain time by being placed backwards. */
  572. vruntime = max_vruntime(se->vruntime, vruntime);
  573. }
  574. se->vruntime = vruntime;
  575. }
  576. static void
  577. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  578. {
  579. /*
  580. * Update run-time statistics of the 'current'.
  581. */
  582. update_curr(cfs_rq);
  583. account_entity_enqueue(cfs_rq, se);
  584. if (wakeup) {
  585. place_entity(cfs_rq, se, 0);
  586. enqueue_sleeper(cfs_rq, se);
  587. }
  588. update_stats_enqueue(cfs_rq, se);
  589. check_spread(cfs_rq, se);
  590. if (se != cfs_rq->curr)
  591. __enqueue_entity(cfs_rq, se);
  592. }
  593. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  594. {
  595. if (cfs_rq->last == se)
  596. cfs_rq->last = NULL;
  597. if (cfs_rq->next == se)
  598. cfs_rq->next = NULL;
  599. }
  600. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  601. {
  602. for_each_sched_entity(se)
  603. __clear_buddies(cfs_rq_of(se), se);
  604. }
  605. static void
  606. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  607. {
  608. /*
  609. * Update run-time statistics of the 'current'.
  610. */
  611. update_curr(cfs_rq);
  612. update_stats_dequeue(cfs_rq, se);
  613. if (sleep) {
  614. #ifdef CONFIG_SCHEDSTATS
  615. if (entity_is_task(se)) {
  616. struct task_struct *tsk = task_of(se);
  617. if (tsk->state & TASK_INTERRUPTIBLE)
  618. se->sleep_start = rq_of(cfs_rq)->clock;
  619. if (tsk->state & TASK_UNINTERRUPTIBLE)
  620. se->block_start = rq_of(cfs_rq)->clock;
  621. }
  622. #endif
  623. }
  624. clear_buddies(cfs_rq, se);
  625. if (se != cfs_rq->curr)
  626. __dequeue_entity(cfs_rq, se);
  627. account_entity_dequeue(cfs_rq, se);
  628. update_min_vruntime(cfs_rq);
  629. }
  630. /*
  631. * Preempt the current task with a newly woken task if needed:
  632. */
  633. static void
  634. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  635. {
  636. unsigned long ideal_runtime, delta_exec;
  637. ideal_runtime = sched_slice(cfs_rq, curr);
  638. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  639. if (delta_exec > ideal_runtime) {
  640. resched_task(rq_of(cfs_rq)->curr);
  641. /*
  642. * The current task ran long enough, ensure it doesn't get
  643. * re-elected due to buddy favours.
  644. */
  645. clear_buddies(cfs_rq, curr);
  646. }
  647. }
  648. static void
  649. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  650. {
  651. /* 'current' is not kept within the tree. */
  652. if (se->on_rq) {
  653. /*
  654. * Any task has to be enqueued before it get to execute on
  655. * a CPU. So account for the time it spent waiting on the
  656. * runqueue.
  657. */
  658. update_stats_wait_end(cfs_rq, se);
  659. __dequeue_entity(cfs_rq, se);
  660. }
  661. update_stats_curr_start(cfs_rq, se);
  662. cfs_rq->curr = se;
  663. #ifdef CONFIG_SCHEDSTATS
  664. /*
  665. * Track our maximum slice length, if the CPU's load is at
  666. * least twice that of our own weight (i.e. dont track it
  667. * when there are only lesser-weight tasks around):
  668. */
  669. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  670. se->slice_max = max(se->slice_max,
  671. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  672. }
  673. #endif
  674. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  675. }
  676. static int
  677. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  678. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  679. {
  680. struct sched_entity *se = __pick_next_entity(cfs_rq);
  681. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  682. return cfs_rq->next;
  683. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  684. return cfs_rq->last;
  685. return se;
  686. }
  687. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  688. {
  689. /*
  690. * If still on the runqueue then deactivate_task()
  691. * was not called and update_curr() has to be done:
  692. */
  693. if (prev->on_rq)
  694. update_curr(cfs_rq);
  695. check_spread(cfs_rq, prev);
  696. if (prev->on_rq) {
  697. update_stats_wait_start(cfs_rq, prev);
  698. /* Put 'current' back into the tree. */
  699. __enqueue_entity(cfs_rq, prev);
  700. }
  701. cfs_rq->curr = NULL;
  702. }
  703. static void
  704. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  705. {
  706. /*
  707. * Update run-time statistics of the 'current'.
  708. */
  709. update_curr(cfs_rq);
  710. #ifdef CONFIG_SCHED_HRTICK
  711. /*
  712. * queued ticks are scheduled to match the slice, so don't bother
  713. * validating it and just reschedule.
  714. */
  715. if (queued) {
  716. resched_task(rq_of(cfs_rq)->curr);
  717. return;
  718. }
  719. /*
  720. * don't let the period tick interfere with the hrtick preemption
  721. */
  722. if (!sched_feat(DOUBLE_TICK) &&
  723. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  724. return;
  725. #endif
  726. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  727. check_preempt_tick(cfs_rq, curr);
  728. }
  729. /**************************************************
  730. * CFS operations on tasks:
  731. */
  732. #ifdef CONFIG_SCHED_HRTICK
  733. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  734. {
  735. struct sched_entity *se = &p->se;
  736. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  737. WARN_ON(task_rq(p) != rq);
  738. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  739. u64 slice = sched_slice(cfs_rq, se);
  740. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  741. s64 delta = slice - ran;
  742. if (delta < 0) {
  743. if (rq->curr == p)
  744. resched_task(p);
  745. return;
  746. }
  747. /*
  748. * Don't schedule slices shorter than 10000ns, that just
  749. * doesn't make sense. Rely on vruntime for fairness.
  750. */
  751. if (rq->curr != p)
  752. delta = max_t(s64, 10000LL, delta);
  753. hrtick_start(rq, delta);
  754. }
  755. }
  756. /*
  757. * called from enqueue/dequeue and updates the hrtick when the
  758. * current task is from our class and nr_running is low enough
  759. * to matter.
  760. */
  761. static void hrtick_update(struct rq *rq)
  762. {
  763. struct task_struct *curr = rq->curr;
  764. if (curr->sched_class != &fair_sched_class)
  765. return;
  766. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  767. hrtick_start_fair(rq, curr);
  768. }
  769. #else /* !CONFIG_SCHED_HRTICK */
  770. static inline void
  771. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  772. {
  773. }
  774. static inline void hrtick_update(struct rq *rq)
  775. {
  776. }
  777. #endif
  778. /*
  779. * The enqueue_task method is called before nr_running is
  780. * increased. Here we update the fair scheduling stats and
  781. * then put the task into the rbtree:
  782. */
  783. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  784. {
  785. struct cfs_rq *cfs_rq;
  786. struct sched_entity *se = &p->se;
  787. for_each_sched_entity(se) {
  788. if (se->on_rq)
  789. break;
  790. cfs_rq = cfs_rq_of(se);
  791. enqueue_entity(cfs_rq, se, wakeup);
  792. wakeup = 1;
  793. }
  794. hrtick_update(rq);
  795. }
  796. /*
  797. * The dequeue_task method is called before nr_running is
  798. * decreased. We remove the task from the rbtree and
  799. * update the fair scheduling stats:
  800. */
  801. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  802. {
  803. struct cfs_rq *cfs_rq;
  804. struct sched_entity *se = &p->se;
  805. for_each_sched_entity(se) {
  806. cfs_rq = cfs_rq_of(se);
  807. dequeue_entity(cfs_rq, se, sleep);
  808. /* Don't dequeue parent if it has other entities besides us */
  809. if (cfs_rq->load.weight)
  810. break;
  811. sleep = 1;
  812. }
  813. hrtick_update(rq);
  814. }
  815. /*
  816. * sched_yield() support is very simple - we dequeue and enqueue.
  817. *
  818. * If compat_yield is turned on then we requeue to the end of the tree.
  819. */
  820. static void yield_task_fair(struct rq *rq)
  821. {
  822. struct task_struct *curr = rq->curr;
  823. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  824. struct sched_entity *rightmost, *se = &curr->se;
  825. /*
  826. * Are we the only task in the tree?
  827. */
  828. if (unlikely(cfs_rq->nr_running == 1))
  829. return;
  830. clear_buddies(cfs_rq, se);
  831. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  832. update_rq_clock(rq);
  833. /*
  834. * Update run-time statistics of the 'current'.
  835. */
  836. update_curr(cfs_rq);
  837. return;
  838. }
  839. /*
  840. * Find the rightmost entry in the rbtree:
  841. */
  842. rightmost = __pick_last_entity(cfs_rq);
  843. /*
  844. * Already in the rightmost position?
  845. */
  846. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  847. return;
  848. /*
  849. * Minimally necessary key value to be last in the tree:
  850. * Upon rescheduling, sched_class::put_prev_task() will place
  851. * 'current' within the tree based on its new key value.
  852. */
  853. se->vruntime = rightmost->vruntime + 1;
  854. }
  855. /*
  856. * wake_idle() will wake a task on an idle cpu if task->cpu is
  857. * not idle and an idle cpu is available. The span of cpus to
  858. * search starts with cpus closest then further out as needed,
  859. * so we always favor a closer, idle cpu.
  860. * Domains may include CPUs that are not usable for migration,
  861. * hence we need to mask them out (cpu_active_mask)
  862. *
  863. * Returns the CPU we should wake onto.
  864. */
  865. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  866. static int wake_idle(int cpu, struct task_struct *p)
  867. {
  868. struct sched_domain *sd;
  869. int i;
  870. unsigned int chosen_wakeup_cpu;
  871. int this_cpu;
  872. /*
  873. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  874. * are idle and this is not a kernel thread and this task's affinity
  875. * allows it to be moved to preferred cpu, then just move!
  876. */
  877. this_cpu = smp_processor_id();
  878. chosen_wakeup_cpu =
  879. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  880. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  881. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  882. p->mm && !(p->flags & PF_KTHREAD) &&
  883. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  884. return chosen_wakeup_cpu;
  885. /*
  886. * If it is idle, then it is the best cpu to run this task.
  887. *
  888. * This cpu is also the best, if it has more than one task already.
  889. * Siblings must be also busy(in most cases) as they didn't already
  890. * pickup the extra load from this cpu and hence we need not check
  891. * sibling runqueue info. This will avoid the checks and cache miss
  892. * penalities associated with that.
  893. */
  894. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  895. return cpu;
  896. for_each_domain(cpu, sd) {
  897. if ((sd->flags & SD_WAKE_IDLE)
  898. || ((sd->flags & SD_WAKE_IDLE_FAR)
  899. && !task_hot(p, task_rq(p)->clock, sd))) {
  900. for_each_cpu_and(i, sched_domain_span(sd),
  901. &p->cpus_allowed) {
  902. if (cpu_active(i) && idle_cpu(i)) {
  903. if (i != task_cpu(p)) {
  904. schedstat_inc(p,
  905. se.nr_wakeups_idle);
  906. }
  907. return i;
  908. }
  909. }
  910. } else {
  911. break;
  912. }
  913. }
  914. return cpu;
  915. }
  916. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  917. static inline int wake_idle(int cpu, struct task_struct *p)
  918. {
  919. return cpu;
  920. }
  921. #endif
  922. #ifdef CONFIG_SMP
  923. #ifdef CONFIG_FAIR_GROUP_SCHED
  924. /*
  925. * effective_load() calculates the load change as seen from the root_task_group
  926. *
  927. * Adding load to a group doesn't make a group heavier, but can cause movement
  928. * of group shares between cpus. Assuming the shares were perfectly aligned one
  929. * can calculate the shift in shares.
  930. *
  931. * The problem is that perfectly aligning the shares is rather expensive, hence
  932. * we try to avoid doing that too often - see update_shares(), which ratelimits
  933. * this change.
  934. *
  935. * We compensate this by not only taking the current delta into account, but
  936. * also considering the delta between when the shares were last adjusted and
  937. * now.
  938. *
  939. * We still saw a performance dip, some tracing learned us that between
  940. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  941. * significantly. Therefore try to bias the error in direction of failing
  942. * the affine wakeup.
  943. *
  944. */
  945. static long effective_load(struct task_group *tg, int cpu,
  946. long wl, long wg)
  947. {
  948. struct sched_entity *se = tg->se[cpu];
  949. if (!tg->parent)
  950. return wl;
  951. /*
  952. * By not taking the decrease of shares on the other cpu into
  953. * account our error leans towards reducing the affine wakeups.
  954. */
  955. if (!wl && sched_feat(ASYM_EFF_LOAD))
  956. return wl;
  957. for_each_sched_entity(se) {
  958. long S, rw, s, a, b;
  959. long more_w;
  960. /*
  961. * Instead of using this increment, also add the difference
  962. * between when the shares were last updated and now.
  963. */
  964. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  965. wl += more_w;
  966. wg += more_w;
  967. S = se->my_q->tg->shares;
  968. s = se->my_q->shares;
  969. rw = se->my_q->rq_weight;
  970. a = S*(rw + wl);
  971. b = S*rw + s*wg;
  972. wl = s*(a-b);
  973. if (likely(b))
  974. wl /= b;
  975. /*
  976. * Assume the group is already running and will
  977. * thus already be accounted for in the weight.
  978. *
  979. * That is, moving shares between CPUs, does not
  980. * alter the group weight.
  981. */
  982. wg = 0;
  983. }
  984. return wl;
  985. }
  986. #else
  987. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  988. unsigned long wl, unsigned long wg)
  989. {
  990. return wl;
  991. }
  992. #endif
  993. static int
  994. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  995. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  996. int idx, unsigned long load, unsigned long this_load,
  997. unsigned int imbalance)
  998. {
  999. struct task_struct *curr = this_rq->curr;
  1000. struct task_group *tg;
  1001. unsigned long tl = this_load;
  1002. unsigned long tl_per_task;
  1003. unsigned long weight;
  1004. int balanced;
  1005. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  1006. return 0;
  1007. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1008. p->se.avg_overlap > sysctl_sched_migration_cost))
  1009. sync = 0;
  1010. /*
  1011. * If sync wakeup then subtract the (maximum possible)
  1012. * effect of the currently running task from the load
  1013. * of the current CPU:
  1014. */
  1015. if (sync) {
  1016. tg = task_group(current);
  1017. weight = current->se.load.weight;
  1018. tl += effective_load(tg, this_cpu, -weight, -weight);
  1019. load += effective_load(tg, prev_cpu, 0, -weight);
  1020. }
  1021. tg = task_group(p);
  1022. weight = p->se.load.weight;
  1023. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1024. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1025. /*
  1026. * If the currently running task will sleep within
  1027. * a reasonable amount of time then attract this newly
  1028. * woken task:
  1029. */
  1030. if (sync && balanced)
  1031. return 1;
  1032. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1033. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1034. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1035. tl_per_task)) {
  1036. /*
  1037. * This domain has SD_WAKE_AFFINE and
  1038. * p is cache cold in this domain, and
  1039. * there is no bad imbalance.
  1040. */
  1041. schedstat_inc(this_sd, ttwu_move_affine);
  1042. schedstat_inc(p, se.nr_wakeups_affine);
  1043. return 1;
  1044. }
  1045. return 0;
  1046. }
  1047. static int select_task_rq_fair(struct task_struct *p, int sync)
  1048. {
  1049. struct sched_domain *sd, *this_sd = NULL;
  1050. int prev_cpu, this_cpu, new_cpu;
  1051. unsigned long load, this_load;
  1052. struct rq *this_rq;
  1053. unsigned int imbalance;
  1054. int idx;
  1055. prev_cpu = task_cpu(p);
  1056. this_cpu = smp_processor_id();
  1057. this_rq = cpu_rq(this_cpu);
  1058. new_cpu = prev_cpu;
  1059. if (prev_cpu == this_cpu)
  1060. goto out;
  1061. /*
  1062. * 'this_sd' is the first domain that both
  1063. * this_cpu and prev_cpu are present in:
  1064. */
  1065. for_each_domain(this_cpu, sd) {
  1066. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1067. this_sd = sd;
  1068. break;
  1069. }
  1070. }
  1071. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1072. goto out;
  1073. /*
  1074. * Check for affine wakeup and passive balancing possibilities.
  1075. */
  1076. if (!this_sd)
  1077. goto out;
  1078. idx = this_sd->wake_idx;
  1079. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1080. load = source_load(prev_cpu, idx);
  1081. this_load = target_load(this_cpu, idx);
  1082. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1083. load, this_load, imbalance))
  1084. return this_cpu;
  1085. /*
  1086. * Start passive balancing when half the imbalance_pct
  1087. * limit is reached.
  1088. */
  1089. if (this_sd->flags & SD_WAKE_BALANCE) {
  1090. if (imbalance*this_load <= 100*load) {
  1091. schedstat_inc(this_sd, ttwu_move_balance);
  1092. schedstat_inc(p, se.nr_wakeups_passive);
  1093. return this_cpu;
  1094. }
  1095. }
  1096. out:
  1097. return wake_idle(new_cpu, p);
  1098. }
  1099. #endif /* CONFIG_SMP */
  1100. static unsigned long wakeup_gran(struct sched_entity *se)
  1101. {
  1102. unsigned long gran = sysctl_sched_wakeup_granularity;
  1103. /*
  1104. * More easily preempt - nice tasks, while not making it harder for
  1105. * + nice tasks.
  1106. */
  1107. if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
  1108. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
  1109. return gran;
  1110. }
  1111. /*
  1112. * Should 'se' preempt 'curr'.
  1113. *
  1114. * |s1
  1115. * |s2
  1116. * |s3
  1117. * g
  1118. * |<--->|c
  1119. *
  1120. * w(c, s1) = -1
  1121. * w(c, s2) = 0
  1122. * w(c, s3) = 1
  1123. *
  1124. */
  1125. static int
  1126. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1127. {
  1128. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1129. if (vdiff <= 0)
  1130. return -1;
  1131. gran = wakeup_gran(curr);
  1132. if (vdiff > gran)
  1133. return 1;
  1134. return 0;
  1135. }
  1136. static void set_last_buddy(struct sched_entity *se)
  1137. {
  1138. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1139. for_each_sched_entity(se)
  1140. cfs_rq_of(se)->last = se;
  1141. }
  1142. }
  1143. static void set_next_buddy(struct sched_entity *se)
  1144. {
  1145. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1146. for_each_sched_entity(se)
  1147. cfs_rq_of(se)->next = se;
  1148. }
  1149. }
  1150. /*
  1151. * Preempt the current task with a newly woken task if needed:
  1152. */
  1153. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1154. {
  1155. struct task_struct *curr = rq->curr;
  1156. struct sched_entity *se = &curr->se, *pse = &p->se;
  1157. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1158. update_curr(cfs_rq);
  1159. if (unlikely(rt_prio(p->prio))) {
  1160. resched_task(curr);
  1161. return;
  1162. }
  1163. if (unlikely(p->sched_class != &fair_sched_class))
  1164. return;
  1165. if (unlikely(se == pse))
  1166. return;
  1167. /*
  1168. * Only set the backward buddy when the current task is still on the
  1169. * rq. This can happen when a wakeup gets interleaved with schedule on
  1170. * the ->pre_schedule() or idle_balance() point, either of which can
  1171. * drop the rq lock.
  1172. *
  1173. * Also, during early boot the idle thread is in the fair class, for
  1174. * obvious reasons its a bad idea to schedule back to the idle thread.
  1175. */
  1176. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1177. set_last_buddy(se);
  1178. set_next_buddy(pse);
  1179. /*
  1180. * We can come here with TIF_NEED_RESCHED already set from new task
  1181. * wake up path.
  1182. */
  1183. if (test_tsk_need_resched(curr))
  1184. return;
  1185. /*
  1186. * Batch and idle tasks do not preempt (their preemption is driven by
  1187. * the tick):
  1188. */
  1189. if (unlikely(p->policy != SCHED_NORMAL))
  1190. return;
  1191. /* Idle tasks are by definition preempted by everybody. */
  1192. if (unlikely(curr->policy == SCHED_IDLE)) {
  1193. resched_task(curr);
  1194. return;
  1195. }
  1196. if (!sched_feat(WAKEUP_PREEMPT))
  1197. return;
  1198. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1199. (se->avg_overlap < sysctl_sched_migration_cost &&
  1200. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1201. resched_task(curr);
  1202. return;
  1203. }
  1204. find_matching_se(&se, &pse);
  1205. while (se) {
  1206. BUG_ON(!pse);
  1207. if (wakeup_preempt_entity(se, pse) == 1) {
  1208. resched_task(curr);
  1209. break;
  1210. }
  1211. se = parent_entity(se);
  1212. pse = parent_entity(pse);
  1213. }
  1214. }
  1215. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1216. {
  1217. struct task_struct *p;
  1218. struct cfs_rq *cfs_rq = &rq->cfs;
  1219. struct sched_entity *se;
  1220. if (unlikely(!cfs_rq->nr_running))
  1221. return NULL;
  1222. do {
  1223. se = pick_next_entity(cfs_rq);
  1224. /*
  1225. * If se was a buddy, clear it so that it will have to earn
  1226. * the favour again.
  1227. */
  1228. __clear_buddies(cfs_rq, se);
  1229. set_next_entity(cfs_rq, se);
  1230. cfs_rq = group_cfs_rq(se);
  1231. } while (cfs_rq);
  1232. p = task_of(se);
  1233. hrtick_start_fair(rq, p);
  1234. return p;
  1235. }
  1236. /*
  1237. * Account for a descheduled task:
  1238. */
  1239. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1240. {
  1241. struct sched_entity *se = &prev->se;
  1242. struct cfs_rq *cfs_rq;
  1243. for_each_sched_entity(se) {
  1244. cfs_rq = cfs_rq_of(se);
  1245. put_prev_entity(cfs_rq, se);
  1246. }
  1247. }
  1248. #ifdef CONFIG_SMP
  1249. /**************************************************
  1250. * Fair scheduling class load-balancing methods:
  1251. */
  1252. /*
  1253. * Load-balancing iterator. Note: while the runqueue stays locked
  1254. * during the whole iteration, the current task might be
  1255. * dequeued so the iterator has to be dequeue-safe. Here we
  1256. * achieve that by always pre-iterating before returning
  1257. * the current task:
  1258. */
  1259. static struct task_struct *
  1260. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1261. {
  1262. struct task_struct *p = NULL;
  1263. struct sched_entity *se;
  1264. if (next == &cfs_rq->tasks)
  1265. return NULL;
  1266. se = list_entry(next, struct sched_entity, group_node);
  1267. p = task_of(se);
  1268. cfs_rq->balance_iterator = next->next;
  1269. return p;
  1270. }
  1271. static struct task_struct *load_balance_start_fair(void *arg)
  1272. {
  1273. struct cfs_rq *cfs_rq = arg;
  1274. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1275. }
  1276. static struct task_struct *load_balance_next_fair(void *arg)
  1277. {
  1278. struct cfs_rq *cfs_rq = arg;
  1279. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1280. }
  1281. static unsigned long
  1282. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1283. unsigned long max_load_move, struct sched_domain *sd,
  1284. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1285. struct cfs_rq *cfs_rq)
  1286. {
  1287. struct rq_iterator cfs_rq_iterator;
  1288. cfs_rq_iterator.start = load_balance_start_fair;
  1289. cfs_rq_iterator.next = load_balance_next_fair;
  1290. cfs_rq_iterator.arg = cfs_rq;
  1291. return balance_tasks(this_rq, this_cpu, busiest,
  1292. max_load_move, sd, idle, all_pinned,
  1293. this_best_prio, &cfs_rq_iterator);
  1294. }
  1295. #ifdef CONFIG_FAIR_GROUP_SCHED
  1296. static unsigned long
  1297. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1298. unsigned long max_load_move,
  1299. struct sched_domain *sd, enum cpu_idle_type idle,
  1300. int *all_pinned, int *this_best_prio)
  1301. {
  1302. long rem_load_move = max_load_move;
  1303. int busiest_cpu = cpu_of(busiest);
  1304. struct task_group *tg;
  1305. rcu_read_lock();
  1306. update_h_load(busiest_cpu);
  1307. list_for_each_entry_rcu(tg, &task_groups, list) {
  1308. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1309. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1310. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1311. u64 rem_load, moved_load;
  1312. /*
  1313. * empty group
  1314. */
  1315. if (!busiest_cfs_rq->task_weight)
  1316. continue;
  1317. rem_load = (u64)rem_load_move * busiest_weight;
  1318. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1319. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1320. rem_load, sd, idle, all_pinned, this_best_prio,
  1321. tg->cfs_rq[busiest_cpu]);
  1322. if (!moved_load)
  1323. continue;
  1324. moved_load *= busiest_h_load;
  1325. moved_load = div_u64(moved_load, busiest_weight + 1);
  1326. rem_load_move -= moved_load;
  1327. if (rem_load_move < 0)
  1328. break;
  1329. }
  1330. rcu_read_unlock();
  1331. return max_load_move - rem_load_move;
  1332. }
  1333. #else
  1334. static unsigned long
  1335. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1336. unsigned long max_load_move,
  1337. struct sched_domain *sd, enum cpu_idle_type idle,
  1338. int *all_pinned, int *this_best_prio)
  1339. {
  1340. return __load_balance_fair(this_rq, this_cpu, busiest,
  1341. max_load_move, sd, idle, all_pinned,
  1342. this_best_prio, &busiest->cfs);
  1343. }
  1344. #endif
  1345. static int
  1346. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1347. struct sched_domain *sd, enum cpu_idle_type idle)
  1348. {
  1349. struct cfs_rq *busy_cfs_rq;
  1350. struct rq_iterator cfs_rq_iterator;
  1351. cfs_rq_iterator.start = load_balance_start_fair;
  1352. cfs_rq_iterator.next = load_balance_next_fair;
  1353. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1354. /*
  1355. * pass busy_cfs_rq argument into
  1356. * load_balance_[start|next]_fair iterators
  1357. */
  1358. cfs_rq_iterator.arg = busy_cfs_rq;
  1359. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1360. &cfs_rq_iterator))
  1361. return 1;
  1362. }
  1363. return 0;
  1364. }
  1365. #endif /* CONFIG_SMP */
  1366. /*
  1367. * scheduler tick hitting a task of our scheduling class:
  1368. */
  1369. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1370. {
  1371. struct cfs_rq *cfs_rq;
  1372. struct sched_entity *se = &curr->se;
  1373. for_each_sched_entity(se) {
  1374. cfs_rq = cfs_rq_of(se);
  1375. entity_tick(cfs_rq, se, queued);
  1376. }
  1377. }
  1378. /*
  1379. * Share the fairness runtime between parent and child, thus the
  1380. * total amount of pressure for CPU stays equal - new tasks
  1381. * get a chance to run but frequent forkers are not allowed to
  1382. * monopolize the CPU. Note: the parent runqueue is locked,
  1383. * the child is not running yet.
  1384. */
  1385. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1386. {
  1387. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1388. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1389. int this_cpu = smp_processor_id();
  1390. sched_info_queued(p);
  1391. update_curr(cfs_rq);
  1392. place_entity(cfs_rq, se, 1);
  1393. /* 'curr' will be NULL if the child belongs to a different group */
  1394. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1395. curr && curr->vruntime < se->vruntime) {
  1396. /*
  1397. * Upon rescheduling, sched_class::put_prev_task() will place
  1398. * 'current' within the tree based on its new key value.
  1399. */
  1400. swap(curr->vruntime, se->vruntime);
  1401. resched_task(rq->curr);
  1402. }
  1403. enqueue_task_fair(rq, p, 0);
  1404. }
  1405. /*
  1406. * Priority of the task has changed. Check to see if we preempt
  1407. * the current task.
  1408. */
  1409. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1410. int oldprio, int running)
  1411. {
  1412. /*
  1413. * Reschedule if we are currently running on this runqueue and
  1414. * our priority decreased, or if we are not currently running on
  1415. * this runqueue and our priority is higher than the current's
  1416. */
  1417. if (running) {
  1418. if (p->prio > oldprio)
  1419. resched_task(rq->curr);
  1420. } else
  1421. check_preempt_curr(rq, p, 0);
  1422. }
  1423. /*
  1424. * We switched to the sched_fair class.
  1425. */
  1426. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1427. int running)
  1428. {
  1429. /*
  1430. * We were most likely switched from sched_rt, so
  1431. * kick off the schedule if running, otherwise just see
  1432. * if we can still preempt the current task.
  1433. */
  1434. if (running)
  1435. resched_task(rq->curr);
  1436. else
  1437. check_preempt_curr(rq, p, 0);
  1438. }
  1439. /* Account for a task changing its policy or group.
  1440. *
  1441. * This routine is mostly called to set cfs_rq->curr field when a task
  1442. * migrates between groups/classes.
  1443. */
  1444. static void set_curr_task_fair(struct rq *rq)
  1445. {
  1446. struct sched_entity *se = &rq->curr->se;
  1447. for_each_sched_entity(se)
  1448. set_next_entity(cfs_rq_of(se), se);
  1449. }
  1450. #ifdef CONFIG_FAIR_GROUP_SCHED
  1451. static void moved_group_fair(struct task_struct *p)
  1452. {
  1453. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1454. update_curr(cfs_rq);
  1455. place_entity(cfs_rq, &p->se, 1);
  1456. }
  1457. #endif
  1458. /*
  1459. * All the scheduling class methods:
  1460. */
  1461. static const struct sched_class fair_sched_class = {
  1462. .next = &idle_sched_class,
  1463. .enqueue_task = enqueue_task_fair,
  1464. .dequeue_task = dequeue_task_fair,
  1465. .yield_task = yield_task_fair,
  1466. .check_preempt_curr = check_preempt_wakeup,
  1467. .pick_next_task = pick_next_task_fair,
  1468. .put_prev_task = put_prev_task_fair,
  1469. #ifdef CONFIG_SMP
  1470. .select_task_rq = select_task_rq_fair,
  1471. .load_balance = load_balance_fair,
  1472. .move_one_task = move_one_task_fair,
  1473. #endif
  1474. .set_curr_task = set_curr_task_fair,
  1475. .task_tick = task_tick_fair,
  1476. .task_new = task_new_fair,
  1477. .prio_changed = prio_changed_fair,
  1478. .switched_to = switched_to_fair,
  1479. #ifdef CONFIG_FAIR_GROUP_SCHED
  1480. .moved_group = moved_group_fair,
  1481. #endif
  1482. };
  1483. #ifdef CONFIG_SCHED_DEBUG
  1484. static void print_cfs_stats(struct seq_file *m, int cpu)
  1485. {
  1486. struct cfs_rq *cfs_rq;
  1487. rcu_read_lock();
  1488. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1489. print_cfs_rq(m, cpu, cfs_rq);
  1490. rcu_read_unlock();
  1491. }
  1492. #endif