cpuset.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Workqueue for cpuset related tasks.
  62. *
  63. * Using kevent workqueue may cause deadlock when memory_migrate
  64. * is set. So we create a separate workqueue thread for cpuset.
  65. */
  66. static struct workqueue_struct *cpuset_wq;
  67. /*
  68. * Tracks how many cpusets are currently defined in system.
  69. * When there is only one cpuset (the root cpuset) we can
  70. * short circuit some hooks.
  71. */
  72. int number_of_cpusets __read_mostly;
  73. /* Forward declare cgroup structures */
  74. struct cgroup_subsys cpuset_subsys;
  75. struct cpuset;
  76. /* See "Frequency meter" comments, below. */
  77. struct fmeter {
  78. int cnt; /* unprocessed events count */
  79. int val; /* most recent output value */
  80. time_t time; /* clock (secs) when val computed */
  81. spinlock_t lock; /* guards read or write of above */
  82. };
  83. struct cpuset {
  84. struct cgroup_subsys_state css;
  85. unsigned long flags; /* "unsigned long" so bitops work */
  86. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  87. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  88. struct cpuset *parent; /* my parent */
  89. /*
  90. * Copy of global cpuset_mems_generation as of the most
  91. * recent time this cpuset changed its mems_allowed.
  92. */
  93. int mems_generation;
  94. struct fmeter fmeter; /* memory_pressure filter */
  95. /* partition number for rebuild_sched_domains() */
  96. int pn;
  97. /* for custom sched domain */
  98. int relax_domain_level;
  99. /* used for walking a cpuset heirarchy */
  100. struct list_head stack_list;
  101. };
  102. /* Retrieve the cpuset for a cgroup */
  103. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  104. {
  105. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  106. struct cpuset, css);
  107. }
  108. /* Retrieve the cpuset for a task */
  109. static inline struct cpuset *task_cs(struct task_struct *task)
  110. {
  111. return container_of(task_subsys_state(task, cpuset_subsys_id),
  112. struct cpuset, css);
  113. }
  114. struct cpuset_hotplug_scanner {
  115. struct cgroup_scanner scan;
  116. struct cgroup *to;
  117. };
  118. /* bits in struct cpuset flags field */
  119. typedef enum {
  120. CS_CPU_EXCLUSIVE,
  121. CS_MEM_EXCLUSIVE,
  122. CS_MEM_HARDWALL,
  123. CS_MEMORY_MIGRATE,
  124. CS_SCHED_LOAD_BALANCE,
  125. CS_SPREAD_PAGE,
  126. CS_SPREAD_SLAB,
  127. } cpuset_flagbits_t;
  128. /* convenient tests for these bits */
  129. static inline int is_cpu_exclusive(const struct cpuset *cs)
  130. {
  131. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  132. }
  133. static inline int is_mem_exclusive(const struct cpuset *cs)
  134. {
  135. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  136. }
  137. static inline int is_mem_hardwall(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  140. }
  141. static inline int is_sched_load_balance(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  144. }
  145. static inline int is_memory_migrate(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  148. }
  149. static inline int is_spread_page(const struct cpuset *cs)
  150. {
  151. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  152. }
  153. static inline int is_spread_slab(const struct cpuset *cs)
  154. {
  155. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  156. }
  157. /*
  158. * Increment this integer everytime any cpuset changes its
  159. * mems_allowed value. Users of cpusets can track this generation
  160. * number, and avoid having to lock and reload mems_allowed unless
  161. * the cpuset they're using changes generation.
  162. *
  163. * A single, global generation is needed because cpuset_attach_task() could
  164. * reattach a task to a different cpuset, which must not have its
  165. * generation numbers aliased with those of that tasks previous cpuset.
  166. *
  167. * Generations are needed for mems_allowed because one task cannot
  168. * modify another's memory placement. So we must enable every task,
  169. * on every visit to __alloc_pages(), to efficiently check whether
  170. * its current->cpuset->mems_allowed has changed, requiring an update
  171. * of its current->mems_allowed.
  172. *
  173. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  174. * there is no need to mark it atomic.
  175. */
  176. static int cpuset_mems_generation;
  177. static struct cpuset top_cpuset = {
  178. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  179. };
  180. /*
  181. * There are two global mutexes guarding cpuset structures. The first
  182. * is the main control groups cgroup_mutex, accessed via
  183. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  184. * callback_mutex, below. They can nest. It is ok to first take
  185. * cgroup_mutex, then nest callback_mutex. We also require taking
  186. * task_lock() when dereferencing a task's cpuset pointer. See "The
  187. * task_lock() exception", at the end of this comment.
  188. *
  189. * A task must hold both mutexes to modify cpusets. If a task
  190. * holds cgroup_mutex, then it blocks others wanting that mutex,
  191. * ensuring that it is the only task able to also acquire callback_mutex
  192. * and be able to modify cpusets. It can perform various checks on
  193. * the cpuset structure first, knowing nothing will change. It can
  194. * also allocate memory while just holding cgroup_mutex. While it is
  195. * performing these checks, various callback routines can briefly
  196. * acquire callback_mutex to query cpusets. Once it is ready to make
  197. * the changes, it takes callback_mutex, blocking everyone else.
  198. *
  199. * Calls to the kernel memory allocator can not be made while holding
  200. * callback_mutex, as that would risk double tripping on callback_mutex
  201. * from one of the callbacks into the cpuset code from within
  202. * __alloc_pages().
  203. *
  204. * If a task is only holding callback_mutex, then it has read-only
  205. * access to cpusets.
  206. *
  207. * The task_struct fields mems_allowed and mems_generation may only
  208. * be accessed in the context of that task, so require no locks.
  209. *
  210. * The cpuset_common_file_read() handlers only hold callback_mutex across
  211. * small pieces of code, such as when reading out possibly multi-word
  212. * cpumasks and nodemasks.
  213. *
  214. * Accessing a task's cpuset should be done in accordance with the
  215. * guidelines for accessing subsystem state in kernel/cgroup.c
  216. */
  217. static DEFINE_MUTEX(callback_mutex);
  218. /*
  219. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  220. * buffers. They are statically allocated to prevent using excess stack
  221. * when calling cpuset_print_task_mems_allowed().
  222. */
  223. #define CPUSET_NAME_LEN (128)
  224. #define CPUSET_NODELIST_LEN (256)
  225. static char cpuset_name[CPUSET_NAME_LEN];
  226. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  227. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  228. /*
  229. * This is ugly, but preserves the userspace API for existing cpuset
  230. * users. If someone tries to mount the "cpuset" filesystem, we
  231. * silently switch it to mount "cgroup" instead
  232. */
  233. static int cpuset_get_sb(struct file_system_type *fs_type,
  234. int flags, const char *unused_dev_name,
  235. void *data, struct vfsmount *mnt)
  236. {
  237. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  238. int ret = -ENODEV;
  239. if (cgroup_fs) {
  240. char mountopts[] =
  241. "cpuset,noprefix,"
  242. "release_agent=/sbin/cpuset_release_agent";
  243. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  244. unused_dev_name, mountopts, mnt);
  245. put_filesystem(cgroup_fs);
  246. }
  247. return ret;
  248. }
  249. static struct file_system_type cpuset_fs_type = {
  250. .name = "cpuset",
  251. .get_sb = cpuset_get_sb,
  252. };
  253. /*
  254. * Return in pmask the portion of a cpusets's cpus_allowed that
  255. * are online. If none are online, walk up the cpuset hierarchy
  256. * until we find one that does have some online cpus. If we get
  257. * all the way to the top and still haven't found any online cpus,
  258. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  259. * task, return cpu_online_map.
  260. *
  261. * One way or another, we guarantee to return some non-empty subset
  262. * of cpu_online_map.
  263. *
  264. * Call with callback_mutex held.
  265. */
  266. static void guarantee_online_cpus(const struct cpuset *cs,
  267. struct cpumask *pmask)
  268. {
  269. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  270. cs = cs->parent;
  271. if (cs)
  272. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  273. else
  274. cpumask_copy(pmask, cpu_online_mask);
  275. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  276. }
  277. /*
  278. * Return in *pmask the portion of a cpusets's mems_allowed that
  279. * are online, with memory. If none are online with memory, walk
  280. * up the cpuset hierarchy until we find one that does have some
  281. * online mems. If we get all the way to the top and still haven't
  282. * found any online mems, return node_states[N_HIGH_MEMORY].
  283. *
  284. * One way or another, we guarantee to return some non-empty subset
  285. * of node_states[N_HIGH_MEMORY].
  286. *
  287. * Call with callback_mutex held.
  288. */
  289. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  290. {
  291. while (cs && !nodes_intersects(cs->mems_allowed,
  292. node_states[N_HIGH_MEMORY]))
  293. cs = cs->parent;
  294. if (cs)
  295. nodes_and(*pmask, cs->mems_allowed,
  296. node_states[N_HIGH_MEMORY]);
  297. else
  298. *pmask = node_states[N_HIGH_MEMORY];
  299. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  300. }
  301. /**
  302. * cpuset_update_task_memory_state - update task memory placement
  303. *
  304. * If the current tasks cpusets mems_allowed changed behind our
  305. * backs, update current->mems_allowed, mems_generation and task NUMA
  306. * mempolicy to the new value.
  307. *
  308. * Task mempolicy is updated by rebinding it relative to the
  309. * current->cpuset if a task has its memory placement changed.
  310. * Do not call this routine if in_interrupt().
  311. *
  312. * Call without callback_mutex or task_lock() held. May be
  313. * called with or without cgroup_mutex held. Thanks in part to
  314. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  315. * be NULL. This routine also might acquire callback_mutex during
  316. * call.
  317. *
  318. * Reading current->cpuset->mems_generation doesn't need task_lock
  319. * to guard the current->cpuset derefence, because it is guarded
  320. * from concurrent freeing of current->cpuset using RCU.
  321. *
  322. * The rcu_dereference() is technically probably not needed,
  323. * as I don't actually mind if I see a new cpuset pointer but
  324. * an old value of mems_generation. However this really only
  325. * matters on alpha systems using cpusets heavily. If I dropped
  326. * that rcu_dereference(), it would save them a memory barrier.
  327. * For all other arch's, rcu_dereference is a no-op anyway, and for
  328. * alpha systems not using cpusets, another planned optimization,
  329. * avoiding the rcu critical section for tasks in the root cpuset
  330. * which is statically allocated, so can't vanish, will make this
  331. * irrelevant. Better to use RCU as intended, than to engage in
  332. * some cute trick to save a memory barrier that is impossible to
  333. * test, for alpha systems using cpusets heavily, which might not
  334. * even exist.
  335. *
  336. * This routine is needed to update the per-task mems_allowed data,
  337. * within the tasks context, when it is trying to allocate memory
  338. * (in various mm/mempolicy.c routines) and notices that some other
  339. * task has been modifying its cpuset.
  340. */
  341. void cpuset_update_task_memory_state(void)
  342. {
  343. int my_cpusets_mem_gen;
  344. struct task_struct *tsk = current;
  345. struct cpuset *cs;
  346. rcu_read_lock();
  347. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  348. rcu_read_unlock();
  349. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  350. mutex_lock(&callback_mutex);
  351. task_lock(tsk);
  352. cs = task_cs(tsk); /* Maybe changed when task not locked */
  353. guarantee_online_mems(cs, &tsk->mems_allowed);
  354. tsk->cpuset_mems_generation = cs->mems_generation;
  355. if (is_spread_page(cs))
  356. tsk->flags |= PF_SPREAD_PAGE;
  357. else
  358. tsk->flags &= ~PF_SPREAD_PAGE;
  359. if (is_spread_slab(cs))
  360. tsk->flags |= PF_SPREAD_SLAB;
  361. else
  362. tsk->flags &= ~PF_SPREAD_SLAB;
  363. task_unlock(tsk);
  364. mutex_unlock(&callback_mutex);
  365. mpol_rebind_task(tsk, &tsk->mems_allowed);
  366. }
  367. }
  368. /*
  369. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  370. *
  371. * One cpuset is a subset of another if all its allowed CPUs and
  372. * Memory Nodes are a subset of the other, and its exclusive flags
  373. * are only set if the other's are set. Call holding cgroup_mutex.
  374. */
  375. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  376. {
  377. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  378. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  379. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  380. is_mem_exclusive(p) <= is_mem_exclusive(q);
  381. }
  382. /**
  383. * alloc_trial_cpuset - allocate a trial cpuset
  384. * @cs: the cpuset that the trial cpuset duplicates
  385. */
  386. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  387. {
  388. struct cpuset *trial;
  389. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  390. if (!trial)
  391. return NULL;
  392. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  393. kfree(trial);
  394. return NULL;
  395. }
  396. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  397. return trial;
  398. }
  399. /**
  400. * free_trial_cpuset - free the trial cpuset
  401. * @trial: the trial cpuset to be freed
  402. */
  403. static void free_trial_cpuset(struct cpuset *trial)
  404. {
  405. free_cpumask_var(trial->cpus_allowed);
  406. kfree(trial);
  407. }
  408. /*
  409. * validate_change() - Used to validate that any proposed cpuset change
  410. * follows the structural rules for cpusets.
  411. *
  412. * If we replaced the flag and mask values of the current cpuset
  413. * (cur) with those values in the trial cpuset (trial), would
  414. * our various subset and exclusive rules still be valid? Presumes
  415. * cgroup_mutex held.
  416. *
  417. * 'cur' is the address of an actual, in-use cpuset. Operations
  418. * such as list traversal that depend on the actual address of the
  419. * cpuset in the list must use cur below, not trial.
  420. *
  421. * 'trial' is the address of bulk structure copy of cur, with
  422. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  423. * or flags changed to new, trial values.
  424. *
  425. * Return 0 if valid, -errno if not.
  426. */
  427. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  428. {
  429. struct cgroup *cont;
  430. struct cpuset *c, *par;
  431. /* Each of our child cpusets must be a subset of us */
  432. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  433. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  434. return -EBUSY;
  435. }
  436. /* Remaining checks don't apply to root cpuset */
  437. if (cur == &top_cpuset)
  438. return 0;
  439. par = cur->parent;
  440. /* We must be a subset of our parent cpuset */
  441. if (!is_cpuset_subset(trial, par))
  442. return -EACCES;
  443. /*
  444. * If either I or some sibling (!= me) is exclusive, we can't
  445. * overlap
  446. */
  447. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  448. c = cgroup_cs(cont);
  449. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  450. c != cur &&
  451. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  452. return -EINVAL;
  453. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  454. c != cur &&
  455. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  456. return -EINVAL;
  457. }
  458. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  459. if (cgroup_task_count(cur->css.cgroup)) {
  460. if (cpumask_empty(trial->cpus_allowed) ||
  461. nodes_empty(trial->mems_allowed)) {
  462. return -ENOSPC;
  463. }
  464. }
  465. return 0;
  466. }
  467. /*
  468. * Helper routine for generate_sched_domains().
  469. * Do cpusets a, b have overlapping cpus_allowed masks?
  470. */
  471. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  472. {
  473. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  474. }
  475. static void
  476. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  477. {
  478. if (dattr->relax_domain_level < c->relax_domain_level)
  479. dattr->relax_domain_level = c->relax_domain_level;
  480. return;
  481. }
  482. static void
  483. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  484. {
  485. LIST_HEAD(q);
  486. list_add(&c->stack_list, &q);
  487. while (!list_empty(&q)) {
  488. struct cpuset *cp;
  489. struct cgroup *cont;
  490. struct cpuset *child;
  491. cp = list_first_entry(&q, struct cpuset, stack_list);
  492. list_del(q.next);
  493. if (cpumask_empty(cp->cpus_allowed))
  494. continue;
  495. if (is_sched_load_balance(cp))
  496. update_domain_attr(dattr, cp);
  497. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  498. child = cgroup_cs(cont);
  499. list_add_tail(&child->stack_list, &q);
  500. }
  501. }
  502. }
  503. /*
  504. * generate_sched_domains()
  505. *
  506. * This function builds a partial partition of the systems CPUs
  507. * A 'partial partition' is a set of non-overlapping subsets whose
  508. * union is a subset of that set.
  509. * The output of this function needs to be passed to kernel/sched.c
  510. * partition_sched_domains() routine, which will rebuild the scheduler's
  511. * load balancing domains (sched domains) as specified by that partial
  512. * partition.
  513. *
  514. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  515. * for a background explanation of this.
  516. *
  517. * Does not return errors, on the theory that the callers of this
  518. * routine would rather not worry about failures to rebuild sched
  519. * domains when operating in the severe memory shortage situations
  520. * that could cause allocation failures below.
  521. *
  522. * Must be called with cgroup_lock held.
  523. *
  524. * The three key local variables below are:
  525. * q - a linked-list queue of cpuset pointers, used to implement a
  526. * top-down scan of all cpusets. This scan loads a pointer
  527. * to each cpuset marked is_sched_load_balance into the
  528. * array 'csa'. For our purposes, rebuilding the schedulers
  529. * sched domains, we can ignore !is_sched_load_balance cpusets.
  530. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  531. * that need to be load balanced, for convenient iterative
  532. * access by the subsequent code that finds the best partition,
  533. * i.e the set of domains (subsets) of CPUs such that the
  534. * cpus_allowed of every cpuset marked is_sched_load_balance
  535. * is a subset of one of these domains, while there are as
  536. * many such domains as possible, each as small as possible.
  537. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  538. * the kernel/sched.c routine partition_sched_domains() in a
  539. * convenient format, that can be easily compared to the prior
  540. * value to determine what partition elements (sched domains)
  541. * were changed (added or removed.)
  542. *
  543. * Finding the best partition (set of domains):
  544. * The triple nested loops below over i, j, k scan over the
  545. * load balanced cpusets (using the array of cpuset pointers in
  546. * csa[]) looking for pairs of cpusets that have overlapping
  547. * cpus_allowed, but which don't have the same 'pn' partition
  548. * number and gives them in the same partition number. It keeps
  549. * looping on the 'restart' label until it can no longer find
  550. * any such pairs.
  551. *
  552. * The union of the cpus_allowed masks from the set of
  553. * all cpusets having the same 'pn' value then form the one
  554. * element of the partition (one sched domain) to be passed to
  555. * partition_sched_domains().
  556. */
  557. /* FIXME: see the FIXME in partition_sched_domains() */
  558. static int generate_sched_domains(struct cpumask **domains,
  559. struct sched_domain_attr **attributes)
  560. {
  561. LIST_HEAD(q); /* queue of cpusets to be scanned */
  562. struct cpuset *cp; /* scans q */
  563. struct cpuset **csa; /* array of all cpuset ptrs */
  564. int csn; /* how many cpuset ptrs in csa so far */
  565. int i, j, k; /* indices for partition finding loops */
  566. struct cpumask *doms; /* resulting partition; i.e. sched domains */
  567. struct sched_domain_attr *dattr; /* attributes for custom domains */
  568. int ndoms = 0; /* number of sched domains in result */
  569. int nslot; /* next empty doms[] struct cpumask slot */
  570. doms = NULL;
  571. dattr = NULL;
  572. csa = NULL;
  573. /* Special case for the 99% of systems with one, full, sched domain */
  574. if (is_sched_load_balance(&top_cpuset)) {
  575. doms = kmalloc(cpumask_size(), GFP_KERNEL);
  576. if (!doms)
  577. goto done;
  578. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  579. if (dattr) {
  580. *dattr = SD_ATTR_INIT;
  581. update_domain_attr_tree(dattr, &top_cpuset);
  582. }
  583. cpumask_copy(doms, top_cpuset.cpus_allowed);
  584. ndoms = 1;
  585. goto done;
  586. }
  587. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  588. if (!csa)
  589. goto done;
  590. csn = 0;
  591. list_add(&top_cpuset.stack_list, &q);
  592. while (!list_empty(&q)) {
  593. struct cgroup *cont;
  594. struct cpuset *child; /* scans child cpusets of cp */
  595. cp = list_first_entry(&q, struct cpuset, stack_list);
  596. list_del(q.next);
  597. if (cpumask_empty(cp->cpus_allowed))
  598. continue;
  599. /*
  600. * All child cpusets contain a subset of the parent's cpus, so
  601. * just skip them, and then we call update_domain_attr_tree()
  602. * to calc relax_domain_level of the corresponding sched
  603. * domain.
  604. */
  605. if (is_sched_load_balance(cp)) {
  606. csa[csn++] = cp;
  607. continue;
  608. }
  609. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  610. child = cgroup_cs(cont);
  611. list_add_tail(&child->stack_list, &q);
  612. }
  613. }
  614. for (i = 0; i < csn; i++)
  615. csa[i]->pn = i;
  616. ndoms = csn;
  617. restart:
  618. /* Find the best partition (set of sched domains) */
  619. for (i = 0; i < csn; i++) {
  620. struct cpuset *a = csa[i];
  621. int apn = a->pn;
  622. for (j = 0; j < csn; j++) {
  623. struct cpuset *b = csa[j];
  624. int bpn = b->pn;
  625. if (apn != bpn && cpusets_overlap(a, b)) {
  626. for (k = 0; k < csn; k++) {
  627. struct cpuset *c = csa[k];
  628. if (c->pn == bpn)
  629. c->pn = apn;
  630. }
  631. ndoms--; /* one less element */
  632. goto restart;
  633. }
  634. }
  635. }
  636. /*
  637. * Now we know how many domains to create.
  638. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  639. */
  640. doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
  641. if (!doms)
  642. goto done;
  643. /*
  644. * The rest of the code, including the scheduler, can deal with
  645. * dattr==NULL case. No need to abort if alloc fails.
  646. */
  647. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  648. for (nslot = 0, i = 0; i < csn; i++) {
  649. struct cpuset *a = csa[i];
  650. struct cpumask *dp;
  651. int apn = a->pn;
  652. if (apn < 0) {
  653. /* Skip completed partitions */
  654. continue;
  655. }
  656. dp = doms + nslot;
  657. if (nslot == ndoms) {
  658. static int warnings = 10;
  659. if (warnings) {
  660. printk(KERN_WARNING
  661. "rebuild_sched_domains confused:"
  662. " nslot %d, ndoms %d, csn %d, i %d,"
  663. " apn %d\n",
  664. nslot, ndoms, csn, i, apn);
  665. warnings--;
  666. }
  667. continue;
  668. }
  669. cpumask_clear(dp);
  670. if (dattr)
  671. *(dattr + nslot) = SD_ATTR_INIT;
  672. for (j = i; j < csn; j++) {
  673. struct cpuset *b = csa[j];
  674. if (apn == b->pn) {
  675. cpumask_or(dp, dp, b->cpus_allowed);
  676. if (dattr)
  677. update_domain_attr_tree(dattr + nslot, b);
  678. /* Done with this partition */
  679. b->pn = -1;
  680. }
  681. }
  682. nslot++;
  683. }
  684. BUG_ON(nslot != ndoms);
  685. done:
  686. kfree(csa);
  687. /*
  688. * Fallback to the default domain if kmalloc() failed.
  689. * See comments in partition_sched_domains().
  690. */
  691. if (doms == NULL)
  692. ndoms = 1;
  693. *domains = doms;
  694. *attributes = dattr;
  695. return ndoms;
  696. }
  697. /*
  698. * Rebuild scheduler domains.
  699. *
  700. * Call with neither cgroup_mutex held nor within get_online_cpus().
  701. * Takes both cgroup_mutex and get_online_cpus().
  702. *
  703. * Cannot be directly called from cpuset code handling changes
  704. * to the cpuset pseudo-filesystem, because it cannot be called
  705. * from code that already holds cgroup_mutex.
  706. */
  707. static void do_rebuild_sched_domains(struct work_struct *unused)
  708. {
  709. struct sched_domain_attr *attr;
  710. struct cpumask *doms;
  711. int ndoms;
  712. get_online_cpus();
  713. /* Generate domain masks and attrs */
  714. cgroup_lock();
  715. ndoms = generate_sched_domains(&doms, &attr);
  716. cgroup_unlock();
  717. /* Have scheduler rebuild the domains */
  718. partition_sched_domains(ndoms, doms, attr);
  719. put_online_cpus();
  720. }
  721. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  722. /*
  723. * Rebuild scheduler domains, asynchronously via workqueue.
  724. *
  725. * If the flag 'sched_load_balance' of any cpuset with non-empty
  726. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  727. * which has that flag enabled, or if any cpuset with a non-empty
  728. * 'cpus' is removed, then call this routine to rebuild the
  729. * scheduler's dynamic sched domains.
  730. *
  731. * The rebuild_sched_domains() and partition_sched_domains()
  732. * routines must nest cgroup_lock() inside get_online_cpus(),
  733. * but such cpuset changes as these must nest that locking the
  734. * other way, holding cgroup_lock() for much of the code.
  735. *
  736. * So in order to avoid an ABBA deadlock, the cpuset code handling
  737. * these user changes delegates the actual sched domain rebuilding
  738. * to a separate workqueue thread, which ends up processing the
  739. * above do_rebuild_sched_domains() function.
  740. */
  741. static void async_rebuild_sched_domains(void)
  742. {
  743. queue_work(cpuset_wq, &rebuild_sched_domains_work);
  744. }
  745. /*
  746. * Accomplishes the same scheduler domain rebuild as the above
  747. * async_rebuild_sched_domains(), however it directly calls the
  748. * rebuild routine synchronously rather than calling it via an
  749. * asynchronous work thread.
  750. *
  751. * This can only be called from code that is not holding
  752. * cgroup_mutex (not nested in a cgroup_lock() call.)
  753. */
  754. void rebuild_sched_domains(void)
  755. {
  756. do_rebuild_sched_domains(NULL);
  757. }
  758. /**
  759. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  760. * @tsk: task to test
  761. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  762. *
  763. * Call with cgroup_mutex held. May take callback_mutex during call.
  764. * Called for each task in a cgroup by cgroup_scan_tasks().
  765. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  766. * words, if its mask is not equal to its cpuset's mask).
  767. */
  768. static int cpuset_test_cpumask(struct task_struct *tsk,
  769. struct cgroup_scanner *scan)
  770. {
  771. return !cpumask_equal(&tsk->cpus_allowed,
  772. (cgroup_cs(scan->cg))->cpus_allowed);
  773. }
  774. /**
  775. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  776. * @tsk: task to test
  777. * @scan: struct cgroup_scanner containing the cgroup of the task
  778. *
  779. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  780. * cpus_allowed mask needs to be changed.
  781. *
  782. * We don't need to re-check for the cgroup/cpuset membership, since we're
  783. * holding cgroup_lock() at this point.
  784. */
  785. static void cpuset_change_cpumask(struct task_struct *tsk,
  786. struct cgroup_scanner *scan)
  787. {
  788. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  789. }
  790. /**
  791. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  792. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  793. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  794. *
  795. * Called with cgroup_mutex held
  796. *
  797. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  798. * calling callback functions for each.
  799. *
  800. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  801. * if @heap != NULL.
  802. */
  803. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  804. {
  805. struct cgroup_scanner scan;
  806. scan.cg = cs->css.cgroup;
  807. scan.test_task = cpuset_test_cpumask;
  808. scan.process_task = cpuset_change_cpumask;
  809. scan.heap = heap;
  810. cgroup_scan_tasks(&scan);
  811. }
  812. /**
  813. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  814. * @cs: the cpuset to consider
  815. * @buf: buffer of cpu numbers written to this cpuset
  816. */
  817. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  818. const char *buf)
  819. {
  820. struct ptr_heap heap;
  821. int retval;
  822. int is_load_balanced;
  823. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  824. if (cs == &top_cpuset)
  825. return -EACCES;
  826. /*
  827. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  828. * Since cpulist_parse() fails on an empty mask, we special case
  829. * that parsing. The validate_change() call ensures that cpusets
  830. * with tasks have cpus.
  831. */
  832. if (!*buf) {
  833. cpumask_clear(trialcs->cpus_allowed);
  834. } else {
  835. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  836. if (retval < 0)
  837. return retval;
  838. if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
  839. return -EINVAL;
  840. }
  841. retval = validate_change(cs, trialcs);
  842. if (retval < 0)
  843. return retval;
  844. /* Nothing to do if the cpus didn't change */
  845. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  846. return 0;
  847. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  848. if (retval)
  849. return retval;
  850. is_load_balanced = is_sched_load_balance(trialcs);
  851. mutex_lock(&callback_mutex);
  852. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  853. mutex_unlock(&callback_mutex);
  854. /*
  855. * Scan tasks in the cpuset, and update the cpumasks of any
  856. * that need an update.
  857. */
  858. update_tasks_cpumask(cs, &heap);
  859. heap_free(&heap);
  860. if (is_load_balanced)
  861. async_rebuild_sched_domains();
  862. return 0;
  863. }
  864. /*
  865. * cpuset_migrate_mm
  866. *
  867. * Migrate memory region from one set of nodes to another.
  868. *
  869. * Temporarilly set tasks mems_allowed to target nodes of migration,
  870. * so that the migration code can allocate pages on these nodes.
  871. *
  872. * Call holding cgroup_mutex, so current's cpuset won't change
  873. * during this call, as manage_mutex holds off any cpuset_attach()
  874. * calls. Therefore we don't need to take task_lock around the
  875. * call to guarantee_online_mems(), as we know no one is changing
  876. * our task's cpuset.
  877. *
  878. * Hold callback_mutex around the two modifications of our tasks
  879. * mems_allowed to synchronize with cpuset_mems_allowed().
  880. *
  881. * While the mm_struct we are migrating is typically from some
  882. * other task, the task_struct mems_allowed that we are hacking
  883. * is for our current task, which must allocate new pages for that
  884. * migrating memory region.
  885. *
  886. * We call cpuset_update_task_memory_state() before hacking
  887. * our tasks mems_allowed, so that we are assured of being in
  888. * sync with our tasks cpuset, and in particular, callbacks to
  889. * cpuset_update_task_memory_state() from nested page allocations
  890. * won't see any mismatch of our cpuset and task mems_generation
  891. * values, so won't overwrite our hacked tasks mems_allowed
  892. * nodemask.
  893. */
  894. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  895. const nodemask_t *to)
  896. {
  897. struct task_struct *tsk = current;
  898. cpuset_update_task_memory_state();
  899. mutex_lock(&callback_mutex);
  900. tsk->mems_allowed = *to;
  901. mutex_unlock(&callback_mutex);
  902. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  903. mutex_lock(&callback_mutex);
  904. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  905. mutex_unlock(&callback_mutex);
  906. }
  907. static void *cpuset_being_rebound;
  908. /**
  909. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  910. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  911. * @oldmem: old mems_allowed of cpuset cs
  912. *
  913. * Called with cgroup_mutex held
  914. * Return 0 if successful, -errno if not.
  915. */
  916. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  917. {
  918. struct task_struct *p;
  919. struct mm_struct **mmarray;
  920. int i, n, ntasks;
  921. int migrate;
  922. int fudge;
  923. struct cgroup_iter it;
  924. int retval;
  925. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  926. fudge = 10; /* spare mmarray[] slots */
  927. fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
  928. retval = -ENOMEM;
  929. /*
  930. * Allocate mmarray[] to hold mm reference for each task
  931. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  932. * tasklist_lock. We could use GFP_ATOMIC, but with a
  933. * few more lines of code, we can retry until we get a big
  934. * enough mmarray[] w/o using GFP_ATOMIC.
  935. */
  936. while (1) {
  937. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  938. ntasks += fudge;
  939. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  940. if (!mmarray)
  941. goto done;
  942. read_lock(&tasklist_lock); /* block fork */
  943. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  944. break; /* got enough */
  945. read_unlock(&tasklist_lock); /* try again */
  946. kfree(mmarray);
  947. }
  948. n = 0;
  949. /* Load up mmarray[] with mm reference for each task in cpuset. */
  950. cgroup_iter_start(cs->css.cgroup, &it);
  951. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  952. struct mm_struct *mm;
  953. if (n >= ntasks) {
  954. printk(KERN_WARNING
  955. "Cpuset mempolicy rebind incomplete.\n");
  956. break;
  957. }
  958. mm = get_task_mm(p);
  959. if (!mm)
  960. continue;
  961. mmarray[n++] = mm;
  962. }
  963. cgroup_iter_end(cs->css.cgroup, &it);
  964. read_unlock(&tasklist_lock);
  965. /*
  966. * Now that we've dropped the tasklist spinlock, we can
  967. * rebind the vma mempolicies of each mm in mmarray[] to their
  968. * new cpuset, and release that mm. The mpol_rebind_mm()
  969. * call takes mmap_sem, which we couldn't take while holding
  970. * tasklist_lock. Forks can happen again now - the mpol_dup()
  971. * cpuset_being_rebound check will catch such forks, and rebind
  972. * their vma mempolicies too. Because we still hold the global
  973. * cgroup_mutex, we know that no other rebind effort will
  974. * be contending for the global variable cpuset_being_rebound.
  975. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  976. * is idempotent. Also migrate pages in each mm to new nodes.
  977. */
  978. migrate = is_memory_migrate(cs);
  979. for (i = 0; i < n; i++) {
  980. struct mm_struct *mm = mmarray[i];
  981. mpol_rebind_mm(mm, &cs->mems_allowed);
  982. if (migrate)
  983. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  984. mmput(mm);
  985. }
  986. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  987. kfree(mmarray);
  988. cpuset_being_rebound = NULL;
  989. retval = 0;
  990. done:
  991. return retval;
  992. }
  993. /*
  994. * Handle user request to change the 'mems' memory placement
  995. * of a cpuset. Needs to validate the request, update the
  996. * cpusets mems_allowed and mems_generation, and for each
  997. * task in the cpuset, rebind any vma mempolicies and if
  998. * the cpuset is marked 'memory_migrate', migrate the tasks
  999. * pages to the new memory.
  1000. *
  1001. * Call with cgroup_mutex held. May take callback_mutex during call.
  1002. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1003. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1004. * their mempolicies to the cpusets new mems_allowed.
  1005. */
  1006. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1007. const char *buf)
  1008. {
  1009. nodemask_t oldmem;
  1010. int retval;
  1011. /*
  1012. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  1013. * it's read-only
  1014. */
  1015. if (cs == &top_cpuset)
  1016. return -EACCES;
  1017. /*
  1018. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1019. * Since nodelist_parse() fails on an empty mask, we special case
  1020. * that parsing. The validate_change() call ensures that cpusets
  1021. * with tasks have memory.
  1022. */
  1023. if (!*buf) {
  1024. nodes_clear(trialcs->mems_allowed);
  1025. } else {
  1026. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1027. if (retval < 0)
  1028. goto done;
  1029. if (!nodes_subset(trialcs->mems_allowed,
  1030. node_states[N_HIGH_MEMORY]))
  1031. return -EINVAL;
  1032. }
  1033. oldmem = cs->mems_allowed;
  1034. if (nodes_equal(oldmem, trialcs->mems_allowed)) {
  1035. retval = 0; /* Too easy - nothing to do */
  1036. goto done;
  1037. }
  1038. retval = validate_change(cs, trialcs);
  1039. if (retval < 0)
  1040. goto done;
  1041. mutex_lock(&callback_mutex);
  1042. cs->mems_allowed = trialcs->mems_allowed;
  1043. cs->mems_generation = cpuset_mems_generation++;
  1044. mutex_unlock(&callback_mutex);
  1045. retval = update_tasks_nodemask(cs, &oldmem);
  1046. done:
  1047. return retval;
  1048. }
  1049. int current_cpuset_is_being_rebound(void)
  1050. {
  1051. return task_cs(current) == cpuset_being_rebound;
  1052. }
  1053. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1054. {
  1055. if (val < -1 || val >= SD_LV_MAX)
  1056. return -EINVAL;
  1057. if (val != cs->relax_domain_level) {
  1058. cs->relax_domain_level = val;
  1059. if (!cpumask_empty(cs->cpus_allowed) &&
  1060. is_sched_load_balance(cs))
  1061. async_rebuild_sched_domains();
  1062. }
  1063. return 0;
  1064. }
  1065. /*
  1066. * update_flag - read a 0 or a 1 in a file and update associated flag
  1067. * bit: the bit to update (see cpuset_flagbits_t)
  1068. * cs: the cpuset to update
  1069. * turning_on: whether the flag is being set or cleared
  1070. *
  1071. * Call with cgroup_mutex held.
  1072. */
  1073. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1074. int turning_on)
  1075. {
  1076. struct cpuset *trialcs;
  1077. int err;
  1078. int balance_flag_changed;
  1079. trialcs = alloc_trial_cpuset(cs);
  1080. if (!trialcs)
  1081. return -ENOMEM;
  1082. if (turning_on)
  1083. set_bit(bit, &trialcs->flags);
  1084. else
  1085. clear_bit(bit, &trialcs->flags);
  1086. err = validate_change(cs, trialcs);
  1087. if (err < 0)
  1088. goto out;
  1089. balance_flag_changed = (is_sched_load_balance(cs) !=
  1090. is_sched_load_balance(trialcs));
  1091. mutex_lock(&callback_mutex);
  1092. cs->flags = trialcs->flags;
  1093. mutex_unlock(&callback_mutex);
  1094. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1095. async_rebuild_sched_domains();
  1096. out:
  1097. free_trial_cpuset(trialcs);
  1098. return err;
  1099. }
  1100. /*
  1101. * Frequency meter - How fast is some event occurring?
  1102. *
  1103. * These routines manage a digitally filtered, constant time based,
  1104. * event frequency meter. There are four routines:
  1105. * fmeter_init() - initialize a frequency meter.
  1106. * fmeter_markevent() - called each time the event happens.
  1107. * fmeter_getrate() - returns the recent rate of such events.
  1108. * fmeter_update() - internal routine used to update fmeter.
  1109. *
  1110. * A common data structure is passed to each of these routines,
  1111. * which is used to keep track of the state required to manage the
  1112. * frequency meter and its digital filter.
  1113. *
  1114. * The filter works on the number of events marked per unit time.
  1115. * The filter is single-pole low-pass recursive (IIR). The time unit
  1116. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1117. * simulate 3 decimal digits of precision (multiplied by 1000).
  1118. *
  1119. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1120. * has a half-life of 10 seconds, meaning that if the events quit
  1121. * happening, then the rate returned from the fmeter_getrate()
  1122. * will be cut in half each 10 seconds, until it converges to zero.
  1123. *
  1124. * It is not worth doing a real infinitely recursive filter. If more
  1125. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1126. * just compute FM_MAXTICKS ticks worth, by which point the level
  1127. * will be stable.
  1128. *
  1129. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1130. * arithmetic overflow in the fmeter_update() routine.
  1131. *
  1132. * Given the simple 32 bit integer arithmetic used, this meter works
  1133. * best for reporting rates between one per millisecond (msec) and
  1134. * one per 32 (approx) seconds. At constant rates faster than one
  1135. * per msec it maxes out at values just under 1,000,000. At constant
  1136. * rates between one per msec, and one per second it will stabilize
  1137. * to a value N*1000, where N is the rate of events per second.
  1138. * At constant rates between one per second and one per 32 seconds,
  1139. * it will be choppy, moving up on the seconds that have an event,
  1140. * and then decaying until the next event. At rates slower than
  1141. * about one in 32 seconds, it decays all the way back to zero between
  1142. * each event.
  1143. */
  1144. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1145. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1146. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1147. #define FM_SCALE 1000 /* faux fixed point scale */
  1148. /* Initialize a frequency meter */
  1149. static void fmeter_init(struct fmeter *fmp)
  1150. {
  1151. fmp->cnt = 0;
  1152. fmp->val = 0;
  1153. fmp->time = 0;
  1154. spin_lock_init(&fmp->lock);
  1155. }
  1156. /* Internal meter update - process cnt events and update value */
  1157. static void fmeter_update(struct fmeter *fmp)
  1158. {
  1159. time_t now = get_seconds();
  1160. time_t ticks = now - fmp->time;
  1161. if (ticks == 0)
  1162. return;
  1163. ticks = min(FM_MAXTICKS, ticks);
  1164. while (ticks-- > 0)
  1165. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1166. fmp->time = now;
  1167. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1168. fmp->cnt = 0;
  1169. }
  1170. /* Process any previous ticks, then bump cnt by one (times scale). */
  1171. static void fmeter_markevent(struct fmeter *fmp)
  1172. {
  1173. spin_lock(&fmp->lock);
  1174. fmeter_update(fmp);
  1175. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1176. spin_unlock(&fmp->lock);
  1177. }
  1178. /* Process any previous ticks, then return current value. */
  1179. static int fmeter_getrate(struct fmeter *fmp)
  1180. {
  1181. int val;
  1182. spin_lock(&fmp->lock);
  1183. fmeter_update(fmp);
  1184. val = fmp->val;
  1185. spin_unlock(&fmp->lock);
  1186. return val;
  1187. }
  1188. /* Protected by cgroup_lock */
  1189. static cpumask_var_t cpus_attach;
  1190. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1191. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1192. struct cgroup *cont, struct task_struct *tsk)
  1193. {
  1194. struct cpuset *cs = cgroup_cs(cont);
  1195. int ret = 0;
  1196. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1197. return -ENOSPC;
  1198. if (tsk->flags & PF_THREAD_BOUND) {
  1199. mutex_lock(&callback_mutex);
  1200. if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
  1201. ret = -EINVAL;
  1202. mutex_unlock(&callback_mutex);
  1203. }
  1204. return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
  1205. }
  1206. static void cpuset_attach(struct cgroup_subsys *ss,
  1207. struct cgroup *cont, struct cgroup *oldcont,
  1208. struct task_struct *tsk)
  1209. {
  1210. nodemask_t from, to;
  1211. struct mm_struct *mm;
  1212. struct cpuset *cs = cgroup_cs(cont);
  1213. struct cpuset *oldcs = cgroup_cs(oldcont);
  1214. int err;
  1215. if (cs == &top_cpuset) {
  1216. cpumask_copy(cpus_attach, cpu_possible_mask);
  1217. } else {
  1218. mutex_lock(&callback_mutex);
  1219. guarantee_online_cpus(cs, cpus_attach);
  1220. mutex_unlock(&callback_mutex);
  1221. }
  1222. err = set_cpus_allowed_ptr(tsk, cpus_attach);
  1223. if (err)
  1224. return;
  1225. from = oldcs->mems_allowed;
  1226. to = cs->mems_allowed;
  1227. mm = get_task_mm(tsk);
  1228. if (mm) {
  1229. mpol_rebind_mm(mm, &to);
  1230. if (is_memory_migrate(cs))
  1231. cpuset_migrate_mm(mm, &from, &to);
  1232. mmput(mm);
  1233. }
  1234. }
  1235. /* The various types of files and directories in a cpuset file system */
  1236. typedef enum {
  1237. FILE_MEMORY_MIGRATE,
  1238. FILE_CPULIST,
  1239. FILE_MEMLIST,
  1240. FILE_CPU_EXCLUSIVE,
  1241. FILE_MEM_EXCLUSIVE,
  1242. FILE_MEM_HARDWALL,
  1243. FILE_SCHED_LOAD_BALANCE,
  1244. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1245. FILE_MEMORY_PRESSURE_ENABLED,
  1246. FILE_MEMORY_PRESSURE,
  1247. FILE_SPREAD_PAGE,
  1248. FILE_SPREAD_SLAB,
  1249. } cpuset_filetype_t;
  1250. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1251. {
  1252. int retval = 0;
  1253. struct cpuset *cs = cgroup_cs(cgrp);
  1254. cpuset_filetype_t type = cft->private;
  1255. if (!cgroup_lock_live_group(cgrp))
  1256. return -ENODEV;
  1257. switch (type) {
  1258. case FILE_CPU_EXCLUSIVE:
  1259. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1260. break;
  1261. case FILE_MEM_EXCLUSIVE:
  1262. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1263. break;
  1264. case FILE_MEM_HARDWALL:
  1265. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1266. break;
  1267. case FILE_SCHED_LOAD_BALANCE:
  1268. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1269. break;
  1270. case FILE_MEMORY_MIGRATE:
  1271. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1272. break;
  1273. case FILE_MEMORY_PRESSURE_ENABLED:
  1274. cpuset_memory_pressure_enabled = !!val;
  1275. break;
  1276. case FILE_MEMORY_PRESSURE:
  1277. retval = -EACCES;
  1278. break;
  1279. case FILE_SPREAD_PAGE:
  1280. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1281. cs->mems_generation = cpuset_mems_generation++;
  1282. break;
  1283. case FILE_SPREAD_SLAB:
  1284. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1285. cs->mems_generation = cpuset_mems_generation++;
  1286. break;
  1287. default:
  1288. retval = -EINVAL;
  1289. break;
  1290. }
  1291. cgroup_unlock();
  1292. return retval;
  1293. }
  1294. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1295. {
  1296. int retval = 0;
  1297. struct cpuset *cs = cgroup_cs(cgrp);
  1298. cpuset_filetype_t type = cft->private;
  1299. if (!cgroup_lock_live_group(cgrp))
  1300. return -ENODEV;
  1301. switch (type) {
  1302. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1303. retval = update_relax_domain_level(cs, val);
  1304. break;
  1305. default:
  1306. retval = -EINVAL;
  1307. break;
  1308. }
  1309. cgroup_unlock();
  1310. return retval;
  1311. }
  1312. /*
  1313. * Common handling for a write to a "cpus" or "mems" file.
  1314. */
  1315. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1316. const char *buf)
  1317. {
  1318. int retval = 0;
  1319. struct cpuset *cs = cgroup_cs(cgrp);
  1320. struct cpuset *trialcs;
  1321. if (!cgroup_lock_live_group(cgrp))
  1322. return -ENODEV;
  1323. trialcs = alloc_trial_cpuset(cs);
  1324. if (!trialcs)
  1325. return -ENOMEM;
  1326. switch (cft->private) {
  1327. case FILE_CPULIST:
  1328. retval = update_cpumask(cs, trialcs, buf);
  1329. break;
  1330. case FILE_MEMLIST:
  1331. retval = update_nodemask(cs, trialcs, buf);
  1332. break;
  1333. default:
  1334. retval = -EINVAL;
  1335. break;
  1336. }
  1337. free_trial_cpuset(trialcs);
  1338. cgroup_unlock();
  1339. return retval;
  1340. }
  1341. /*
  1342. * These ascii lists should be read in a single call, by using a user
  1343. * buffer large enough to hold the entire map. If read in smaller
  1344. * chunks, there is no guarantee of atomicity. Since the display format
  1345. * used, list of ranges of sequential numbers, is variable length,
  1346. * and since these maps can change value dynamically, one could read
  1347. * gibberish by doing partial reads while a list was changing.
  1348. * A single large read to a buffer that crosses a page boundary is
  1349. * ok, because the result being copied to user land is not recomputed
  1350. * across a page fault.
  1351. */
  1352. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1353. {
  1354. int ret;
  1355. mutex_lock(&callback_mutex);
  1356. ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1357. mutex_unlock(&callback_mutex);
  1358. return ret;
  1359. }
  1360. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1361. {
  1362. nodemask_t mask;
  1363. mutex_lock(&callback_mutex);
  1364. mask = cs->mems_allowed;
  1365. mutex_unlock(&callback_mutex);
  1366. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1367. }
  1368. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1369. struct cftype *cft,
  1370. struct file *file,
  1371. char __user *buf,
  1372. size_t nbytes, loff_t *ppos)
  1373. {
  1374. struct cpuset *cs = cgroup_cs(cont);
  1375. cpuset_filetype_t type = cft->private;
  1376. char *page;
  1377. ssize_t retval = 0;
  1378. char *s;
  1379. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1380. return -ENOMEM;
  1381. s = page;
  1382. switch (type) {
  1383. case FILE_CPULIST:
  1384. s += cpuset_sprintf_cpulist(s, cs);
  1385. break;
  1386. case FILE_MEMLIST:
  1387. s += cpuset_sprintf_memlist(s, cs);
  1388. break;
  1389. default:
  1390. retval = -EINVAL;
  1391. goto out;
  1392. }
  1393. *s++ = '\n';
  1394. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1395. out:
  1396. free_page((unsigned long)page);
  1397. return retval;
  1398. }
  1399. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1400. {
  1401. struct cpuset *cs = cgroup_cs(cont);
  1402. cpuset_filetype_t type = cft->private;
  1403. switch (type) {
  1404. case FILE_CPU_EXCLUSIVE:
  1405. return is_cpu_exclusive(cs);
  1406. case FILE_MEM_EXCLUSIVE:
  1407. return is_mem_exclusive(cs);
  1408. case FILE_MEM_HARDWALL:
  1409. return is_mem_hardwall(cs);
  1410. case FILE_SCHED_LOAD_BALANCE:
  1411. return is_sched_load_balance(cs);
  1412. case FILE_MEMORY_MIGRATE:
  1413. return is_memory_migrate(cs);
  1414. case FILE_MEMORY_PRESSURE_ENABLED:
  1415. return cpuset_memory_pressure_enabled;
  1416. case FILE_MEMORY_PRESSURE:
  1417. return fmeter_getrate(&cs->fmeter);
  1418. case FILE_SPREAD_PAGE:
  1419. return is_spread_page(cs);
  1420. case FILE_SPREAD_SLAB:
  1421. return is_spread_slab(cs);
  1422. default:
  1423. BUG();
  1424. }
  1425. /* Unreachable but makes gcc happy */
  1426. return 0;
  1427. }
  1428. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1429. {
  1430. struct cpuset *cs = cgroup_cs(cont);
  1431. cpuset_filetype_t type = cft->private;
  1432. switch (type) {
  1433. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1434. return cs->relax_domain_level;
  1435. default:
  1436. BUG();
  1437. }
  1438. /* Unrechable but makes gcc happy */
  1439. return 0;
  1440. }
  1441. /*
  1442. * for the common functions, 'private' gives the type of file
  1443. */
  1444. static struct cftype files[] = {
  1445. {
  1446. .name = "cpus",
  1447. .read = cpuset_common_file_read,
  1448. .write_string = cpuset_write_resmask,
  1449. .max_write_len = (100U + 6 * NR_CPUS),
  1450. .private = FILE_CPULIST,
  1451. },
  1452. {
  1453. .name = "mems",
  1454. .read = cpuset_common_file_read,
  1455. .write_string = cpuset_write_resmask,
  1456. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1457. .private = FILE_MEMLIST,
  1458. },
  1459. {
  1460. .name = "cpu_exclusive",
  1461. .read_u64 = cpuset_read_u64,
  1462. .write_u64 = cpuset_write_u64,
  1463. .private = FILE_CPU_EXCLUSIVE,
  1464. },
  1465. {
  1466. .name = "mem_exclusive",
  1467. .read_u64 = cpuset_read_u64,
  1468. .write_u64 = cpuset_write_u64,
  1469. .private = FILE_MEM_EXCLUSIVE,
  1470. },
  1471. {
  1472. .name = "mem_hardwall",
  1473. .read_u64 = cpuset_read_u64,
  1474. .write_u64 = cpuset_write_u64,
  1475. .private = FILE_MEM_HARDWALL,
  1476. },
  1477. {
  1478. .name = "sched_load_balance",
  1479. .read_u64 = cpuset_read_u64,
  1480. .write_u64 = cpuset_write_u64,
  1481. .private = FILE_SCHED_LOAD_BALANCE,
  1482. },
  1483. {
  1484. .name = "sched_relax_domain_level",
  1485. .read_s64 = cpuset_read_s64,
  1486. .write_s64 = cpuset_write_s64,
  1487. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1488. },
  1489. {
  1490. .name = "memory_migrate",
  1491. .read_u64 = cpuset_read_u64,
  1492. .write_u64 = cpuset_write_u64,
  1493. .private = FILE_MEMORY_MIGRATE,
  1494. },
  1495. {
  1496. .name = "memory_pressure",
  1497. .read_u64 = cpuset_read_u64,
  1498. .write_u64 = cpuset_write_u64,
  1499. .private = FILE_MEMORY_PRESSURE,
  1500. },
  1501. {
  1502. .name = "memory_spread_page",
  1503. .read_u64 = cpuset_read_u64,
  1504. .write_u64 = cpuset_write_u64,
  1505. .private = FILE_SPREAD_PAGE,
  1506. },
  1507. {
  1508. .name = "memory_spread_slab",
  1509. .read_u64 = cpuset_read_u64,
  1510. .write_u64 = cpuset_write_u64,
  1511. .private = FILE_SPREAD_SLAB,
  1512. },
  1513. };
  1514. static struct cftype cft_memory_pressure_enabled = {
  1515. .name = "memory_pressure_enabled",
  1516. .read_u64 = cpuset_read_u64,
  1517. .write_u64 = cpuset_write_u64,
  1518. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1519. };
  1520. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1521. {
  1522. int err;
  1523. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1524. if (err)
  1525. return err;
  1526. /* memory_pressure_enabled is in root cpuset only */
  1527. if (!cont->parent)
  1528. err = cgroup_add_file(cont, ss,
  1529. &cft_memory_pressure_enabled);
  1530. return err;
  1531. }
  1532. /*
  1533. * post_clone() is called at the end of cgroup_clone().
  1534. * 'cgroup' was just created automatically as a result of
  1535. * a cgroup_clone(), and the current task is about to
  1536. * be moved into 'cgroup'.
  1537. *
  1538. * Currently we refuse to set up the cgroup - thereby
  1539. * refusing the task to be entered, and as a result refusing
  1540. * the sys_unshare() or clone() which initiated it - if any
  1541. * sibling cpusets have exclusive cpus or mem.
  1542. *
  1543. * If this becomes a problem for some users who wish to
  1544. * allow that scenario, then cpuset_post_clone() could be
  1545. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1546. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1547. * held.
  1548. */
  1549. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1550. struct cgroup *cgroup)
  1551. {
  1552. struct cgroup *parent, *child;
  1553. struct cpuset *cs, *parent_cs;
  1554. parent = cgroup->parent;
  1555. list_for_each_entry(child, &parent->children, sibling) {
  1556. cs = cgroup_cs(child);
  1557. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1558. return;
  1559. }
  1560. cs = cgroup_cs(cgroup);
  1561. parent_cs = cgroup_cs(parent);
  1562. cs->mems_allowed = parent_cs->mems_allowed;
  1563. cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
  1564. return;
  1565. }
  1566. /*
  1567. * cpuset_create - create a cpuset
  1568. * ss: cpuset cgroup subsystem
  1569. * cont: control group that the new cpuset will be part of
  1570. */
  1571. static struct cgroup_subsys_state *cpuset_create(
  1572. struct cgroup_subsys *ss,
  1573. struct cgroup *cont)
  1574. {
  1575. struct cpuset *cs;
  1576. struct cpuset *parent;
  1577. if (!cont->parent) {
  1578. /* This is early initialization for the top cgroup */
  1579. top_cpuset.mems_generation = cpuset_mems_generation++;
  1580. return &top_cpuset.css;
  1581. }
  1582. parent = cgroup_cs(cont->parent);
  1583. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1584. if (!cs)
  1585. return ERR_PTR(-ENOMEM);
  1586. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1587. kfree(cs);
  1588. return ERR_PTR(-ENOMEM);
  1589. }
  1590. cpuset_update_task_memory_state();
  1591. cs->flags = 0;
  1592. if (is_spread_page(parent))
  1593. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1594. if (is_spread_slab(parent))
  1595. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1596. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1597. cpumask_clear(cs->cpus_allowed);
  1598. nodes_clear(cs->mems_allowed);
  1599. cs->mems_generation = cpuset_mems_generation++;
  1600. fmeter_init(&cs->fmeter);
  1601. cs->relax_domain_level = -1;
  1602. cs->parent = parent;
  1603. number_of_cpusets++;
  1604. return &cs->css ;
  1605. }
  1606. /*
  1607. * If the cpuset being removed has its flag 'sched_load_balance'
  1608. * enabled, then simulate turning sched_load_balance off, which
  1609. * will call async_rebuild_sched_domains().
  1610. */
  1611. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1612. {
  1613. struct cpuset *cs = cgroup_cs(cont);
  1614. cpuset_update_task_memory_state();
  1615. if (is_sched_load_balance(cs))
  1616. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1617. number_of_cpusets--;
  1618. free_cpumask_var(cs->cpus_allowed);
  1619. kfree(cs);
  1620. }
  1621. struct cgroup_subsys cpuset_subsys = {
  1622. .name = "cpuset",
  1623. .create = cpuset_create,
  1624. .destroy = cpuset_destroy,
  1625. .can_attach = cpuset_can_attach,
  1626. .attach = cpuset_attach,
  1627. .populate = cpuset_populate,
  1628. .post_clone = cpuset_post_clone,
  1629. .subsys_id = cpuset_subsys_id,
  1630. .early_init = 1,
  1631. };
  1632. /*
  1633. * cpuset_init_early - just enough so that the calls to
  1634. * cpuset_update_task_memory_state() in early init code
  1635. * are harmless.
  1636. */
  1637. int __init cpuset_init_early(void)
  1638. {
  1639. alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
  1640. top_cpuset.mems_generation = cpuset_mems_generation++;
  1641. return 0;
  1642. }
  1643. /**
  1644. * cpuset_init - initialize cpusets at system boot
  1645. *
  1646. * Description: Initialize top_cpuset and the cpuset internal file system,
  1647. **/
  1648. int __init cpuset_init(void)
  1649. {
  1650. int err = 0;
  1651. cpumask_setall(top_cpuset.cpus_allowed);
  1652. nodes_setall(top_cpuset.mems_allowed);
  1653. fmeter_init(&top_cpuset.fmeter);
  1654. top_cpuset.mems_generation = cpuset_mems_generation++;
  1655. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1656. top_cpuset.relax_domain_level = -1;
  1657. err = register_filesystem(&cpuset_fs_type);
  1658. if (err < 0)
  1659. return err;
  1660. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1661. BUG();
  1662. number_of_cpusets = 1;
  1663. return 0;
  1664. }
  1665. /**
  1666. * cpuset_do_move_task - move a given task to another cpuset
  1667. * @tsk: pointer to task_struct the task to move
  1668. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1669. *
  1670. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1671. * Return nonzero to stop the walk through the tasks.
  1672. */
  1673. static void cpuset_do_move_task(struct task_struct *tsk,
  1674. struct cgroup_scanner *scan)
  1675. {
  1676. struct cpuset_hotplug_scanner *chsp;
  1677. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1678. cgroup_attach_task(chsp->to, tsk);
  1679. }
  1680. /**
  1681. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1682. * @from: cpuset in which the tasks currently reside
  1683. * @to: cpuset to which the tasks will be moved
  1684. *
  1685. * Called with cgroup_mutex held
  1686. * callback_mutex must not be held, as cpuset_attach() will take it.
  1687. *
  1688. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1689. * calling callback functions for each.
  1690. */
  1691. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1692. {
  1693. struct cpuset_hotplug_scanner scan;
  1694. scan.scan.cg = from->css.cgroup;
  1695. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1696. scan.scan.process_task = cpuset_do_move_task;
  1697. scan.scan.heap = NULL;
  1698. scan.to = to->css.cgroup;
  1699. if (cgroup_scan_tasks(&scan.scan))
  1700. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1701. "cgroup_scan_tasks failed\n");
  1702. }
  1703. /*
  1704. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1705. * or memory nodes, we need to walk over the cpuset hierarchy,
  1706. * removing that CPU or node from all cpusets. If this removes the
  1707. * last CPU or node from a cpuset, then move the tasks in the empty
  1708. * cpuset to its next-highest non-empty parent.
  1709. *
  1710. * Called with cgroup_mutex held
  1711. * callback_mutex must not be held, as cpuset_attach() will take it.
  1712. */
  1713. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1714. {
  1715. struct cpuset *parent;
  1716. /*
  1717. * The cgroup's css_sets list is in use if there are tasks
  1718. * in the cpuset; the list is empty if there are none;
  1719. * the cs->css.refcnt seems always 0.
  1720. */
  1721. if (list_empty(&cs->css.cgroup->css_sets))
  1722. return;
  1723. /*
  1724. * Find its next-highest non-empty parent, (top cpuset
  1725. * has online cpus, so can't be empty).
  1726. */
  1727. parent = cs->parent;
  1728. while (cpumask_empty(parent->cpus_allowed) ||
  1729. nodes_empty(parent->mems_allowed))
  1730. parent = parent->parent;
  1731. move_member_tasks_to_cpuset(cs, parent);
  1732. }
  1733. /*
  1734. * Walk the specified cpuset subtree and look for empty cpusets.
  1735. * The tasks of such cpuset must be moved to a parent cpuset.
  1736. *
  1737. * Called with cgroup_mutex held. We take callback_mutex to modify
  1738. * cpus_allowed and mems_allowed.
  1739. *
  1740. * This walk processes the tree from top to bottom, completing one layer
  1741. * before dropping down to the next. It always processes a node before
  1742. * any of its children.
  1743. *
  1744. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1745. * that has tasks along with an empty 'mems'. But if we did see such
  1746. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1747. */
  1748. static void scan_for_empty_cpusets(struct cpuset *root)
  1749. {
  1750. LIST_HEAD(queue);
  1751. struct cpuset *cp; /* scans cpusets being updated */
  1752. struct cpuset *child; /* scans child cpusets of cp */
  1753. struct cgroup *cont;
  1754. nodemask_t oldmems;
  1755. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1756. while (!list_empty(&queue)) {
  1757. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1758. list_del(queue.next);
  1759. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1760. child = cgroup_cs(cont);
  1761. list_add_tail(&child->stack_list, &queue);
  1762. }
  1763. /* Continue past cpusets with all cpus, mems online */
  1764. if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
  1765. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1766. continue;
  1767. oldmems = cp->mems_allowed;
  1768. /* Remove offline cpus and mems from this cpuset. */
  1769. mutex_lock(&callback_mutex);
  1770. cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
  1771. cpu_online_mask);
  1772. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1773. node_states[N_HIGH_MEMORY]);
  1774. mutex_unlock(&callback_mutex);
  1775. /* Move tasks from the empty cpuset to a parent */
  1776. if (cpumask_empty(cp->cpus_allowed) ||
  1777. nodes_empty(cp->mems_allowed))
  1778. remove_tasks_in_empty_cpuset(cp);
  1779. else {
  1780. update_tasks_cpumask(cp, NULL);
  1781. update_tasks_nodemask(cp, &oldmems);
  1782. }
  1783. }
  1784. }
  1785. /*
  1786. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1787. * period. This is necessary in order to make cpusets transparent
  1788. * (of no affect) on systems that are actively using CPU hotplug
  1789. * but making no active use of cpusets.
  1790. *
  1791. * This routine ensures that top_cpuset.cpus_allowed tracks
  1792. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1793. *
  1794. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1795. * before calling generate_sched_domains().
  1796. */
  1797. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1798. unsigned long phase, void *unused_cpu)
  1799. {
  1800. struct sched_domain_attr *attr;
  1801. struct cpumask *doms;
  1802. int ndoms;
  1803. switch (phase) {
  1804. case CPU_ONLINE:
  1805. case CPU_ONLINE_FROZEN:
  1806. case CPU_DEAD:
  1807. case CPU_DEAD_FROZEN:
  1808. break;
  1809. default:
  1810. return NOTIFY_DONE;
  1811. }
  1812. cgroup_lock();
  1813. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1814. scan_for_empty_cpusets(&top_cpuset);
  1815. ndoms = generate_sched_domains(&doms, &attr);
  1816. cgroup_unlock();
  1817. /* Have scheduler rebuild the domains */
  1818. partition_sched_domains(ndoms, doms, attr);
  1819. return NOTIFY_OK;
  1820. }
  1821. #ifdef CONFIG_MEMORY_HOTPLUG
  1822. /*
  1823. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1824. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1825. * See also the previous routine cpuset_track_online_cpus().
  1826. */
  1827. static int cpuset_track_online_nodes(struct notifier_block *self,
  1828. unsigned long action, void *arg)
  1829. {
  1830. cgroup_lock();
  1831. switch (action) {
  1832. case MEM_ONLINE:
  1833. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1834. break;
  1835. case MEM_OFFLINE:
  1836. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1837. scan_for_empty_cpusets(&top_cpuset);
  1838. break;
  1839. default:
  1840. break;
  1841. }
  1842. cgroup_unlock();
  1843. return NOTIFY_OK;
  1844. }
  1845. #endif
  1846. /**
  1847. * cpuset_init_smp - initialize cpus_allowed
  1848. *
  1849. * Description: Finish top cpuset after cpu, node maps are initialized
  1850. **/
  1851. void __init cpuset_init_smp(void)
  1852. {
  1853. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1854. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1855. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1856. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1857. cpuset_wq = create_singlethread_workqueue("cpuset");
  1858. BUG_ON(!cpuset_wq);
  1859. }
  1860. /**
  1861. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1862. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1863. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1864. *
  1865. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1866. * attached to the specified @tsk. Guaranteed to return some non-empty
  1867. * subset of cpu_online_map, even if this means going outside the
  1868. * tasks cpuset.
  1869. **/
  1870. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1871. {
  1872. mutex_lock(&callback_mutex);
  1873. cpuset_cpus_allowed_locked(tsk, pmask);
  1874. mutex_unlock(&callback_mutex);
  1875. }
  1876. /**
  1877. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1878. * Must be called with callback_mutex held.
  1879. **/
  1880. void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
  1881. {
  1882. task_lock(tsk);
  1883. guarantee_online_cpus(task_cs(tsk), pmask);
  1884. task_unlock(tsk);
  1885. }
  1886. void cpuset_init_current_mems_allowed(void)
  1887. {
  1888. nodes_setall(current->mems_allowed);
  1889. }
  1890. /**
  1891. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1892. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1893. *
  1894. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1895. * attached to the specified @tsk. Guaranteed to return some non-empty
  1896. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1897. * tasks cpuset.
  1898. **/
  1899. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1900. {
  1901. nodemask_t mask;
  1902. mutex_lock(&callback_mutex);
  1903. task_lock(tsk);
  1904. guarantee_online_mems(task_cs(tsk), &mask);
  1905. task_unlock(tsk);
  1906. mutex_unlock(&callback_mutex);
  1907. return mask;
  1908. }
  1909. /**
  1910. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1911. * @nodemask: the nodemask to be checked
  1912. *
  1913. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1914. */
  1915. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1916. {
  1917. return nodes_intersects(*nodemask, current->mems_allowed);
  1918. }
  1919. /*
  1920. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1921. * mem_hardwall ancestor to the specified cpuset. Call holding
  1922. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1923. * (an unusual configuration), then returns the root cpuset.
  1924. */
  1925. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1926. {
  1927. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1928. cs = cs->parent;
  1929. return cs;
  1930. }
  1931. /**
  1932. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1933. * @z: is this zone on an allowed node?
  1934. * @gfp_mask: memory allocation flags
  1935. *
  1936. * If we're in interrupt, yes, we can always allocate. If
  1937. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1938. * z's node is in our tasks mems_allowed, yes. If it's not a
  1939. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1940. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1941. * If the task has been OOM killed and has access to memory reserves
  1942. * as specified by the TIF_MEMDIE flag, yes.
  1943. * Otherwise, no.
  1944. *
  1945. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1946. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1947. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1948. * from an enclosing cpuset.
  1949. *
  1950. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1951. * hardwall cpusets, and never sleeps.
  1952. *
  1953. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1954. * by forcibly using a zonelist starting at a specified node, and by
  1955. * (in get_page_from_freelist()) refusing to consider the zones for
  1956. * any node on the zonelist except the first. By the time any such
  1957. * calls get to this routine, we should just shut up and say 'yes'.
  1958. *
  1959. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1960. * and do not allow allocations outside the current tasks cpuset
  1961. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1962. * GFP_KERNEL allocations are not so marked, so can escape to the
  1963. * nearest enclosing hardwalled ancestor cpuset.
  1964. *
  1965. * Scanning up parent cpusets requires callback_mutex. The
  1966. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1967. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1968. * current tasks mems_allowed came up empty on the first pass over
  1969. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1970. * cpuset are short of memory, might require taking the callback_mutex
  1971. * mutex.
  1972. *
  1973. * The first call here from mm/page_alloc:get_page_from_freelist()
  1974. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1975. * so no allocation on a node outside the cpuset is allowed (unless
  1976. * in interrupt, of course).
  1977. *
  1978. * The second pass through get_page_from_freelist() doesn't even call
  1979. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1980. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1981. * in alloc_flags. That logic and the checks below have the combined
  1982. * affect that:
  1983. * in_interrupt - any node ok (current task context irrelevant)
  1984. * GFP_ATOMIC - any node ok
  1985. * TIF_MEMDIE - any node ok
  1986. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1987. * GFP_USER - only nodes in current tasks mems allowed ok.
  1988. *
  1989. * Rule:
  1990. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1991. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1992. * the code that might scan up ancestor cpusets and sleep.
  1993. */
  1994. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1995. {
  1996. int node; /* node that zone z is on */
  1997. const struct cpuset *cs; /* current cpuset ancestors */
  1998. int allowed; /* is allocation in zone z allowed? */
  1999. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2000. return 1;
  2001. node = zone_to_nid(z);
  2002. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2003. if (node_isset(node, current->mems_allowed))
  2004. return 1;
  2005. /*
  2006. * Allow tasks that have access to memory reserves because they have
  2007. * been OOM killed to get memory anywhere.
  2008. */
  2009. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2010. return 1;
  2011. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2012. return 0;
  2013. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2014. return 1;
  2015. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2016. mutex_lock(&callback_mutex);
  2017. task_lock(current);
  2018. cs = nearest_hardwall_ancestor(task_cs(current));
  2019. task_unlock(current);
  2020. allowed = node_isset(node, cs->mems_allowed);
  2021. mutex_unlock(&callback_mutex);
  2022. return allowed;
  2023. }
  2024. /*
  2025. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  2026. * @z: is this zone on an allowed node?
  2027. * @gfp_mask: memory allocation flags
  2028. *
  2029. * If we're in interrupt, yes, we can always allocate.
  2030. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  2031. * z's node is in our tasks mems_allowed, yes. If the task has been
  2032. * OOM killed and has access to memory reserves as specified by the
  2033. * TIF_MEMDIE flag, yes. Otherwise, no.
  2034. *
  2035. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2036. * by forcibly using a zonelist starting at a specified node, and by
  2037. * (in get_page_from_freelist()) refusing to consider the zones for
  2038. * any node on the zonelist except the first. By the time any such
  2039. * calls get to this routine, we should just shut up and say 'yes'.
  2040. *
  2041. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  2042. * this variant requires that the zone be in the current tasks
  2043. * mems_allowed or that we're in interrupt. It does not scan up the
  2044. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2045. * It never sleeps.
  2046. */
  2047. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  2048. {
  2049. int node; /* node that zone z is on */
  2050. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2051. return 1;
  2052. node = zone_to_nid(z);
  2053. if (node_isset(node, current->mems_allowed))
  2054. return 1;
  2055. /*
  2056. * Allow tasks that have access to memory reserves because they have
  2057. * been OOM killed to get memory anywhere.
  2058. */
  2059. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2060. return 1;
  2061. return 0;
  2062. }
  2063. /**
  2064. * cpuset_lock - lock out any changes to cpuset structures
  2065. *
  2066. * The out of memory (oom) code needs to mutex_lock cpusets
  2067. * from being changed while it scans the tasklist looking for a
  2068. * task in an overlapping cpuset. Expose callback_mutex via this
  2069. * cpuset_lock() routine, so the oom code can lock it, before
  2070. * locking the task list. The tasklist_lock is a spinlock, so
  2071. * must be taken inside callback_mutex.
  2072. */
  2073. void cpuset_lock(void)
  2074. {
  2075. mutex_lock(&callback_mutex);
  2076. }
  2077. /**
  2078. * cpuset_unlock - release lock on cpuset changes
  2079. *
  2080. * Undo the lock taken in a previous cpuset_lock() call.
  2081. */
  2082. void cpuset_unlock(void)
  2083. {
  2084. mutex_unlock(&callback_mutex);
  2085. }
  2086. /**
  2087. * cpuset_mem_spread_node() - On which node to begin search for a page
  2088. *
  2089. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2090. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2091. * and if the memory allocation used cpuset_mem_spread_node()
  2092. * to determine on which node to start looking, as it will for
  2093. * certain page cache or slab cache pages such as used for file
  2094. * system buffers and inode caches, then instead of starting on the
  2095. * local node to look for a free page, rather spread the starting
  2096. * node around the tasks mems_allowed nodes.
  2097. *
  2098. * We don't have to worry about the returned node being offline
  2099. * because "it can't happen", and even if it did, it would be ok.
  2100. *
  2101. * The routines calling guarantee_online_mems() are careful to
  2102. * only set nodes in task->mems_allowed that are online. So it
  2103. * should not be possible for the following code to return an
  2104. * offline node. But if it did, that would be ok, as this routine
  2105. * is not returning the node where the allocation must be, only
  2106. * the node where the search should start. The zonelist passed to
  2107. * __alloc_pages() will include all nodes. If the slab allocator
  2108. * is passed an offline node, it will fall back to the local node.
  2109. * See kmem_cache_alloc_node().
  2110. */
  2111. int cpuset_mem_spread_node(void)
  2112. {
  2113. int node;
  2114. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2115. if (node == MAX_NUMNODES)
  2116. node = first_node(current->mems_allowed);
  2117. current->cpuset_mem_spread_rotor = node;
  2118. return node;
  2119. }
  2120. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2121. /**
  2122. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2123. * @tsk1: pointer to task_struct of some task.
  2124. * @tsk2: pointer to task_struct of some other task.
  2125. *
  2126. * Description: Return true if @tsk1's mems_allowed intersects the
  2127. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2128. * one of the task's memory usage might impact the memory available
  2129. * to the other.
  2130. **/
  2131. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2132. const struct task_struct *tsk2)
  2133. {
  2134. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2135. }
  2136. /**
  2137. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2138. * @task: pointer to task_struct of some task.
  2139. *
  2140. * Description: Prints @task's name, cpuset name, and cached copy of its
  2141. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2142. * dereferencing task_cs(task).
  2143. */
  2144. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2145. {
  2146. struct dentry *dentry;
  2147. dentry = task_cs(tsk)->css.cgroup->dentry;
  2148. spin_lock(&cpuset_buffer_lock);
  2149. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2150. dentry ? (const char *)dentry->d_name.name : "/");
  2151. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2152. tsk->mems_allowed);
  2153. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2154. tsk->comm, cpuset_name, cpuset_nodelist);
  2155. spin_unlock(&cpuset_buffer_lock);
  2156. }
  2157. /*
  2158. * Collection of memory_pressure is suppressed unless
  2159. * this flag is enabled by writing "1" to the special
  2160. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2161. */
  2162. int cpuset_memory_pressure_enabled __read_mostly;
  2163. /**
  2164. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2165. *
  2166. * Keep a running average of the rate of synchronous (direct)
  2167. * page reclaim efforts initiated by tasks in each cpuset.
  2168. *
  2169. * This represents the rate at which some task in the cpuset
  2170. * ran low on memory on all nodes it was allowed to use, and
  2171. * had to enter the kernels page reclaim code in an effort to
  2172. * create more free memory by tossing clean pages or swapping
  2173. * or writing dirty pages.
  2174. *
  2175. * Display to user space in the per-cpuset read-only file
  2176. * "memory_pressure". Value displayed is an integer
  2177. * representing the recent rate of entry into the synchronous
  2178. * (direct) page reclaim by any task attached to the cpuset.
  2179. **/
  2180. void __cpuset_memory_pressure_bump(void)
  2181. {
  2182. task_lock(current);
  2183. fmeter_markevent(&task_cs(current)->fmeter);
  2184. task_unlock(current);
  2185. }
  2186. #ifdef CONFIG_PROC_PID_CPUSET
  2187. /*
  2188. * proc_cpuset_show()
  2189. * - Print tasks cpuset path into seq_file.
  2190. * - Used for /proc/<pid>/cpuset.
  2191. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2192. * doesn't really matter if tsk->cpuset changes after we read it,
  2193. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2194. * anyway.
  2195. */
  2196. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2197. {
  2198. struct pid *pid;
  2199. struct task_struct *tsk;
  2200. char *buf;
  2201. struct cgroup_subsys_state *css;
  2202. int retval;
  2203. retval = -ENOMEM;
  2204. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2205. if (!buf)
  2206. goto out;
  2207. retval = -ESRCH;
  2208. pid = m->private;
  2209. tsk = get_pid_task(pid, PIDTYPE_PID);
  2210. if (!tsk)
  2211. goto out_free;
  2212. retval = -EINVAL;
  2213. cgroup_lock();
  2214. css = task_subsys_state(tsk, cpuset_subsys_id);
  2215. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2216. if (retval < 0)
  2217. goto out_unlock;
  2218. seq_puts(m, buf);
  2219. seq_putc(m, '\n');
  2220. out_unlock:
  2221. cgroup_unlock();
  2222. put_task_struct(tsk);
  2223. out_free:
  2224. kfree(buf);
  2225. out:
  2226. return retval;
  2227. }
  2228. static int cpuset_open(struct inode *inode, struct file *file)
  2229. {
  2230. struct pid *pid = PROC_I(inode)->pid;
  2231. return single_open(file, proc_cpuset_show, pid);
  2232. }
  2233. const struct file_operations proc_cpuset_operations = {
  2234. .open = cpuset_open,
  2235. .read = seq_read,
  2236. .llseek = seq_lseek,
  2237. .release = single_release,
  2238. };
  2239. #endif /* CONFIG_PROC_PID_CPUSET */
  2240. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2241. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2242. {
  2243. seq_printf(m, "Cpus_allowed:\t");
  2244. seq_cpumask(m, &task->cpus_allowed);
  2245. seq_printf(m, "\n");
  2246. seq_printf(m, "Cpus_allowed_list:\t");
  2247. seq_cpumask_list(m, &task->cpus_allowed);
  2248. seq_printf(m, "\n");
  2249. seq_printf(m, "Mems_allowed:\t");
  2250. seq_nodemask(m, &task->mems_allowed);
  2251. seq_printf(m, "\n");
  2252. seq_printf(m, "Mems_allowed_list:\t");
  2253. seq_nodemask_list(m, &task->mems_allowed);
  2254. seq_printf(m, "\n");
  2255. }