mtd_dataflash.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /*
  2. * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
  3. *
  4. * Largely derived from at91_dataflash.c:
  5. * Copyright (C) 2003-2005 SAN People (Pty) Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/mutex.h>
  18. #include <linux/err.h>
  19. #include <linux/math64.h>
  20. #include <linux/spi/spi.h>
  21. #include <linux/spi/flash.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/mtd/partitions.h>
  24. /*
  25. * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
  26. * each chip, which may be used for double buffered I/O; but this driver
  27. * doesn't (yet) use these for any kind of i/o overlap or prefetching.
  28. *
  29. * Sometimes DataFlash is packaged in MMC-format cards, although the
  30. * MMC stack can't (yet?) distinguish between MMC and DataFlash
  31. * protocols during enumeration.
  32. */
  33. /* reads can bypass the buffers */
  34. #define OP_READ_CONTINUOUS 0xE8
  35. #define OP_READ_PAGE 0xD2
  36. /* group B requests can run even while status reports "busy" */
  37. #define OP_READ_STATUS 0xD7 /* group B */
  38. /* move data between host and buffer */
  39. #define OP_READ_BUFFER1 0xD4 /* group B */
  40. #define OP_READ_BUFFER2 0xD6 /* group B */
  41. #define OP_WRITE_BUFFER1 0x84 /* group B */
  42. #define OP_WRITE_BUFFER2 0x87 /* group B */
  43. /* erasing flash */
  44. #define OP_ERASE_PAGE 0x81
  45. #define OP_ERASE_BLOCK 0x50
  46. /* move data between buffer and flash */
  47. #define OP_TRANSFER_BUF1 0x53
  48. #define OP_TRANSFER_BUF2 0x55
  49. #define OP_MREAD_BUFFER1 0xD4
  50. #define OP_MREAD_BUFFER2 0xD6
  51. #define OP_MWERASE_BUFFER1 0x83
  52. #define OP_MWERASE_BUFFER2 0x86
  53. #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
  54. #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
  55. /* write to buffer, then write-erase to flash */
  56. #define OP_PROGRAM_VIA_BUF1 0x82
  57. #define OP_PROGRAM_VIA_BUF2 0x85
  58. /* compare buffer to flash */
  59. #define OP_COMPARE_BUF1 0x60
  60. #define OP_COMPARE_BUF2 0x61
  61. /* read flash to buffer, then write-erase to flash */
  62. #define OP_REWRITE_VIA_BUF1 0x58
  63. #define OP_REWRITE_VIA_BUF2 0x59
  64. /* newer chips report JEDEC manufacturer and device IDs; chip
  65. * serial number and OTP bits; and per-sector writeprotect.
  66. */
  67. #define OP_READ_ID 0x9F
  68. #define OP_READ_SECURITY 0x77
  69. #define OP_WRITE_SECURITY_REVC 0x9A
  70. #define OP_WRITE_SECURITY 0x9B /* revision D */
  71. struct dataflash {
  72. uint8_t command[4];
  73. char name[24];
  74. unsigned partitioned:1;
  75. unsigned short page_offset; /* offset in flash address */
  76. unsigned int page_size; /* of bytes per page */
  77. struct mutex lock;
  78. struct spi_device *spi;
  79. struct mtd_info mtd;
  80. };
  81. #ifdef CONFIG_MTD_PARTITIONS
  82. #define mtd_has_partitions() (1)
  83. #else
  84. #define mtd_has_partitions() (0)
  85. #endif
  86. /* ......................................................................... */
  87. /*
  88. * Return the status of the DataFlash device.
  89. */
  90. static inline int dataflash_status(struct spi_device *spi)
  91. {
  92. /* NOTE: at45db321c over 25 MHz wants to write
  93. * a dummy byte after the opcode...
  94. */
  95. return spi_w8r8(spi, OP_READ_STATUS);
  96. }
  97. /*
  98. * Poll the DataFlash device until it is READY.
  99. * This usually takes 5-20 msec or so; more for sector erase.
  100. */
  101. static int dataflash_waitready(struct spi_device *spi)
  102. {
  103. int status;
  104. for (;;) {
  105. status = dataflash_status(spi);
  106. if (status < 0) {
  107. DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
  108. dev_name(&spi->dev), status);
  109. status = 0;
  110. }
  111. if (status & (1 << 7)) /* RDY/nBSY */
  112. return status;
  113. msleep(3);
  114. }
  115. }
  116. /* ......................................................................... */
  117. /*
  118. * Erase pages of flash.
  119. */
  120. static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
  121. {
  122. struct dataflash *priv = (struct dataflash *)mtd->priv;
  123. struct spi_device *spi = priv->spi;
  124. struct spi_transfer x = { .tx_dma = 0, };
  125. struct spi_message msg;
  126. unsigned blocksize = priv->page_size << 3;
  127. uint8_t *command;
  128. uint32_t rem;
  129. DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
  130. dev_name(&spi->dev), (long long)instr->addr,
  131. (long long)instr->len);
  132. /* Sanity checks */
  133. if (instr->addr + instr->len > mtd->size)
  134. return -EINVAL;
  135. div_u64_rem(instr->len, priv->page_size, &rem);
  136. if (rem)
  137. return -EINVAL;
  138. div_u64_rem(instr->addr, priv->page_size, &rem);
  139. if (rem)
  140. return -EINVAL;
  141. spi_message_init(&msg);
  142. x.tx_buf = command = priv->command;
  143. x.len = 4;
  144. spi_message_add_tail(&x, &msg);
  145. mutex_lock(&priv->lock);
  146. while (instr->len > 0) {
  147. unsigned int pageaddr;
  148. int status;
  149. int do_block;
  150. /* Calculate flash page address; use block erase (for speed) if
  151. * we're at a block boundary and need to erase the whole block.
  152. */
  153. pageaddr = div_u64(instr->len, priv->page_size);
  154. do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
  155. pageaddr = pageaddr << priv->page_offset;
  156. command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
  157. command[1] = (uint8_t)(pageaddr >> 16);
  158. command[2] = (uint8_t)(pageaddr >> 8);
  159. command[3] = 0;
  160. DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
  161. do_block ? "block" : "page",
  162. command[0], command[1], command[2], command[3],
  163. pageaddr);
  164. status = spi_sync(spi, &msg);
  165. (void) dataflash_waitready(spi);
  166. if (status < 0) {
  167. printk(KERN_ERR "%s: erase %x, err %d\n",
  168. dev_name(&spi->dev), pageaddr, status);
  169. /* REVISIT: can retry instr->retries times; or
  170. * giveup and instr->fail_addr = instr->addr;
  171. */
  172. continue;
  173. }
  174. if (do_block) {
  175. instr->addr += blocksize;
  176. instr->len -= blocksize;
  177. } else {
  178. instr->addr += priv->page_size;
  179. instr->len -= priv->page_size;
  180. }
  181. }
  182. mutex_unlock(&priv->lock);
  183. /* Inform MTD subsystem that erase is complete */
  184. instr->state = MTD_ERASE_DONE;
  185. mtd_erase_callback(instr);
  186. return 0;
  187. }
  188. /*
  189. * Read from the DataFlash device.
  190. * from : Start offset in flash device
  191. * len : Amount to read
  192. * retlen : About of data actually read
  193. * buf : Buffer containing the data
  194. */
  195. static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
  196. size_t *retlen, u_char *buf)
  197. {
  198. struct dataflash *priv = (struct dataflash *)mtd->priv;
  199. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  200. struct spi_message msg;
  201. unsigned int addr;
  202. uint8_t *command;
  203. int status;
  204. DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
  205. dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
  206. *retlen = 0;
  207. /* Sanity checks */
  208. if (!len)
  209. return 0;
  210. if (from + len > mtd->size)
  211. return -EINVAL;
  212. /* Calculate flash page/byte address */
  213. addr = (((unsigned)from / priv->page_size) << priv->page_offset)
  214. + ((unsigned)from % priv->page_size);
  215. command = priv->command;
  216. DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
  217. command[0], command[1], command[2], command[3]);
  218. spi_message_init(&msg);
  219. x[0].tx_buf = command;
  220. x[0].len = 8;
  221. spi_message_add_tail(&x[0], &msg);
  222. x[1].rx_buf = buf;
  223. x[1].len = len;
  224. spi_message_add_tail(&x[1], &msg);
  225. mutex_lock(&priv->lock);
  226. /* Continuous read, max clock = f(car) which may be less than
  227. * the peak rate available. Some chips support commands with
  228. * fewer "don't care" bytes. Both buffers stay unchanged.
  229. */
  230. command[0] = OP_READ_CONTINUOUS;
  231. command[1] = (uint8_t)(addr >> 16);
  232. command[2] = (uint8_t)(addr >> 8);
  233. command[3] = (uint8_t)(addr >> 0);
  234. /* plus 4 "don't care" bytes */
  235. status = spi_sync(priv->spi, &msg);
  236. mutex_unlock(&priv->lock);
  237. if (status >= 0) {
  238. *retlen = msg.actual_length - 8;
  239. status = 0;
  240. } else
  241. DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
  242. dev_name(&priv->spi->dev),
  243. (unsigned)from, (unsigned)(from + len),
  244. status);
  245. return status;
  246. }
  247. /*
  248. * Write to the DataFlash device.
  249. * to : Start offset in flash device
  250. * len : Amount to write
  251. * retlen : Amount of data actually written
  252. * buf : Buffer containing the data
  253. */
  254. static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
  255. size_t * retlen, const u_char * buf)
  256. {
  257. struct dataflash *priv = (struct dataflash *)mtd->priv;
  258. struct spi_device *spi = priv->spi;
  259. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  260. struct spi_message msg;
  261. unsigned int pageaddr, addr, offset, writelen;
  262. size_t remaining = len;
  263. u_char *writebuf = (u_char *) buf;
  264. int status = -EINVAL;
  265. uint8_t *command;
  266. DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
  267. dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
  268. *retlen = 0;
  269. /* Sanity checks */
  270. if (!len)
  271. return 0;
  272. if ((to + len) > mtd->size)
  273. return -EINVAL;
  274. spi_message_init(&msg);
  275. x[0].tx_buf = command = priv->command;
  276. x[0].len = 4;
  277. spi_message_add_tail(&x[0], &msg);
  278. pageaddr = ((unsigned)to / priv->page_size);
  279. offset = ((unsigned)to % priv->page_size);
  280. if (offset + len > priv->page_size)
  281. writelen = priv->page_size - offset;
  282. else
  283. writelen = len;
  284. mutex_lock(&priv->lock);
  285. while (remaining > 0) {
  286. DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
  287. pageaddr, offset, writelen);
  288. /* REVISIT:
  289. * (a) each page in a sector must be rewritten at least
  290. * once every 10K sibling erase/program operations.
  291. * (b) for pages that are already erased, we could
  292. * use WRITE+MWRITE not PROGRAM for ~30% speedup.
  293. * (c) WRITE to buffer could be done while waiting for
  294. * a previous MWRITE/MWERASE to complete ...
  295. * (d) error handling here seems to be mostly missing.
  296. *
  297. * Two persistent bits per page, plus a per-sector counter,
  298. * could support (a) and (b) ... we might consider using
  299. * the second half of sector zero, which is just one block,
  300. * to track that state. (On AT91, that sector should also
  301. * support boot-from-DataFlash.)
  302. */
  303. addr = pageaddr << priv->page_offset;
  304. /* (1) Maybe transfer partial page to Buffer1 */
  305. if (writelen != priv->page_size) {
  306. command[0] = OP_TRANSFER_BUF1;
  307. command[1] = (addr & 0x00FF0000) >> 16;
  308. command[2] = (addr & 0x0000FF00) >> 8;
  309. command[3] = 0;
  310. DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
  311. command[0], command[1], command[2], command[3]);
  312. status = spi_sync(spi, &msg);
  313. if (status < 0)
  314. DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
  315. dev_name(&spi->dev), addr, status);
  316. (void) dataflash_waitready(priv->spi);
  317. }
  318. /* (2) Program full page via Buffer1 */
  319. addr += offset;
  320. command[0] = OP_PROGRAM_VIA_BUF1;
  321. command[1] = (addr & 0x00FF0000) >> 16;
  322. command[2] = (addr & 0x0000FF00) >> 8;
  323. command[3] = (addr & 0x000000FF);
  324. DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
  325. command[0], command[1], command[2], command[3]);
  326. x[1].tx_buf = writebuf;
  327. x[1].len = writelen;
  328. spi_message_add_tail(x + 1, &msg);
  329. status = spi_sync(spi, &msg);
  330. spi_transfer_del(x + 1);
  331. if (status < 0)
  332. DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
  333. dev_name(&spi->dev), addr, writelen, status);
  334. (void) dataflash_waitready(priv->spi);
  335. #ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE
  336. /* (3) Compare to Buffer1 */
  337. addr = pageaddr << priv->page_offset;
  338. command[0] = OP_COMPARE_BUF1;
  339. command[1] = (addr & 0x00FF0000) >> 16;
  340. command[2] = (addr & 0x0000FF00) >> 8;
  341. command[3] = 0;
  342. DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
  343. command[0], command[1], command[2], command[3]);
  344. status = spi_sync(spi, &msg);
  345. if (status < 0)
  346. DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
  347. dev_name(&spi->dev), addr, status);
  348. status = dataflash_waitready(priv->spi);
  349. /* Check result of the compare operation */
  350. if (status & (1 << 6)) {
  351. printk(KERN_ERR "%s: compare page %u, err %d\n",
  352. dev_name(&spi->dev), pageaddr, status);
  353. remaining = 0;
  354. status = -EIO;
  355. break;
  356. } else
  357. status = 0;
  358. #endif /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */
  359. remaining = remaining - writelen;
  360. pageaddr++;
  361. offset = 0;
  362. writebuf += writelen;
  363. *retlen += writelen;
  364. if (remaining > priv->page_size)
  365. writelen = priv->page_size;
  366. else
  367. writelen = remaining;
  368. }
  369. mutex_unlock(&priv->lock);
  370. return status;
  371. }
  372. /* ......................................................................... */
  373. #ifdef CONFIG_MTD_DATAFLASH_OTP
  374. static int dataflash_get_otp_info(struct mtd_info *mtd,
  375. struct otp_info *info, size_t len)
  376. {
  377. /* Report both blocks as identical: bytes 0..64, locked.
  378. * Unless the user block changed from all-ones, we can't
  379. * tell whether it's still writable; so we assume it isn't.
  380. */
  381. info->start = 0;
  382. info->length = 64;
  383. info->locked = 1;
  384. return sizeof(*info);
  385. }
  386. static ssize_t otp_read(struct spi_device *spi, unsigned base,
  387. uint8_t *buf, loff_t off, size_t len)
  388. {
  389. struct spi_message m;
  390. size_t l;
  391. uint8_t *scratch;
  392. struct spi_transfer t;
  393. int status;
  394. if (off > 64)
  395. return -EINVAL;
  396. if ((off + len) > 64)
  397. len = 64 - off;
  398. if (len == 0)
  399. return len;
  400. spi_message_init(&m);
  401. l = 4 + base + off + len;
  402. scratch = kzalloc(l, GFP_KERNEL);
  403. if (!scratch)
  404. return -ENOMEM;
  405. /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
  406. * IN: ignore 4 bytes, data bytes 0..N (max 127)
  407. */
  408. scratch[0] = OP_READ_SECURITY;
  409. memset(&t, 0, sizeof t);
  410. t.tx_buf = scratch;
  411. t.rx_buf = scratch;
  412. t.len = l;
  413. spi_message_add_tail(&t, &m);
  414. dataflash_waitready(spi);
  415. status = spi_sync(spi, &m);
  416. if (status >= 0) {
  417. memcpy(buf, scratch + 4 + base + off, len);
  418. status = len;
  419. }
  420. kfree(scratch);
  421. return status;
  422. }
  423. static int dataflash_read_fact_otp(struct mtd_info *mtd,
  424. loff_t from, size_t len, size_t *retlen, u_char *buf)
  425. {
  426. struct dataflash *priv = (struct dataflash *)mtd->priv;
  427. int status;
  428. /* 64 bytes, from 0..63 ... start at 64 on-chip */
  429. mutex_lock(&priv->lock);
  430. status = otp_read(priv->spi, 64, buf, from, len);
  431. mutex_unlock(&priv->lock);
  432. if (status < 0)
  433. return status;
  434. *retlen = status;
  435. return 0;
  436. }
  437. static int dataflash_read_user_otp(struct mtd_info *mtd,
  438. loff_t from, size_t len, size_t *retlen, u_char *buf)
  439. {
  440. struct dataflash *priv = (struct dataflash *)mtd->priv;
  441. int status;
  442. /* 64 bytes, from 0..63 ... start at 0 on-chip */
  443. mutex_lock(&priv->lock);
  444. status = otp_read(priv->spi, 0, buf, from, len);
  445. mutex_unlock(&priv->lock);
  446. if (status < 0)
  447. return status;
  448. *retlen = status;
  449. return 0;
  450. }
  451. static int dataflash_write_user_otp(struct mtd_info *mtd,
  452. loff_t from, size_t len, size_t *retlen, u_char *buf)
  453. {
  454. struct spi_message m;
  455. const size_t l = 4 + 64;
  456. uint8_t *scratch;
  457. struct spi_transfer t;
  458. struct dataflash *priv = (struct dataflash *)mtd->priv;
  459. int status;
  460. if (len > 64)
  461. return -EINVAL;
  462. /* Strictly speaking, we *could* truncate the write ... but
  463. * let's not do that for the only write that's ever possible.
  464. */
  465. if ((from + len) > 64)
  466. return -EINVAL;
  467. /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
  468. * IN: ignore all
  469. */
  470. scratch = kzalloc(l, GFP_KERNEL);
  471. if (!scratch)
  472. return -ENOMEM;
  473. scratch[0] = OP_WRITE_SECURITY;
  474. memcpy(scratch + 4 + from, buf, len);
  475. spi_message_init(&m);
  476. memset(&t, 0, sizeof t);
  477. t.tx_buf = scratch;
  478. t.len = l;
  479. spi_message_add_tail(&t, &m);
  480. /* Write the OTP bits, if they've not yet been written.
  481. * This modifies SRAM buffer1.
  482. */
  483. mutex_lock(&priv->lock);
  484. dataflash_waitready(priv->spi);
  485. status = spi_sync(priv->spi, &m);
  486. mutex_unlock(&priv->lock);
  487. kfree(scratch);
  488. if (status >= 0) {
  489. status = 0;
  490. *retlen = len;
  491. }
  492. return status;
  493. }
  494. static char *otp_setup(struct mtd_info *device, char revision)
  495. {
  496. device->get_fact_prot_info = dataflash_get_otp_info;
  497. device->read_fact_prot_reg = dataflash_read_fact_otp;
  498. device->get_user_prot_info = dataflash_get_otp_info;
  499. device->read_user_prot_reg = dataflash_read_user_otp;
  500. /* rev c parts (at45db321c and at45db1281 only!) use a
  501. * different write procedure; not (yet?) implemented.
  502. */
  503. if (revision > 'c')
  504. device->write_user_prot_reg = dataflash_write_user_otp;
  505. return ", OTP";
  506. }
  507. #else
  508. static char *otp_setup(struct mtd_info *device, char revision)
  509. {
  510. return " (OTP)";
  511. }
  512. #endif
  513. /* ......................................................................... */
  514. /*
  515. * Register DataFlash device with MTD subsystem.
  516. */
  517. static int __devinit
  518. add_dataflash_otp(struct spi_device *spi, char *name,
  519. int nr_pages, int pagesize, int pageoffset, char revision)
  520. {
  521. struct dataflash *priv;
  522. struct mtd_info *device;
  523. struct flash_platform_data *pdata = spi->dev.platform_data;
  524. char *otp_tag = "";
  525. priv = kzalloc(sizeof *priv, GFP_KERNEL);
  526. if (!priv)
  527. return -ENOMEM;
  528. mutex_init(&priv->lock);
  529. priv->spi = spi;
  530. priv->page_size = pagesize;
  531. priv->page_offset = pageoffset;
  532. /* name must be usable with cmdlinepart */
  533. sprintf(priv->name, "spi%d.%d-%s",
  534. spi->master->bus_num, spi->chip_select,
  535. name);
  536. device = &priv->mtd;
  537. device->name = (pdata && pdata->name) ? pdata->name : priv->name;
  538. device->size = nr_pages * pagesize;
  539. device->erasesize = pagesize;
  540. device->writesize = pagesize;
  541. device->owner = THIS_MODULE;
  542. device->type = MTD_DATAFLASH;
  543. device->flags = MTD_WRITEABLE;
  544. device->erase = dataflash_erase;
  545. device->read = dataflash_read;
  546. device->write = dataflash_write;
  547. device->priv = priv;
  548. if (revision >= 'c')
  549. otp_tag = otp_setup(device, revision);
  550. dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
  551. name, (long long)((device->size + 1023) >> 10),
  552. pagesize, otp_tag);
  553. dev_set_drvdata(&spi->dev, priv);
  554. if (mtd_has_partitions()) {
  555. struct mtd_partition *parts;
  556. int nr_parts = 0;
  557. #ifdef CONFIG_MTD_CMDLINE_PARTS
  558. static const char *part_probes[] = { "cmdlinepart", NULL, };
  559. nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
  560. #endif
  561. if (nr_parts <= 0 && pdata && pdata->parts) {
  562. parts = pdata->parts;
  563. nr_parts = pdata->nr_parts;
  564. }
  565. if (nr_parts > 0) {
  566. priv->partitioned = 1;
  567. return add_mtd_partitions(device, parts, nr_parts);
  568. }
  569. } else if (pdata && pdata->nr_parts)
  570. dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
  571. pdata->nr_parts, device->name);
  572. return add_mtd_device(device) == 1 ? -ENODEV : 0;
  573. }
  574. static inline int __devinit
  575. add_dataflash(struct spi_device *spi, char *name,
  576. int nr_pages, int pagesize, int pageoffset)
  577. {
  578. return add_dataflash_otp(spi, name, nr_pages, pagesize,
  579. pageoffset, 0);
  580. }
  581. struct flash_info {
  582. char *name;
  583. /* JEDEC id has a high byte of zero plus three data bytes:
  584. * the manufacturer id, then a two byte device id.
  585. */
  586. uint32_t jedec_id;
  587. /* The size listed here is what works with OP_ERASE_PAGE. */
  588. unsigned nr_pages;
  589. uint16_t pagesize;
  590. uint16_t pageoffset;
  591. uint16_t flags;
  592. #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
  593. #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
  594. };
  595. static struct flash_info __devinitdata dataflash_data [] = {
  596. /*
  597. * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
  598. * one with IS_POW2PS and the other without. The entry with the
  599. * non-2^N byte page size can't name exact chip revisions without
  600. * losing backwards compatibility for cmdlinepart.
  601. *
  602. * These newer chips also support 128-byte security registers (with
  603. * 64 bytes one-time-programmable) and software write-protection.
  604. */
  605. { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
  606. { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
  607. { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
  608. { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
  609. { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
  610. { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
  611. { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
  612. { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
  613. { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
  614. { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
  615. { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
  616. { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
  617. { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
  618. { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
  619. { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
  620. };
  621. static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
  622. {
  623. int tmp;
  624. uint8_t code = OP_READ_ID;
  625. uint8_t id[3];
  626. uint32_t jedec;
  627. struct flash_info *info;
  628. int status;
  629. /* JEDEC also defines an optional "extended device information"
  630. * string for after vendor-specific data, after the three bytes
  631. * we use here. Supporting some chips might require using it.
  632. *
  633. * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
  634. * That's not an error; only rev C and newer chips handle it, and
  635. * only Atmel sells these chips.
  636. */
  637. tmp = spi_write_then_read(spi, &code, 1, id, 3);
  638. if (tmp < 0) {
  639. DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
  640. dev_name(&spi->dev), tmp);
  641. return ERR_PTR(tmp);
  642. }
  643. if (id[0] != 0x1f)
  644. return NULL;
  645. jedec = id[0];
  646. jedec = jedec << 8;
  647. jedec |= id[1];
  648. jedec = jedec << 8;
  649. jedec |= id[2];
  650. for (tmp = 0, info = dataflash_data;
  651. tmp < ARRAY_SIZE(dataflash_data);
  652. tmp++, info++) {
  653. if (info->jedec_id == jedec) {
  654. DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
  655. dev_name(&spi->dev),
  656. (info->flags & SUP_POW2PS)
  657. ? ", binary pagesize" : ""
  658. );
  659. if (info->flags & SUP_POW2PS) {
  660. status = dataflash_status(spi);
  661. if (status < 0) {
  662. DEBUG(MTD_DEBUG_LEVEL1,
  663. "%s: status error %d\n",
  664. dev_name(&spi->dev), status);
  665. return ERR_PTR(status);
  666. }
  667. if (status & 0x1) {
  668. if (info->flags & IS_POW2PS)
  669. return info;
  670. } else {
  671. if (!(info->flags & IS_POW2PS))
  672. return info;
  673. }
  674. }
  675. }
  676. }
  677. /*
  678. * Treat other chips as errors ... we won't know the right page
  679. * size (it might be binary) even when we can tell which density
  680. * class is involved (legacy chip id scheme).
  681. */
  682. dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
  683. return ERR_PTR(-ENODEV);
  684. }
  685. /*
  686. * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
  687. * or else the ID code embedded in the status bits:
  688. *
  689. * Device Density ID code #Pages PageSize Offset
  690. * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
  691. * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
  692. * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
  693. * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
  694. * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
  695. * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
  696. * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
  697. * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
  698. */
  699. static int __devinit dataflash_probe(struct spi_device *spi)
  700. {
  701. int status;
  702. struct flash_info *info;
  703. /*
  704. * Try to detect dataflash by JEDEC ID.
  705. * If it succeeds we know we have either a C or D part.
  706. * D will support power of 2 pagesize option.
  707. * Both support the security register, though with different
  708. * write procedures.
  709. */
  710. info = jedec_probe(spi);
  711. if (IS_ERR(info))
  712. return PTR_ERR(info);
  713. if (info != NULL)
  714. return add_dataflash_otp(spi, info->name, info->nr_pages,
  715. info->pagesize, info->pageoffset,
  716. (info->flags & SUP_POW2PS) ? 'd' : 'c');
  717. /*
  718. * Older chips support only legacy commands, identifing
  719. * capacity using bits in the status byte.
  720. */
  721. status = dataflash_status(spi);
  722. if (status <= 0 || status == 0xff) {
  723. DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
  724. dev_name(&spi->dev), status);
  725. if (status == 0 || status == 0xff)
  726. status = -ENODEV;
  727. return status;
  728. }
  729. /* if there's a device there, assume it's dataflash.
  730. * board setup should have set spi->max_speed_max to
  731. * match f(car) for continuous reads, mode 0 or 3.
  732. */
  733. switch (status & 0x3c) {
  734. case 0x0c: /* 0 0 1 1 x x */
  735. status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
  736. break;
  737. case 0x14: /* 0 1 0 1 x x */
  738. status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
  739. break;
  740. case 0x1c: /* 0 1 1 1 x x */
  741. status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
  742. break;
  743. case 0x24: /* 1 0 0 1 x x */
  744. status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
  745. break;
  746. case 0x2c: /* 1 0 1 1 x x */
  747. status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
  748. break;
  749. case 0x34: /* 1 1 0 1 x x */
  750. status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
  751. break;
  752. case 0x38: /* 1 1 1 x x x */
  753. case 0x3c:
  754. status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
  755. break;
  756. /* obsolete AT45DB1282 not (yet?) supported */
  757. default:
  758. DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
  759. dev_name(&spi->dev), status & 0x3c);
  760. status = -ENODEV;
  761. }
  762. if (status < 0)
  763. DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
  764. dev_name(&spi->dev), status);
  765. return status;
  766. }
  767. static int __devexit dataflash_remove(struct spi_device *spi)
  768. {
  769. struct dataflash *flash = dev_get_drvdata(&spi->dev);
  770. int status;
  771. DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
  772. if (mtd_has_partitions() && flash->partitioned)
  773. status = del_mtd_partitions(&flash->mtd);
  774. else
  775. status = del_mtd_device(&flash->mtd);
  776. if (status == 0)
  777. kfree(flash);
  778. return status;
  779. }
  780. static struct spi_driver dataflash_driver = {
  781. .driver = {
  782. .name = "mtd_dataflash",
  783. .bus = &spi_bus_type,
  784. .owner = THIS_MODULE,
  785. },
  786. .probe = dataflash_probe,
  787. .remove = __devexit_p(dataflash_remove),
  788. /* FIXME: investigate suspend and resume... */
  789. };
  790. static int __init dataflash_init(void)
  791. {
  792. return spi_register_driver(&dataflash_driver);
  793. }
  794. module_init(dataflash_init);
  795. static void __exit dataflash_exit(void)
  796. {
  797. spi_unregister_driver(&dataflash_driver);
  798. }
  799. module_exit(dataflash_exit);
  800. MODULE_LICENSE("GPL");
  801. MODULE_AUTHOR("Andrew Victor, David Brownell");
  802. MODULE_DESCRIPTION("MTD DataFlash driver");