mmu.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/sections.h>
  20. #include <asm/setup.h>
  21. #include <asm/sizes.h>
  22. #include <asm/tlb.h>
  23. #include <asm/mach/arch.h>
  24. #include <asm/mach/map.h>
  25. #include "mm.h"
  26. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  27. /*
  28. * empty_zero_page is a special page that is used for
  29. * zero-initialized data and COW.
  30. */
  31. struct page *empty_zero_page;
  32. EXPORT_SYMBOL(empty_zero_page);
  33. /*
  34. * The pmd table for the upper-most set of pages.
  35. */
  36. pmd_t *top_pmd;
  37. #define CPOLICY_UNCACHED 0
  38. #define CPOLICY_BUFFERED 1
  39. #define CPOLICY_WRITETHROUGH 2
  40. #define CPOLICY_WRITEBACK 3
  41. #define CPOLICY_WRITEALLOC 4
  42. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  43. static unsigned int ecc_mask __initdata = 0;
  44. pgprot_t pgprot_user;
  45. pgprot_t pgprot_kernel;
  46. EXPORT_SYMBOL(pgprot_user);
  47. EXPORT_SYMBOL(pgprot_kernel);
  48. struct cachepolicy {
  49. const char policy[16];
  50. unsigned int cr_mask;
  51. unsigned int pmd;
  52. unsigned int pte;
  53. };
  54. static struct cachepolicy cache_policies[] __initdata = {
  55. {
  56. .policy = "uncached",
  57. .cr_mask = CR_W|CR_C,
  58. .pmd = PMD_SECT_UNCACHED,
  59. .pte = L_PTE_MT_UNCACHED,
  60. }, {
  61. .policy = "buffered",
  62. .cr_mask = CR_C,
  63. .pmd = PMD_SECT_BUFFERED,
  64. .pte = L_PTE_MT_BUFFERABLE,
  65. }, {
  66. .policy = "writethrough",
  67. .cr_mask = 0,
  68. .pmd = PMD_SECT_WT,
  69. .pte = L_PTE_MT_WRITETHROUGH,
  70. }, {
  71. .policy = "writeback",
  72. .cr_mask = 0,
  73. .pmd = PMD_SECT_WB,
  74. .pte = L_PTE_MT_WRITEBACK,
  75. }, {
  76. .policy = "writealloc",
  77. .cr_mask = 0,
  78. .pmd = PMD_SECT_WBWA,
  79. .pte = L_PTE_MT_WRITEALLOC,
  80. }
  81. };
  82. /*
  83. * These are useful for identifying cache coherency
  84. * problems by allowing the cache or the cache and
  85. * writebuffer to be turned off. (Note: the write
  86. * buffer should not be on and the cache off).
  87. */
  88. static void __init early_cachepolicy(char **p)
  89. {
  90. int i;
  91. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  92. int len = strlen(cache_policies[i].policy);
  93. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  94. cachepolicy = i;
  95. cr_alignment &= ~cache_policies[i].cr_mask;
  96. cr_no_alignment &= ~cache_policies[i].cr_mask;
  97. *p += len;
  98. break;
  99. }
  100. }
  101. if (i == ARRAY_SIZE(cache_policies))
  102. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  103. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  104. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  105. cachepolicy = CPOLICY_WRITEBACK;
  106. }
  107. flush_cache_all();
  108. set_cr(cr_alignment);
  109. }
  110. __early_param("cachepolicy=", early_cachepolicy);
  111. static void __init early_nocache(char **__unused)
  112. {
  113. char *p = "buffered";
  114. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  115. early_cachepolicy(&p);
  116. }
  117. __early_param("nocache", early_nocache);
  118. static void __init early_nowrite(char **__unused)
  119. {
  120. char *p = "uncached";
  121. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  122. early_cachepolicy(&p);
  123. }
  124. __early_param("nowb", early_nowrite);
  125. static void __init early_ecc(char **p)
  126. {
  127. if (memcmp(*p, "on", 2) == 0) {
  128. ecc_mask = PMD_PROTECTION;
  129. *p += 2;
  130. } else if (memcmp(*p, "off", 3) == 0) {
  131. ecc_mask = 0;
  132. *p += 3;
  133. }
  134. }
  135. __early_param("ecc=", early_ecc);
  136. static int __init noalign_setup(char *__unused)
  137. {
  138. cr_alignment &= ~CR_A;
  139. cr_no_alignment &= ~CR_A;
  140. set_cr(cr_alignment);
  141. return 1;
  142. }
  143. __setup("noalign", noalign_setup);
  144. #ifndef CONFIG_SMP
  145. void adjust_cr(unsigned long mask, unsigned long set)
  146. {
  147. unsigned long flags;
  148. mask &= ~CR_A;
  149. set &= mask;
  150. local_irq_save(flags);
  151. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  152. cr_alignment = (cr_alignment & ~mask) | set;
  153. set_cr((get_cr() & ~mask) | set);
  154. local_irq_restore(flags);
  155. }
  156. #endif
  157. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  158. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  159. static struct mem_type mem_types[] = {
  160. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  161. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  162. L_PTE_SHARED,
  163. .prot_l1 = PMD_TYPE_TABLE,
  164. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  165. .domain = DOMAIN_IO,
  166. },
  167. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  168. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  169. .prot_l1 = PMD_TYPE_TABLE,
  170. .prot_sect = PROT_SECT_DEVICE,
  171. .domain = DOMAIN_IO,
  172. },
  173. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  174. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  175. .prot_l1 = PMD_TYPE_TABLE,
  176. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  177. .domain = DOMAIN_IO,
  178. },
  179. [MT_DEVICE_WC] = { /* ioremap_wc */
  180. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  181. .prot_l1 = PMD_TYPE_TABLE,
  182. .prot_sect = PROT_SECT_DEVICE,
  183. .domain = DOMAIN_IO,
  184. },
  185. [MT_UNCACHED] = {
  186. .prot_pte = PROT_PTE_DEVICE,
  187. .prot_l1 = PMD_TYPE_TABLE,
  188. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  189. .domain = DOMAIN_IO,
  190. },
  191. [MT_CACHECLEAN] = {
  192. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  193. .domain = DOMAIN_KERNEL,
  194. },
  195. [MT_MINICLEAN] = {
  196. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  197. .domain = DOMAIN_KERNEL,
  198. },
  199. [MT_LOW_VECTORS] = {
  200. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  201. L_PTE_EXEC,
  202. .prot_l1 = PMD_TYPE_TABLE,
  203. .domain = DOMAIN_USER,
  204. },
  205. [MT_HIGH_VECTORS] = {
  206. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  207. L_PTE_USER | L_PTE_EXEC,
  208. .prot_l1 = PMD_TYPE_TABLE,
  209. .domain = DOMAIN_USER,
  210. },
  211. [MT_MEMORY] = {
  212. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  213. .domain = DOMAIN_KERNEL,
  214. },
  215. [MT_ROM] = {
  216. .prot_sect = PMD_TYPE_SECT,
  217. .domain = DOMAIN_KERNEL,
  218. },
  219. };
  220. const struct mem_type *get_mem_type(unsigned int type)
  221. {
  222. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  223. }
  224. /*
  225. * Adjust the PMD section entries according to the CPU in use.
  226. */
  227. static void __init build_mem_type_table(void)
  228. {
  229. struct cachepolicy *cp;
  230. unsigned int cr = get_cr();
  231. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  232. int cpu_arch = cpu_architecture();
  233. int i;
  234. if (cpu_arch < CPU_ARCH_ARMv6) {
  235. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  236. if (cachepolicy > CPOLICY_BUFFERED)
  237. cachepolicy = CPOLICY_BUFFERED;
  238. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  239. if (cachepolicy > CPOLICY_WRITETHROUGH)
  240. cachepolicy = CPOLICY_WRITETHROUGH;
  241. #endif
  242. }
  243. if (cpu_arch < CPU_ARCH_ARMv5) {
  244. if (cachepolicy >= CPOLICY_WRITEALLOC)
  245. cachepolicy = CPOLICY_WRITEBACK;
  246. ecc_mask = 0;
  247. }
  248. #ifdef CONFIG_SMP
  249. cachepolicy = CPOLICY_WRITEALLOC;
  250. #endif
  251. /*
  252. * Strip out features not present on earlier architectures.
  253. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  254. * without extended page tables don't have the 'Shared' bit.
  255. */
  256. if (cpu_arch < CPU_ARCH_ARMv5)
  257. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  258. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  259. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  260. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  261. mem_types[i].prot_sect &= ~PMD_SECT_S;
  262. /*
  263. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  264. * "update-able on write" bit on ARM610). However, Xscale and
  265. * Xscale3 require this bit to be cleared.
  266. */
  267. if (cpu_is_xscale() || cpu_is_xsc3()) {
  268. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  269. mem_types[i].prot_sect &= ~PMD_BIT4;
  270. mem_types[i].prot_l1 &= ~PMD_BIT4;
  271. }
  272. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  273. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  274. if (mem_types[i].prot_l1)
  275. mem_types[i].prot_l1 |= PMD_BIT4;
  276. if (mem_types[i].prot_sect)
  277. mem_types[i].prot_sect |= PMD_BIT4;
  278. }
  279. }
  280. /*
  281. * Mark the device areas according to the CPU/architecture.
  282. */
  283. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  284. if (!cpu_is_xsc3()) {
  285. /*
  286. * Mark device regions on ARMv6+ as execute-never
  287. * to prevent speculative instruction fetches.
  288. */
  289. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  290. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  291. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  292. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  293. }
  294. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  295. /*
  296. * For ARMv7 with TEX remapping,
  297. * - shared device is SXCB=1100
  298. * - nonshared device is SXCB=0100
  299. * - write combine device mem is SXCB=0001
  300. * (Uncached Normal memory)
  301. */
  302. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  303. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  304. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  305. } else if (cpu_is_xsc3()) {
  306. /*
  307. * For Xscale3,
  308. * - shared device is TEXCB=00101
  309. * - nonshared device is TEXCB=01000
  310. * - write combine device mem is TEXCB=00100
  311. * (Inner/Outer Uncacheable in xsc3 parlance)
  312. */
  313. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  314. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  315. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  316. } else {
  317. /*
  318. * For ARMv6 and ARMv7 without TEX remapping,
  319. * - shared device is TEXCB=00001
  320. * - nonshared device is TEXCB=01000
  321. * - write combine device mem is TEXCB=00100
  322. * (Uncached Normal in ARMv6 parlance).
  323. */
  324. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  325. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  326. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  327. }
  328. } else {
  329. /*
  330. * On others, write combining is "Uncached/Buffered"
  331. */
  332. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  333. }
  334. /*
  335. * Now deal with the memory-type mappings
  336. */
  337. cp = &cache_policies[cachepolicy];
  338. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  339. #ifndef CONFIG_SMP
  340. /*
  341. * Only use write-through for non-SMP systems
  342. */
  343. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  344. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  345. #endif
  346. /*
  347. * Enable CPU-specific coherency if supported.
  348. * (Only available on XSC3 at the moment.)
  349. */
  350. if (arch_is_coherent() && cpu_is_xsc3())
  351. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  352. /*
  353. * ARMv6 and above have extended page tables.
  354. */
  355. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  356. /*
  357. * Mark cache clean areas and XIP ROM read only
  358. * from SVC mode and no access from userspace.
  359. */
  360. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  361. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  362. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  363. #ifdef CONFIG_SMP
  364. /*
  365. * Mark memory with the "shared" attribute for SMP systems
  366. */
  367. user_pgprot |= L_PTE_SHARED;
  368. kern_pgprot |= L_PTE_SHARED;
  369. vecs_pgprot |= L_PTE_SHARED;
  370. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  371. #endif
  372. }
  373. for (i = 0; i < 16; i++) {
  374. unsigned long v = pgprot_val(protection_map[i]);
  375. protection_map[i] = __pgprot(v | user_pgprot);
  376. }
  377. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  378. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  379. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  380. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  381. L_PTE_DIRTY | L_PTE_WRITE |
  382. L_PTE_EXEC | kern_pgprot);
  383. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  384. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  385. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  386. mem_types[MT_ROM].prot_sect |= cp->pmd;
  387. switch (cp->pmd) {
  388. case PMD_SECT_WT:
  389. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  390. break;
  391. case PMD_SECT_WB:
  392. case PMD_SECT_WBWA:
  393. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  394. break;
  395. }
  396. printk("Memory policy: ECC %sabled, Data cache %s\n",
  397. ecc_mask ? "en" : "dis", cp->policy);
  398. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  399. struct mem_type *t = &mem_types[i];
  400. if (t->prot_l1)
  401. t->prot_l1 |= PMD_DOMAIN(t->domain);
  402. if (t->prot_sect)
  403. t->prot_sect |= PMD_DOMAIN(t->domain);
  404. }
  405. }
  406. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  407. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  408. unsigned long end, unsigned long pfn,
  409. const struct mem_type *type)
  410. {
  411. pte_t *pte;
  412. if (pmd_none(*pmd)) {
  413. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  414. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  415. }
  416. pte = pte_offset_kernel(pmd, addr);
  417. do {
  418. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  419. pfn++;
  420. } while (pte++, addr += PAGE_SIZE, addr != end);
  421. }
  422. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  423. unsigned long end, unsigned long phys,
  424. const struct mem_type *type)
  425. {
  426. pmd_t *pmd = pmd_offset(pgd, addr);
  427. /*
  428. * Try a section mapping - end, addr and phys must all be aligned
  429. * to a section boundary. Note that PMDs refer to the individual
  430. * L1 entries, whereas PGDs refer to a group of L1 entries making
  431. * up one logical pointer to an L2 table.
  432. */
  433. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  434. pmd_t *p = pmd;
  435. if (addr & SECTION_SIZE)
  436. pmd++;
  437. do {
  438. *pmd = __pmd(phys | type->prot_sect);
  439. phys += SECTION_SIZE;
  440. } while (pmd++, addr += SECTION_SIZE, addr != end);
  441. flush_pmd_entry(p);
  442. } else {
  443. /*
  444. * No need to loop; pte's aren't interested in the
  445. * individual L1 entries.
  446. */
  447. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  448. }
  449. }
  450. static void __init create_36bit_mapping(struct map_desc *md,
  451. const struct mem_type *type)
  452. {
  453. unsigned long phys, addr, length, end;
  454. pgd_t *pgd;
  455. addr = md->virtual;
  456. phys = (unsigned long)__pfn_to_phys(md->pfn);
  457. length = PAGE_ALIGN(md->length);
  458. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  459. printk(KERN_ERR "MM: CPU does not support supersection "
  460. "mapping for 0x%08llx at 0x%08lx\n",
  461. __pfn_to_phys((u64)md->pfn), addr);
  462. return;
  463. }
  464. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  465. * Since domain assignments can in fact be arbitrary, the
  466. * 'domain == 0' check below is required to insure that ARMv6
  467. * supersections are only allocated for domain 0 regardless
  468. * of the actual domain assignments in use.
  469. */
  470. if (type->domain) {
  471. printk(KERN_ERR "MM: invalid domain in supersection "
  472. "mapping for 0x%08llx at 0x%08lx\n",
  473. __pfn_to_phys((u64)md->pfn), addr);
  474. return;
  475. }
  476. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  477. printk(KERN_ERR "MM: cannot create mapping for "
  478. "0x%08llx at 0x%08lx invalid alignment\n",
  479. __pfn_to_phys((u64)md->pfn), addr);
  480. return;
  481. }
  482. /*
  483. * Shift bits [35:32] of address into bits [23:20] of PMD
  484. * (See ARMv6 spec).
  485. */
  486. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  487. pgd = pgd_offset_k(addr);
  488. end = addr + length;
  489. do {
  490. pmd_t *pmd = pmd_offset(pgd, addr);
  491. int i;
  492. for (i = 0; i < 16; i++)
  493. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  494. addr += SUPERSECTION_SIZE;
  495. phys += SUPERSECTION_SIZE;
  496. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  497. } while (addr != end);
  498. }
  499. /*
  500. * Create the page directory entries and any necessary
  501. * page tables for the mapping specified by `md'. We
  502. * are able to cope here with varying sizes and address
  503. * offsets, and we take full advantage of sections and
  504. * supersections.
  505. */
  506. void __init create_mapping(struct map_desc *md)
  507. {
  508. unsigned long phys, addr, length, end;
  509. const struct mem_type *type;
  510. pgd_t *pgd;
  511. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  512. printk(KERN_WARNING "BUG: not creating mapping for "
  513. "0x%08llx at 0x%08lx in user region\n",
  514. __pfn_to_phys((u64)md->pfn), md->virtual);
  515. return;
  516. }
  517. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  518. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  519. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  520. "overlaps vmalloc space\n",
  521. __pfn_to_phys((u64)md->pfn), md->virtual);
  522. }
  523. type = &mem_types[md->type];
  524. /*
  525. * Catch 36-bit addresses
  526. */
  527. if (md->pfn >= 0x100000) {
  528. create_36bit_mapping(md, type);
  529. return;
  530. }
  531. addr = md->virtual & PAGE_MASK;
  532. phys = (unsigned long)__pfn_to_phys(md->pfn);
  533. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  534. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  535. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  536. "be mapped using pages, ignoring.\n",
  537. __pfn_to_phys(md->pfn), addr);
  538. return;
  539. }
  540. pgd = pgd_offset_k(addr);
  541. end = addr + length;
  542. do {
  543. unsigned long next = pgd_addr_end(addr, end);
  544. alloc_init_section(pgd, addr, next, phys, type);
  545. phys += next - addr;
  546. addr = next;
  547. } while (pgd++, addr != end);
  548. }
  549. /*
  550. * Create the architecture specific mappings
  551. */
  552. void __init iotable_init(struct map_desc *io_desc, int nr)
  553. {
  554. int i;
  555. for (i = 0; i < nr; i++)
  556. create_mapping(io_desc + i);
  557. }
  558. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  559. /*
  560. * vmalloc=size forces the vmalloc area to be exactly 'size'
  561. * bytes. This can be used to increase (or decrease) the vmalloc
  562. * area - the default is 128m.
  563. */
  564. static void __init early_vmalloc(char **arg)
  565. {
  566. vmalloc_reserve = memparse(*arg, arg);
  567. if (vmalloc_reserve < SZ_16M) {
  568. vmalloc_reserve = SZ_16M;
  569. printk(KERN_WARNING
  570. "vmalloc area too small, limiting to %luMB\n",
  571. vmalloc_reserve >> 20);
  572. }
  573. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  574. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  575. printk(KERN_WARNING
  576. "vmalloc area is too big, limiting to %luMB\n",
  577. vmalloc_reserve >> 20);
  578. }
  579. }
  580. __early_param("vmalloc=", early_vmalloc);
  581. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  582. static void __init sanity_check_meminfo(void)
  583. {
  584. int i, j;
  585. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  586. struct membank *bank = &meminfo.bank[j];
  587. *bank = meminfo.bank[i];
  588. #ifdef CONFIG_HIGHMEM
  589. /*
  590. * Split those memory banks which are partially overlapping
  591. * the vmalloc area greatly simplifying things later.
  592. */
  593. if (__va(bank->start) < VMALLOC_MIN &&
  594. bank->size > VMALLOC_MIN - __va(bank->start)) {
  595. if (meminfo.nr_banks >= NR_BANKS) {
  596. printk(KERN_CRIT "NR_BANKS too low, "
  597. "ignoring high memory\n");
  598. } else {
  599. memmove(bank + 1, bank,
  600. (meminfo.nr_banks - i) * sizeof(*bank));
  601. meminfo.nr_banks++;
  602. i++;
  603. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  604. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  605. j++;
  606. }
  607. bank->size = VMALLOC_MIN - __va(bank->start);
  608. }
  609. #else
  610. /*
  611. * Check whether this memory bank would entirely overlap
  612. * the vmalloc area.
  613. */
  614. if (__va(bank->start) >= VMALLOC_MIN) {
  615. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  616. "(vmalloc region overlap).\n",
  617. bank->start, bank->start + bank->size - 1);
  618. continue;
  619. }
  620. /*
  621. * Check whether this memory bank would partially overlap
  622. * the vmalloc area.
  623. */
  624. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  625. __va(bank->start + bank->size) < __va(bank->start)) {
  626. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  627. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  628. "to -%.8lx (vmalloc region overlap).\n",
  629. bank->start, bank->start + bank->size - 1,
  630. bank->start + newsize - 1);
  631. bank->size = newsize;
  632. }
  633. #endif
  634. j++;
  635. }
  636. meminfo.nr_banks = j;
  637. }
  638. static inline void prepare_page_table(void)
  639. {
  640. unsigned long addr;
  641. /*
  642. * Clear out all the mappings below the kernel image.
  643. */
  644. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  645. pmd_clear(pmd_off_k(addr));
  646. #ifdef CONFIG_XIP_KERNEL
  647. /* The XIP kernel is mapped in the module area -- skip over it */
  648. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  649. #endif
  650. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  651. pmd_clear(pmd_off_k(addr));
  652. /*
  653. * Clear out all the kernel space mappings, except for the first
  654. * memory bank, up to the end of the vmalloc region.
  655. */
  656. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  657. addr < VMALLOC_END; addr += PGDIR_SIZE)
  658. pmd_clear(pmd_off_k(addr));
  659. }
  660. /*
  661. * Reserve the various regions of node 0
  662. */
  663. void __init reserve_node_zero(pg_data_t *pgdat)
  664. {
  665. unsigned long res_size = 0;
  666. /*
  667. * Register the kernel text and data with bootmem.
  668. * Note that this can only be in node 0.
  669. */
  670. #ifdef CONFIG_XIP_KERNEL
  671. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  672. BOOTMEM_DEFAULT);
  673. #else
  674. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  675. BOOTMEM_DEFAULT);
  676. #endif
  677. /*
  678. * Reserve the page tables. These are already in use,
  679. * and can only be in node 0.
  680. */
  681. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  682. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  683. /*
  684. * Hmm... This should go elsewhere, but we really really need to
  685. * stop things allocating the low memory; ideally we need a better
  686. * implementation of GFP_DMA which does not assume that DMA-able
  687. * memory starts at zero.
  688. */
  689. if (machine_is_integrator() || machine_is_cintegrator())
  690. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  691. /*
  692. * These should likewise go elsewhere. They pre-reserve the
  693. * screen memory region at the start of main system memory.
  694. */
  695. if (machine_is_edb7211())
  696. res_size = 0x00020000;
  697. if (machine_is_p720t())
  698. res_size = 0x00014000;
  699. /* H1940 and RX3715 need to reserve this for suspend */
  700. if (machine_is_h1940() || machine_is_rx3715()) {
  701. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  702. BOOTMEM_DEFAULT);
  703. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  704. BOOTMEM_DEFAULT);
  705. }
  706. #ifdef CONFIG_SA1111
  707. /*
  708. * Because of the SA1111 DMA bug, we want to preserve our
  709. * precious DMA-able memory...
  710. */
  711. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  712. #endif
  713. if (res_size)
  714. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  715. BOOTMEM_DEFAULT);
  716. }
  717. /*
  718. * Set up device the mappings. Since we clear out the page tables for all
  719. * mappings above VMALLOC_END, we will remove any debug device mappings.
  720. * This means you have to be careful how you debug this function, or any
  721. * called function. This means you can't use any function or debugging
  722. * method which may touch any device, otherwise the kernel _will_ crash.
  723. */
  724. static void __init devicemaps_init(struct machine_desc *mdesc)
  725. {
  726. struct map_desc map;
  727. unsigned long addr;
  728. void *vectors;
  729. /*
  730. * Allocate the vector page early.
  731. */
  732. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  733. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  734. pmd_clear(pmd_off_k(addr));
  735. /*
  736. * Map the kernel if it is XIP.
  737. * It is always first in the modulearea.
  738. */
  739. #ifdef CONFIG_XIP_KERNEL
  740. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  741. map.virtual = MODULES_VADDR;
  742. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  743. map.type = MT_ROM;
  744. create_mapping(&map);
  745. #endif
  746. /*
  747. * Map the cache flushing regions.
  748. */
  749. #ifdef FLUSH_BASE
  750. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  751. map.virtual = FLUSH_BASE;
  752. map.length = SZ_1M;
  753. map.type = MT_CACHECLEAN;
  754. create_mapping(&map);
  755. #endif
  756. #ifdef FLUSH_BASE_MINICACHE
  757. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  758. map.virtual = FLUSH_BASE_MINICACHE;
  759. map.length = SZ_1M;
  760. map.type = MT_MINICLEAN;
  761. create_mapping(&map);
  762. #endif
  763. /*
  764. * Create a mapping for the machine vectors at the high-vectors
  765. * location (0xffff0000). If we aren't using high-vectors, also
  766. * create a mapping at the low-vectors virtual address.
  767. */
  768. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  769. map.virtual = 0xffff0000;
  770. map.length = PAGE_SIZE;
  771. map.type = MT_HIGH_VECTORS;
  772. create_mapping(&map);
  773. if (!vectors_high()) {
  774. map.virtual = 0;
  775. map.type = MT_LOW_VECTORS;
  776. create_mapping(&map);
  777. }
  778. /*
  779. * Ask the machine support to map in the statically mapped devices.
  780. */
  781. if (mdesc->map_io)
  782. mdesc->map_io();
  783. /*
  784. * Finally flush the caches and tlb to ensure that we're in a
  785. * consistent state wrt the writebuffer. This also ensures that
  786. * any write-allocated cache lines in the vector page are written
  787. * back. After this point, we can start to touch devices again.
  788. */
  789. local_flush_tlb_all();
  790. flush_cache_all();
  791. }
  792. /*
  793. * paging_init() sets up the page tables, initialises the zone memory
  794. * maps, and sets up the zero page, bad page and bad page tables.
  795. */
  796. void __init paging_init(struct machine_desc *mdesc)
  797. {
  798. void *zero_page;
  799. build_mem_type_table();
  800. sanity_check_meminfo();
  801. prepare_page_table();
  802. bootmem_init();
  803. devicemaps_init(mdesc);
  804. top_pmd = pmd_off_k(0xffff0000);
  805. /*
  806. * allocate the zero page. Note that this always succeeds and
  807. * returns a zeroed result.
  808. */
  809. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  810. empty_zero_page = virt_to_page(zero_page);
  811. flush_dcache_page(empty_zero_page);
  812. }
  813. /*
  814. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  815. * the user-mode pages. This will then ensure that we have predictable
  816. * results when turning the mmu off
  817. */
  818. void setup_mm_for_reboot(char mode)
  819. {
  820. unsigned long base_pmdval;
  821. pgd_t *pgd;
  822. int i;
  823. if (current->mm && current->mm->pgd)
  824. pgd = current->mm->pgd;
  825. else
  826. pgd = init_mm.pgd;
  827. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  828. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  829. base_pmdval |= PMD_BIT4;
  830. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  831. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  832. pmd_t *pmd;
  833. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  834. pmd[0] = __pmd(pmdval);
  835. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  836. flush_pmd_entry(pmd);
  837. }
  838. }