core.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/cnt32_to_63.h>
  32. #include <linux/io.h>
  33. #include <asm/clkdev.h>
  34. #include <asm/system.h>
  35. #include <mach/hardware.h>
  36. #include <asm/irq.h>
  37. #include <asm/leds.h>
  38. #include <asm/hardware/arm_timer.h>
  39. #include <asm/hardware/icst307.h>
  40. #include <asm/hardware/vic.h>
  41. #include <asm/mach-types.h>
  42. #include <asm/mach/arch.h>
  43. #include <asm/mach/flash.h>
  44. #include <asm/mach/irq.h>
  45. #include <asm/mach/time.h>
  46. #include <asm/mach/map.h>
  47. #include <asm/mach/mmc.h>
  48. #include "core.h"
  49. #include "clock.h"
  50. /*
  51. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  52. * is the (PA >> 12).
  53. *
  54. * Setup a VA for the Versatile Vectored Interrupt Controller.
  55. */
  56. #define __io_address(n) __io(IO_ADDRESS(n))
  57. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  58. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  59. static void sic_mask_irq(unsigned int irq)
  60. {
  61. irq -= IRQ_SIC_START;
  62. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  63. }
  64. static void sic_unmask_irq(unsigned int irq)
  65. {
  66. irq -= IRQ_SIC_START;
  67. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  68. }
  69. static struct irq_chip sic_chip = {
  70. .name = "SIC",
  71. .ack = sic_mask_irq,
  72. .mask = sic_mask_irq,
  73. .unmask = sic_unmask_irq,
  74. };
  75. static void
  76. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  77. {
  78. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  79. if (status == 0) {
  80. do_bad_IRQ(irq, desc);
  81. return;
  82. }
  83. do {
  84. irq = ffs(status) - 1;
  85. status &= ~(1 << irq);
  86. irq += IRQ_SIC_START;
  87. generic_handle_irq(irq);
  88. } while (status);
  89. }
  90. #if 1
  91. #define IRQ_MMCI0A IRQ_VICSOURCE22
  92. #define IRQ_AACI IRQ_VICSOURCE24
  93. #define IRQ_ETH IRQ_VICSOURCE25
  94. #define PIC_MASK 0xFFD00000
  95. #else
  96. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  97. #define IRQ_AACI IRQ_SIC_AACI
  98. #define IRQ_ETH IRQ_SIC_ETH
  99. #define PIC_MASK 0
  100. #endif
  101. void __init versatile_init_irq(void)
  102. {
  103. unsigned int i;
  104. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
  105. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  106. /* Do second interrupt controller */
  107. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  108. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  109. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  110. set_irq_chip(i, &sic_chip);
  111. set_irq_handler(i, handle_level_irq);
  112. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  113. }
  114. }
  115. /*
  116. * Interrupts on secondary controller from 0 to 8 are routed to
  117. * source 31 on PIC.
  118. * Interrupts from 21 to 31 are routed directly to the VIC on
  119. * the corresponding number on primary controller. This is controlled
  120. * by setting PIC_ENABLEx.
  121. */
  122. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  123. }
  124. static struct map_desc versatile_io_desc[] __initdata = {
  125. {
  126. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  127. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  128. .length = SZ_4K,
  129. .type = MT_DEVICE
  130. }, {
  131. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  132. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  133. .length = SZ_4K,
  134. .type = MT_DEVICE
  135. }, {
  136. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  137. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  138. .length = SZ_4K,
  139. .type = MT_DEVICE
  140. }, {
  141. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  142. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  143. .length = SZ_4K * 9,
  144. .type = MT_DEVICE
  145. },
  146. #ifdef CONFIG_MACH_VERSATILE_AB
  147. {
  148. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  149. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  150. .length = SZ_4K,
  151. .type = MT_DEVICE
  152. }, {
  153. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  154. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  155. .length = SZ_64M,
  156. .type = MT_DEVICE
  157. },
  158. #endif
  159. #ifdef CONFIG_DEBUG_LL
  160. {
  161. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  162. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  163. .length = SZ_4K,
  164. .type = MT_DEVICE
  165. },
  166. #endif
  167. #ifdef CONFIG_PCI
  168. {
  169. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  170. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  171. .length = SZ_4K,
  172. .type = MT_DEVICE
  173. }, {
  174. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  175. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  176. .length = VERSATILE_PCI_BASE_SIZE,
  177. .type = MT_DEVICE
  178. }, {
  179. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  180. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  181. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  182. .type = MT_DEVICE
  183. },
  184. #if 0
  185. {
  186. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  187. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  188. .length = SZ_16M,
  189. .type = MT_DEVICE
  190. }, {
  191. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  192. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  193. .length = SZ_16M,
  194. .type = MT_DEVICE
  195. }, {
  196. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  197. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  198. .length = SZ_16M,
  199. .type = MT_DEVICE
  200. },
  201. #endif
  202. #endif
  203. };
  204. void __init versatile_map_io(void)
  205. {
  206. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  207. }
  208. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  209. /*
  210. * This is the Versatile sched_clock implementation. This has
  211. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  212. *
  213. * The return value is guaranteed to be monotonic in that range as
  214. * long as there is always less than 89 seconds between successive
  215. * calls to this function.
  216. */
  217. unsigned long long sched_clock(void)
  218. {
  219. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  220. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  221. v *= 125<<1;
  222. do_div(v, 3<<1);
  223. return v;
  224. }
  225. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  226. static int versatile_flash_init(void)
  227. {
  228. u32 val;
  229. val = __raw_readl(VERSATILE_FLASHCTRL);
  230. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  231. __raw_writel(val, VERSATILE_FLASHCTRL);
  232. return 0;
  233. }
  234. static void versatile_flash_exit(void)
  235. {
  236. u32 val;
  237. val = __raw_readl(VERSATILE_FLASHCTRL);
  238. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  239. __raw_writel(val, VERSATILE_FLASHCTRL);
  240. }
  241. static void versatile_flash_set_vpp(int on)
  242. {
  243. u32 val;
  244. val = __raw_readl(VERSATILE_FLASHCTRL);
  245. if (on)
  246. val |= VERSATILE_FLASHPROG_FLVPPEN;
  247. else
  248. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  249. __raw_writel(val, VERSATILE_FLASHCTRL);
  250. }
  251. static struct flash_platform_data versatile_flash_data = {
  252. .map_name = "cfi_probe",
  253. .width = 4,
  254. .init = versatile_flash_init,
  255. .exit = versatile_flash_exit,
  256. .set_vpp = versatile_flash_set_vpp,
  257. };
  258. static struct resource versatile_flash_resource = {
  259. .start = VERSATILE_FLASH_BASE,
  260. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  261. .flags = IORESOURCE_MEM,
  262. };
  263. static struct platform_device versatile_flash_device = {
  264. .name = "armflash",
  265. .id = 0,
  266. .dev = {
  267. .platform_data = &versatile_flash_data,
  268. },
  269. .num_resources = 1,
  270. .resource = &versatile_flash_resource,
  271. };
  272. static struct resource smc91x_resources[] = {
  273. [0] = {
  274. .start = VERSATILE_ETH_BASE,
  275. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  276. .flags = IORESOURCE_MEM,
  277. },
  278. [1] = {
  279. .start = IRQ_ETH,
  280. .end = IRQ_ETH,
  281. .flags = IORESOURCE_IRQ,
  282. },
  283. };
  284. static struct platform_device smc91x_device = {
  285. .name = "smc91x",
  286. .id = 0,
  287. .num_resources = ARRAY_SIZE(smc91x_resources),
  288. .resource = smc91x_resources,
  289. };
  290. static struct resource versatile_i2c_resource = {
  291. .start = VERSATILE_I2C_BASE,
  292. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  293. .flags = IORESOURCE_MEM,
  294. };
  295. static struct platform_device versatile_i2c_device = {
  296. .name = "versatile-i2c",
  297. .id = -1,
  298. .num_resources = 1,
  299. .resource = &versatile_i2c_resource,
  300. };
  301. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  302. unsigned int mmc_status(struct device *dev)
  303. {
  304. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  305. u32 mask;
  306. if (adev->res.start == VERSATILE_MMCI0_BASE)
  307. mask = 1;
  308. else
  309. mask = 2;
  310. return readl(VERSATILE_SYSMCI) & mask;
  311. }
  312. static struct mmc_platform_data mmc0_plat_data = {
  313. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  314. .status = mmc_status,
  315. };
  316. /*
  317. * Clock handling
  318. */
  319. static const struct icst307_params versatile_oscvco_params = {
  320. .ref = 24000,
  321. .vco_max = 200000,
  322. .vd_min = 4 + 8,
  323. .vd_max = 511 + 8,
  324. .rd_min = 1 + 2,
  325. .rd_max = 127 + 2,
  326. };
  327. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  328. {
  329. void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
  330. void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
  331. u32 val;
  332. val = readl(sys + clk->oscoff) & ~0x7ffff;
  333. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  334. writel(0xa05f, sys_lock);
  335. writel(val, sys + clk->oscoff);
  336. writel(0, sys_lock);
  337. }
  338. static struct clk osc4_clk = {
  339. .params = &versatile_oscvco_params,
  340. .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
  341. .setvco = versatile_oscvco_set,
  342. };
  343. /*
  344. * These are fixed clocks.
  345. */
  346. static struct clk ref24_clk = {
  347. .rate = 24000000,
  348. };
  349. static struct clk_lookup lookups[] __initdata = {
  350. { /* UART0 */
  351. .dev_id = "dev:f1",
  352. .clk = &ref24_clk,
  353. }, { /* UART1 */
  354. .dev_id = "dev:f2",
  355. .clk = &ref24_clk,
  356. }, { /* UART2 */
  357. .dev_id = "dev:f3",
  358. .clk = &ref24_clk,
  359. }, { /* UART3 */
  360. .dev_id = "fpga:09",
  361. .clk = &ref24_clk,
  362. }, { /* KMI0 */
  363. .dev_id = "fpga:06",
  364. .clk = &ref24_clk,
  365. }, { /* KMI1 */
  366. .dev_id = "fpga:07",
  367. .clk = &ref24_clk,
  368. }, { /* MMC0 */
  369. .dev_id = "fpga:05",
  370. .clk = &ref24_clk,
  371. }, { /* MMC1 */
  372. .dev_id = "fpga:0b",
  373. .clk = &ref24_clk,
  374. }, { /* CLCD */
  375. .dev_id = "dev:20",
  376. .clk = &osc4_clk,
  377. }
  378. };
  379. /*
  380. * CLCD support.
  381. */
  382. #define SYS_CLCD_MODE_MASK (3 << 0)
  383. #define SYS_CLCD_MODE_888 (0 << 0)
  384. #define SYS_CLCD_MODE_5551 (1 << 0)
  385. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  386. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  387. #define SYS_CLCD_NLCDIOON (1 << 2)
  388. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  389. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  390. #define SYS_CLCD_ID_MASK (0x1f << 8)
  391. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  392. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  393. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  394. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  395. #define SYS_CLCD_ID_VGA (0x1f << 8)
  396. static struct clcd_panel vga = {
  397. .mode = {
  398. .name = "VGA",
  399. .refresh = 60,
  400. .xres = 640,
  401. .yres = 480,
  402. .pixclock = 39721,
  403. .left_margin = 40,
  404. .right_margin = 24,
  405. .upper_margin = 32,
  406. .lower_margin = 11,
  407. .hsync_len = 96,
  408. .vsync_len = 2,
  409. .sync = 0,
  410. .vmode = FB_VMODE_NONINTERLACED,
  411. },
  412. .width = -1,
  413. .height = -1,
  414. .tim2 = TIM2_BCD | TIM2_IPC,
  415. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  416. .bpp = 16,
  417. };
  418. static struct clcd_panel sanyo_3_8_in = {
  419. .mode = {
  420. .name = "Sanyo QVGA",
  421. .refresh = 116,
  422. .xres = 320,
  423. .yres = 240,
  424. .pixclock = 100000,
  425. .left_margin = 6,
  426. .right_margin = 6,
  427. .upper_margin = 5,
  428. .lower_margin = 5,
  429. .hsync_len = 6,
  430. .vsync_len = 6,
  431. .sync = 0,
  432. .vmode = FB_VMODE_NONINTERLACED,
  433. },
  434. .width = -1,
  435. .height = -1,
  436. .tim2 = TIM2_BCD,
  437. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  438. .bpp = 16,
  439. };
  440. static struct clcd_panel sanyo_2_5_in = {
  441. .mode = {
  442. .name = "Sanyo QVGA Portrait",
  443. .refresh = 116,
  444. .xres = 240,
  445. .yres = 320,
  446. .pixclock = 100000,
  447. .left_margin = 20,
  448. .right_margin = 10,
  449. .upper_margin = 2,
  450. .lower_margin = 2,
  451. .hsync_len = 10,
  452. .vsync_len = 2,
  453. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  454. .vmode = FB_VMODE_NONINTERLACED,
  455. },
  456. .width = -1,
  457. .height = -1,
  458. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  459. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  460. .bpp = 16,
  461. };
  462. static struct clcd_panel epson_2_2_in = {
  463. .mode = {
  464. .name = "Epson QCIF",
  465. .refresh = 390,
  466. .xres = 176,
  467. .yres = 220,
  468. .pixclock = 62500,
  469. .left_margin = 3,
  470. .right_margin = 2,
  471. .upper_margin = 1,
  472. .lower_margin = 0,
  473. .hsync_len = 3,
  474. .vsync_len = 2,
  475. .sync = 0,
  476. .vmode = FB_VMODE_NONINTERLACED,
  477. },
  478. .width = -1,
  479. .height = -1,
  480. .tim2 = TIM2_BCD | TIM2_IPC,
  481. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  482. .bpp = 16,
  483. };
  484. /*
  485. * Detect which LCD panel is connected, and return the appropriate
  486. * clcd_panel structure. Note: we do not have any information on
  487. * the required timings for the 8.4in panel, so we presently assume
  488. * VGA timings.
  489. */
  490. static struct clcd_panel *versatile_clcd_panel(void)
  491. {
  492. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  493. struct clcd_panel *panel = &vga;
  494. u32 val;
  495. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  496. if (val == SYS_CLCD_ID_SANYO_3_8)
  497. panel = &sanyo_3_8_in;
  498. else if (val == SYS_CLCD_ID_SANYO_2_5)
  499. panel = &sanyo_2_5_in;
  500. else if (val == SYS_CLCD_ID_EPSON_2_2)
  501. panel = &epson_2_2_in;
  502. else if (val == SYS_CLCD_ID_VGA)
  503. panel = &vga;
  504. else {
  505. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  506. val);
  507. panel = &vga;
  508. }
  509. return panel;
  510. }
  511. /*
  512. * Disable all display connectors on the interface module.
  513. */
  514. static void versatile_clcd_disable(struct clcd_fb *fb)
  515. {
  516. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  517. u32 val;
  518. val = readl(sys_clcd);
  519. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  520. writel(val, sys_clcd);
  521. #ifdef CONFIG_MACH_VERSATILE_AB
  522. /*
  523. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  524. */
  525. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  526. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  527. unsigned long ctrl;
  528. ctrl = readl(versatile_ib2_ctrl);
  529. ctrl &= ~0x01;
  530. writel(ctrl, versatile_ib2_ctrl);
  531. }
  532. #endif
  533. }
  534. /*
  535. * Enable the relevant connector on the interface module.
  536. */
  537. static void versatile_clcd_enable(struct clcd_fb *fb)
  538. {
  539. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  540. u32 val;
  541. val = readl(sys_clcd);
  542. val &= ~SYS_CLCD_MODE_MASK;
  543. switch (fb->fb.var.green.length) {
  544. case 5:
  545. val |= SYS_CLCD_MODE_5551;
  546. break;
  547. case 6:
  548. val |= SYS_CLCD_MODE_565_RLSB;
  549. break;
  550. case 8:
  551. val |= SYS_CLCD_MODE_888;
  552. break;
  553. }
  554. /*
  555. * Set the MUX
  556. */
  557. writel(val, sys_clcd);
  558. /*
  559. * And now enable the PSUs
  560. */
  561. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  562. writel(val, sys_clcd);
  563. #ifdef CONFIG_MACH_VERSATILE_AB
  564. /*
  565. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  566. */
  567. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  568. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  569. unsigned long ctrl;
  570. ctrl = readl(versatile_ib2_ctrl);
  571. ctrl |= 0x01;
  572. writel(ctrl, versatile_ib2_ctrl);
  573. }
  574. #endif
  575. }
  576. static unsigned long framesize = SZ_1M;
  577. static int versatile_clcd_setup(struct clcd_fb *fb)
  578. {
  579. dma_addr_t dma;
  580. fb->panel = versatile_clcd_panel();
  581. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  582. &dma, GFP_KERNEL);
  583. if (!fb->fb.screen_base) {
  584. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  585. return -ENOMEM;
  586. }
  587. fb->fb.fix.smem_start = dma;
  588. fb->fb.fix.smem_len = framesize;
  589. return 0;
  590. }
  591. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  592. {
  593. return dma_mmap_writecombine(&fb->dev->dev, vma,
  594. fb->fb.screen_base,
  595. fb->fb.fix.smem_start,
  596. fb->fb.fix.smem_len);
  597. }
  598. static void versatile_clcd_remove(struct clcd_fb *fb)
  599. {
  600. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  601. fb->fb.screen_base, fb->fb.fix.smem_start);
  602. }
  603. static struct clcd_board clcd_plat_data = {
  604. .name = "Versatile",
  605. .check = clcdfb_check,
  606. .decode = clcdfb_decode,
  607. .disable = versatile_clcd_disable,
  608. .enable = versatile_clcd_enable,
  609. .setup = versatile_clcd_setup,
  610. .mmap = versatile_clcd_mmap,
  611. .remove = versatile_clcd_remove,
  612. };
  613. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  614. #define AACI_DMA { 0x80, 0x81 }
  615. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  616. #define MMCI0_DMA { 0x84, 0 }
  617. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  618. #define KMI0_DMA { 0, 0 }
  619. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  620. #define KMI1_DMA { 0, 0 }
  621. /*
  622. * These devices are connected directly to the multi-layer AHB switch
  623. */
  624. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  625. #define SMC_DMA { 0, 0 }
  626. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  627. #define MPMC_DMA { 0, 0 }
  628. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  629. #define CLCD_DMA { 0, 0 }
  630. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  631. #define DMAC_DMA { 0, 0 }
  632. /*
  633. * These devices are connected via the core APB bridge
  634. */
  635. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  636. #define SCTL_DMA { 0, 0 }
  637. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  638. #define WATCHDOG_DMA { 0, 0 }
  639. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  640. #define GPIO0_DMA { 0, 0 }
  641. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  642. #define GPIO1_DMA { 0, 0 }
  643. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  644. #define RTC_DMA { 0, 0 }
  645. /*
  646. * These devices are connected via the DMA APB bridge
  647. */
  648. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  649. #define SCI_DMA { 7, 6 }
  650. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  651. #define UART0_DMA { 15, 14 }
  652. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  653. #define UART1_DMA { 13, 12 }
  654. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  655. #define UART2_DMA { 11, 10 }
  656. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  657. #define SSP_DMA { 9, 8 }
  658. /* FPGA Primecells */
  659. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  660. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  661. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  662. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  663. /* DevChip Primecells */
  664. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  665. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  666. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  667. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  668. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  669. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  670. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  671. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  672. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  673. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  674. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  675. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  676. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  677. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  678. static struct amba_device *amba_devs[] __initdata = {
  679. &dmac_device,
  680. &uart0_device,
  681. &uart1_device,
  682. &uart2_device,
  683. &smc_device,
  684. &mpmc_device,
  685. &clcd_device,
  686. &sctl_device,
  687. &wdog_device,
  688. &gpio0_device,
  689. &gpio1_device,
  690. &rtc_device,
  691. &sci0_device,
  692. &ssp0_device,
  693. &aaci_device,
  694. &mmc0_device,
  695. &kmi0_device,
  696. &kmi1_device,
  697. };
  698. #ifdef CONFIG_LEDS
  699. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  700. static void versatile_leds_event(led_event_t ledevt)
  701. {
  702. unsigned long flags;
  703. u32 val;
  704. local_irq_save(flags);
  705. val = readl(VA_LEDS_BASE);
  706. switch (ledevt) {
  707. case led_idle_start:
  708. val = val & ~VERSATILE_SYS_LED0;
  709. break;
  710. case led_idle_end:
  711. val = val | VERSATILE_SYS_LED0;
  712. break;
  713. case led_timer:
  714. val = val ^ VERSATILE_SYS_LED1;
  715. break;
  716. case led_halted:
  717. val = 0;
  718. break;
  719. default:
  720. break;
  721. }
  722. writel(val, VA_LEDS_BASE);
  723. local_irq_restore(flags);
  724. }
  725. #endif /* CONFIG_LEDS */
  726. void __init versatile_init(void)
  727. {
  728. int i;
  729. for (i = 0; i < ARRAY_SIZE(lookups); i++)
  730. clkdev_add(&lookups[i]);
  731. platform_device_register(&versatile_flash_device);
  732. platform_device_register(&versatile_i2c_device);
  733. platform_device_register(&smc91x_device);
  734. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  735. struct amba_device *d = amba_devs[i];
  736. amba_device_register(d, &iomem_resource);
  737. }
  738. #ifdef CONFIG_LEDS
  739. leds_event = versatile_leds_event;
  740. #endif
  741. }
  742. /*
  743. * Where is the timer (VA)?
  744. */
  745. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  746. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  747. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  748. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  749. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  750. /*
  751. * How long is the timer interval?
  752. */
  753. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  754. #if TIMER_INTERVAL >= 0x100000
  755. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  756. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  757. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  758. #elif TIMER_INTERVAL >= 0x10000
  759. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  760. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  761. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  762. #else
  763. #define TIMER_RELOAD (TIMER_INTERVAL)
  764. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  765. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  766. #endif
  767. static void timer_set_mode(enum clock_event_mode mode,
  768. struct clock_event_device *clk)
  769. {
  770. unsigned long ctrl;
  771. switch(mode) {
  772. case CLOCK_EVT_MODE_PERIODIC:
  773. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  774. ctrl = TIMER_CTRL_PERIODIC;
  775. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  776. break;
  777. case CLOCK_EVT_MODE_ONESHOT:
  778. /* period set, and timer enabled in 'next_event' hook */
  779. ctrl = TIMER_CTRL_ONESHOT;
  780. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  781. break;
  782. case CLOCK_EVT_MODE_UNUSED:
  783. case CLOCK_EVT_MODE_SHUTDOWN:
  784. default:
  785. ctrl = 0;
  786. }
  787. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  788. }
  789. static int timer_set_next_event(unsigned long evt,
  790. struct clock_event_device *unused)
  791. {
  792. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  793. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  794. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  795. return 0;
  796. }
  797. static struct clock_event_device timer0_clockevent = {
  798. .name = "timer0",
  799. .shift = 32,
  800. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  801. .set_mode = timer_set_mode,
  802. .set_next_event = timer_set_next_event,
  803. };
  804. /*
  805. * IRQ handler for the timer
  806. */
  807. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  808. {
  809. struct clock_event_device *evt = &timer0_clockevent;
  810. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  811. evt->event_handler(evt);
  812. return IRQ_HANDLED;
  813. }
  814. static struct irqaction versatile_timer_irq = {
  815. .name = "Versatile Timer Tick",
  816. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  817. .handler = versatile_timer_interrupt,
  818. };
  819. static cycle_t versatile_get_cycles(void)
  820. {
  821. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  822. }
  823. static struct clocksource clocksource_versatile = {
  824. .name = "timer3",
  825. .rating = 200,
  826. .read = versatile_get_cycles,
  827. .mask = CLOCKSOURCE_MASK(32),
  828. .shift = 20,
  829. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  830. };
  831. static int __init versatile_clocksource_init(void)
  832. {
  833. /* setup timer3 as free-running clocksource */
  834. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  835. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  836. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  837. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  838. TIMER3_VA_BASE + TIMER_CTRL);
  839. clocksource_versatile.mult =
  840. clocksource_khz2mult(1000, clocksource_versatile.shift);
  841. clocksource_register(&clocksource_versatile);
  842. return 0;
  843. }
  844. /*
  845. * Set up timer interrupt, and return the current time in seconds.
  846. */
  847. static void __init versatile_timer_init(void)
  848. {
  849. u32 val;
  850. /*
  851. * set clock frequency:
  852. * VERSATILE_REFCLK is 32KHz
  853. * VERSATILE_TIMCLK is 1MHz
  854. */
  855. val = readl(__io_address(VERSATILE_SCTL_BASE));
  856. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  857. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  858. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  859. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  860. __io_address(VERSATILE_SCTL_BASE));
  861. /*
  862. * Initialise to a known state (all timers off)
  863. */
  864. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  865. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  866. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  867. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  868. /*
  869. * Make irqs happen for the system timer
  870. */
  871. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  872. versatile_clocksource_init();
  873. timer0_clockevent.mult =
  874. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  875. timer0_clockevent.max_delta_ns =
  876. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  877. timer0_clockevent.min_delta_ns =
  878. clockevent_delta2ns(0xf, &timer0_clockevent);
  879. timer0_clockevent.cpumask = cpumask_of(0);
  880. clockevents_register_device(&timer0_clockevent);
  881. }
  882. struct sys_timer versatile_timer = {
  883. .init = versatile_timer_init,
  884. };