setup.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/init.h>
  22. #include <linux/root_dev.h>
  23. #include <linux/cpu.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/fs.h>
  27. #include <asm/cpu.h>
  28. #include <asm/cputype.h>
  29. #include <asm/elf.h>
  30. #include <asm/procinfo.h>
  31. #include <asm/sections.h>
  32. #include <asm/setup.h>
  33. #include <asm/mach-types.h>
  34. #include <asm/cacheflush.h>
  35. #include <asm/cachetype.h>
  36. #include <asm/tlbflush.h>
  37. #include <asm/mach/arch.h>
  38. #include <asm/mach/irq.h>
  39. #include <asm/mach/time.h>
  40. #include <asm/traps.h>
  41. #include "compat.h"
  42. #include "atags.h"
  43. #ifndef MEM_SIZE
  44. #define MEM_SIZE (16*1024*1024)
  45. #endif
  46. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  47. char fpe_type[8];
  48. static int __init fpe_setup(char *line)
  49. {
  50. memcpy(fpe_type, line, 8);
  51. return 1;
  52. }
  53. __setup("fpe=", fpe_setup);
  54. #endif
  55. extern void paging_init(struct machine_desc *desc);
  56. extern void reboot_setup(char *str);
  57. unsigned int processor_id;
  58. EXPORT_SYMBOL(processor_id);
  59. unsigned int __machine_arch_type;
  60. EXPORT_SYMBOL(__machine_arch_type);
  61. unsigned int cacheid;
  62. EXPORT_SYMBOL(cacheid);
  63. unsigned int __atags_pointer __initdata;
  64. unsigned int system_rev;
  65. EXPORT_SYMBOL(system_rev);
  66. unsigned int system_serial_low;
  67. EXPORT_SYMBOL(system_serial_low);
  68. unsigned int system_serial_high;
  69. EXPORT_SYMBOL(system_serial_high);
  70. unsigned int elf_hwcap;
  71. EXPORT_SYMBOL(elf_hwcap);
  72. #ifdef MULTI_CPU
  73. struct processor processor;
  74. #endif
  75. #ifdef MULTI_TLB
  76. struct cpu_tlb_fns cpu_tlb;
  77. #endif
  78. #ifdef MULTI_USER
  79. struct cpu_user_fns cpu_user;
  80. #endif
  81. #ifdef MULTI_CACHE
  82. struct cpu_cache_fns cpu_cache;
  83. #endif
  84. #ifdef CONFIG_OUTER_CACHE
  85. struct outer_cache_fns outer_cache;
  86. #endif
  87. struct stack {
  88. u32 irq[3];
  89. u32 abt[3];
  90. u32 und[3];
  91. } ____cacheline_aligned;
  92. static struct stack stacks[NR_CPUS];
  93. char elf_platform[ELF_PLATFORM_SIZE];
  94. EXPORT_SYMBOL(elf_platform);
  95. static const char *cpu_name;
  96. static const char *machine_name;
  97. static char __initdata command_line[COMMAND_LINE_SIZE];
  98. static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
  99. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  100. #define ENDIANNESS ((char)endian_test.l)
  101. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  102. /*
  103. * Standard memory resources
  104. */
  105. static struct resource mem_res[] = {
  106. {
  107. .name = "Video RAM",
  108. .start = 0,
  109. .end = 0,
  110. .flags = IORESOURCE_MEM
  111. },
  112. {
  113. .name = "Kernel text",
  114. .start = 0,
  115. .end = 0,
  116. .flags = IORESOURCE_MEM
  117. },
  118. {
  119. .name = "Kernel data",
  120. .start = 0,
  121. .end = 0,
  122. .flags = IORESOURCE_MEM
  123. }
  124. };
  125. #define video_ram mem_res[0]
  126. #define kernel_code mem_res[1]
  127. #define kernel_data mem_res[2]
  128. static struct resource io_res[] = {
  129. {
  130. .name = "reserved",
  131. .start = 0x3bc,
  132. .end = 0x3be,
  133. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  134. },
  135. {
  136. .name = "reserved",
  137. .start = 0x378,
  138. .end = 0x37f,
  139. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  140. },
  141. {
  142. .name = "reserved",
  143. .start = 0x278,
  144. .end = 0x27f,
  145. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  146. }
  147. };
  148. #define lp0 io_res[0]
  149. #define lp1 io_res[1]
  150. #define lp2 io_res[2]
  151. static const char *proc_arch[] = {
  152. "undefined/unknown",
  153. "3",
  154. "4",
  155. "4T",
  156. "5",
  157. "5T",
  158. "5TE",
  159. "5TEJ",
  160. "6TEJ",
  161. "7",
  162. "?(11)",
  163. "?(12)",
  164. "?(13)",
  165. "?(14)",
  166. "?(15)",
  167. "?(16)",
  168. "?(17)",
  169. };
  170. int cpu_architecture(void)
  171. {
  172. int cpu_arch;
  173. if ((read_cpuid_id() & 0x0008f000) == 0) {
  174. cpu_arch = CPU_ARCH_UNKNOWN;
  175. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  176. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  177. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  178. cpu_arch = (read_cpuid_id() >> 16) & 7;
  179. if (cpu_arch)
  180. cpu_arch += CPU_ARCH_ARMv3;
  181. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  182. unsigned int mmfr0;
  183. /* Revised CPUID format. Read the Memory Model Feature
  184. * Register 0 and check for VMSAv7 or PMSAv7 */
  185. asm("mrc p15, 0, %0, c0, c1, 4"
  186. : "=r" (mmfr0));
  187. if ((mmfr0 & 0x0000000f) == 0x00000003 ||
  188. (mmfr0 & 0x000000f0) == 0x00000030)
  189. cpu_arch = CPU_ARCH_ARMv7;
  190. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  191. (mmfr0 & 0x000000f0) == 0x00000020)
  192. cpu_arch = CPU_ARCH_ARMv6;
  193. else
  194. cpu_arch = CPU_ARCH_UNKNOWN;
  195. } else
  196. cpu_arch = CPU_ARCH_UNKNOWN;
  197. return cpu_arch;
  198. }
  199. static void __init cacheid_init(void)
  200. {
  201. unsigned int cachetype = read_cpuid_cachetype();
  202. unsigned int arch = cpu_architecture();
  203. if (arch >= CPU_ARCH_ARMv7) {
  204. cacheid = CACHEID_VIPT_NONALIASING;
  205. if ((cachetype & (3 << 14)) == 1 << 14)
  206. cacheid |= CACHEID_ASID_TAGGED;
  207. } else if (arch >= CPU_ARCH_ARMv6) {
  208. if (cachetype & (1 << 23))
  209. cacheid = CACHEID_VIPT_ALIASING;
  210. else
  211. cacheid = CACHEID_VIPT_NONALIASING;
  212. } else {
  213. cacheid = CACHEID_VIVT;
  214. }
  215. printk("CPU: %s data cache, %s instruction cache\n",
  216. cache_is_vivt() ? "VIVT" :
  217. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  218. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
  219. cache_is_vivt() ? "VIVT" :
  220. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  221. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  222. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  223. }
  224. /*
  225. * These functions re-use the assembly code in head.S, which
  226. * already provide the required functionality.
  227. */
  228. extern struct proc_info_list *lookup_processor_type(unsigned int);
  229. extern struct machine_desc *lookup_machine_type(unsigned int);
  230. static void __init setup_processor(void)
  231. {
  232. struct proc_info_list *list;
  233. /*
  234. * locate processor in the list of supported processor
  235. * types. The linker builds this table for us from the
  236. * entries in arch/arm/mm/proc-*.S
  237. */
  238. list = lookup_processor_type(read_cpuid_id());
  239. if (!list) {
  240. printk("CPU configuration botched (ID %08x), unable "
  241. "to continue.\n", read_cpuid_id());
  242. while (1);
  243. }
  244. cpu_name = list->cpu_name;
  245. #ifdef MULTI_CPU
  246. processor = *list->proc;
  247. #endif
  248. #ifdef MULTI_TLB
  249. cpu_tlb = *list->tlb;
  250. #endif
  251. #ifdef MULTI_USER
  252. cpu_user = *list->user;
  253. #endif
  254. #ifdef MULTI_CACHE
  255. cpu_cache = *list->cache;
  256. #endif
  257. printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  258. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  259. proc_arch[cpu_architecture()], cr_alignment);
  260. sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
  261. sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
  262. elf_hwcap = list->elf_hwcap;
  263. #ifndef CONFIG_ARM_THUMB
  264. elf_hwcap &= ~HWCAP_THUMB;
  265. #endif
  266. cacheid_init();
  267. cpu_proc_init();
  268. }
  269. /*
  270. * cpu_init - initialise one CPU.
  271. *
  272. * cpu_init sets up the per-CPU stacks.
  273. */
  274. void cpu_init(void)
  275. {
  276. unsigned int cpu = smp_processor_id();
  277. struct stack *stk = &stacks[cpu];
  278. if (cpu >= NR_CPUS) {
  279. printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
  280. BUG();
  281. }
  282. /*
  283. * setup stacks for re-entrant exception handlers
  284. */
  285. __asm__ (
  286. "msr cpsr_c, %1\n\t"
  287. "add sp, %0, %2\n\t"
  288. "msr cpsr_c, %3\n\t"
  289. "add sp, %0, %4\n\t"
  290. "msr cpsr_c, %5\n\t"
  291. "add sp, %0, %6\n\t"
  292. "msr cpsr_c, %7"
  293. :
  294. : "r" (stk),
  295. "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  296. "I" (offsetof(struct stack, irq[0])),
  297. "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  298. "I" (offsetof(struct stack, abt[0])),
  299. "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  300. "I" (offsetof(struct stack, und[0])),
  301. "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  302. : "r14");
  303. }
  304. static struct machine_desc * __init setup_machine(unsigned int nr)
  305. {
  306. struct machine_desc *list;
  307. /*
  308. * locate machine in the list of supported machines.
  309. */
  310. list = lookup_machine_type(nr);
  311. if (!list) {
  312. printk("Machine configuration botched (nr %d), unable "
  313. "to continue.\n", nr);
  314. while (1);
  315. }
  316. printk("Machine: %s\n", list->name);
  317. return list;
  318. }
  319. static int __init arm_add_memory(unsigned long start, unsigned long size)
  320. {
  321. struct membank *bank = &meminfo.bank[meminfo.nr_banks];
  322. if (meminfo.nr_banks >= NR_BANKS) {
  323. printk(KERN_CRIT "NR_BANKS too low, "
  324. "ignoring memory at %#lx\n", start);
  325. return -EINVAL;
  326. }
  327. /*
  328. * Ensure that start/size are aligned to a page boundary.
  329. * Size is appropriately rounded down, start is rounded up.
  330. */
  331. size -= start & ~PAGE_MASK;
  332. bank->start = PAGE_ALIGN(start);
  333. bank->size = size & PAGE_MASK;
  334. bank->node = PHYS_TO_NID(start);
  335. /*
  336. * Check whether this memory region has non-zero size or
  337. * invalid node number.
  338. */
  339. if (bank->size == 0 || bank->node >= MAX_NUMNODES)
  340. return -EINVAL;
  341. meminfo.nr_banks++;
  342. return 0;
  343. }
  344. /*
  345. * Pick out the memory size. We look for mem=size@start,
  346. * where start and size are "size[KkMm]"
  347. */
  348. static void __init early_mem(char **p)
  349. {
  350. static int usermem __initdata = 0;
  351. unsigned long size, start;
  352. /*
  353. * If the user specifies memory size, we
  354. * blow away any automatically generated
  355. * size.
  356. */
  357. if (usermem == 0) {
  358. usermem = 1;
  359. meminfo.nr_banks = 0;
  360. }
  361. start = PHYS_OFFSET;
  362. size = memparse(*p, p);
  363. if (**p == '@')
  364. start = memparse(*p + 1, p);
  365. arm_add_memory(start, size);
  366. }
  367. __early_param("mem=", early_mem);
  368. /*
  369. * Initial parsing of the command line.
  370. */
  371. static void __init parse_cmdline(char **cmdline_p, char *from)
  372. {
  373. char c = ' ', *to = command_line;
  374. int len = 0;
  375. for (;;) {
  376. if (c == ' ') {
  377. extern struct early_params __early_begin, __early_end;
  378. struct early_params *p;
  379. for (p = &__early_begin; p < &__early_end; p++) {
  380. int arglen = strlen(p->arg);
  381. if (memcmp(from, p->arg, arglen) == 0) {
  382. if (to != command_line)
  383. to -= 1;
  384. from += arglen;
  385. p->fn(&from);
  386. while (*from != ' ' && *from != '\0')
  387. from++;
  388. break;
  389. }
  390. }
  391. }
  392. c = *from++;
  393. if (!c)
  394. break;
  395. if (COMMAND_LINE_SIZE <= ++len)
  396. break;
  397. *to++ = c;
  398. }
  399. *to = '\0';
  400. *cmdline_p = command_line;
  401. }
  402. static void __init
  403. setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
  404. {
  405. #ifdef CONFIG_BLK_DEV_RAM
  406. extern int rd_size, rd_image_start, rd_prompt, rd_doload;
  407. rd_image_start = image_start;
  408. rd_prompt = prompt;
  409. rd_doload = doload;
  410. if (rd_sz)
  411. rd_size = rd_sz;
  412. #endif
  413. }
  414. static void __init
  415. request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
  416. {
  417. struct resource *res;
  418. int i;
  419. kernel_code.start = virt_to_phys(_text);
  420. kernel_code.end = virt_to_phys(_etext - 1);
  421. kernel_data.start = virt_to_phys(_data);
  422. kernel_data.end = virt_to_phys(_end - 1);
  423. for (i = 0; i < mi->nr_banks; i++) {
  424. if (mi->bank[i].size == 0)
  425. continue;
  426. res = alloc_bootmem_low(sizeof(*res));
  427. res->name = "System RAM";
  428. res->start = mi->bank[i].start;
  429. res->end = mi->bank[i].start + mi->bank[i].size - 1;
  430. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  431. request_resource(&iomem_resource, res);
  432. if (kernel_code.start >= res->start &&
  433. kernel_code.end <= res->end)
  434. request_resource(res, &kernel_code);
  435. if (kernel_data.start >= res->start &&
  436. kernel_data.end <= res->end)
  437. request_resource(res, &kernel_data);
  438. }
  439. if (mdesc->video_start) {
  440. video_ram.start = mdesc->video_start;
  441. video_ram.end = mdesc->video_end;
  442. request_resource(&iomem_resource, &video_ram);
  443. }
  444. /*
  445. * Some machines don't have the possibility of ever
  446. * possessing lp0, lp1 or lp2
  447. */
  448. if (mdesc->reserve_lp0)
  449. request_resource(&ioport_resource, &lp0);
  450. if (mdesc->reserve_lp1)
  451. request_resource(&ioport_resource, &lp1);
  452. if (mdesc->reserve_lp2)
  453. request_resource(&ioport_resource, &lp2);
  454. }
  455. /*
  456. * Tag parsing.
  457. *
  458. * This is the new way of passing data to the kernel at boot time. Rather
  459. * than passing a fixed inflexible structure to the kernel, we pass a list
  460. * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
  461. * tag for the list to be recognised (to distinguish the tagged list from
  462. * a param_struct). The list is terminated with a zero-length tag (this tag
  463. * is not parsed in any way).
  464. */
  465. static int __init parse_tag_core(const struct tag *tag)
  466. {
  467. if (tag->hdr.size > 2) {
  468. if ((tag->u.core.flags & 1) == 0)
  469. root_mountflags &= ~MS_RDONLY;
  470. ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
  471. }
  472. return 0;
  473. }
  474. __tagtable(ATAG_CORE, parse_tag_core);
  475. static int __init parse_tag_mem32(const struct tag *tag)
  476. {
  477. return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
  478. }
  479. __tagtable(ATAG_MEM, parse_tag_mem32);
  480. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  481. struct screen_info screen_info = {
  482. .orig_video_lines = 30,
  483. .orig_video_cols = 80,
  484. .orig_video_mode = 0,
  485. .orig_video_ega_bx = 0,
  486. .orig_video_isVGA = 1,
  487. .orig_video_points = 8
  488. };
  489. static int __init parse_tag_videotext(const struct tag *tag)
  490. {
  491. screen_info.orig_x = tag->u.videotext.x;
  492. screen_info.orig_y = tag->u.videotext.y;
  493. screen_info.orig_video_page = tag->u.videotext.video_page;
  494. screen_info.orig_video_mode = tag->u.videotext.video_mode;
  495. screen_info.orig_video_cols = tag->u.videotext.video_cols;
  496. screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
  497. screen_info.orig_video_lines = tag->u.videotext.video_lines;
  498. screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
  499. screen_info.orig_video_points = tag->u.videotext.video_points;
  500. return 0;
  501. }
  502. __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
  503. #endif
  504. static int __init parse_tag_ramdisk(const struct tag *tag)
  505. {
  506. setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
  507. (tag->u.ramdisk.flags & 2) == 0,
  508. tag->u.ramdisk.start, tag->u.ramdisk.size);
  509. return 0;
  510. }
  511. __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
  512. static int __init parse_tag_serialnr(const struct tag *tag)
  513. {
  514. system_serial_low = tag->u.serialnr.low;
  515. system_serial_high = tag->u.serialnr.high;
  516. return 0;
  517. }
  518. __tagtable(ATAG_SERIAL, parse_tag_serialnr);
  519. static int __init parse_tag_revision(const struct tag *tag)
  520. {
  521. system_rev = tag->u.revision.rev;
  522. return 0;
  523. }
  524. __tagtable(ATAG_REVISION, parse_tag_revision);
  525. static int __init parse_tag_cmdline(const struct tag *tag)
  526. {
  527. strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
  528. return 0;
  529. }
  530. __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
  531. /*
  532. * Scan the tag table for this tag, and call its parse function.
  533. * The tag table is built by the linker from all the __tagtable
  534. * declarations.
  535. */
  536. static int __init parse_tag(const struct tag *tag)
  537. {
  538. extern struct tagtable __tagtable_begin, __tagtable_end;
  539. struct tagtable *t;
  540. for (t = &__tagtable_begin; t < &__tagtable_end; t++)
  541. if (tag->hdr.tag == t->tag) {
  542. t->parse(tag);
  543. break;
  544. }
  545. return t < &__tagtable_end;
  546. }
  547. /*
  548. * Parse all tags in the list, checking both the global and architecture
  549. * specific tag tables.
  550. */
  551. static void __init parse_tags(const struct tag *t)
  552. {
  553. for (; t->hdr.size; t = tag_next(t))
  554. if (!parse_tag(t))
  555. printk(KERN_WARNING
  556. "Ignoring unrecognised tag 0x%08x\n",
  557. t->hdr.tag);
  558. }
  559. /*
  560. * This holds our defaults.
  561. */
  562. static struct init_tags {
  563. struct tag_header hdr1;
  564. struct tag_core core;
  565. struct tag_header hdr2;
  566. struct tag_mem32 mem;
  567. struct tag_header hdr3;
  568. } init_tags __initdata = {
  569. { tag_size(tag_core), ATAG_CORE },
  570. { 1, PAGE_SIZE, 0xff },
  571. { tag_size(tag_mem32), ATAG_MEM },
  572. { MEM_SIZE, PHYS_OFFSET },
  573. { 0, ATAG_NONE }
  574. };
  575. static void (*init_machine)(void) __initdata;
  576. static int __init customize_machine(void)
  577. {
  578. /* customizes platform devices, or adds new ones */
  579. if (init_machine)
  580. init_machine();
  581. return 0;
  582. }
  583. arch_initcall(customize_machine);
  584. void __init setup_arch(char **cmdline_p)
  585. {
  586. struct tag *tags = (struct tag *)&init_tags;
  587. struct machine_desc *mdesc;
  588. char *from = default_command_line;
  589. setup_processor();
  590. mdesc = setup_machine(machine_arch_type);
  591. machine_name = mdesc->name;
  592. if (mdesc->soft_reboot)
  593. reboot_setup("s");
  594. if (__atags_pointer)
  595. tags = phys_to_virt(__atags_pointer);
  596. else if (mdesc->boot_params)
  597. tags = phys_to_virt(mdesc->boot_params);
  598. /*
  599. * If we have the old style parameters, convert them to
  600. * a tag list.
  601. */
  602. if (tags->hdr.tag != ATAG_CORE)
  603. convert_to_tag_list(tags);
  604. if (tags->hdr.tag != ATAG_CORE)
  605. tags = (struct tag *)&init_tags;
  606. if (mdesc->fixup)
  607. mdesc->fixup(mdesc, tags, &from, &meminfo);
  608. if (tags->hdr.tag == ATAG_CORE) {
  609. if (meminfo.nr_banks != 0)
  610. squash_mem_tags(tags);
  611. save_atags(tags);
  612. parse_tags(tags);
  613. }
  614. init_mm.start_code = (unsigned long) _text;
  615. init_mm.end_code = (unsigned long) _etext;
  616. init_mm.end_data = (unsigned long) _edata;
  617. init_mm.brk = (unsigned long) _end;
  618. memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
  619. boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
  620. parse_cmdline(cmdline_p, from);
  621. paging_init(mdesc);
  622. request_standard_resources(&meminfo, mdesc);
  623. #ifdef CONFIG_SMP
  624. smp_init_cpus();
  625. #endif
  626. cpu_init();
  627. /*
  628. * Set up various architecture-specific pointers
  629. */
  630. init_arch_irq = mdesc->init_irq;
  631. system_timer = mdesc->timer;
  632. init_machine = mdesc->init_machine;
  633. #ifdef CONFIG_VT
  634. #if defined(CONFIG_VGA_CONSOLE)
  635. conswitchp = &vga_con;
  636. #elif defined(CONFIG_DUMMY_CONSOLE)
  637. conswitchp = &dummy_con;
  638. #endif
  639. #endif
  640. early_trap_init();
  641. }
  642. static int __init topology_init(void)
  643. {
  644. int cpu;
  645. for_each_possible_cpu(cpu) {
  646. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  647. cpuinfo->cpu.hotpluggable = 1;
  648. register_cpu(&cpuinfo->cpu, cpu);
  649. }
  650. return 0;
  651. }
  652. subsys_initcall(topology_init);
  653. static const char *hwcap_str[] = {
  654. "swp",
  655. "half",
  656. "thumb",
  657. "26bit",
  658. "fastmult",
  659. "fpa",
  660. "vfp",
  661. "edsp",
  662. "java",
  663. "iwmmxt",
  664. "crunch",
  665. "thumbee",
  666. "neon",
  667. NULL
  668. };
  669. static int c_show(struct seq_file *m, void *v)
  670. {
  671. int i;
  672. seq_printf(m, "Processor\t: %s rev %d (%s)\n",
  673. cpu_name, read_cpuid_id() & 15, elf_platform);
  674. #if defined(CONFIG_SMP)
  675. for_each_online_cpu(i) {
  676. /*
  677. * glibc reads /proc/cpuinfo to determine the number of
  678. * online processors, looking for lines beginning with
  679. * "processor". Give glibc what it expects.
  680. */
  681. seq_printf(m, "processor\t: %d\n", i);
  682. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
  683. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  684. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  685. }
  686. #else /* CONFIG_SMP */
  687. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  688. loops_per_jiffy / (500000/HZ),
  689. (loops_per_jiffy / (5000/HZ)) % 100);
  690. #endif
  691. /* dump out the processor features */
  692. seq_puts(m, "Features\t: ");
  693. for (i = 0; hwcap_str[i]; i++)
  694. if (elf_hwcap & (1 << i))
  695. seq_printf(m, "%s ", hwcap_str[i]);
  696. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
  697. seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
  698. if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
  699. /* pre-ARM7 */
  700. seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
  701. } else {
  702. if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  703. /* ARM7 */
  704. seq_printf(m, "CPU variant\t: 0x%02x\n",
  705. (read_cpuid_id() >> 16) & 127);
  706. } else {
  707. /* post-ARM7 */
  708. seq_printf(m, "CPU variant\t: 0x%x\n",
  709. (read_cpuid_id() >> 20) & 15);
  710. }
  711. seq_printf(m, "CPU part\t: 0x%03x\n",
  712. (read_cpuid_id() >> 4) & 0xfff);
  713. }
  714. seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
  715. seq_puts(m, "\n");
  716. seq_printf(m, "Hardware\t: %s\n", machine_name);
  717. seq_printf(m, "Revision\t: %04x\n", system_rev);
  718. seq_printf(m, "Serial\t\t: %08x%08x\n",
  719. system_serial_high, system_serial_low);
  720. return 0;
  721. }
  722. static void *c_start(struct seq_file *m, loff_t *pos)
  723. {
  724. return *pos < 1 ? (void *)1 : NULL;
  725. }
  726. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  727. {
  728. ++*pos;
  729. return NULL;
  730. }
  731. static void c_stop(struct seq_file *m, void *v)
  732. {
  733. }
  734. const struct seq_operations cpuinfo_op = {
  735. .start = c_start,
  736. .next = c_next,
  737. .stop = c_stop,
  738. .show = c_show
  739. };