hpet.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. #include <linux/clocksource.h>
  2. #include <linux/clockchips.h>
  3. #include <linux/delay.h>
  4. #include <linux/errno.h>
  5. #include <linux/hpet.h>
  6. #include <linux/init.h>
  7. #include <linux/sysdev.h>
  8. #include <linux/pm.h>
  9. #include <linux/delay.h>
  10. #include <asm/fixmap.h>
  11. #include <asm/hpet.h>
  12. #include <asm/i8253.h>
  13. #include <asm/io.h>
  14. #define HPET_MASK CLOCKSOURCE_MASK(32)
  15. #define HPET_SHIFT 22
  16. /* FSEC = 10^-15 NSEC = 10^-9 */
  17. #define FSEC_PER_NSEC 1000000
  18. /*
  19. * HPET address is set in acpi/boot.c, when an ACPI entry exists
  20. */
  21. unsigned long hpet_address;
  22. static void __iomem *hpet_virt_address;
  23. /* Temporary hack. Cleanup after x86_64 clock events conversion */
  24. #undef hpet_readl
  25. #undef hpet_writel
  26. static inline unsigned long hpet_readl(unsigned long a)
  27. {
  28. return readl(hpet_virt_address + a);
  29. }
  30. static inline void hpet_writel(unsigned long d, unsigned long a)
  31. {
  32. writel(d, hpet_virt_address + a);
  33. }
  34. #ifdef CONFIG_X86_64
  35. #include <asm/pgtable.h>
  36. static inline void hpet_set_mapping(void)
  37. {
  38. set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
  39. __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
  40. hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
  41. }
  42. static inline void hpet_clear_mapping(void)
  43. {
  44. hpet_virt_address = NULL;
  45. }
  46. #else
  47. static inline void hpet_set_mapping(void)
  48. {
  49. hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  50. }
  51. static inline void hpet_clear_mapping(void)
  52. {
  53. iounmap(hpet_virt_address);
  54. hpet_virt_address = NULL;
  55. }
  56. #endif
  57. /*
  58. * HPET command line enable / disable
  59. */
  60. static int boot_hpet_disable;
  61. static int __init hpet_setup(char* str)
  62. {
  63. if (str) {
  64. if (!strncmp("disable", str, 7))
  65. boot_hpet_disable = 1;
  66. }
  67. return 1;
  68. }
  69. __setup("hpet=", hpet_setup);
  70. static int __init disable_hpet(char *str)
  71. {
  72. boot_hpet_disable = 1;
  73. return 1;
  74. }
  75. __setup("nohpet", disable_hpet);
  76. static inline int is_hpet_capable(void)
  77. {
  78. return (!boot_hpet_disable && hpet_address);
  79. }
  80. /*
  81. * HPET timer interrupt enable / disable
  82. */
  83. static int hpet_legacy_int_enabled;
  84. /**
  85. * is_hpet_enabled - check whether the hpet timer interrupt is enabled
  86. */
  87. int is_hpet_enabled(void)
  88. {
  89. return is_hpet_capable() && hpet_legacy_int_enabled;
  90. }
  91. /*
  92. * When the hpet driver (/dev/hpet) is enabled, we need to reserve
  93. * timer 0 and timer 1 in case of RTC emulation.
  94. */
  95. #ifdef CONFIG_HPET
  96. static void hpet_reserve_platform_timers(unsigned long id)
  97. {
  98. struct hpet __iomem *hpet = hpet_virt_address;
  99. struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
  100. unsigned int nrtimers, i;
  101. struct hpet_data hd;
  102. nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
  103. memset(&hd, 0, sizeof (hd));
  104. hd.hd_phys_address = hpet_address;
  105. hd.hd_address = hpet;
  106. hd.hd_nirqs = nrtimers;
  107. hd.hd_flags = HPET_DATA_PLATFORM;
  108. hpet_reserve_timer(&hd, 0);
  109. #ifdef CONFIG_HPET_EMULATE_RTC
  110. hpet_reserve_timer(&hd, 1);
  111. #endif
  112. hd.hd_irq[0] = HPET_LEGACY_8254;
  113. hd.hd_irq[1] = HPET_LEGACY_RTC;
  114. for (i = 2; i < nrtimers; timer++, i++)
  115. hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
  116. Tn_INT_ROUTE_CNF_SHIFT;
  117. hpet_alloc(&hd);
  118. }
  119. #else
  120. static void hpet_reserve_platform_timers(unsigned long id) { }
  121. #endif
  122. /*
  123. * Common hpet info
  124. */
  125. static unsigned long hpet_period;
  126. static void hpet_set_mode(enum clock_event_mode mode,
  127. struct clock_event_device *evt);
  128. static int hpet_next_event(unsigned long delta,
  129. struct clock_event_device *evt);
  130. /*
  131. * The hpet clock event device
  132. */
  133. static struct clock_event_device hpet_clockevent = {
  134. .name = "hpet",
  135. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  136. .set_mode = hpet_set_mode,
  137. .set_next_event = hpet_next_event,
  138. .shift = 32,
  139. .irq = 0,
  140. };
  141. static void hpet_start_counter(void)
  142. {
  143. unsigned long cfg = hpet_readl(HPET_CFG);
  144. cfg &= ~HPET_CFG_ENABLE;
  145. hpet_writel(cfg, HPET_CFG);
  146. hpet_writel(0, HPET_COUNTER);
  147. hpet_writel(0, HPET_COUNTER + 4);
  148. cfg |= HPET_CFG_ENABLE;
  149. hpet_writel(cfg, HPET_CFG);
  150. }
  151. static void hpet_enable_int(void)
  152. {
  153. unsigned long cfg = hpet_readl(HPET_CFG);
  154. cfg |= HPET_CFG_LEGACY;
  155. hpet_writel(cfg, HPET_CFG);
  156. hpet_legacy_int_enabled = 1;
  157. }
  158. static void hpet_set_mode(enum clock_event_mode mode,
  159. struct clock_event_device *evt)
  160. {
  161. unsigned long cfg, cmp, now;
  162. uint64_t delta;
  163. switch(mode) {
  164. case CLOCK_EVT_MODE_PERIODIC:
  165. delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
  166. delta >>= hpet_clockevent.shift;
  167. now = hpet_readl(HPET_COUNTER);
  168. cmp = now + (unsigned long) delta;
  169. cfg = hpet_readl(HPET_T0_CFG);
  170. cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
  171. HPET_TN_SETVAL | HPET_TN_32BIT;
  172. hpet_writel(cfg, HPET_T0_CFG);
  173. /*
  174. * The first write after writing TN_SETVAL to the
  175. * config register sets the counter value, the second
  176. * write sets the period.
  177. */
  178. hpet_writel(cmp, HPET_T0_CMP);
  179. udelay(1);
  180. hpet_writel((unsigned long) delta, HPET_T0_CMP);
  181. break;
  182. case CLOCK_EVT_MODE_ONESHOT:
  183. cfg = hpet_readl(HPET_T0_CFG);
  184. cfg &= ~HPET_TN_PERIODIC;
  185. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  186. hpet_writel(cfg, HPET_T0_CFG);
  187. break;
  188. case CLOCK_EVT_MODE_UNUSED:
  189. case CLOCK_EVT_MODE_SHUTDOWN:
  190. cfg = hpet_readl(HPET_T0_CFG);
  191. cfg &= ~HPET_TN_ENABLE;
  192. hpet_writel(cfg, HPET_T0_CFG);
  193. break;
  194. case CLOCK_EVT_MODE_RESUME:
  195. hpet_enable_int();
  196. break;
  197. }
  198. }
  199. static int hpet_next_event(unsigned long delta,
  200. struct clock_event_device *evt)
  201. {
  202. unsigned long cnt;
  203. cnt = hpet_readl(HPET_COUNTER);
  204. cnt += delta;
  205. hpet_writel(cnt, HPET_T0_CMP);
  206. return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
  207. }
  208. /*
  209. * Clock source related code
  210. */
  211. static cycle_t read_hpet(void)
  212. {
  213. return (cycle_t)hpet_readl(HPET_COUNTER);
  214. }
  215. #ifdef CONFIG_X86_64
  216. static cycle_t __vsyscall_fn vread_hpet(void)
  217. {
  218. return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
  219. }
  220. #endif
  221. static struct clocksource clocksource_hpet = {
  222. .name = "hpet",
  223. .rating = 250,
  224. .read = read_hpet,
  225. .mask = HPET_MASK,
  226. .shift = HPET_SHIFT,
  227. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  228. .resume = hpet_start_counter,
  229. #ifdef CONFIG_X86_64
  230. .vread = vread_hpet,
  231. #endif
  232. };
  233. /*
  234. * Try to setup the HPET timer
  235. */
  236. int __init hpet_enable(void)
  237. {
  238. unsigned long id;
  239. uint64_t hpet_freq;
  240. u64 tmp, start, now;
  241. cycle_t t1;
  242. if (!is_hpet_capable())
  243. return 0;
  244. hpet_set_mapping();
  245. /*
  246. * Read the period and check for a sane value:
  247. */
  248. hpet_period = hpet_readl(HPET_PERIOD);
  249. if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
  250. goto out_nohpet;
  251. /*
  252. * The period is a femto seconds value. We need to calculate the
  253. * scaled math multiplication factor for nanosecond to hpet tick
  254. * conversion.
  255. */
  256. hpet_freq = 1000000000000000ULL;
  257. do_div(hpet_freq, hpet_period);
  258. hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
  259. NSEC_PER_SEC, 32);
  260. /* Calculate the min / max delta */
  261. hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
  262. &hpet_clockevent);
  263. hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
  264. &hpet_clockevent);
  265. /*
  266. * Read the HPET ID register to retrieve the IRQ routing
  267. * information and the number of channels
  268. */
  269. id = hpet_readl(HPET_ID);
  270. #ifdef CONFIG_HPET_EMULATE_RTC
  271. /*
  272. * The legacy routing mode needs at least two channels, tick timer
  273. * and the rtc emulation channel.
  274. */
  275. if (!(id & HPET_ID_NUMBER))
  276. goto out_nohpet;
  277. #endif
  278. /* Start the counter */
  279. hpet_start_counter();
  280. /* Verify whether hpet counter works */
  281. t1 = read_hpet();
  282. rdtscll(start);
  283. /*
  284. * We don't know the TSC frequency yet, but waiting for
  285. * 200000 TSC cycles is safe:
  286. * 4 GHz == 50us
  287. * 1 GHz == 200us
  288. */
  289. do {
  290. rep_nop();
  291. rdtscll(now);
  292. } while ((now - start) < 200000UL);
  293. if (t1 == read_hpet()) {
  294. printk(KERN_WARNING
  295. "HPET counter not counting. HPET disabled\n");
  296. goto out_nohpet;
  297. }
  298. /* Initialize and register HPET clocksource
  299. *
  300. * hpet period is in femto seconds per cycle
  301. * so we need to convert this to ns/cyc units
  302. * aproximated by mult/2^shift
  303. *
  304. * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
  305. * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
  306. * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
  307. * (fsec/cyc << shift)/1000000 = mult
  308. * (hpet_period << shift)/FSEC_PER_NSEC = mult
  309. */
  310. tmp = (u64)hpet_period << HPET_SHIFT;
  311. do_div(tmp, FSEC_PER_NSEC);
  312. clocksource_hpet.mult = (u32)tmp;
  313. clocksource_register(&clocksource_hpet);
  314. if (id & HPET_ID_LEGSUP) {
  315. hpet_enable_int();
  316. /*
  317. * Start hpet with the boot cpu mask and make it
  318. * global after the IO_APIC has been initialized.
  319. */
  320. hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
  321. clockevents_register_device(&hpet_clockevent);
  322. global_clock_event = &hpet_clockevent;
  323. return 1;
  324. }
  325. return 0;
  326. out_nohpet:
  327. hpet_clear_mapping();
  328. boot_hpet_disable = 1;
  329. return 0;
  330. }
  331. /*
  332. * Needs to be late, as the reserve_timer code calls kalloc !
  333. *
  334. * Not a problem on i386 as hpet_enable is called from late_time_init,
  335. * but on x86_64 it is necessary !
  336. */
  337. static __init int hpet_late_init(void)
  338. {
  339. if (!is_hpet_capable())
  340. return -ENODEV;
  341. hpet_reserve_platform_timers(hpet_readl(HPET_ID));
  342. return 0;
  343. }
  344. fs_initcall(hpet_late_init);
  345. #ifdef CONFIG_HPET_EMULATE_RTC
  346. /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
  347. * is enabled, we support RTC interrupt functionality in software.
  348. * RTC has 3 kinds of interrupts:
  349. * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
  350. * is updated
  351. * 2) Alarm Interrupt - generate an interrupt at a specific time of day
  352. * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
  353. * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
  354. * (1) and (2) above are implemented using polling at a frequency of
  355. * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
  356. * overhead. (DEFAULT_RTC_INT_FREQ)
  357. * For (3), we use interrupts at 64Hz or user specified periodic
  358. * frequency, whichever is higher.
  359. */
  360. #include <linux/mc146818rtc.h>
  361. #include <linux/rtc.h>
  362. #define DEFAULT_RTC_INT_FREQ 64
  363. #define DEFAULT_RTC_SHIFT 6
  364. #define RTC_NUM_INTS 1
  365. static unsigned long hpet_rtc_flags;
  366. static unsigned long hpet_prev_update_sec;
  367. static struct rtc_time hpet_alarm_time;
  368. static unsigned long hpet_pie_count;
  369. static unsigned long hpet_t1_cmp;
  370. static unsigned long hpet_default_delta;
  371. static unsigned long hpet_pie_delta;
  372. static unsigned long hpet_pie_limit;
  373. /*
  374. * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
  375. * is not supported by all HPET implementations for timer 1.
  376. *
  377. * hpet_rtc_timer_init() is called when the rtc is initialized.
  378. */
  379. int hpet_rtc_timer_init(void)
  380. {
  381. unsigned long cfg, cnt, delta, flags;
  382. if (!is_hpet_enabled())
  383. return 0;
  384. if (!hpet_default_delta) {
  385. uint64_t clc;
  386. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  387. clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
  388. hpet_default_delta = (unsigned long) clc;
  389. }
  390. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  391. delta = hpet_default_delta;
  392. else
  393. delta = hpet_pie_delta;
  394. local_irq_save(flags);
  395. cnt = delta + hpet_readl(HPET_COUNTER);
  396. hpet_writel(cnt, HPET_T1_CMP);
  397. hpet_t1_cmp = cnt;
  398. cfg = hpet_readl(HPET_T1_CFG);
  399. cfg &= ~HPET_TN_PERIODIC;
  400. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  401. hpet_writel(cfg, HPET_T1_CFG);
  402. local_irq_restore(flags);
  403. return 1;
  404. }
  405. /*
  406. * The functions below are called from rtc driver.
  407. * Return 0 if HPET is not being used.
  408. * Otherwise do the necessary changes and return 1.
  409. */
  410. int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
  411. {
  412. if (!is_hpet_enabled())
  413. return 0;
  414. hpet_rtc_flags &= ~bit_mask;
  415. return 1;
  416. }
  417. int hpet_set_rtc_irq_bit(unsigned long bit_mask)
  418. {
  419. unsigned long oldbits = hpet_rtc_flags;
  420. if (!is_hpet_enabled())
  421. return 0;
  422. hpet_rtc_flags |= bit_mask;
  423. if (!oldbits)
  424. hpet_rtc_timer_init();
  425. return 1;
  426. }
  427. int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
  428. unsigned char sec)
  429. {
  430. if (!is_hpet_enabled())
  431. return 0;
  432. hpet_alarm_time.tm_hour = hrs;
  433. hpet_alarm_time.tm_min = min;
  434. hpet_alarm_time.tm_sec = sec;
  435. return 1;
  436. }
  437. int hpet_set_periodic_freq(unsigned long freq)
  438. {
  439. uint64_t clc;
  440. if (!is_hpet_enabled())
  441. return 0;
  442. if (freq <= DEFAULT_RTC_INT_FREQ)
  443. hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
  444. else {
  445. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  446. do_div(clc, freq);
  447. clc >>= hpet_clockevent.shift;
  448. hpet_pie_delta = (unsigned long) clc;
  449. }
  450. return 1;
  451. }
  452. int hpet_rtc_dropped_irq(void)
  453. {
  454. return is_hpet_enabled();
  455. }
  456. static void hpet_rtc_timer_reinit(void)
  457. {
  458. unsigned long cfg, delta;
  459. int lost_ints = -1;
  460. if (unlikely(!hpet_rtc_flags)) {
  461. cfg = hpet_readl(HPET_T1_CFG);
  462. cfg &= ~HPET_TN_ENABLE;
  463. hpet_writel(cfg, HPET_T1_CFG);
  464. return;
  465. }
  466. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  467. delta = hpet_default_delta;
  468. else
  469. delta = hpet_pie_delta;
  470. /*
  471. * Increment the comparator value until we are ahead of the
  472. * current count.
  473. */
  474. do {
  475. hpet_t1_cmp += delta;
  476. hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
  477. lost_ints++;
  478. } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
  479. if (lost_ints) {
  480. if (hpet_rtc_flags & RTC_PIE)
  481. hpet_pie_count += lost_ints;
  482. if (printk_ratelimit())
  483. printk(KERN_WARNING "rtc: lost %d interrupts\n",
  484. lost_ints);
  485. }
  486. }
  487. irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  488. {
  489. struct rtc_time curr_time;
  490. unsigned long rtc_int_flag = 0;
  491. hpet_rtc_timer_reinit();
  492. if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
  493. rtc_get_rtc_time(&curr_time);
  494. if (hpet_rtc_flags & RTC_UIE &&
  495. curr_time.tm_sec != hpet_prev_update_sec) {
  496. rtc_int_flag = RTC_UF;
  497. hpet_prev_update_sec = curr_time.tm_sec;
  498. }
  499. if (hpet_rtc_flags & RTC_PIE &&
  500. ++hpet_pie_count >= hpet_pie_limit) {
  501. rtc_int_flag |= RTC_PF;
  502. hpet_pie_count = 0;
  503. }
  504. if (hpet_rtc_flags & RTC_PIE &&
  505. (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
  506. (curr_time.tm_min == hpet_alarm_time.tm_min) &&
  507. (curr_time.tm_hour == hpet_alarm_time.tm_hour))
  508. rtc_int_flag |= RTC_AF;
  509. if (rtc_int_flag) {
  510. rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
  511. rtc_interrupt(rtc_int_flag, dev_id);
  512. }
  513. return IRQ_HANDLED;
  514. }
  515. #endif