db8500-prcmu.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <asm/hardware/gic.h>
  34. #include <mach/hardware.h>
  35. #include <mach/irqs.h>
  36. #include <mach/db8500-regs.h>
  37. #include <mach/id.h>
  38. #include "dbx500-prcmu-regs.h"
  39. /* Offset for the firmware version within the TCPM */
  40. #define PRCMU_FW_VERSION_OFFSET 0xA4
  41. /* Index of different voltages to be used when accessing AVSData */
  42. #define PRCM_AVS_BASE 0x2FC
  43. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  44. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  45. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  46. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  47. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  48. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  49. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  50. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  51. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  52. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  53. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  54. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  55. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  56. #define PRCM_AVS_VOLTAGE 0
  57. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  58. #define PRCM_AVS_ISSLOWSTARTUP 6
  59. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  60. #define PRCM_AVS_ISMODEENABLE 7
  61. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  62. #define PRCM_BOOT_STATUS 0xFFF
  63. #define PRCM_ROMCODE_A2P 0xFFE
  64. #define PRCM_ROMCODE_P2A 0xFFD
  65. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  66. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  67. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  68. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  69. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  70. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  71. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  72. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  73. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  74. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  75. /* Req Mailboxes */
  76. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  77. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  78. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  79. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  80. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  81. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  82. /* Ack Mailboxes */
  83. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  84. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  85. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  86. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  87. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  88. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  89. /* Mailbox 0 headers */
  90. #define MB0H_POWER_STATE_TRANS 0
  91. #define MB0H_CONFIG_WAKEUPS_EXE 1
  92. #define MB0H_READ_WAKEUP_ACK 3
  93. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  94. #define MB0H_WAKEUP_EXE 2
  95. #define MB0H_WAKEUP_SLEEP 5
  96. /* Mailbox 0 REQs */
  97. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  98. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  99. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  100. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  101. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  102. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  103. /* Mailbox 0 ACKs */
  104. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  105. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  106. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  107. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  108. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  109. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  110. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  111. /* Mailbox 1 headers */
  112. #define MB1H_ARM_APE_OPP 0x0
  113. #define MB1H_RESET_MODEM 0x2
  114. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  115. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  116. #define MB1H_RELEASE_USB_WAKEUP 0x5
  117. #define MB1H_PLL_ON_OFF 0x6
  118. /* Mailbox 1 Requests */
  119. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  120. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  121. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  122. #define PLL_SOC0_OFF 0x1
  123. #define PLL_SOC0_ON 0x2
  124. #define PLL_SOC1_OFF 0x4
  125. #define PLL_SOC1_ON 0x8
  126. /* Mailbox 1 ACKs */
  127. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  128. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  129. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  130. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  131. /* Mailbox 2 headers */
  132. #define MB2H_DPS 0x0
  133. #define MB2H_AUTO_PWR 0x1
  134. /* Mailbox 2 REQs */
  135. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  136. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  137. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  138. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  139. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  140. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  141. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  142. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  143. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  144. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  145. /* Mailbox 2 ACKs */
  146. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  147. #define HWACC_PWR_ST_OK 0xFE
  148. /* Mailbox 3 headers */
  149. #define MB3H_ANC 0x0
  150. #define MB3H_SIDETONE 0x1
  151. #define MB3H_SYSCLK 0xE
  152. /* Mailbox 3 Requests */
  153. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  154. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  155. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  156. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  159. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  160. /* Mailbox 4 headers */
  161. #define MB4H_DDR_INIT 0x0
  162. #define MB4H_MEM_ST 0x1
  163. #define MB4H_HOTDOG 0x12
  164. #define MB4H_HOTMON 0x13
  165. #define MB4H_HOT_PERIOD 0x14
  166. #define MB4H_A9WDOG_CONF 0x16
  167. #define MB4H_A9WDOG_EN 0x17
  168. #define MB4H_A9WDOG_DIS 0x18
  169. #define MB4H_A9WDOG_LOAD 0x19
  170. #define MB4H_A9WDOG_KICK 0x20
  171. /* Mailbox 4 Requests */
  172. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  173. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  174. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  175. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  178. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  179. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  180. #define HOTMON_CONFIG_LOW BIT(0)
  181. #define HOTMON_CONFIG_HIGH BIT(1)
  182. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  183. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  184. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  185. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  186. #define A9WDOG_AUTO_OFF_EN BIT(7)
  187. #define A9WDOG_AUTO_OFF_DIS 0
  188. #define A9WDOG_ID_MASK 0xf
  189. /* Mailbox 5 Requests */
  190. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  191. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  192. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  193. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  194. #define PRCMU_I2C_WRITE(slave) \
  195. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  196. #define PRCMU_I2C_READ(slave) \
  197. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  198. #define PRCMU_I2C_STOP_EN BIT(3)
  199. /* Mailbox 5 ACKs */
  200. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  201. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  202. #define I2C_WR_OK 0x1
  203. #define I2C_RD_OK 0x2
  204. #define NUM_MB 8
  205. #define MBOX_BIT BIT
  206. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  207. /*
  208. * Wakeups/IRQs
  209. */
  210. #define WAKEUP_BIT_RTC BIT(0)
  211. #define WAKEUP_BIT_RTT0 BIT(1)
  212. #define WAKEUP_BIT_RTT1 BIT(2)
  213. #define WAKEUP_BIT_HSI0 BIT(3)
  214. #define WAKEUP_BIT_HSI1 BIT(4)
  215. #define WAKEUP_BIT_CA_WAKE BIT(5)
  216. #define WAKEUP_BIT_USB BIT(6)
  217. #define WAKEUP_BIT_ABB BIT(7)
  218. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  219. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  220. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  221. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  222. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  223. #define WAKEUP_BIT_ANC_OK BIT(13)
  224. #define WAKEUP_BIT_SW_ERROR BIT(14)
  225. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  226. #define WAKEUP_BIT_ARM BIT(17)
  227. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  228. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  229. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  230. #define WAKEUP_BIT_GPIO0 BIT(23)
  231. #define WAKEUP_BIT_GPIO1 BIT(24)
  232. #define WAKEUP_BIT_GPIO2 BIT(25)
  233. #define WAKEUP_BIT_GPIO3 BIT(26)
  234. #define WAKEUP_BIT_GPIO4 BIT(27)
  235. #define WAKEUP_BIT_GPIO5 BIT(28)
  236. #define WAKEUP_BIT_GPIO6 BIT(29)
  237. #define WAKEUP_BIT_GPIO7 BIT(30)
  238. #define WAKEUP_BIT_GPIO8 BIT(31)
  239. static struct {
  240. bool valid;
  241. struct prcmu_fw_version version;
  242. } fw_info;
  243. /*
  244. * This vector maps irq numbers to the bits in the bit field used in
  245. * communication with the PRCMU firmware.
  246. *
  247. * The reason for having this is to keep the irq numbers contiguous even though
  248. * the bits in the bit field are not. (The bits also have a tendency to move
  249. * around, to further complicate matters.)
  250. */
  251. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  252. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  253. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  254. IRQ_ENTRY(RTC),
  255. IRQ_ENTRY(RTT0),
  256. IRQ_ENTRY(RTT1),
  257. IRQ_ENTRY(HSI0),
  258. IRQ_ENTRY(HSI1),
  259. IRQ_ENTRY(CA_WAKE),
  260. IRQ_ENTRY(USB),
  261. IRQ_ENTRY(ABB),
  262. IRQ_ENTRY(ABB_FIFO),
  263. IRQ_ENTRY(CA_SLEEP),
  264. IRQ_ENTRY(ARM),
  265. IRQ_ENTRY(HOTMON_LOW),
  266. IRQ_ENTRY(HOTMON_HIGH),
  267. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  268. IRQ_ENTRY(GPIO0),
  269. IRQ_ENTRY(GPIO1),
  270. IRQ_ENTRY(GPIO2),
  271. IRQ_ENTRY(GPIO3),
  272. IRQ_ENTRY(GPIO4),
  273. IRQ_ENTRY(GPIO5),
  274. IRQ_ENTRY(GPIO6),
  275. IRQ_ENTRY(GPIO7),
  276. IRQ_ENTRY(GPIO8)
  277. };
  278. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  279. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  280. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  281. WAKEUP_ENTRY(RTC),
  282. WAKEUP_ENTRY(RTT0),
  283. WAKEUP_ENTRY(RTT1),
  284. WAKEUP_ENTRY(HSI0),
  285. WAKEUP_ENTRY(HSI1),
  286. WAKEUP_ENTRY(USB),
  287. WAKEUP_ENTRY(ABB),
  288. WAKEUP_ENTRY(ABB_FIFO),
  289. WAKEUP_ENTRY(ARM)
  290. };
  291. /*
  292. * mb0_transfer - state needed for mailbox 0 communication.
  293. * @lock: The transaction lock.
  294. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  295. * the request data.
  296. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  297. * @req: Request data that need to persist between requests.
  298. */
  299. static struct {
  300. spinlock_t lock;
  301. spinlock_t dbb_irqs_lock;
  302. struct work_struct mask_work;
  303. struct mutex ac_wake_lock;
  304. struct completion ac_wake_work;
  305. struct {
  306. u32 dbb_irqs;
  307. u32 dbb_wakeups;
  308. u32 abb_events;
  309. } req;
  310. } mb0_transfer;
  311. /*
  312. * mb1_transfer - state needed for mailbox 1 communication.
  313. * @lock: The transaction lock.
  314. * @work: The transaction completion structure.
  315. * @ape_opp: The current APE OPP.
  316. * @ack: Reply ("acknowledge") data.
  317. */
  318. static struct {
  319. struct mutex lock;
  320. struct completion work;
  321. u8 ape_opp;
  322. struct {
  323. u8 header;
  324. u8 arm_opp;
  325. u8 ape_opp;
  326. u8 ape_voltage_status;
  327. } ack;
  328. } mb1_transfer;
  329. /*
  330. * mb2_transfer - state needed for mailbox 2 communication.
  331. * @lock: The transaction lock.
  332. * @work: The transaction completion structure.
  333. * @auto_pm_lock: The autonomous power management configuration lock.
  334. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  335. * @req: Request data that need to persist between requests.
  336. * @ack: Reply ("acknowledge") data.
  337. */
  338. static struct {
  339. struct mutex lock;
  340. struct completion work;
  341. spinlock_t auto_pm_lock;
  342. bool auto_pm_enabled;
  343. struct {
  344. u8 status;
  345. } ack;
  346. } mb2_transfer;
  347. /*
  348. * mb3_transfer - state needed for mailbox 3 communication.
  349. * @lock: The request lock.
  350. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  351. * @sysclk_work: Work structure used for sysclk requests.
  352. */
  353. static struct {
  354. spinlock_t lock;
  355. struct mutex sysclk_lock;
  356. struct completion sysclk_work;
  357. } mb3_transfer;
  358. /*
  359. * mb4_transfer - state needed for mailbox 4 communication.
  360. * @lock: The transaction lock.
  361. * @work: The transaction completion structure.
  362. */
  363. static struct {
  364. struct mutex lock;
  365. struct completion work;
  366. } mb4_transfer;
  367. /*
  368. * mb5_transfer - state needed for mailbox 5 communication.
  369. * @lock: The transaction lock.
  370. * @work: The transaction completion structure.
  371. * @ack: Reply ("acknowledge") data.
  372. */
  373. static struct {
  374. struct mutex lock;
  375. struct completion work;
  376. struct {
  377. u8 status;
  378. u8 value;
  379. } ack;
  380. } mb5_transfer;
  381. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  382. /* Spinlocks */
  383. static DEFINE_SPINLOCK(prcmu_lock);
  384. static DEFINE_SPINLOCK(clkout_lock);
  385. /* Global var to runtime determine TCDM base for v2 or v1 */
  386. static __iomem void *tcdm_base;
  387. struct clk_mgt {
  388. void __iomem *reg;
  389. u32 pllsw;
  390. int branch;
  391. bool clk38div;
  392. };
  393. enum {
  394. PLL_RAW,
  395. PLL_FIX,
  396. PLL_DIV
  397. };
  398. static DEFINE_SPINLOCK(clk_mgt_lock);
  399. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  400. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  401. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  402. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  403. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  407. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  408. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  409. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  415. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  416. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  419. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  420. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  423. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  424. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  425. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  427. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  430. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  431. };
  432. struct dsiclk {
  433. u32 divsel_mask;
  434. u32 divsel_shift;
  435. u32 divsel;
  436. };
  437. static struct dsiclk dsiclk[2] = {
  438. {
  439. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  440. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  441. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  442. },
  443. {
  444. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  445. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  446. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  447. }
  448. };
  449. struct dsiescclk {
  450. u32 en;
  451. u32 div_mask;
  452. u32 div_shift;
  453. };
  454. static struct dsiescclk dsiescclk[3] = {
  455. {
  456. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  457. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  458. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  459. },
  460. {
  461. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  462. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  463. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  464. },
  465. {
  466. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  467. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  468. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  469. }
  470. };
  471. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  472. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  473. static bool hwacc_enabled[NUM_HW_ACC];
  474. static bool hwacc_ret_enabled[NUM_HW_ACC];
  475. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  476. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  477. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  478. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  479. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  480. [HW_ACC_SGA] = "hwacc-sga",
  481. [HW_ACC_B2R2] = "hwacc-b2r2",
  482. [HW_ACC_MCDE] = "hwacc-mcde",
  483. [HW_ACC_ESRAM1] = "hwacc-esram1",
  484. [HW_ACC_ESRAM2] = "hwacc-esram2",
  485. [HW_ACC_ESRAM3] = "hwacc-esram3",
  486. [HW_ACC_ESRAM4] = "hwacc-esram4",
  487. };
  488. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  489. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  490. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  491. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  492. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  493. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  494. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  495. };
  496. /*
  497. * Used by MCDE to setup all necessary PRCMU registers
  498. */
  499. #define PRCMU_RESET_DSIPLL 0x00004000
  500. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  501. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  502. #define PRCMU_CLK_PLL_SW_SHIFT 5
  503. #define PRCMU_CLK_38 (1 << 9)
  504. #define PRCMU_CLK_38_SRC (1 << 10)
  505. #define PRCMU_CLK_38_DIV (1 << 11)
  506. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  507. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  508. /* DPI 50000000 Hz */
  509. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  510. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  511. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  512. /* D=101, N=1, R=4, SELDIV2=0 */
  513. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  514. #define PRCMU_ENABLE_PLLDSI 0x00000001
  515. #define PRCMU_DISABLE_PLLDSI 0x00000000
  516. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  517. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  518. /* ESC clk, div0=1, div1=1, div2=3 */
  519. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  520. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  521. #define PRCMU_DSI_RESET_SW 0x00000007
  522. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  523. int db8500_prcmu_enable_dsipll(void)
  524. {
  525. int i;
  526. /* Clear DSIPLL_RESETN */
  527. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  528. /* Unclamp DSIPLL in/out */
  529. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  530. /* Set DSI PLL FREQ */
  531. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  532. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  533. /* Enable Escape clocks */
  534. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  535. /* Start DSI PLL */
  536. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  537. /* Reset DSI PLL */
  538. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  539. for (i = 0; i < 10; i++) {
  540. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  541. == PRCMU_PLLDSI_LOCKP_LOCKED)
  542. break;
  543. udelay(100);
  544. }
  545. /* Set DSIPLL_RESETN */
  546. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  547. return 0;
  548. }
  549. int db8500_prcmu_disable_dsipll(void)
  550. {
  551. /* Disable dsi pll */
  552. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  553. /* Disable escapeclock */
  554. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  555. return 0;
  556. }
  557. int db8500_prcmu_set_display_clocks(void)
  558. {
  559. unsigned long flags;
  560. spin_lock_irqsave(&clk_mgt_lock, flags);
  561. /* Grab the HW semaphore. */
  562. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  563. cpu_relax();
  564. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  565. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  566. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  567. /* Release the HW semaphore. */
  568. writel(0, PRCM_SEM);
  569. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  570. return 0;
  571. }
  572. u32 db8500_prcmu_read(unsigned int reg)
  573. {
  574. return readl(_PRCMU_BASE + reg);
  575. }
  576. void db8500_prcmu_write(unsigned int reg, u32 value)
  577. {
  578. unsigned long flags;
  579. spin_lock_irqsave(&prcmu_lock, flags);
  580. writel(value, (_PRCMU_BASE + reg));
  581. spin_unlock_irqrestore(&prcmu_lock, flags);
  582. }
  583. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  584. {
  585. u32 val;
  586. unsigned long flags;
  587. spin_lock_irqsave(&prcmu_lock, flags);
  588. val = readl(_PRCMU_BASE + reg);
  589. val = ((val & ~mask) | (value & mask));
  590. writel(val, (_PRCMU_BASE + reg));
  591. spin_unlock_irqrestore(&prcmu_lock, flags);
  592. }
  593. struct prcmu_fw_version *prcmu_get_fw_version(void)
  594. {
  595. return fw_info.valid ? &fw_info.version : NULL;
  596. }
  597. bool prcmu_has_arm_maxopp(void)
  598. {
  599. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  600. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  601. }
  602. /**
  603. * prcmu_get_boot_status - PRCMU boot status checking
  604. * Returns: the current PRCMU boot status
  605. */
  606. int prcmu_get_boot_status(void)
  607. {
  608. return readb(tcdm_base + PRCM_BOOT_STATUS);
  609. }
  610. /**
  611. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  612. * @val: Value to be set, i.e. transition requested
  613. * Returns: 0 on success, -EINVAL on invalid argument
  614. *
  615. * This function is used to run the following power state sequences -
  616. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  617. */
  618. int prcmu_set_rc_a2p(enum romcode_write val)
  619. {
  620. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  621. return -EINVAL;
  622. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  623. return 0;
  624. }
  625. /**
  626. * prcmu_get_rc_p2a - This function is used to get power state sequences
  627. * Returns: the power transition that has last happened
  628. *
  629. * This function can return the following transitions-
  630. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  631. */
  632. enum romcode_read prcmu_get_rc_p2a(void)
  633. {
  634. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  635. }
  636. /**
  637. * prcmu_get_current_mode - Return the current XP70 power mode
  638. * Returns: Returns the current AP(ARM) power mode: init,
  639. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  640. */
  641. enum ap_pwrst prcmu_get_xp70_current_state(void)
  642. {
  643. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  644. }
  645. /**
  646. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  647. * @clkout: The CLKOUT number (0 or 1).
  648. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  649. * @div: The divider to be applied.
  650. *
  651. * Configures one of the programmable clock outputs (CLKOUTs).
  652. * @div should be in the range [1,63] to request a configuration, or 0 to
  653. * inform that the configuration is no longer requested.
  654. */
  655. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  656. {
  657. static int requests[2];
  658. int r = 0;
  659. unsigned long flags;
  660. u32 val;
  661. u32 bits;
  662. u32 mask;
  663. u32 div_mask;
  664. BUG_ON(clkout > 1);
  665. BUG_ON(div > 63);
  666. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  667. if (!div && !requests[clkout])
  668. return -EINVAL;
  669. switch (clkout) {
  670. case 0:
  671. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  672. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  673. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  674. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  675. break;
  676. case 1:
  677. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  678. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  679. PRCM_CLKOCR_CLK1TYPE);
  680. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  681. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  682. break;
  683. }
  684. bits &= mask;
  685. spin_lock_irqsave(&clkout_lock, flags);
  686. val = readl(PRCM_CLKOCR);
  687. if (val & div_mask) {
  688. if (div) {
  689. if ((val & mask) != bits) {
  690. r = -EBUSY;
  691. goto unlock_and_return;
  692. }
  693. } else {
  694. if ((val & mask & ~div_mask) != bits) {
  695. r = -EINVAL;
  696. goto unlock_and_return;
  697. }
  698. }
  699. }
  700. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  701. requests[clkout] += (div ? 1 : -1);
  702. unlock_and_return:
  703. spin_unlock_irqrestore(&clkout_lock, flags);
  704. return r;
  705. }
  706. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  707. {
  708. unsigned long flags;
  709. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  710. spin_lock_irqsave(&mb0_transfer.lock, flags);
  711. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  712. cpu_relax();
  713. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  714. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  715. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  716. writeb((keep_ulp_clk ? 1 : 0),
  717. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  718. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  719. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  720. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  721. return 0;
  722. }
  723. u8 db8500_prcmu_get_power_state_result(void)
  724. {
  725. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  726. }
  727. /* This function decouple the gic from the prcmu */
  728. int db8500_prcmu_gic_decouple(void)
  729. {
  730. u32 val = readl(PRCM_A9_MASK_REQ);
  731. /* Set bit 0 register value to 1 */
  732. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  733. PRCM_A9_MASK_REQ);
  734. /* Make sure the register is updated */
  735. readl(PRCM_A9_MASK_REQ);
  736. /* Wait a few cycles for the gic mask completion */
  737. udelay(1);
  738. return 0;
  739. }
  740. /* This function recouple the gic with the prcmu */
  741. int db8500_prcmu_gic_recouple(void)
  742. {
  743. u32 val = readl(PRCM_A9_MASK_REQ);
  744. /* Set bit 0 register value to 0 */
  745. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  746. return 0;
  747. }
  748. #define PRCMU_GIC_NUMBER_REGS 5
  749. /*
  750. * This function checks if there are pending irq on the gic. It only
  751. * makes sense if the gic has been decoupled before with the
  752. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  753. * disables the forwarding of the interrupt to any CPU interface. It
  754. * does not prevent the interrupt from changing state, for example
  755. * becoming pending, or active and pending if it is already
  756. * active. Hence, we have to check the interrupt is pending *and* is
  757. * active.
  758. */
  759. bool db8500_prcmu_gic_pending_irq(void)
  760. {
  761. u32 pr; /* Pending register */
  762. u32 er; /* Enable register */
  763. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  764. int i;
  765. /* 5 registers. STI & PPI not skipped */
  766. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  767. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  768. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  769. if (pr & er)
  770. return true; /* There is a pending interrupt */
  771. }
  772. return false;
  773. }
  774. /*
  775. * This function copies the gic SPI settings to the prcmu in order to
  776. * monitor them and abort/finish the retention/off sequence or state.
  777. */
  778. int db8500_prcmu_copy_gic_settings(void)
  779. {
  780. u32 er; /* Enable register */
  781. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  782. int i;
  783. /* We skip the STI and PPI */
  784. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  785. er = readl_relaxed(dist_base +
  786. GIC_DIST_ENABLE_SET + (i + 1) * 4);
  787. writel(er, PRCM_ARMITMSK31TO0 + i * 4);
  788. }
  789. return 0;
  790. }
  791. /* This function should only be called while mb0_transfer.lock is held. */
  792. static void config_wakeups(void)
  793. {
  794. const u8 header[2] = {
  795. MB0H_CONFIG_WAKEUPS_EXE,
  796. MB0H_CONFIG_WAKEUPS_SLEEP
  797. };
  798. static u32 last_dbb_events;
  799. static u32 last_abb_events;
  800. u32 dbb_events;
  801. u32 abb_events;
  802. unsigned int i;
  803. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  804. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  805. abb_events = mb0_transfer.req.abb_events;
  806. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  807. return;
  808. for (i = 0; i < 2; i++) {
  809. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  810. cpu_relax();
  811. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  812. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  813. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  814. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  815. }
  816. last_dbb_events = dbb_events;
  817. last_abb_events = abb_events;
  818. }
  819. void db8500_prcmu_enable_wakeups(u32 wakeups)
  820. {
  821. unsigned long flags;
  822. u32 bits;
  823. int i;
  824. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  825. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  826. if (wakeups & BIT(i))
  827. bits |= prcmu_wakeup_bit[i];
  828. }
  829. spin_lock_irqsave(&mb0_transfer.lock, flags);
  830. mb0_transfer.req.dbb_wakeups = bits;
  831. config_wakeups();
  832. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  833. }
  834. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  835. {
  836. unsigned long flags;
  837. spin_lock_irqsave(&mb0_transfer.lock, flags);
  838. mb0_transfer.req.abb_events = abb_events;
  839. config_wakeups();
  840. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  841. }
  842. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  843. {
  844. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  845. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  846. else
  847. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  848. }
  849. /**
  850. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  851. * @opp: The new ARM operating point to which transition is to be made
  852. * Returns: 0 on success, non-zero on failure
  853. *
  854. * This function sets the the operating point of the ARM.
  855. */
  856. int db8500_prcmu_set_arm_opp(u8 opp)
  857. {
  858. int r;
  859. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  860. return -EINVAL;
  861. r = 0;
  862. mutex_lock(&mb1_transfer.lock);
  863. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  864. cpu_relax();
  865. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  866. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  867. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  868. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  869. wait_for_completion(&mb1_transfer.work);
  870. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  871. (mb1_transfer.ack.arm_opp != opp))
  872. r = -EIO;
  873. mutex_unlock(&mb1_transfer.lock);
  874. return r;
  875. }
  876. /**
  877. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  878. *
  879. * Returns: the current ARM OPP
  880. */
  881. int db8500_prcmu_get_arm_opp(void)
  882. {
  883. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  884. }
  885. /**
  886. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  887. *
  888. * Returns: the current DDR OPP
  889. */
  890. int db8500_prcmu_get_ddr_opp(void)
  891. {
  892. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  893. }
  894. /**
  895. * db8500_set_ddr_opp - set the appropriate DDR OPP
  896. * @opp: The new DDR operating point to which transition is to be made
  897. * Returns: 0 on success, non-zero on failure
  898. *
  899. * This function sets the operating point of the DDR.
  900. */
  901. int db8500_prcmu_set_ddr_opp(u8 opp)
  902. {
  903. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  904. return -EINVAL;
  905. /* Changing the DDR OPP can hang the hardware pre-v21 */
  906. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  907. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  908. return 0;
  909. }
  910. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  911. static void request_even_slower_clocks(bool enable)
  912. {
  913. void __iomem *clock_reg[] = {
  914. PRCM_ACLK_MGT,
  915. PRCM_DMACLK_MGT
  916. };
  917. unsigned long flags;
  918. unsigned int i;
  919. spin_lock_irqsave(&clk_mgt_lock, flags);
  920. /* Grab the HW semaphore. */
  921. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  922. cpu_relax();
  923. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  924. u32 val;
  925. u32 div;
  926. val = readl(clock_reg[i]);
  927. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  928. if (enable) {
  929. if ((div <= 1) || (div > 15)) {
  930. pr_err("prcmu: Bad clock divider %d in %s\n",
  931. div, __func__);
  932. goto unlock_and_return;
  933. }
  934. div <<= 1;
  935. } else {
  936. if (div <= 2)
  937. goto unlock_and_return;
  938. div >>= 1;
  939. }
  940. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  941. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  942. writel(val, clock_reg[i]);
  943. }
  944. unlock_and_return:
  945. /* Release the HW semaphore. */
  946. writel(0, PRCM_SEM);
  947. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  948. }
  949. /**
  950. * db8500_set_ape_opp - set the appropriate APE OPP
  951. * @opp: The new APE operating point to which transition is to be made
  952. * Returns: 0 on success, non-zero on failure
  953. *
  954. * This function sets the operating point of the APE.
  955. */
  956. int db8500_prcmu_set_ape_opp(u8 opp)
  957. {
  958. int r = 0;
  959. if (opp == mb1_transfer.ape_opp)
  960. return 0;
  961. mutex_lock(&mb1_transfer.lock);
  962. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  963. request_even_slower_clocks(false);
  964. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  965. goto skip_message;
  966. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  967. cpu_relax();
  968. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  969. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  970. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  971. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  972. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  973. wait_for_completion(&mb1_transfer.work);
  974. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  975. (mb1_transfer.ack.ape_opp != opp))
  976. r = -EIO;
  977. skip_message:
  978. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  979. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  980. request_even_slower_clocks(true);
  981. if (!r)
  982. mb1_transfer.ape_opp = opp;
  983. mutex_unlock(&mb1_transfer.lock);
  984. return r;
  985. }
  986. /**
  987. * db8500_prcmu_get_ape_opp - get the current APE OPP
  988. *
  989. * Returns: the current APE OPP
  990. */
  991. int db8500_prcmu_get_ape_opp(void)
  992. {
  993. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  994. }
  995. /**
  996. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  997. * @enable: true to request the higher voltage, false to drop a request.
  998. *
  999. * Calls to this function to enable and disable requests must be balanced.
  1000. */
  1001. int prcmu_request_ape_opp_100_voltage(bool enable)
  1002. {
  1003. int r = 0;
  1004. u8 header;
  1005. static unsigned int requests;
  1006. mutex_lock(&mb1_transfer.lock);
  1007. if (enable) {
  1008. if (0 != requests++)
  1009. goto unlock_and_return;
  1010. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  1011. } else {
  1012. if (requests == 0) {
  1013. r = -EIO;
  1014. goto unlock_and_return;
  1015. } else if (1 != requests--) {
  1016. goto unlock_and_return;
  1017. }
  1018. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1019. }
  1020. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1021. cpu_relax();
  1022. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1023. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1024. wait_for_completion(&mb1_transfer.work);
  1025. if ((mb1_transfer.ack.header != header) ||
  1026. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1027. r = -EIO;
  1028. unlock_and_return:
  1029. mutex_unlock(&mb1_transfer.lock);
  1030. return r;
  1031. }
  1032. /**
  1033. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1034. *
  1035. * This function releases the power state requirements of a USB wakeup.
  1036. */
  1037. int prcmu_release_usb_wakeup_state(void)
  1038. {
  1039. int r = 0;
  1040. mutex_lock(&mb1_transfer.lock);
  1041. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1042. cpu_relax();
  1043. writeb(MB1H_RELEASE_USB_WAKEUP,
  1044. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1045. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1046. wait_for_completion(&mb1_transfer.work);
  1047. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1048. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1049. r = -EIO;
  1050. mutex_unlock(&mb1_transfer.lock);
  1051. return r;
  1052. }
  1053. static int request_pll(u8 clock, bool enable)
  1054. {
  1055. int r = 0;
  1056. if (clock == PRCMU_PLLSOC0)
  1057. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1058. else if (clock == PRCMU_PLLSOC1)
  1059. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1060. else
  1061. return -EINVAL;
  1062. mutex_lock(&mb1_transfer.lock);
  1063. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1064. cpu_relax();
  1065. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1066. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1067. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1068. wait_for_completion(&mb1_transfer.work);
  1069. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1070. r = -EIO;
  1071. mutex_unlock(&mb1_transfer.lock);
  1072. return r;
  1073. }
  1074. /**
  1075. * prcmu_set_hwacc - set the power state of a h/w accelerator
  1076. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  1077. * @state: The new power state (enum hw_acc_state).
  1078. *
  1079. * This function sets the power state of a hardware accelerator.
  1080. * This function should not be called from interrupt context.
  1081. *
  1082. * NOTE! Deprecated, to be removed when all users switched over to use the
  1083. * regulator framework API.
  1084. */
  1085. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  1086. {
  1087. int r = 0;
  1088. bool ram_retention = false;
  1089. bool enable, enable_ret;
  1090. /* check argument */
  1091. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  1092. /* get state of switches */
  1093. enable = hwacc_enabled[hwacc_dev];
  1094. enable_ret = hwacc_ret_enabled[hwacc_dev];
  1095. /* set flag if retention is possible */
  1096. switch (hwacc_dev) {
  1097. case HW_ACC_SVAMMDSP:
  1098. case HW_ACC_SIAMMDSP:
  1099. case HW_ACC_ESRAM1:
  1100. case HW_ACC_ESRAM2:
  1101. case HW_ACC_ESRAM3:
  1102. case HW_ACC_ESRAM4:
  1103. ram_retention = true;
  1104. break;
  1105. }
  1106. /* check argument */
  1107. BUG_ON(state > HW_ON);
  1108. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  1109. /* modify enable flags */
  1110. switch (state) {
  1111. case HW_OFF:
  1112. enable_ret = false;
  1113. enable = false;
  1114. break;
  1115. case HW_ON:
  1116. enable = true;
  1117. break;
  1118. case HW_OFF_RAMRET:
  1119. enable_ret = true;
  1120. enable = false;
  1121. break;
  1122. }
  1123. /* get regulator (lazy) */
  1124. if (hwacc_regulator[hwacc_dev] == NULL) {
  1125. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  1126. hwacc_regulator_name[hwacc_dev]);
  1127. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  1128. pr_err("prcmu: failed to get supply %s\n",
  1129. hwacc_regulator_name[hwacc_dev]);
  1130. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  1131. goto out;
  1132. }
  1133. }
  1134. if (ram_retention) {
  1135. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  1136. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  1137. hwacc_ret_regulator_name[hwacc_dev]);
  1138. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  1139. pr_err("prcmu: failed to get supply %s\n",
  1140. hwacc_ret_regulator_name[hwacc_dev]);
  1141. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  1142. goto out;
  1143. }
  1144. }
  1145. }
  1146. /* set regulators */
  1147. if (ram_retention) {
  1148. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  1149. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  1150. if (r < 0) {
  1151. pr_err("prcmu_set_hwacc: ret enable failed\n");
  1152. goto out;
  1153. }
  1154. hwacc_ret_enabled[hwacc_dev] = true;
  1155. }
  1156. }
  1157. if (enable && !hwacc_enabled[hwacc_dev]) {
  1158. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  1159. if (r < 0) {
  1160. pr_err("prcmu_set_hwacc: enable failed\n");
  1161. goto out;
  1162. }
  1163. hwacc_enabled[hwacc_dev] = true;
  1164. }
  1165. if (!enable && hwacc_enabled[hwacc_dev]) {
  1166. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  1167. if (r < 0) {
  1168. pr_err("prcmu_set_hwacc: disable failed\n");
  1169. goto out;
  1170. }
  1171. hwacc_enabled[hwacc_dev] = false;
  1172. }
  1173. if (ram_retention) {
  1174. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1175. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1176. if (r < 0) {
  1177. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1178. goto out;
  1179. }
  1180. hwacc_ret_enabled[hwacc_dev] = false;
  1181. }
  1182. }
  1183. out:
  1184. return r;
  1185. }
  1186. EXPORT_SYMBOL(prcmu_set_hwacc);
  1187. /**
  1188. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1189. * @epod_id: The EPOD to set
  1190. * @epod_state: The new EPOD state
  1191. *
  1192. * This function sets the state of a EPOD (power domain). It may not be called
  1193. * from interrupt context.
  1194. */
  1195. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1196. {
  1197. int r = 0;
  1198. bool ram_retention = false;
  1199. int i;
  1200. /* check argument */
  1201. BUG_ON(epod_id >= NUM_EPOD_ID);
  1202. /* set flag if retention is possible */
  1203. switch (epod_id) {
  1204. case EPOD_ID_SVAMMDSP:
  1205. case EPOD_ID_SIAMMDSP:
  1206. case EPOD_ID_ESRAM12:
  1207. case EPOD_ID_ESRAM34:
  1208. ram_retention = true;
  1209. break;
  1210. }
  1211. /* check argument */
  1212. BUG_ON(epod_state > EPOD_STATE_ON);
  1213. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1214. /* get lock */
  1215. mutex_lock(&mb2_transfer.lock);
  1216. /* wait for mailbox */
  1217. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1218. cpu_relax();
  1219. /* fill in mailbox */
  1220. for (i = 0; i < NUM_EPOD_ID; i++)
  1221. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1222. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1223. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1224. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1225. /*
  1226. * The current firmware version does not handle errors correctly,
  1227. * and we cannot recover if there is an error.
  1228. * This is expected to change when the firmware is updated.
  1229. */
  1230. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1231. msecs_to_jiffies(20000))) {
  1232. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1233. __func__);
  1234. r = -EIO;
  1235. goto unlock_and_return;
  1236. }
  1237. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1238. r = -EIO;
  1239. unlock_and_return:
  1240. mutex_unlock(&mb2_transfer.lock);
  1241. return r;
  1242. }
  1243. /**
  1244. * prcmu_configure_auto_pm - Configure autonomous power management.
  1245. * @sleep: Configuration for ApSleep.
  1246. * @idle: Configuration for ApIdle.
  1247. */
  1248. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1249. struct prcmu_auto_pm_config *idle)
  1250. {
  1251. u32 sleep_cfg;
  1252. u32 idle_cfg;
  1253. unsigned long flags;
  1254. BUG_ON((sleep == NULL) || (idle == NULL));
  1255. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1256. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1257. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1258. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1259. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1260. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1261. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1262. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1263. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1264. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1265. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1266. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1267. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1268. /*
  1269. * The autonomous power management configuration is done through
  1270. * fields in mailbox 2, but these fields are only used as shared
  1271. * variables - i.e. there is no need to send a message.
  1272. */
  1273. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1274. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1275. mb2_transfer.auto_pm_enabled =
  1276. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1277. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1278. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1279. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1280. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1281. }
  1282. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1283. bool prcmu_is_auto_pm_enabled(void)
  1284. {
  1285. return mb2_transfer.auto_pm_enabled;
  1286. }
  1287. static int request_sysclk(bool enable)
  1288. {
  1289. int r;
  1290. unsigned long flags;
  1291. r = 0;
  1292. mutex_lock(&mb3_transfer.sysclk_lock);
  1293. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1294. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1295. cpu_relax();
  1296. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1297. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1298. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1299. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1300. /*
  1301. * The firmware only sends an ACK if we want to enable the
  1302. * SysClk, and it succeeds.
  1303. */
  1304. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1305. msecs_to_jiffies(20000))) {
  1306. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1307. __func__);
  1308. r = -EIO;
  1309. }
  1310. mutex_unlock(&mb3_transfer.sysclk_lock);
  1311. return r;
  1312. }
  1313. static int request_timclk(bool enable)
  1314. {
  1315. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1316. if (!enable)
  1317. val |= PRCM_TCR_STOP_TIMERS;
  1318. writel(val, PRCM_TCR);
  1319. return 0;
  1320. }
  1321. static int request_clock(u8 clock, bool enable)
  1322. {
  1323. u32 val;
  1324. unsigned long flags;
  1325. spin_lock_irqsave(&clk_mgt_lock, flags);
  1326. /* Grab the HW semaphore. */
  1327. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1328. cpu_relax();
  1329. val = readl(clk_mgt[clock].reg);
  1330. if (enable) {
  1331. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1332. } else {
  1333. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1334. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1335. }
  1336. writel(val, clk_mgt[clock].reg);
  1337. /* Release the HW semaphore. */
  1338. writel(0, PRCM_SEM);
  1339. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1340. return 0;
  1341. }
  1342. static int request_sga_clock(u8 clock, bool enable)
  1343. {
  1344. u32 val;
  1345. int ret;
  1346. if (enable) {
  1347. val = readl(PRCM_CGATING_BYPASS);
  1348. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1349. }
  1350. ret = request_clock(clock, enable);
  1351. if (!ret && !enable) {
  1352. val = readl(PRCM_CGATING_BYPASS);
  1353. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1354. }
  1355. return ret;
  1356. }
  1357. static inline bool plldsi_locked(void)
  1358. {
  1359. return (readl(PRCM_PLLDSI_LOCKP) &
  1360. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1361. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1362. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1363. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1364. }
  1365. static int request_plldsi(bool enable)
  1366. {
  1367. int r = 0;
  1368. u32 val;
  1369. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1370. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1371. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1372. val = readl(PRCM_PLLDSI_ENABLE);
  1373. if (enable)
  1374. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1375. else
  1376. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1377. writel(val, PRCM_PLLDSI_ENABLE);
  1378. if (enable) {
  1379. unsigned int i;
  1380. bool locked = plldsi_locked();
  1381. for (i = 10; !locked && (i > 0); --i) {
  1382. udelay(100);
  1383. locked = plldsi_locked();
  1384. }
  1385. if (locked) {
  1386. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1387. PRCM_APE_RESETN_SET);
  1388. } else {
  1389. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1390. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1391. PRCM_MMIP_LS_CLAMP_SET);
  1392. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1393. writel(val, PRCM_PLLDSI_ENABLE);
  1394. r = -EAGAIN;
  1395. }
  1396. } else {
  1397. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1398. }
  1399. return r;
  1400. }
  1401. static int request_dsiclk(u8 n, bool enable)
  1402. {
  1403. u32 val;
  1404. val = readl(PRCM_DSI_PLLOUT_SEL);
  1405. val &= ~dsiclk[n].divsel_mask;
  1406. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1407. dsiclk[n].divsel_shift);
  1408. writel(val, PRCM_DSI_PLLOUT_SEL);
  1409. return 0;
  1410. }
  1411. static int request_dsiescclk(u8 n, bool enable)
  1412. {
  1413. u32 val;
  1414. val = readl(PRCM_DSITVCLK_DIV);
  1415. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1416. writel(val, PRCM_DSITVCLK_DIV);
  1417. return 0;
  1418. }
  1419. /**
  1420. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1421. * @clock: The clock for which the request is made.
  1422. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1423. *
  1424. * This function should only be used by the clock implementation.
  1425. * Do not use it from any other place!
  1426. */
  1427. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1428. {
  1429. if (clock == PRCMU_SGACLK)
  1430. return request_sga_clock(clock, enable);
  1431. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1432. return request_clock(clock, enable);
  1433. else if (clock == PRCMU_TIMCLK)
  1434. return request_timclk(enable);
  1435. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1436. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1437. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1438. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1439. else if (clock == PRCMU_PLLDSI)
  1440. return request_plldsi(enable);
  1441. else if (clock == PRCMU_SYSCLK)
  1442. return request_sysclk(enable);
  1443. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1444. return request_pll(clock, enable);
  1445. else
  1446. return -EINVAL;
  1447. }
  1448. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1449. int branch)
  1450. {
  1451. u64 rate;
  1452. u32 val;
  1453. u32 d;
  1454. u32 div = 1;
  1455. val = readl(reg);
  1456. rate = src_rate;
  1457. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1458. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1459. if (d > 1)
  1460. div *= d;
  1461. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1462. if (d > 1)
  1463. div *= d;
  1464. if (val & PRCM_PLL_FREQ_SELDIV2)
  1465. div *= 2;
  1466. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1467. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1468. ((reg == PRCM_PLLSOC0_FREQ) ||
  1469. (reg == PRCM_PLLDDR_FREQ))))
  1470. div *= 2;
  1471. (void)do_div(rate, div);
  1472. return (unsigned long)rate;
  1473. }
  1474. #define ROOT_CLOCK_RATE 38400000
  1475. static unsigned long clock_rate(u8 clock)
  1476. {
  1477. u32 val;
  1478. u32 pllsw;
  1479. unsigned long rate = ROOT_CLOCK_RATE;
  1480. val = readl(clk_mgt[clock].reg);
  1481. if (val & PRCM_CLK_MGT_CLK38) {
  1482. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1483. rate /= 2;
  1484. return rate;
  1485. }
  1486. val |= clk_mgt[clock].pllsw;
  1487. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1488. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1489. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1490. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1491. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1492. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1493. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1494. else
  1495. return 0;
  1496. if ((clock == PRCMU_SGACLK) &&
  1497. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1498. u64 r = (rate * 10);
  1499. (void)do_div(r, 25);
  1500. return (unsigned long)r;
  1501. }
  1502. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1503. if (val)
  1504. return rate / val;
  1505. else
  1506. return 0;
  1507. }
  1508. static unsigned long dsiclk_rate(u8 n)
  1509. {
  1510. u32 divsel;
  1511. u32 div = 1;
  1512. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1513. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1514. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1515. divsel = dsiclk[n].divsel;
  1516. switch (divsel) {
  1517. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1518. div *= 2;
  1519. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1520. div *= 2;
  1521. case PRCM_DSI_PLLOUT_SEL_PHI:
  1522. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1523. PLL_RAW) / div;
  1524. default:
  1525. return 0;
  1526. }
  1527. }
  1528. static unsigned long dsiescclk_rate(u8 n)
  1529. {
  1530. u32 div;
  1531. div = readl(PRCM_DSITVCLK_DIV);
  1532. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1533. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1534. }
  1535. unsigned long prcmu_clock_rate(u8 clock)
  1536. {
  1537. if (clock < PRCMU_NUM_REG_CLOCKS)
  1538. return clock_rate(clock);
  1539. else if (clock == PRCMU_TIMCLK)
  1540. return ROOT_CLOCK_RATE / 16;
  1541. else if (clock == PRCMU_SYSCLK)
  1542. return ROOT_CLOCK_RATE;
  1543. else if (clock == PRCMU_PLLSOC0)
  1544. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1545. else if (clock == PRCMU_PLLSOC1)
  1546. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1547. else if (clock == PRCMU_PLLDDR)
  1548. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1549. else if (clock == PRCMU_PLLDSI)
  1550. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1551. PLL_RAW);
  1552. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1553. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1554. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1555. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1556. else
  1557. return 0;
  1558. }
  1559. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1560. {
  1561. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1562. return ROOT_CLOCK_RATE;
  1563. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1564. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1565. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1566. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1567. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1568. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1569. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1570. else
  1571. return 0;
  1572. }
  1573. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1574. {
  1575. u32 div;
  1576. div = (src_rate / rate);
  1577. if (div == 0)
  1578. return 1;
  1579. if (rate < (src_rate / div))
  1580. div++;
  1581. return div;
  1582. }
  1583. static long round_clock_rate(u8 clock, unsigned long rate)
  1584. {
  1585. u32 val;
  1586. u32 div;
  1587. unsigned long src_rate;
  1588. long rounded_rate;
  1589. val = readl(clk_mgt[clock].reg);
  1590. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1591. clk_mgt[clock].branch);
  1592. div = clock_divider(src_rate, rate);
  1593. if (val & PRCM_CLK_MGT_CLK38) {
  1594. if (clk_mgt[clock].clk38div) {
  1595. if (div > 2)
  1596. div = 2;
  1597. } else {
  1598. div = 1;
  1599. }
  1600. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1601. u64 r = (src_rate * 10);
  1602. (void)do_div(r, 25);
  1603. if (r <= rate)
  1604. return (unsigned long)r;
  1605. }
  1606. rounded_rate = (src_rate / min(div, (u32)31));
  1607. return rounded_rate;
  1608. }
  1609. #define MIN_PLL_VCO_RATE 600000000ULL
  1610. #define MAX_PLL_VCO_RATE 1680640000ULL
  1611. static long round_plldsi_rate(unsigned long rate)
  1612. {
  1613. long rounded_rate = 0;
  1614. unsigned long src_rate;
  1615. unsigned long rem;
  1616. u32 r;
  1617. src_rate = clock_rate(PRCMU_HDMICLK);
  1618. rem = rate;
  1619. for (r = 7; (rem > 0) && (r > 0); r--) {
  1620. u64 d;
  1621. d = (r * rate);
  1622. (void)do_div(d, src_rate);
  1623. if (d < 6)
  1624. d = 6;
  1625. else if (d > 255)
  1626. d = 255;
  1627. d *= src_rate;
  1628. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1629. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1630. continue;
  1631. (void)do_div(d, r);
  1632. if (rate < d) {
  1633. if (rounded_rate == 0)
  1634. rounded_rate = (long)d;
  1635. break;
  1636. }
  1637. if ((rate - d) < rem) {
  1638. rem = (rate - d);
  1639. rounded_rate = (long)d;
  1640. }
  1641. }
  1642. return rounded_rate;
  1643. }
  1644. static long round_dsiclk_rate(unsigned long rate)
  1645. {
  1646. u32 div;
  1647. unsigned long src_rate;
  1648. long rounded_rate;
  1649. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1650. PLL_RAW);
  1651. div = clock_divider(src_rate, rate);
  1652. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1653. return rounded_rate;
  1654. }
  1655. static long round_dsiescclk_rate(unsigned long rate)
  1656. {
  1657. u32 div;
  1658. unsigned long src_rate;
  1659. long rounded_rate;
  1660. src_rate = clock_rate(PRCMU_TVCLK);
  1661. div = clock_divider(src_rate, rate);
  1662. rounded_rate = (src_rate / min(div, (u32)255));
  1663. return rounded_rate;
  1664. }
  1665. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1666. {
  1667. if (clock < PRCMU_NUM_REG_CLOCKS)
  1668. return round_clock_rate(clock, rate);
  1669. else if (clock == PRCMU_PLLDSI)
  1670. return round_plldsi_rate(rate);
  1671. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1672. return round_dsiclk_rate(rate);
  1673. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1674. return round_dsiescclk_rate(rate);
  1675. else
  1676. return (long)prcmu_clock_rate(clock);
  1677. }
  1678. static void set_clock_rate(u8 clock, unsigned long rate)
  1679. {
  1680. u32 val;
  1681. u32 div;
  1682. unsigned long src_rate;
  1683. unsigned long flags;
  1684. spin_lock_irqsave(&clk_mgt_lock, flags);
  1685. /* Grab the HW semaphore. */
  1686. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1687. cpu_relax();
  1688. val = readl(clk_mgt[clock].reg);
  1689. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1690. clk_mgt[clock].branch);
  1691. div = clock_divider(src_rate, rate);
  1692. if (val & PRCM_CLK_MGT_CLK38) {
  1693. if (clk_mgt[clock].clk38div) {
  1694. if (div > 1)
  1695. val |= PRCM_CLK_MGT_CLK38DIV;
  1696. else
  1697. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1698. }
  1699. } else if (clock == PRCMU_SGACLK) {
  1700. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1701. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1702. if (div == 3) {
  1703. u64 r = (src_rate * 10);
  1704. (void)do_div(r, 25);
  1705. if (r <= rate) {
  1706. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1707. div = 0;
  1708. }
  1709. }
  1710. val |= min(div, (u32)31);
  1711. } else {
  1712. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1713. val |= min(div, (u32)31);
  1714. }
  1715. writel(val, clk_mgt[clock].reg);
  1716. /* Release the HW semaphore. */
  1717. writel(0, PRCM_SEM);
  1718. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1719. }
  1720. static int set_plldsi_rate(unsigned long rate)
  1721. {
  1722. unsigned long src_rate;
  1723. unsigned long rem;
  1724. u32 pll_freq = 0;
  1725. u32 r;
  1726. src_rate = clock_rate(PRCMU_HDMICLK);
  1727. rem = rate;
  1728. for (r = 7; (rem > 0) && (r > 0); r--) {
  1729. u64 d;
  1730. u64 hwrate;
  1731. d = (r * rate);
  1732. (void)do_div(d, src_rate);
  1733. if (d < 6)
  1734. d = 6;
  1735. else if (d > 255)
  1736. d = 255;
  1737. hwrate = (d * src_rate);
  1738. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1739. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1740. continue;
  1741. (void)do_div(hwrate, r);
  1742. if (rate < hwrate) {
  1743. if (pll_freq == 0)
  1744. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1745. (r << PRCM_PLL_FREQ_R_SHIFT));
  1746. break;
  1747. }
  1748. if ((rate - hwrate) < rem) {
  1749. rem = (rate - hwrate);
  1750. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1751. (r << PRCM_PLL_FREQ_R_SHIFT));
  1752. }
  1753. }
  1754. if (pll_freq == 0)
  1755. return -EINVAL;
  1756. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1757. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1758. return 0;
  1759. }
  1760. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1761. {
  1762. u32 val;
  1763. u32 div;
  1764. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1765. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1766. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1767. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1768. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1769. val = readl(PRCM_DSI_PLLOUT_SEL);
  1770. val &= ~dsiclk[n].divsel_mask;
  1771. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1772. writel(val, PRCM_DSI_PLLOUT_SEL);
  1773. }
  1774. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1775. {
  1776. u32 val;
  1777. u32 div;
  1778. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1779. val = readl(PRCM_DSITVCLK_DIV);
  1780. val &= ~dsiescclk[n].div_mask;
  1781. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1782. writel(val, PRCM_DSITVCLK_DIV);
  1783. }
  1784. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1785. {
  1786. if (clock < PRCMU_NUM_REG_CLOCKS)
  1787. set_clock_rate(clock, rate);
  1788. else if (clock == PRCMU_PLLDSI)
  1789. return set_plldsi_rate(rate);
  1790. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1791. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1792. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1793. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1794. return 0;
  1795. }
  1796. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1797. {
  1798. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1799. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1800. return -EINVAL;
  1801. mutex_lock(&mb4_transfer.lock);
  1802. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1803. cpu_relax();
  1804. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1805. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1806. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1807. writeb(DDR_PWR_STATE_ON,
  1808. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1809. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1810. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1811. wait_for_completion(&mb4_transfer.work);
  1812. mutex_unlock(&mb4_transfer.lock);
  1813. return 0;
  1814. }
  1815. int db8500_prcmu_config_hotdog(u8 threshold)
  1816. {
  1817. mutex_lock(&mb4_transfer.lock);
  1818. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1819. cpu_relax();
  1820. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1821. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1822. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1823. wait_for_completion(&mb4_transfer.work);
  1824. mutex_unlock(&mb4_transfer.lock);
  1825. return 0;
  1826. }
  1827. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1828. {
  1829. mutex_lock(&mb4_transfer.lock);
  1830. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1831. cpu_relax();
  1832. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1833. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1834. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1835. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1836. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1837. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1838. wait_for_completion(&mb4_transfer.work);
  1839. mutex_unlock(&mb4_transfer.lock);
  1840. return 0;
  1841. }
  1842. static int config_hot_period(u16 val)
  1843. {
  1844. mutex_lock(&mb4_transfer.lock);
  1845. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1846. cpu_relax();
  1847. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1848. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1849. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1850. wait_for_completion(&mb4_transfer.work);
  1851. mutex_unlock(&mb4_transfer.lock);
  1852. return 0;
  1853. }
  1854. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1855. {
  1856. if (cycles32k == 0xFFFF)
  1857. return -EINVAL;
  1858. return config_hot_period(cycles32k);
  1859. }
  1860. int db8500_prcmu_stop_temp_sense(void)
  1861. {
  1862. return config_hot_period(0xFFFF);
  1863. }
  1864. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1865. {
  1866. mutex_lock(&mb4_transfer.lock);
  1867. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1868. cpu_relax();
  1869. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1870. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1871. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1872. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1873. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1874. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1875. wait_for_completion(&mb4_transfer.work);
  1876. mutex_unlock(&mb4_transfer.lock);
  1877. return 0;
  1878. }
  1879. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1880. {
  1881. BUG_ON(num == 0 || num > 0xf);
  1882. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1883. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1884. A9WDOG_AUTO_OFF_DIS);
  1885. }
  1886. int db8500_prcmu_enable_a9wdog(u8 id)
  1887. {
  1888. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1889. }
  1890. int db8500_prcmu_disable_a9wdog(u8 id)
  1891. {
  1892. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1893. }
  1894. int db8500_prcmu_kick_a9wdog(u8 id)
  1895. {
  1896. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1897. }
  1898. /*
  1899. * timeout is 28 bit, in ms.
  1900. */
  1901. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1902. {
  1903. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1904. (id & A9WDOG_ID_MASK) |
  1905. /*
  1906. * Put the lowest 28 bits of timeout at
  1907. * offset 4. Four first bits are used for id.
  1908. */
  1909. (u8)((timeout << 4) & 0xf0),
  1910. (u8)((timeout >> 4) & 0xff),
  1911. (u8)((timeout >> 12) & 0xff),
  1912. (u8)((timeout >> 20) & 0xff));
  1913. }
  1914. /**
  1915. * prcmu_abb_read() - Read register value(s) from the ABB.
  1916. * @slave: The I2C slave address.
  1917. * @reg: The (start) register address.
  1918. * @value: The read out value(s).
  1919. * @size: The number of registers to read.
  1920. *
  1921. * Reads register value(s) from the ABB.
  1922. * @size has to be 1 for the current firmware version.
  1923. */
  1924. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1925. {
  1926. int r;
  1927. if (size != 1)
  1928. return -EINVAL;
  1929. mutex_lock(&mb5_transfer.lock);
  1930. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1931. cpu_relax();
  1932. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1933. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1934. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1935. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1936. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1937. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1938. msecs_to_jiffies(20000))) {
  1939. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1940. __func__);
  1941. r = -EIO;
  1942. } else {
  1943. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1944. }
  1945. if (!r)
  1946. *value = mb5_transfer.ack.value;
  1947. mutex_unlock(&mb5_transfer.lock);
  1948. return r;
  1949. }
  1950. /**
  1951. * prcmu_abb_write() - Write register value(s) to the ABB.
  1952. * @slave: The I2C slave address.
  1953. * @reg: The (start) register address.
  1954. * @value: The value(s) to write.
  1955. * @size: The number of registers to write.
  1956. *
  1957. * Reads register value(s) from the ABB.
  1958. * @size has to be 1 for the current firmware version.
  1959. */
  1960. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1961. {
  1962. int r;
  1963. if (size != 1)
  1964. return -EINVAL;
  1965. mutex_lock(&mb5_transfer.lock);
  1966. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1967. cpu_relax();
  1968. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1969. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1970. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1971. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1972. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1973. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1974. msecs_to_jiffies(20000))) {
  1975. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1976. __func__);
  1977. r = -EIO;
  1978. } else {
  1979. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1980. }
  1981. mutex_unlock(&mb5_transfer.lock);
  1982. return r;
  1983. }
  1984. /**
  1985. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1986. */
  1987. void prcmu_ac_wake_req(void)
  1988. {
  1989. u32 val;
  1990. u32 status;
  1991. mutex_lock(&mb0_transfer.ac_wake_lock);
  1992. val = readl(PRCM_HOSTACCESS_REQ);
  1993. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1994. goto unlock_and_return;
  1995. atomic_set(&ac_wake_req_state, 1);
  1996. retry:
  1997. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1998. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1999. msecs_to_jiffies(5000))) {
  2000. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2001. __func__);
  2002. goto unlock_and_return;
  2003. }
  2004. /*
  2005. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  2006. * As a workaround, we wait, and then check that the modem is indeed
  2007. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  2008. * register, which may not be the whole truth).
  2009. */
  2010. udelay(400);
  2011. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  2012. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  2013. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  2014. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  2015. __func__, status);
  2016. udelay(1200);
  2017. writel(val, PRCM_HOSTACCESS_REQ);
  2018. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2019. msecs_to_jiffies(5000)))
  2020. goto retry;
  2021. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  2022. __func__);
  2023. }
  2024. unlock_and_return:
  2025. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2026. }
  2027. /**
  2028. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  2029. */
  2030. void prcmu_ac_sleep_req()
  2031. {
  2032. u32 val;
  2033. mutex_lock(&mb0_transfer.ac_wake_lock);
  2034. val = readl(PRCM_HOSTACCESS_REQ);
  2035. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  2036. goto unlock_and_return;
  2037. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  2038. PRCM_HOSTACCESS_REQ);
  2039. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2040. msecs_to_jiffies(5000))) {
  2041. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2042. __func__);
  2043. }
  2044. atomic_set(&ac_wake_req_state, 0);
  2045. unlock_and_return:
  2046. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2047. }
  2048. bool db8500_prcmu_is_ac_wake_requested(void)
  2049. {
  2050. return (atomic_read(&ac_wake_req_state) != 0);
  2051. }
  2052. /**
  2053. * db8500_prcmu_system_reset - System reset
  2054. *
  2055. * Saves the reset reason code and then sets the APE_SOFTRST register which
  2056. * fires interrupt to fw
  2057. */
  2058. void db8500_prcmu_system_reset(u16 reset_code)
  2059. {
  2060. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  2061. writel(1, PRCM_APE_SOFTRST);
  2062. }
  2063. /**
  2064. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2065. *
  2066. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2067. * last restart.
  2068. */
  2069. u16 db8500_prcmu_get_reset_code(void)
  2070. {
  2071. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2072. }
  2073. /**
  2074. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2075. */
  2076. void db8500_prcmu_modem_reset(void)
  2077. {
  2078. mutex_lock(&mb1_transfer.lock);
  2079. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2080. cpu_relax();
  2081. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2082. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2083. wait_for_completion(&mb1_transfer.work);
  2084. /*
  2085. * No need to check return from PRCMU as modem should go in reset state
  2086. * This state is already managed by upper layer
  2087. */
  2088. mutex_unlock(&mb1_transfer.lock);
  2089. }
  2090. static void ack_dbb_wakeup(void)
  2091. {
  2092. unsigned long flags;
  2093. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2094. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2095. cpu_relax();
  2096. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2097. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2098. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2099. }
  2100. static inline void print_unknown_header_warning(u8 n, u8 header)
  2101. {
  2102. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2103. header, n);
  2104. }
  2105. static bool read_mailbox_0(void)
  2106. {
  2107. bool r;
  2108. u32 ev;
  2109. unsigned int n;
  2110. u8 header;
  2111. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2112. switch (header) {
  2113. case MB0H_WAKEUP_EXE:
  2114. case MB0H_WAKEUP_SLEEP:
  2115. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2116. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2117. else
  2118. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2119. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2120. complete(&mb0_transfer.ac_wake_work);
  2121. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2122. complete(&mb3_transfer.sysclk_work);
  2123. ev &= mb0_transfer.req.dbb_irqs;
  2124. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2125. if (ev & prcmu_irq_bit[n])
  2126. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2127. }
  2128. r = true;
  2129. break;
  2130. default:
  2131. print_unknown_header_warning(0, header);
  2132. r = false;
  2133. break;
  2134. }
  2135. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2136. return r;
  2137. }
  2138. static bool read_mailbox_1(void)
  2139. {
  2140. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2141. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2142. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2143. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2144. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2145. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2146. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2147. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2148. complete(&mb1_transfer.work);
  2149. return false;
  2150. }
  2151. static bool read_mailbox_2(void)
  2152. {
  2153. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2154. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2155. complete(&mb2_transfer.work);
  2156. return false;
  2157. }
  2158. static bool read_mailbox_3(void)
  2159. {
  2160. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2161. return false;
  2162. }
  2163. static bool read_mailbox_4(void)
  2164. {
  2165. u8 header;
  2166. bool do_complete = true;
  2167. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2168. switch (header) {
  2169. case MB4H_MEM_ST:
  2170. case MB4H_HOTDOG:
  2171. case MB4H_HOTMON:
  2172. case MB4H_HOT_PERIOD:
  2173. case MB4H_A9WDOG_CONF:
  2174. case MB4H_A9WDOG_EN:
  2175. case MB4H_A9WDOG_DIS:
  2176. case MB4H_A9WDOG_LOAD:
  2177. case MB4H_A9WDOG_KICK:
  2178. break;
  2179. default:
  2180. print_unknown_header_warning(4, header);
  2181. do_complete = false;
  2182. break;
  2183. }
  2184. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2185. if (do_complete)
  2186. complete(&mb4_transfer.work);
  2187. return false;
  2188. }
  2189. static bool read_mailbox_5(void)
  2190. {
  2191. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2192. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2193. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2194. complete(&mb5_transfer.work);
  2195. return false;
  2196. }
  2197. static bool read_mailbox_6(void)
  2198. {
  2199. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2200. return false;
  2201. }
  2202. static bool read_mailbox_7(void)
  2203. {
  2204. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2205. return false;
  2206. }
  2207. static bool (* const read_mailbox[NUM_MB])(void) = {
  2208. read_mailbox_0,
  2209. read_mailbox_1,
  2210. read_mailbox_2,
  2211. read_mailbox_3,
  2212. read_mailbox_4,
  2213. read_mailbox_5,
  2214. read_mailbox_6,
  2215. read_mailbox_7
  2216. };
  2217. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2218. {
  2219. u32 bits;
  2220. u8 n;
  2221. irqreturn_t r;
  2222. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2223. if (unlikely(!bits))
  2224. return IRQ_NONE;
  2225. r = IRQ_HANDLED;
  2226. for (n = 0; bits; n++) {
  2227. if (bits & MBOX_BIT(n)) {
  2228. bits -= MBOX_BIT(n);
  2229. if (read_mailbox[n]())
  2230. r = IRQ_WAKE_THREAD;
  2231. }
  2232. }
  2233. return r;
  2234. }
  2235. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2236. {
  2237. ack_dbb_wakeup();
  2238. return IRQ_HANDLED;
  2239. }
  2240. static void prcmu_mask_work(struct work_struct *work)
  2241. {
  2242. unsigned long flags;
  2243. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2244. config_wakeups();
  2245. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2246. }
  2247. static void prcmu_irq_mask(struct irq_data *d)
  2248. {
  2249. unsigned long flags;
  2250. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2251. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2252. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2253. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2254. schedule_work(&mb0_transfer.mask_work);
  2255. }
  2256. static void prcmu_irq_unmask(struct irq_data *d)
  2257. {
  2258. unsigned long flags;
  2259. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2260. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2261. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2262. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2263. schedule_work(&mb0_transfer.mask_work);
  2264. }
  2265. static void noop(struct irq_data *d)
  2266. {
  2267. }
  2268. static struct irq_chip prcmu_irq_chip = {
  2269. .name = "prcmu",
  2270. .irq_disable = prcmu_irq_mask,
  2271. .irq_ack = noop,
  2272. .irq_mask = prcmu_irq_mask,
  2273. .irq_unmask = prcmu_irq_unmask,
  2274. };
  2275. static char *fw_project_name(u8 project)
  2276. {
  2277. switch (project) {
  2278. case PRCMU_FW_PROJECT_U8500:
  2279. return "U8500";
  2280. case PRCMU_FW_PROJECT_U8500_C2:
  2281. return "U8500 C2";
  2282. case PRCMU_FW_PROJECT_U9500:
  2283. return "U9500";
  2284. case PRCMU_FW_PROJECT_U9500_C2:
  2285. return "U9500 C2";
  2286. default:
  2287. return "Unknown";
  2288. }
  2289. }
  2290. void __init db8500_prcmu_early_init(void)
  2291. {
  2292. unsigned int i;
  2293. if (cpu_is_u8500v2()) {
  2294. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2295. if (tcpm_base != NULL) {
  2296. u32 version;
  2297. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2298. fw_info.version.project = version & 0xFF;
  2299. fw_info.version.api_version = (version >> 8) & 0xFF;
  2300. fw_info.version.func_version = (version >> 16) & 0xFF;
  2301. fw_info.version.errata = (version >> 24) & 0xFF;
  2302. fw_info.valid = true;
  2303. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2304. fw_project_name(fw_info.version.project),
  2305. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2306. (version >> 24) & 0xFF);
  2307. iounmap(tcpm_base);
  2308. }
  2309. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2310. } else {
  2311. pr_err("prcmu: Unsupported chip version\n");
  2312. BUG();
  2313. }
  2314. spin_lock_init(&mb0_transfer.lock);
  2315. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2316. mutex_init(&mb0_transfer.ac_wake_lock);
  2317. init_completion(&mb0_transfer.ac_wake_work);
  2318. mutex_init(&mb1_transfer.lock);
  2319. init_completion(&mb1_transfer.work);
  2320. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2321. mutex_init(&mb2_transfer.lock);
  2322. init_completion(&mb2_transfer.work);
  2323. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2324. spin_lock_init(&mb3_transfer.lock);
  2325. mutex_init(&mb3_transfer.sysclk_lock);
  2326. init_completion(&mb3_transfer.sysclk_work);
  2327. mutex_init(&mb4_transfer.lock);
  2328. init_completion(&mb4_transfer.work);
  2329. mutex_init(&mb5_transfer.lock);
  2330. init_completion(&mb5_transfer.work);
  2331. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2332. /* Initalize irqs. */
  2333. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  2334. unsigned int irq;
  2335. irq = IRQ_PRCMU_BASE + i;
  2336. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  2337. handle_simple_irq);
  2338. set_irq_flags(irq, IRQF_VALID);
  2339. }
  2340. }
  2341. static void __init init_prcm_registers(void)
  2342. {
  2343. u32 val;
  2344. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2345. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2346. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2347. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2348. }
  2349. /*
  2350. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2351. */
  2352. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2353. REGULATOR_SUPPLY("v-ape", NULL),
  2354. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2355. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2356. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2357. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2358. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2359. REGULATOR_SUPPLY("vcore", "sdi0"),
  2360. REGULATOR_SUPPLY("vcore", "sdi1"),
  2361. REGULATOR_SUPPLY("vcore", "sdi2"),
  2362. REGULATOR_SUPPLY("vcore", "sdi3"),
  2363. REGULATOR_SUPPLY("vcore", "sdi4"),
  2364. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2365. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2366. /* "v-uart" changed to "vcore" in the mainline kernel */
  2367. REGULATOR_SUPPLY("vcore", "uart0"),
  2368. REGULATOR_SUPPLY("vcore", "uart1"),
  2369. REGULATOR_SUPPLY("vcore", "uart2"),
  2370. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2371. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2372. };
  2373. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2374. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2375. /* AV8100 regulator */
  2376. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2377. };
  2378. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2379. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2380. REGULATOR_SUPPLY("vsupply", "mcde"),
  2381. };
  2382. /* SVA MMDSP regulator switch */
  2383. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2384. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2385. };
  2386. /* SVA pipe regulator switch */
  2387. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2388. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2389. };
  2390. /* SIA MMDSP regulator switch */
  2391. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2392. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2393. };
  2394. /* SIA pipe regulator switch */
  2395. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2396. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2397. };
  2398. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2399. REGULATOR_SUPPLY("v-mali", NULL),
  2400. };
  2401. /* ESRAM1 and 2 regulator switch */
  2402. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2403. REGULATOR_SUPPLY("esram12", "cm_control"),
  2404. };
  2405. /* ESRAM3 and 4 regulator switch */
  2406. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2407. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2408. REGULATOR_SUPPLY("esram34", "cm_control"),
  2409. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2410. };
  2411. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2412. [DB8500_REGULATOR_VAPE] = {
  2413. .constraints = {
  2414. .name = "db8500-vape",
  2415. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2416. },
  2417. .consumer_supplies = db8500_vape_consumers,
  2418. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2419. },
  2420. [DB8500_REGULATOR_VARM] = {
  2421. .constraints = {
  2422. .name = "db8500-varm",
  2423. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2424. },
  2425. },
  2426. [DB8500_REGULATOR_VMODEM] = {
  2427. .constraints = {
  2428. .name = "db8500-vmodem",
  2429. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2430. },
  2431. },
  2432. [DB8500_REGULATOR_VPLL] = {
  2433. .constraints = {
  2434. .name = "db8500-vpll",
  2435. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2436. },
  2437. },
  2438. [DB8500_REGULATOR_VSMPS1] = {
  2439. .constraints = {
  2440. .name = "db8500-vsmps1",
  2441. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2442. },
  2443. },
  2444. [DB8500_REGULATOR_VSMPS2] = {
  2445. .constraints = {
  2446. .name = "db8500-vsmps2",
  2447. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2448. },
  2449. .consumer_supplies = db8500_vsmps2_consumers,
  2450. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2451. },
  2452. [DB8500_REGULATOR_VSMPS3] = {
  2453. .constraints = {
  2454. .name = "db8500-vsmps3",
  2455. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2456. },
  2457. },
  2458. [DB8500_REGULATOR_VRF1] = {
  2459. .constraints = {
  2460. .name = "db8500-vrf1",
  2461. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2462. },
  2463. },
  2464. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2465. /* dependency to u8500-vape is handled outside regulator framework */
  2466. .constraints = {
  2467. .name = "db8500-sva-mmdsp",
  2468. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2469. },
  2470. .consumer_supplies = db8500_svammdsp_consumers,
  2471. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2472. },
  2473. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2474. .constraints = {
  2475. /* "ret" means "retention" */
  2476. .name = "db8500-sva-mmdsp-ret",
  2477. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2478. },
  2479. },
  2480. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2481. /* dependency to u8500-vape is handled outside regulator framework */
  2482. .constraints = {
  2483. .name = "db8500-sva-pipe",
  2484. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2485. },
  2486. .consumer_supplies = db8500_svapipe_consumers,
  2487. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2488. },
  2489. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2490. /* dependency to u8500-vape is handled outside regulator framework */
  2491. .constraints = {
  2492. .name = "db8500-sia-mmdsp",
  2493. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2494. },
  2495. .consumer_supplies = db8500_siammdsp_consumers,
  2496. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2497. },
  2498. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2499. .constraints = {
  2500. .name = "db8500-sia-mmdsp-ret",
  2501. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2502. },
  2503. },
  2504. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2505. /* dependency to u8500-vape is handled outside regulator framework */
  2506. .constraints = {
  2507. .name = "db8500-sia-pipe",
  2508. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2509. },
  2510. .consumer_supplies = db8500_siapipe_consumers,
  2511. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2512. },
  2513. [DB8500_REGULATOR_SWITCH_SGA] = {
  2514. .supply_regulator = "db8500-vape",
  2515. .constraints = {
  2516. .name = "db8500-sga",
  2517. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2518. },
  2519. .consumer_supplies = db8500_sga_consumers,
  2520. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2521. },
  2522. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2523. .supply_regulator = "db8500-vape",
  2524. .constraints = {
  2525. .name = "db8500-b2r2-mcde",
  2526. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2527. },
  2528. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2529. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2530. },
  2531. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2532. /*
  2533. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2534. * no need to hold Vape
  2535. */
  2536. .constraints = {
  2537. .name = "db8500-esram12",
  2538. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2539. },
  2540. .consumer_supplies = db8500_esram12_consumers,
  2541. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2542. },
  2543. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2544. .constraints = {
  2545. .name = "db8500-esram12-ret",
  2546. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2547. },
  2548. },
  2549. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2550. /*
  2551. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2552. * no need to hold Vape
  2553. */
  2554. .constraints = {
  2555. .name = "db8500-esram34",
  2556. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2557. },
  2558. .consumer_supplies = db8500_esram34_consumers,
  2559. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2560. },
  2561. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2562. .constraints = {
  2563. .name = "db8500-esram34-ret",
  2564. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2565. },
  2566. },
  2567. };
  2568. static struct mfd_cell db8500_prcmu_devs[] = {
  2569. {
  2570. .name = "db8500-prcmu-regulators",
  2571. .platform_data = &db8500_regulators,
  2572. .pdata_size = sizeof(db8500_regulators),
  2573. },
  2574. {
  2575. .name = "cpufreq-u8500",
  2576. },
  2577. };
  2578. /**
  2579. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2580. *
  2581. */
  2582. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2583. {
  2584. int err = 0;
  2585. if (ux500_is_svp())
  2586. return -ENODEV;
  2587. init_prcm_registers();
  2588. /* Clean up the mailbox interrupts after pre-kernel code. */
  2589. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2590. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2591. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2592. if (err < 0) {
  2593. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2594. err = -EBUSY;
  2595. goto no_irq_return;
  2596. }
  2597. if (cpu_is_u8500v20_or_later())
  2598. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2599. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2600. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2601. 0);
  2602. if (err)
  2603. pr_err("prcmu: Failed to add subdevices\n");
  2604. else
  2605. pr_info("DB8500 PRCMU initialized\n");
  2606. no_irq_return:
  2607. return err;
  2608. }
  2609. static struct platform_driver db8500_prcmu_driver = {
  2610. .driver = {
  2611. .name = "db8500-prcmu",
  2612. .owner = THIS_MODULE,
  2613. },
  2614. };
  2615. static int __init db8500_prcmu_init(void)
  2616. {
  2617. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2618. }
  2619. arch_initcall(db8500_prcmu_init);
  2620. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2621. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2622. MODULE_LICENSE("GPL v2");