amd64_edac.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /* Lookup table for all possible MC control instances */
  14. struct amd64_pvt;
  15. static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
  16. static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
  17. /*
  18. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  19. * later.
  20. */
  21. static int ddr2_dbam_revCG[] = {
  22. [0] = 32,
  23. [1] = 64,
  24. [2] = 128,
  25. [3] = 256,
  26. [4] = 512,
  27. [5] = 1024,
  28. [6] = 2048,
  29. };
  30. static int ddr2_dbam_revD[] = {
  31. [0] = 32,
  32. [1] = 64,
  33. [2 ... 3] = 128,
  34. [4] = 256,
  35. [5] = 512,
  36. [6] = 256,
  37. [7] = 512,
  38. [8 ... 9] = 1024,
  39. [10] = 2048,
  40. };
  41. static int ddr2_dbam[] = { [0] = 128,
  42. [1] = 256,
  43. [2 ... 4] = 512,
  44. [5 ... 6] = 1024,
  45. [7 ... 8] = 2048,
  46. [9 ... 10] = 4096,
  47. [11] = 8192,
  48. };
  49. static int ddr3_dbam[] = { [0] = -1,
  50. [1] = 256,
  51. [2] = 512,
  52. [3 ... 4] = -1,
  53. [5 ... 6] = 1024,
  54. [7 ... 8] = 2048,
  55. [9 ... 10] = 4096,
  56. [11] = 8192,
  57. };
  58. /*
  59. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  60. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  61. * or higher value'.
  62. *
  63. *FIXME: Produce a better mapping/linearisation.
  64. */
  65. struct scrubrate scrubrates[] = {
  66. { 0x01, 1600000000UL},
  67. { 0x02, 800000000UL},
  68. { 0x03, 400000000UL},
  69. { 0x04, 200000000UL},
  70. { 0x05, 100000000UL},
  71. { 0x06, 50000000UL},
  72. { 0x07, 25000000UL},
  73. { 0x08, 12284069UL},
  74. { 0x09, 6274509UL},
  75. { 0x0A, 3121951UL},
  76. { 0x0B, 1560975UL},
  77. { 0x0C, 781440UL},
  78. { 0x0D, 390720UL},
  79. { 0x0E, 195300UL},
  80. { 0x0F, 97650UL},
  81. { 0x10, 48854UL},
  82. { 0x11, 24427UL},
  83. { 0x12, 12213UL},
  84. { 0x13, 6101UL},
  85. { 0x14, 3051UL},
  86. { 0x15, 1523UL},
  87. { 0x16, 761UL},
  88. { 0x00, 0UL}, /* scrubbing off */
  89. };
  90. /*
  91. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  92. * hardware and can involve L2 cache, dcache as well as the main memory. With
  93. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  94. * functionality.
  95. *
  96. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  97. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  98. * bytes/sec for the setting.
  99. *
  100. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  101. * other archs, we might not have access to the caches directly.
  102. */
  103. /*
  104. * scan the scrub rate mapping table for a close or matching bandwidth value to
  105. * issue. If requested is too big, then use last maximum value found.
  106. */
  107. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  108. u32 min_scrubrate)
  109. {
  110. u32 scrubval;
  111. int i;
  112. /*
  113. * map the configured rate (new_bw) to a value specific to the AMD64
  114. * memory controller and apply to register. Search for the first
  115. * bandwidth entry that is greater or equal than the setting requested
  116. * and program that. If at last entry, turn off DRAM scrubbing.
  117. */
  118. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  119. /*
  120. * skip scrub rates which aren't recommended
  121. * (see F10 BKDG, F3x58)
  122. */
  123. if (scrubrates[i].scrubval < min_scrubrate)
  124. continue;
  125. if (scrubrates[i].bandwidth <= new_bw)
  126. break;
  127. /*
  128. * if no suitable bandwidth found, turn off DRAM scrubbing
  129. * entirely by falling back to the last element in the
  130. * scrubrates array.
  131. */
  132. }
  133. scrubval = scrubrates[i].scrubval;
  134. if (scrubval)
  135. edac_printk(KERN_DEBUG, EDAC_MC,
  136. "Setting scrub rate bandwidth: %u\n",
  137. scrubrates[i].bandwidth);
  138. else
  139. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  140. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  141. return 0;
  142. }
  143. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth)
  144. {
  145. struct amd64_pvt *pvt = mci->pvt_info;
  146. u32 min_scrubrate = 0x0;
  147. switch (boot_cpu_data.x86) {
  148. case 0xf:
  149. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  150. break;
  151. case 0x10:
  152. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  153. break;
  154. default:
  155. amd64_printk(KERN_ERR, "Unsupported family!\n");
  156. return -EINVAL;
  157. }
  158. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth,
  159. min_scrubrate);
  160. }
  161. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  162. {
  163. struct amd64_pvt *pvt = mci->pvt_info;
  164. u32 scrubval = 0;
  165. int status = -1, i;
  166. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  167. scrubval = scrubval & 0x001F;
  168. edac_printk(KERN_DEBUG, EDAC_MC,
  169. "pci-read, sdram scrub control value: %d \n", scrubval);
  170. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  171. if (scrubrates[i].scrubval == scrubval) {
  172. *bw = scrubrates[i].bandwidth;
  173. status = 0;
  174. break;
  175. }
  176. }
  177. return status;
  178. }
  179. /* Map from a CSROW entry to the mask entry that operates on it */
  180. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  181. {
  182. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
  183. return csrow;
  184. else
  185. return csrow >> 1;
  186. }
  187. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  188. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  189. {
  190. if (dct == 0)
  191. return pvt->dcsb0[csrow];
  192. else
  193. return pvt->dcsb1[csrow];
  194. }
  195. /*
  196. * Return the 'mask' address the i'th CS entry. This function is needed because
  197. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  198. * different.
  199. */
  200. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  201. {
  202. if (dct == 0)
  203. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  204. else
  205. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  206. }
  207. /*
  208. * In *base and *limit, pass back the full 40-bit base and limit physical
  209. * addresses for the node given by node_id. This information is obtained from
  210. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  211. * base and limit addresses are of type SysAddr, as defined at the start of
  212. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  213. * in the address range they represent.
  214. */
  215. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  216. u64 *base, u64 *limit)
  217. {
  218. *base = pvt->dram_base[node_id];
  219. *limit = pvt->dram_limit[node_id];
  220. }
  221. /*
  222. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  223. * with node_id
  224. */
  225. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  226. u64 sys_addr, int node_id)
  227. {
  228. u64 base, limit, addr;
  229. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  230. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  231. * all ones if the most significant implemented address bit is 1.
  232. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  233. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  234. * Application Programming.
  235. */
  236. addr = sys_addr & 0x000000ffffffffffull;
  237. return (addr >= base) && (addr <= limit);
  238. }
  239. /*
  240. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  241. * mem_ctl_info structure for the node that the SysAddr maps to.
  242. *
  243. * On failure, return NULL.
  244. */
  245. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  246. u64 sys_addr)
  247. {
  248. struct amd64_pvt *pvt;
  249. int node_id;
  250. u32 intlv_en, bits;
  251. /*
  252. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  253. * 3.4.4.2) registers to map the SysAddr to a node ID.
  254. */
  255. pvt = mci->pvt_info;
  256. /*
  257. * The value of this field should be the same for all DRAM Base
  258. * registers. Therefore we arbitrarily choose to read it from the
  259. * register for node 0.
  260. */
  261. intlv_en = pvt->dram_IntlvEn[0];
  262. if (intlv_en == 0) {
  263. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  264. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  265. goto found;
  266. }
  267. goto err_no_match;
  268. }
  269. if (unlikely((intlv_en != 0x01) &&
  270. (intlv_en != 0x03) &&
  271. (intlv_en != 0x07))) {
  272. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  273. "IntlvEn field of DRAM Base Register for node 0: "
  274. "this probably indicates a BIOS bug.\n", intlv_en);
  275. return NULL;
  276. }
  277. bits = (((u32) sys_addr) >> 12) & intlv_en;
  278. for (node_id = 0; ; ) {
  279. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  280. break; /* intlv_sel field matches */
  281. if (++node_id >= DRAM_REG_COUNT)
  282. goto err_no_match;
  283. }
  284. /* sanity test for sys_addr */
  285. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  286. amd64_printk(KERN_WARNING,
  287. "%s(): sys_addr 0x%llx falls outside base/limit "
  288. "address range for node %d with node interleaving "
  289. "enabled.\n",
  290. __func__, sys_addr, node_id);
  291. return NULL;
  292. }
  293. found:
  294. return edac_mc_find(node_id);
  295. err_no_match:
  296. debugf2("sys_addr 0x%lx doesn't match any node\n",
  297. (unsigned long)sys_addr);
  298. return NULL;
  299. }
  300. /*
  301. * Extract the DRAM CS base address from selected csrow register.
  302. */
  303. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  304. {
  305. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  306. pvt->dcs_shift;
  307. }
  308. /*
  309. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  310. */
  311. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  312. {
  313. u64 dcsm_bits, other_bits;
  314. u64 mask;
  315. /* Extract bits from DRAM CS Mask. */
  316. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  317. other_bits = pvt->dcsm_mask;
  318. other_bits = ~(other_bits << pvt->dcs_shift);
  319. /*
  320. * The extracted bits from DCSM belong in the spaces represented by
  321. * the cleared bits in other_bits.
  322. */
  323. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  324. return mask;
  325. }
  326. /*
  327. * @input_addr is an InputAddr associated with the node given by mci. Return the
  328. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  329. */
  330. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  331. {
  332. struct amd64_pvt *pvt;
  333. int csrow;
  334. u64 base, mask;
  335. pvt = mci->pvt_info;
  336. /*
  337. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  338. * base/mask register pair, test the condition shown near the start of
  339. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  340. */
  341. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  342. /* This DRAM chip select is disabled on this node */
  343. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  344. continue;
  345. base = base_from_dct_base(pvt, csrow);
  346. mask = ~mask_from_dct_mask(pvt, csrow);
  347. if ((input_addr & mask) == (base & mask)) {
  348. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  349. (unsigned long)input_addr, csrow,
  350. pvt->mc_node_id);
  351. return csrow;
  352. }
  353. }
  354. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  355. (unsigned long)input_addr, pvt->mc_node_id);
  356. return -1;
  357. }
  358. /*
  359. * Return the base value defined by the DRAM Base register for the node
  360. * represented by mci. This function returns the full 40-bit value despite the
  361. * fact that the register only stores bits 39-24 of the value. See section
  362. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  363. */
  364. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  365. {
  366. struct amd64_pvt *pvt = mci->pvt_info;
  367. return pvt->dram_base[pvt->mc_node_id];
  368. }
  369. /*
  370. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  371. * for the node represented by mci. Info is passed back in *hole_base,
  372. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  373. * info is invalid. Info may be invalid for either of the following reasons:
  374. *
  375. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  376. * Address Register does not exist.
  377. *
  378. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  379. * indicating that its contents are not valid.
  380. *
  381. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  382. * complete 32-bit values despite the fact that the bitfields in the DHAR
  383. * only represent bits 31-24 of the base and offset values.
  384. */
  385. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  386. u64 *hole_offset, u64 *hole_size)
  387. {
  388. struct amd64_pvt *pvt = mci->pvt_info;
  389. u64 base;
  390. /* only revE and later have the DRAM Hole Address Register */
  391. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  392. debugf1(" revision %d for node %d does not support DHAR\n",
  393. pvt->ext_model, pvt->mc_node_id);
  394. return 1;
  395. }
  396. /* only valid for Fam10h */
  397. if (boot_cpu_data.x86 == 0x10 &&
  398. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  399. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  400. return 1;
  401. }
  402. if ((pvt->dhar & DHAR_VALID) == 0) {
  403. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  404. pvt->mc_node_id);
  405. return 1;
  406. }
  407. /* This node has Memory Hoisting */
  408. /* +------------------+--------------------+--------------------+-----
  409. * | memory | DRAM hole | relocated |
  410. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  411. * | | | DRAM hole |
  412. * | | | [0x100000000, |
  413. * | | | (0x100000000+ |
  414. * | | | (0xffffffff-x))] |
  415. * +------------------+--------------------+--------------------+-----
  416. *
  417. * Above is a diagram of physical memory showing the DRAM hole and the
  418. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  419. * starts at address x (the base address) and extends through address
  420. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  421. * addresses in the hole so that they start at 0x100000000.
  422. */
  423. base = dhar_base(pvt->dhar);
  424. *hole_base = base;
  425. *hole_size = (0x1ull << 32) - base;
  426. if (boot_cpu_data.x86 > 0xf)
  427. *hole_offset = f10_dhar_offset(pvt->dhar);
  428. else
  429. *hole_offset = k8_dhar_offset(pvt->dhar);
  430. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  431. pvt->mc_node_id, (unsigned long)*hole_base,
  432. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  433. return 0;
  434. }
  435. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  436. /*
  437. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  438. * assumed that sys_addr maps to the node given by mci.
  439. *
  440. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  441. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  442. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  443. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  444. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  445. * These parts of the documentation are unclear. I interpret them as follows:
  446. *
  447. * When node n receives a SysAddr, it processes the SysAddr as follows:
  448. *
  449. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  450. * Limit registers for node n. If the SysAddr is not within the range
  451. * specified by the base and limit values, then node n ignores the Sysaddr
  452. * (since it does not map to node n). Otherwise continue to step 2 below.
  453. *
  454. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  455. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  456. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  457. * hole. If not, skip to step 3 below. Else get the value of the
  458. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  459. * offset defined by this value from the SysAddr.
  460. *
  461. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  462. * Base register for node n. To obtain the DramAddr, subtract the base
  463. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  464. */
  465. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  466. {
  467. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  468. int ret = 0;
  469. dram_base = get_dram_base(mci);
  470. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  471. &hole_size);
  472. if (!ret) {
  473. if ((sys_addr >= (1ull << 32)) &&
  474. (sys_addr < ((1ull << 32) + hole_size))) {
  475. /* use DHAR to translate SysAddr to DramAddr */
  476. dram_addr = sys_addr - hole_offset;
  477. debugf2("using DHAR to translate SysAddr 0x%lx to "
  478. "DramAddr 0x%lx\n",
  479. (unsigned long)sys_addr,
  480. (unsigned long)dram_addr);
  481. return dram_addr;
  482. }
  483. }
  484. /*
  485. * Translate the SysAddr to a DramAddr as shown near the start of
  486. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  487. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  488. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  489. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  490. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  491. * Programmer's Manual Volume 1 Application Programming.
  492. */
  493. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  494. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  495. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  496. (unsigned long)dram_addr);
  497. return dram_addr;
  498. }
  499. /*
  500. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  501. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  502. * for node interleaving.
  503. */
  504. static int num_node_interleave_bits(unsigned intlv_en)
  505. {
  506. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  507. int n;
  508. BUG_ON(intlv_en > 7);
  509. n = intlv_shift_table[intlv_en];
  510. return n;
  511. }
  512. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  513. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  514. {
  515. struct amd64_pvt *pvt;
  516. int intlv_shift;
  517. u64 input_addr;
  518. pvt = mci->pvt_info;
  519. /*
  520. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  521. * concerning translating a DramAddr to an InputAddr.
  522. */
  523. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  524. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  525. (dram_addr & 0xfff);
  526. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  527. intlv_shift, (unsigned long)dram_addr,
  528. (unsigned long)input_addr);
  529. return input_addr;
  530. }
  531. /*
  532. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  533. * assumed that @sys_addr maps to the node given by mci.
  534. */
  535. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  536. {
  537. u64 input_addr;
  538. input_addr =
  539. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  540. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  541. (unsigned long)sys_addr, (unsigned long)input_addr);
  542. return input_addr;
  543. }
  544. /*
  545. * @input_addr is an InputAddr associated with the node represented by mci.
  546. * Translate @input_addr to a DramAddr and return the result.
  547. */
  548. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  549. {
  550. struct amd64_pvt *pvt;
  551. int node_id, intlv_shift;
  552. u64 bits, dram_addr;
  553. u32 intlv_sel;
  554. /*
  555. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  556. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  557. * this procedure. When translating from a DramAddr to an InputAddr, the
  558. * bits used for node interleaving are discarded. Here we recover these
  559. * bits from the IntlvSel field of the DRAM Limit register (section
  560. * 3.4.4.2) for the node that input_addr is associated with.
  561. */
  562. pvt = mci->pvt_info;
  563. node_id = pvt->mc_node_id;
  564. BUG_ON((node_id < 0) || (node_id > 7));
  565. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  566. if (intlv_shift == 0) {
  567. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  568. "same value\n", (unsigned long)input_addr);
  569. return input_addr;
  570. }
  571. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  572. (input_addr & 0xfff);
  573. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  574. dram_addr = bits + (intlv_sel << 12);
  575. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  576. "(%d node interleave bits)\n", (unsigned long)input_addr,
  577. (unsigned long)dram_addr, intlv_shift);
  578. return dram_addr;
  579. }
  580. /*
  581. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  582. * @dram_addr to a SysAddr.
  583. */
  584. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  585. {
  586. struct amd64_pvt *pvt = mci->pvt_info;
  587. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  588. int ret = 0;
  589. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  590. &hole_size);
  591. if (!ret) {
  592. if ((dram_addr >= hole_base) &&
  593. (dram_addr < (hole_base + hole_size))) {
  594. sys_addr = dram_addr + hole_offset;
  595. debugf1("using DHAR to translate DramAddr 0x%lx to "
  596. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  597. (unsigned long)sys_addr);
  598. return sys_addr;
  599. }
  600. }
  601. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  602. sys_addr = dram_addr + base;
  603. /*
  604. * The sys_addr we have computed up to this point is a 40-bit value
  605. * because the k8 deals with 40-bit values. However, the value we are
  606. * supposed to return is a full 64-bit physical address. The AMD
  607. * x86-64 architecture specifies that the most significant implemented
  608. * address bit through bit 63 of a physical address must be either all
  609. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  610. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  611. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  612. * Programming.
  613. */
  614. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  615. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  616. pvt->mc_node_id, (unsigned long)dram_addr,
  617. (unsigned long)sys_addr);
  618. return sys_addr;
  619. }
  620. /*
  621. * @input_addr is an InputAddr associated with the node given by mci. Translate
  622. * @input_addr to a SysAddr.
  623. */
  624. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  625. u64 input_addr)
  626. {
  627. return dram_addr_to_sys_addr(mci,
  628. input_addr_to_dram_addr(mci, input_addr));
  629. }
  630. /*
  631. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  632. * Pass back these values in *input_addr_min and *input_addr_max.
  633. */
  634. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  635. u64 *input_addr_min, u64 *input_addr_max)
  636. {
  637. struct amd64_pvt *pvt;
  638. u64 base, mask;
  639. pvt = mci->pvt_info;
  640. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  641. base = base_from_dct_base(pvt, csrow);
  642. mask = mask_from_dct_mask(pvt, csrow);
  643. *input_addr_min = base & ~mask;
  644. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  645. }
  646. /* Map the Error address to a PAGE and PAGE OFFSET. */
  647. static inline void error_address_to_page_and_offset(u64 error_address,
  648. u32 *page, u32 *offset)
  649. {
  650. *page = (u32) (error_address >> PAGE_SHIFT);
  651. *offset = ((u32) error_address) & ~PAGE_MASK;
  652. }
  653. /*
  654. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  655. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  656. * of a node that detected an ECC memory error. mci represents the node that
  657. * the error address maps to (possibly different from the node that detected
  658. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  659. * error.
  660. */
  661. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  662. {
  663. int csrow;
  664. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  665. if (csrow == -1)
  666. amd64_mc_printk(mci, KERN_ERR,
  667. "Failed to translate InputAddr to csrow for "
  668. "address 0x%lx\n", (unsigned long)sys_addr);
  669. return csrow;
  670. }
  671. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  672. static u16 extract_syndrome(struct err_regs *err)
  673. {
  674. return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
  675. }
  676. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  677. {
  678. if (boot_cpu_data.x86 == 0x10)
  679. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  680. else if (boot_cpu_data.x86 == 0xf)
  681. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  682. (pvt->ext_model >= K8_REV_F) ?
  683. "Rev F or later" : "Rev E or earlier");
  684. else
  685. /* we'll hardly ever ever get here */
  686. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  687. }
  688. /*
  689. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  690. * are ECC capable.
  691. */
  692. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  693. {
  694. int bit;
  695. enum dev_type edac_cap = EDAC_FLAG_NONE;
  696. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  697. ? 19
  698. : 17;
  699. if (pvt->dclr0 & BIT(bit))
  700. edac_cap = EDAC_FLAG_SECDED;
  701. return edac_cap;
  702. }
  703. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  704. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  705. {
  706. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  707. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  708. (dclr & BIT(16)) ? "un" : "",
  709. (dclr & BIT(19)) ? "yes" : "no");
  710. debugf1(" PAR/ERR parity: %s\n",
  711. (dclr & BIT(8)) ? "enabled" : "disabled");
  712. debugf1(" DCT 128bit mode width: %s\n",
  713. (dclr & BIT(11)) ? "128b" : "64b");
  714. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  715. (dclr & BIT(12)) ? "yes" : "no",
  716. (dclr & BIT(13)) ? "yes" : "no",
  717. (dclr & BIT(14)) ? "yes" : "no",
  718. (dclr & BIT(15)) ? "yes" : "no");
  719. }
  720. /* Display and decode various NB registers for debug purposes. */
  721. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  722. {
  723. int ganged;
  724. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  725. debugf1(" NB two channel DRAM capable: %s\n",
  726. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  727. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  728. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  729. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  730. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  731. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  732. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  733. "offset: 0x%08x\n",
  734. pvt->dhar,
  735. dhar_base(pvt->dhar),
  736. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
  737. : f10_dhar_offset(pvt->dhar));
  738. debugf1(" DramHoleValid: %s\n",
  739. (pvt->dhar & DHAR_VALID) ? "yes" : "no");
  740. /* everything below this point is Fam10h and above */
  741. if (boot_cpu_data.x86 == 0xf) {
  742. amd64_debug_display_dimm_sizes(0, pvt);
  743. return;
  744. }
  745. amd64_printk(KERN_INFO, "using %s syndromes.\n",
  746. ((pvt->syn_type == 8) ? "x8" : "x4"));
  747. /* Only if NOT ganged does dclr1 have valid info */
  748. if (!dct_ganging_enabled(pvt))
  749. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  750. /*
  751. * Determine if ganged and then dump memory sizes for first controller,
  752. * and if NOT ganged dump info for 2nd controller.
  753. */
  754. ganged = dct_ganging_enabled(pvt);
  755. amd64_debug_display_dimm_sizes(0, pvt);
  756. if (!ganged)
  757. amd64_debug_display_dimm_sizes(1, pvt);
  758. }
  759. /* Read in both of DBAM registers */
  760. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  761. {
  762. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
  763. if (boot_cpu_data.x86 >= 0x10)
  764. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
  765. }
  766. /*
  767. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  768. *
  769. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  770. * set the shift factor for the DCSB and DCSM values.
  771. *
  772. * ->dcs_mask_notused, RevE:
  773. *
  774. * To find the max InputAddr for the csrow, start with the base address and set
  775. * all bits that are "don't care" bits in the test at the start of section
  776. * 3.5.4 (p. 84).
  777. *
  778. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  779. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  780. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  781. * gaps.
  782. *
  783. * ->dcs_mask_notused, RevF and later:
  784. *
  785. * To find the max InputAddr for the csrow, start with the base address and set
  786. * all bits that are "don't care" bits in the test at the start of NPT section
  787. * 4.5.4 (p. 87).
  788. *
  789. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  790. * between bit ranges [36:27] and [21:13].
  791. *
  792. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  793. * which are all bits in the above-mentioned gaps.
  794. */
  795. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  796. {
  797. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  798. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  799. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  800. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  801. pvt->dcs_shift = REV_E_DCS_SHIFT;
  802. pvt->cs_count = 8;
  803. pvt->num_dcsm = 8;
  804. } else {
  805. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  806. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  807. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  808. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  809. pvt->cs_count = 8;
  810. pvt->num_dcsm = 4;
  811. }
  812. }
  813. /*
  814. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  815. */
  816. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  817. {
  818. int cs, reg;
  819. amd64_set_dct_base_and_mask(pvt);
  820. for (cs = 0; cs < pvt->cs_count; cs++) {
  821. reg = K8_DCSB0 + (cs * 4);
  822. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
  823. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  824. cs, pvt->dcsb0[cs], reg);
  825. /* If DCT are NOT ganged, then read in DCT1's base */
  826. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  827. reg = F10_DCSB1 + (cs * 4);
  828. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  829. &pvt->dcsb1[cs]))
  830. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  831. cs, pvt->dcsb1[cs], reg);
  832. } else {
  833. pvt->dcsb1[cs] = 0;
  834. }
  835. }
  836. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  837. reg = K8_DCSM0 + (cs * 4);
  838. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
  839. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  840. cs, pvt->dcsm0[cs], reg);
  841. /* If DCT are NOT ganged, then read in DCT1's mask */
  842. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  843. reg = F10_DCSM1 + (cs * 4);
  844. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  845. &pvt->dcsm1[cs]))
  846. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  847. cs, pvt->dcsm1[cs], reg);
  848. } else {
  849. pvt->dcsm1[cs] = 0;
  850. }
  851. }
  852. }
  853. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  854. {
  855. enum mem_type type;
  856. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  857. if (pvt->dchr0 & DDR3_MODE)
  858. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  859. else
  860. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  861. } else {
  862. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  863. }
  864. debugf1(" Memory type is: %s\n", edac_mem_types[type]);
  865. return type;
  866. }
  867. /*
  868. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  869. * and the later RevF memory controllers (DDR vs DDR2)
  870. *
  871. * Return:
  872. * number of memory channels in operation
  873. * Pass back:
  874. * contents of the DCL0_LOW register
  875. */
  876. static int k8_early_channel_count(struct amd64_pvt *pvt)
  877. {
  878. int flag, err = 0;
  879. err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  880. if (err)
  881. return err;
  882. if (pvt->ext_model >= K8_REV_F)
  883. /* RevF (NPT) and later */
  884. flag = pvt->dclr0 & F10_WIDTH_128;
  885. else
  886. /* RevE and earlier */
  887. flag = pvt->dclr0 & REVE_WIDTH_128;
  888. /* not used */
  889. pvt->dclr1 = 0;
  890. return (flag) ? 2 : 1;
  891. }
  892. /* extract the ERROR ADDRESS for the K8 CPUs */
  893. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  894. struct err_regs *info)
  895. {
  896. return (((u64) (info->nbeah & 0xff)) << 32) +
  897. (info->nbeal & ~0x03);
  898. }
  899. /*
  900. * Read the Base and Limit registers for K8 based Memory controllers; extract
  901. * fields from the 'raw' reg into separate data fields
  902. *
  903. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  904. */
  905. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  906. {
  907. u32 low;
  908. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  909. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
  910. /* Extract parts into separate data entries */
  911. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  912. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  913. pvt->dram_rw_en[dram] = (low & 0x3);
  914. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
  915. /*
  916. * Extract parts into separate data entries. Limit is the HIGHEST memory
  917. * location of the region, so lower 24 bits need to be all ones
  918. */
  919. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  920. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  921. pvt->dram_DstNode[dram] = (low & 0x7);
  922. }
  923. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  924. struct err_regs *err_info, u64 sys_addr)
  925. {
  926. struct mem_ctl_info *src_mci;
  927. int channel, csrow;
  928. u32 page, offset;
  929. u16 syndrome;
  930. syndrome = extract_syndrome(err_info);
  931. /* CHIPKILL enabled */
  932. if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
  933. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  934. if (channel < 0) {
  935. /*
  936. * Syndrome didn't map, so we don't know which of the
  937. * 2 DIMMs is in error. So we need to ID 'both' of them
  938. * as suspect.
  939. */
  940. amd64_mc_printk(mci, KERN_WARNING,
  941. "unknown syndrome 0x%04x - possible "
  942. "error reporting race\n", syndrome);
  943. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  944. return;
  945. }
  946. } else {
  947. /*
  948. * non-chipkill ecc mode
  949. *
  950. * The k8 documentation is unclear about how to determine the
  951. * channel number when using non-chipkill memory. This method
  952. * was obtained from email communication with someone at AMD.
  953. * (Wish the email was placed in this comment - norsk)
  954. */
  955. channel = ((sys_addr & BIT(3)) != 0);
  956. }
  957. /*
  958. * Find out which node the error address belongs to. This may be
  959. * different from the node that detected the error.
  960. */
  961. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  962. if (!src_mci) {
  963. amd64_mc_printk(mci, KERN_ERR,
  964. "failed to map error address 0x%lx to a node\n",
  965. (unsigned long)sys_addr);
  966. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  967. return;
  968. }
  969. /* Now map the sys_addr to a CSROW */
  970. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  971. if (csrow < 0) {
  972. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  973. } else {
  974. error_address_to_page_and_offset(sys_addr, &page, &offset);
  975. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  976. channel, EDAC_MOD_STR);
  977. }
  978. }
  979. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  980. {
  981. int *dbam_map;
  982. if (pvt->ext_model >= K8_REV_F)
  983. dbam_map = ddr2_dbam;
  984. else if (pvt->ext_model >= K8_REV_D)
  985. dbam_map = ddr2_dbam_revD;
  986. else
  987. dbam_map = ddr2_dbam_revCG;
  988. return dbam_map[cs_mode];
  989. }
  990. /*
  991. * Get the number of DCT channels in use.
  992. *
  993. * Return:
  994. * number of Memory Channels in operation
  995. * Pass back:
  996. * contents of the DCL0_LOW register
  997. */
  998. static int f10_early_channel_count(struct amd64_pvt *pvt)
  999. {
  1000. int dbams[] = { DBAM0, DBAM1 };
  1001. int i, j, channels = 0;
  1002. u32 dbam;
  1003. /* If we are in 128 bit mode, then we are using 2 channels */
  1004. if (pvt->dclr0 & F10_WIDTH_128) {
  1005. channels = 2;
  1006. return channels;
  1007. }
  1008. /*
  1009. * Need to check if in unganged mode: In such, there are 2 channels,
  1010. * but they are not in 128 bit mode and thus the above 'dclr0' status
  1011. * bit will be OFF.
  1012. *
  1013. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1014. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1015. */
  1016. debugf0("Data width is not 128 bits - need more decoding\n");
  1017. /*
  1018. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1019. * is more than just one DIMM present in unganged mode. Need to check
  1020. * both controllers since DIMMs can be placed in either one.
  1021. */
  1022. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  1023. if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
  1024. goto err_reg;
  1025. for (j = 0; j < 4; j++) {
  1026. if (DBAM_DIMM(j, dbam) > 0) {
  1027. channels++;
  1028. break;
  1029. }
  1030. }
  1031. }
  1032. if (channels > 2)
  1033. channels = 2;
  1034. debugf0("MCT channel count: %d\n", channels);
  1035. return channels;
  1036. err_reg:
  1037. return -1;
  1038. }
  1039. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1040. {
  1041. int *dbam_map;
  1042. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1043. dbam_map = ddr3_dbam;
  1044. else
  1045. dbam_map = ddr2_dbam;
  1046. return dbam_map[cs_mode];
  1047. }
  1048. /* Enable extended configuration access via 0xCF8 feature */
  1049. static void amd64_setup(struct amd64_pvt *pvt)
  1050. {
  1051. u32 reg;
  1052. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1053. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1054. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1055. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1056. }
  1057. /* Restore the extended configuration access via 0xCF8 feature */
  1058. static void amd64_teardown(struct amd64_pvt *pvt)
  1059. {
  1060. u32 reg;
  1061. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1062. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1063. if (pvt->flags.cf8_extcfg)
  1064. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1065. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1066. }
  1067. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1068. struct err_regs *info)
  1069. {
  1070. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1071. (info->nbeal & ~0x01);
  1072. }
  1073. /*
  1074. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1075. * fields from the 'raw' reg into separate data fields.
  1076. *
  1077. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1078. */
  1079. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1080. {
  1081. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1082. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1083. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1084. /* read the 'raw' DRAM BASE Address register */
  1085. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
  1086. /* Read from the ECS data register */
  1087. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
  1088. /* Extract parts into separate data entries */
  1089. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1090. if (pvt->dram_rw_en[dram] == 0)
  1091. return;
  1092. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1093. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1094. (((u64)low_base & 0xFFFF0000) << 8);
  1095. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1096. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1097. /* read the 'raw' LIMIT registers */
  1098. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
  1099. /* Read from the ECS data register for the HIGH portion */
  1100. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
  1101. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1102. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1103. /*
  1104. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1105. * memory location of the region, so low 24 bits need to be all ones.
  1106. */
  1107. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1108. (((u64) low_limit & 0xFFFF0000) << 8) |
  1109. 0x00FFFFFF;
  1110. }
  1111. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1112. {
  1113. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1114. &pvt->dram_ctl_select_low)) {
  1115. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1116. "High range addresses at: 0x%x\n",
  1117. pvt->dram_ctl_select_low,
  1118. dct_sel_baseaddr(pvt));
  1119. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1120. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1121. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1122. if (!dct_ganging_enabled(pvt))
  1123. debugf0(" Address range split per DCT: %s\n",
  1124. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1125. debugf0(" DCT data interleave for ECC: %s, "
  1126. "DRAM cleared since last warm reset: %s\n",
  1127. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1128. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1129. debugf0(" DCT channel interleave: %s, "
  1130. "DCT interleave bits selector: 0x%x\n",
  1131. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1132. dct_sel_interleave_addr(pvt));
  1133. }
  1134. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1135. &pvt->dram_ctl_select_high);
  1136. }
  1137. /*
  1138. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1139. * Interleaving Modes.
  1140. */
  1141. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1142. int hi_range_sel, u32 intlv_en)
  1143. {
  1144. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1145. if (dct_ganging_enabled(pvt))
  1146. cs = 0;
  1147. else if (hi_range_sel)
  1148. cs = dct_sel_high;
  1149. else if (dct_interleave_enabled(pvt)) {
  1150. /*
  1151. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1152. */
  1153. if (dct_sel_interleave_addr(pvt) == 0)
  1154. cs = sys_addr >> 6 & 1;
  1155. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1156. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1157. if (dct_sel_interleave_addr(pvt) & 1)
  1158. cs = (sys_addr >> 9 & 1) ^ temp;
  1159. else
  1160. cs = (sys_addr >> 6 & 1) ^ temp;
  1161. } else if (intlv_en & 4)
  1162. cs = sys_addr >> 15 & 1;
  1163. else if (intlv_en & 2)
  1164. cs = sys_addr >> 14 & 1;
  1165. else if (intlv_en & 1)
  1166. cs = sys_addr >> 13 & 1;
  1167. else
  1168. cs = sys_addr >> 12 & 1;
  1169. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1170. cs = ~dct_sel_high & 1;
  1171. else
  1172. cs = 0;
  1173. return cs;
  1174. }
  1175. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1176. {
  1177. if (intlv_en == 1)
  1178. return 1;
  1179. else if (intlv_en == 3)
  1180. return 2;
  1181. else if (intlv_en == 7)
  1182. return 3;
  1183. return 0;
  1184. }
  1185. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1186. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1187. u32 dct_sel_base_addr,
  1188. u64 dct_sel_base_off,
  1189. u32 hole_valid, u32 hole_off,
  1190. u64 dram_base)
  1191. {
  1192. u64 chan_off;
  1193. if (hi_range_sel) {
  1194. if (!(dct_sel_base_addr & 0xFFFF0000) &&
  1195. hole_valid && (sys_addr >= 0x100000000ULL))
  1196. chan_off = hole_off << 16;
  1197. else
  1198. chan_off = dct_sel_base_off;
  1199. } else {
  1200. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1201. chan_off = hole_off << 16;
  1202. else
  1203. chan_off = dram_base & 0xFFFFF8000000ULL;
  1204. }
  1205. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1206. (chan_off & 0x0000FFFFFF800000ULL);
  1207. }
  1208. /* Hack for the time being - Can we get this from BIOS?? */
  1209. #define CH0SPARE_RANK 0
  1210. #define CH1SPARE_RANK 1
  1211. /*
  1212. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1213. * spare row
  1214. */
  1215. static inline int f10_process_possible_spare(int csrow,
  1216. u32 cs, struct amd64_pvt *pvt)
  1217. {
  1218. u32 swap_done;
  1219. u32 bad_dram_cs;
  1220. /* Depending on channel, isolate respective SPARING info */
  1221. if (cs) {
  1222. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1223. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1224. if (swap_done && (csrow == bad_dram_cs))
  1225. csrow = CH1SPARE_RANK;
  1226. } else {
  1227. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1228. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1229. if (swap_done && (csrow == bad_dram_cs))
  1230. csrow = CH0SPARE_RANK;
  1231. }
  1232. return csrow;
  1233. }
  1234. /*
  1235. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1236. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1237. *
  1238. * Return:
  1239. * -EINVAL: NOT FOUND
  1240. * 0..csrow = Chip-Select Row
  1241. */
  1242. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1243. {
  1244. struct mem_ctl_info *mci;
  1245. struct amd64_pvt *pvt;
  1246. u32 cs_base, cs_mask;
  1247. int cs_found = -EINVAL;
  1248. int csrow;
  1249. mci = mci_lookup[nid];
  1250. if (!mci)
  1251. return cs_found;
  1252. pvt = mci->pvt_info;
  1253. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1254. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1255. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1256. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1257. continue;
  1258. /*
  1259. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1260. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1261. * of the actual address.
  1262. */
  1263. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1264. /*
  1265. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1266. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1267. */
  1268. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1269. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1270. csrow, cs_base, cs_mask);
  1271. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1272. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1273. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1274. "(CSBase & ~CSMask)=0x%x\n",
  1275. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1276. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1277. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1278. debugf1(" MATCH csrow=%d\n", cs_found);
  1279. break;
  1280. }
  1281. }
  1282. return cs_found;
  1283. }
  1284. /* For a given @dram_range, check if @sys_addr falls within it. */
  1285. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1286. u64 sys_addr, int *nid, int *chan_sel)
  1287. {
  1288. int node_id, cs_found = -EINVAL, high_range = 0;
  1289. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1290. u32 hole_valid, tmp, dct_sel_base, channel;
  1291. u64 dram_base, chan_addr, dct_sel_base_off;
  1292. dram_base = pvt->dram_base[dram_range];
  1293. intlv_en = pvt->dram_IntlvEn[dram_range];
  1294. node_id = pvt->dram_DstNode[dram_range];
  1295. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1296. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1297. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1298. /*
  1299. * This assumes that one node's DHAR is the same as all the other
  1300. * nodes' DHAR.
  1301. */
  1302. hole_off = (pvt->dhar & 0x0000FF80);
  1303. hole_valid = (pvt->dhar & 0x1);
  1304. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1305. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1306. hole_off, hole_valid, intlv_sel);
  1307. if (intlv_en &&
  1308. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1309. return -EINVAL;
  1310. dct_sel_base = dct_sel_baseaddr(pvt);
  1311. /*
  1312. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1313. * select between DCT0 and DCT1.
  1314. */
  1315. if (dct_high_range_enabled(pvt) &&
  1316. !dct_ganging_enabled(pvt) &&
  1317. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1318. high_range = 1;
  1319. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1320. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1321. dct_sel_base_off, hole_valid,
  1322. hole_off, dram_base);
  1323. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1324. /* remove Node ID (in case of memory interleaving) */
  1325. tmp = chan_addr & 0xFC0;
  1326. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1327. /* remove channel interleave and hash */
  1328. if (dct_interleave_enabled(pvt) &&
  1329. !dct_high_range_enabled(pvt) &&
  1330. !dct_ganging_enabled(pvt)) {
  1331. if (dct_sel_interleave_addr(pvt) != 1)
  1332. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1333. else {
  1334. tmp = chan_addr & 0xFC0;
  1335. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1336. | tmp;
  1337. }
  1338. }
  1339. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1340. chan_addr, (u32)(chan_addr >> 8));
  1341. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1342. if (cs_found >= 0) {
  1343. *nid = node_id;
  1344. *chan_sel = channel;
  1345. }
  1346. return cs_found;
  1347. }
  1348. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1349. int *node, int *chan_sel)
  1350. {
  1351. int dram_range, cs_found = -EINVAL;
  1352. u64 dram_base, dram_limit;
  1353. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1354. if (!pvt->dram_rw_en[dram_range])
  1355. continue;
  1356. dram_base = pvt->dram_base[dram_range];
  1357. dram_limit = pvt->dram_limit[dram_range];
  1358. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1359. cs_found = f10_match_to_this_node(pvt, dram_range,
  1360. sys_addr, node,
  1361. chan_sel);
  1362. if (cs_found >= 0)
  1363. break;
  1364. }
  1365. }
  1366. return cs_found;
  1367. }
  1368. /*
  1369. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1370. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1371. *
  1372. * The @sys_addr is usually an error address received from the hardware
  1373. * (MCX_ADDR).
  1374. */
  1375. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1376. struct err_regs *err_info,
  1377. u64 sys_addr)
  1378. {
  1379. struct amd64_pvt *pvt = mci->pvt_info;
  1380. u32 page, offset;
  1381. int nid, csrow, chan = 0;
  1382. u16 syndrome;
  1383. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1384. if (csrow < 0) {
  1385. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1386. return;
  1387. }
  1388. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1389. syndrome = extract_syndrome(err_info);
  1390. /*
  1391. * We need the syndromes for channel detection only when we're
  1392. * ganged. Otherwise @chan should already contain the channel at
  1393. * this point.
  1394. */
  1395. if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
  1396. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1397. if (chan >= 0)
  1398. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1399. EDAC_MOD_STR);
  1400. else
  1401. /*
  1402. * Channel unknown, report all channels on this CSROW as failed.
  1403. */
  1404. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1405. edac_mc_handle_ce(mci, page, offset, syndrome,
  1406. csrow, chan, EDAC_MOD_STR);
  1407. }
  1408. /*
  1409. * debug routine to display the memory sizes of all logical DIMMs and its
  1410. * CSROWs as well
  1411. */
  1412. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1413. {
  1414. int dimm, size0, size1, factor = 0;
  1415. u32 dbam;
  1416. u32 *dcsb;
  1417. if (boot_cpu_data.x86 == 0xf) {
  1418. if (pvt->dclr0 & F10_WIDTH_128)
  1419. factor = 1;
  1420. /* K8 families < revF not supported yet */
  1421. if (pvt->ext_model < K8_REV_F)
  1422. return;
  1423. else
  1424. WARN_ON(ctrl != 0);
  1425. }
  1426. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1427. ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
  1428. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1429. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1430. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1431. /* Dump memory sizes for DIMM and its CSROWs */
  1432. for (dimm = 0; dimm < 4; dimm++) {
  1433. size0 = 0;
  1434. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1435. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1436. size1 = 0;
  1437. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1438. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1439. edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
  1440. dimm * 2, size0 << factor,
  1441. dimm * 2 + 1, size1 << factor);
  1442. }
  1443. }
  1444. static struct amd64_family_type amd64_family_types[] = {
  1445. [K8_CPUS] = {
  1446. .ctl_name = "RevF",
  1447. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1448. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1449. .ops = {
  1450. .early_channel_count = k8_early_channel_count,
  1451. .get_error_address = k8_get_error_address,
  1452. .read_dram_base_limit = k8_read_dram_base_limit,
  1453. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1454. .dbam_to_cs = k8_dbam_to_chip_select,
  1455. }
  1456. },
  1457. [F10_CPUS] = {
  1458. .ctl_name = "Family 10h",
  1459. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1460. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1461. .ops = {
  1462. .early_channel_count = f10_early_channel_count,
  1463. .get_error_address = f10_get_error_address,
  1464. .read_dram_base_limit = f10_read_dram_base_limit,
  1465. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1466. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1467. .dbam_to_cs = f10_dbam_to_chip_select,
  1468. }
  1469. },
  1470. };
  1471. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1472. unsigned int device,
  1473. struct pci_dev *related)
  1474. {
  1475. struct pci_dev *dev = NULL;
  1476. dev = pci_get_device(vendor, device, dev);
  1477. while (dev) {
  1478. if ((dev->bus->number == related->bus->number) &&
  1479. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1480. break;
  1481. dev = pci_get_device(vendor, device, dev);
  1482. }
  1483. return dev;
  1484. }
  1485. /*
  1486. * These are tables of eigenvectors (one per line) which can be used for the
  1487. * construction of the syndrome tables. The modified syndrome search algorithm
  1488. * uses those to find the symbol in error and thus the DIMM.
  1489. *
  1490. * Algorithm courtesy of Ross LaFetra from AMD.
  1491. */
  1492. static u16 x4_vectors[] = {
  1493. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1494. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1495. 0x0001, 0x0002, 0x0004, 0x0008,
  1496. 0x1013, 0x3032, 0x4044, 0x8088,
  1497. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1498. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1499. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1500. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1501. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1502. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1503. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1504. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1505. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1506. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1507. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1508. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1509. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1510. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1511. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1512. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1513. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1514. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1515. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1516. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1517. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1518. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1519. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1520. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1521. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1522. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1523. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1524. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1525. 0x4807, 0xc40e, 0x130c, 0x3208,
  1526. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1527. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1528. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1529. };
  1530. static u16 x8_vectors[] = {
  1531. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1532. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1533. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1534. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1535. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1536. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1537. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1538. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1539. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1540. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1541. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1542. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1543. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1544. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1545. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1546. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1547. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1548. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1549. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1550. };
  1551. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1552. int v_dim)
  1553. {
  1554. unsigned int i, err_sym;
  1555. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1556. u16 s = syndrome;
  1557. int v_idx = err_sym * v_dim;
  1558. int v_end = (err_sym + 1) * v_dim;
  1559. /* walk over all 16 bits of the syndrome */
  1560. for (i = 1; i < (1U << 16); i <<= 1) {
  1561. /* if bit is set in that eigenvector... */
  1562. if (v_idx < v_end && vectors[v_idx] & i) {
  1563. u16 ev_comp = vectors[v_idx++];
  1564. /* ... and bit set in the modified syndrome, */
  1565. if (s & i) {
  1566. /* remove it. */
  1567. s ^= ev_comp;
  1568. if (!s)
  1569. return err_sym;
  1570. }
  1571. } else if (s & i)
  1572. /* can't get to zero, move to next symbol */
  1573. break;
  1574. }
  1575. }
  1576. debugf0("syndrome(%x) not found\n", syndrome);
  1577. return -1;
  1578. }
  1579. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1580. {
  1581. if (sym_size == 4)
  1582. switch (err_sym) {
  1583. case 0x20:
  1584. case 0x21:
  1585. return 0;
  1586. break;
  1587. case 0x22:
  1588. case 0x23:
  1589. return 1;
  1590. break;
  1591. default:
  1592. return err_sym >> 4;
  1593. break;
  1594. }
  1595. /* x8 symbols */
  1596. else
  1597. switch (err_sym) {
  1598. /* imaginary bits not in a DIMM */
  1599. case 0x10:
  1600. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1601. err_sym);
  1602. return -1;
  1603. break;
  1604. case 0x11:
  1605. return 0;
  1606. break;
  1607. case 0x12:
  1608. return 1;
  1609. break;
  1610. default:
  1611. return err_sym >> 3;
  1612. break;
  1613. }
  1614. return -1;
  1615. }
  1616. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1617. {
  1618. struct amd64_pvt *pvt = mci->pvt_info;
  1619. int err_sym = -1;
  1620. if (pvt->syn_type == 8)
  1621. err_sym = decode_syndrome(syndrome, x8_vectors,
  1622. ARRAY_SIZE(x8_vectors),
  1623. pvt->syn_type);
  1624. else if (pvt->syn_type == 4)
  1625. err_sym = decode_syndrome(syndrome, x4_vectors,
  1626. ARRAY_SIZE(x4_vectors),
  1627. pvt->syn_type);
  1628. else {
  1629. amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
  1630. __func__, pvt->syn_type);
  1631. return err_sym;
  1632. }
  1633. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1634. }
  1635. /*
  1636. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1637. * ADDRESS and process.
  1638. */
  1639. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1640. struct err_regs *info)
  1641. {
  1642. struct amd64_pvt *pvt = mci->pvt_info;
  1643. u64 sys_addr;
  1644. /* Ensure that the Error Address is VALID */
  1645. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1646. amd64_mc_printk(mci, KERN_ERR,
  1647. "HW has no ERROR_ADDRESS available\n");
  1648. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1649. return;
  1650. }
  1651. sys_addr = pvt->ops->get_error_address(mci, info);
  1652. amd64_mc_printk(mci, KERN_ERR,
  1653. "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1654. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1655. }
  1656. /* Handle any Un-correctable Errors (UEs) */
  1657. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1658. struct err_regs *info)
  1659. {
  1660. struct amd64_pvt *pvt = mci->pvt_info;
  1661. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1662. int csrow;
  1663. u64 sys_addr;
  1664. u32 page, offset;
  1665. log_mci = mci;
  1666. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1667. amd64_mc_printk(mci, KERN_CRIT,
  1668. "HW has no ERROR_ADDRESS available\n");
  1669. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1670. return;
  1671. }
  1672. sys_addr = pvt->ops->get_error_address(mci, info);
  1673. /*
  1674. * Find out which node the error address belongs to. This may be
  1675. * different from the node that detected the error.
  1676. */
  1677. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1678. if (!src_mci) {
  1679. amd64_mc_printk(mci, KERN_CRIT,
  1680. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1681. (unsigned long)sys_addr);
  1682. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1683. return;
  1684. }
  1685. log_mci = src_mci;
  1686. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1687. if (csrow < 0) {
  1688. amd64_mc_printk(mci, KERN_CRIT,
  1689. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1690. (unsigned long)sys_addr);
  1691. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1692. } else {
  1693. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1694. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1695. }
  1696. }
  1697. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1698. struct err_regs *info)
  1699. {
  1700. u32 ec = ERROR_CODE(info->nbsl);
  1701. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1702. int ecc_type = (info->nbsh >> 13) & 0x3;
  1703. /* Bail early out if this was an 'observed' error */
  1704. if (PP(ec) == K8_NBSL_PP_OBS)
  1705. return;
  1706. /* Do only ECC errors */
  1707. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1708. return;
  1709. if (ecc_type == 2)
  1710. amd64_handle_ce(mci, info);
  1711. else if (ecc_type == 1)
  1712. amd64_handle_ue(mci, info);
  1713. }
  1714. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1715. {
  1716. struct mem_ctl_info *mci = mci_lookup[node_id];
  1717. struct err_regs regs;
  1718. regs.nbsl = (u32) m->status;
  1719. regs.nbsh = (u32)(m->status >> 32);
  1720. regs.nbeal = (u32) m->addr;
  1721. regs.nbeah = (u32)(m->addr >> 32);
  1722. regs.nbcfg = nbcfg;
  1723. __amd64_decode_bus_error(mci, &regs);
  1724. /*
  1725. * Check the UE bit of the NB status high register, if set generate some
  1726. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1727. * If it was a GART error, skip that process.
  1728. *
  1729. * FIXME: this should go somewhere else, if at all.
  1730. */
  1731. if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1732. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1733. }
  1734. /*
  1735. * Input:
  1736. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  1737. * 2) AMD Family index value
  1738. *
  1739. * Ouput:
  1740. * Upon return of 0, the following filled in:
  1741. *
  1742. * struct pvt->addr_f1_ctl
  1743. * struct pvt->misc_f3_ctl
  1744. *
  1745. * Filled in with related device funcitions of 'dram_f2_ctl'
  1746. * These devices are "reserved" via the pci_get_device()
  1747. *
  1748. * Upon return of 1 (error status):
  1749. *
  1750. * Nothing reserved
  1751. */
  1752. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  1753. {
  1754. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  1755. /* Reserve the ADDRESS MAP Device */
  1756. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1757. amd64_dev->addr_f1_ctl,
  1758. pvt->dram_f2_ctl);
  1759. if (!pvt->addr_f1_ctl) {
  1760. amd64_printk(KERN_ERR, "error address map device not found: "
  1761. "vendor %x device 0x%x (broken BIOS?)\n",
  1762. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  1763. return 1;
  1764. }
  1765. /* Reserve the MISC Device */
  1766. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1767. amd64_dev->misc_f3_ctl,
  1768. pvt->dram_f2_ctl);
  1769. if (!pvt->misc_f3_ctl) {
  1770. pci_dev_put(pvt->addr_f1_ctl);
  1771. pvt->addr_f1_ctl = NULL;
  1772. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  1773. "vendor %x device 0x%x (broken BIOS?)\n",
  1774. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  1775. return 1;
  1776. }
  1777. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  1778. pci_name(pvt->addr_f1_ctl));
  1779. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  1780. pci_name(pvt->dram_f2_ctl));
  1781. debugf1(" Misc device PCI Bus ID:\t%s\n",
  1782. pci_name(pvt->misc_f3_ctl));
  1783. return 0;
  1784. }
  1785. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  1786. {
  1787. pci_dev_put(pvt->addr_f1_ctl);
  1788. pci_dev_put(pvt->misc_f3_ctl);
  1789. }
  1790. /*
  1791. * Retrieve the hardware registers of the memory controller (this includes the
  1792. * 'Address Map' and 'Misc' device regs)
  1793. */
  1794. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  1795. {
  1796. u64 msr_val;
  1797. u32 tmp;
  1798. int dram;
  1799. /*
  1800. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1801. * those are Read-As-Zero
  1802. */
  1803. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1804. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1805. /* check first whether TOP_MEM2 is enabled */
  1806. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1807. if (msr_val & (1U << 21)) {
  1808. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1809. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1810. } else
  1811. debugf0(" TOP_MEM2 disabled.\n");
  1812. amd64_cpu_display_info(pvt);
  1813. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  1814. if (pvt->ops->read_dram_ctl_register)
  1815. pvt->ops->read_dram_ctl_register(pvt);
  1816. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  1817. /*
  1818. * Call CPU specific READ function to get the DRAM Base and
  1819. * Limit values from the DCT.
  1820. */
  1821. pvt->ops->read_dram_base_limit(pvt, dram);
  1822. /*
  1823. * Only print out debug info on rows with both R and W Enabled.
  1824. * Normal processing, compiler should optimize this whole 'if'
  1825. * debug output block away.
  1826. */
  1827. if (pvt->dram_rw_en[dram] != 0) {
  1828. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  1829. "DRAM-LIMIT: 0x%016llx\n",
  1830. dram,
  1831. pvt->dram_base[dram],
  1832. pvt->dram_limit[dram]);
  1833. debugf1(" IntlvEn=%s %s %s "
  1834. "IntlvSel=%d DstNode=%d\n",
  1835. pvt->dram_IntlvEn[dram] ?
  1836. "Enabled" : "Disabled",
  1837. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  1838. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  1839. pvt->dram_IntlvSel[dram],
  1840. pvt->dram_DstNode[dram]);
  1841. }
  1842. }
  1843. amd64_read_dct_base_mask(pvt);
  1844. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  1845. amd64_read_dbam_reg(pvt);
  1846. amd64_read_pci_cfg(pvt->misc_f3_ctl,
  1847. F10_ONLINE_SPARE, &pvt->online_spare);
  1848. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1849. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  1850. if (boot_cpu_data.x86 >= 0x10) {
  1851. if (!dct_ganging_enabled(pvt)) {
  1852. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1853. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
  1854. }
  1855. amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
  1856. }
  1857. if (boot_cpu_data.x86 == 0x10 &&
  1858. boot_cpu_data.x86_model > 7 &&
  1859. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1860. tmp & BIT(25))
  1861. pvt->syn_type = 8;
  1862. else
  1863. pvt->syn_type = 4;
  1864. amd64_dump_misc_regs(pvt);
  1865. }
  1866. /*
  1867. * NOTE: CPU Revision Dependent code
  1868. *
  1869. * Input:
  1870. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  1871. * k8 private pointer to -->
  1872. * DRAM Bank Address mapping register
  1873. * node_id
  1874. * DCL register where dual_channel_active is
  1875. *
  1876. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1877. *
  1878. * Bits: CSROWs
  1879. * 0-3 CSROWs 0 and 1
  1880. * 4-7 CSROWs 2 and 3
  1881. * 8-11 CSROWs 4 and 5
  1882. * 12-15 CSROWs 6 and 7
  1883. *
  1884. * Values range from: 0 to 15
  1885. * The meaning of the values depends on CPU revision and dual-channel state,
  1886. * see relevant BKDG more info.
  1887. *
  1888. * The memory controller provides for total of only 8 CSROWs in its current
  1889. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1890. * single channel or two (2) DIMMs in dual channel mode.
  1891. *
  1892. * The following code logic collapses the various tables for CSROW based on CPU
  1893. * revision.
  1894. *
  1895. * Returns:
  1896. * The number of PAGE_SIZE pages on the specified CSROW number it
  1897. * encompasses
  1898. *
  1899. */
  1900. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  1901. {
  1902. u32 cs_mode, nr_pages;
  1903. /*
  1904. * The math on this doesn't look right on the surface because x/2*4 can
  1905. * be simplified to x*2 but this expression makes use of the fact that
  1906. * it is integral math where 1/2=0. This intermediate value becomes the
  1907. * number of bits to shift the DBAM register to extract the proper CSROW
  1908. * field.
  1909. */
  1910. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1911. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  1912. /*
  1913. * If dual channel then double the memory size of single channel.
  1914. * Channel count is 1 or 2
  1915. */
  1916. nr_pages <<= (pvt->channel_count - 1);
  1917. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1918. debugf0(" nr_pages= %u channel-count = %d\n",
  1919. nr_pages, pvt->channel_count);
  1920. return nr_pages;
  1921. }
  1922. /*
  1923. * Initialize the array of csrow attribute instances, based on the values
  1924. * from pci config hardware registers.
  1925. */
  1926. static int amd64_init_csrows(struct mem_ctl_info *mci)
  1927. {
  1928. struct csrow_info *csrow;
  1929. struct amd64_pvt *pvt;
  1930. u64 input_addr_min, input_addr_max, sys_addr;
  1931. int i, empty = 1;
  1932. pvt = mci->pvt_info;
  1933. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  1934. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  1935. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1936. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  1937. );
  1938. for (i = 0; i < pvt->cs_count; i++) {
  1939. csrow = &mci->csrows[i];
  1940. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  1941. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1942. pvt->mc_node_id);
  1943. continue;
  1944. }
  1945. debugf1("----CSROW %d VALID for MC node %d\n",
  1946. i, pvt->mc_node_id);
  1947. empty = 0;
  1948. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  1949. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1950. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1951. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1952. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1953. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1954. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  1955. /* 8 bytes of resolution */
  1956. csrow->mtype = amd64_determine_memory_type(pvt);
  1957. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1958. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1959. (unsigned long)input_addr_min,
  1960. (unsigned long)input_addr_max);
  1961. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1962. (unsigned long)sys_addr, csrow->page_mask);
  1963. debugf1(" nr_pages: %u first_page: 0x%lx "
  1964. "last_page: 0x%lx\n",
  1965. (unsigned)csrow->nr_pages,
  1966. csrow->first_page, csrow->last_page);
  1967. /*
  1968. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1969. */
  1970. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  1971. csrow->edac_mode =
  1972. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  1973. EDAC_S4ECD4ED : EDAC_SECDED;
  1974. else
  1975. csrow->edac_mode = EDAC_NONE;
  1976. }
  1977. return empty;
  1978. }
  1979. /* get all cores on this DCT */
  1980. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1981. {
  1982. int cpu;
  1983. for_each_online_cpu(cpu)
  1984. if (amd_get_nb_id(cpu) == nid)
  1985. cpumask_set_cpu(cpu, mask);
  1986. }
  1987. /* check MCG_CTL on all the cpus on this node */
  1988. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1989. {
  1990. cpumask_var_t mask;
  1991. int cpu, nbe;
  1992. bool ret = false;
  1993. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1994. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  1995. __func__);
  1996. return false;
  1997. }
  1998. get_cpus_on_this_dct_cpumask(mask, nid);
  1999. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2000. for_each_cpu(cpu, mask) {
  2001. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2002. nbe = reg->l & K8_MSR_MCGCTL_NBE;
  2003. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2004. cpu, reg->q,
  2005. (nbe ? "enabled" : "disabled"));
  2006. if (!nbe)
  2007. goto out;
  2008. }
  2009. ret = true;
  2010. out:
  2011. free_cpumask_var(mask);
  2012. return ret;
  2013. }
  2014. static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
  2015. {
  2016. cpumask_var_t cmask;
  2017. int cpu;
  2018. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2019. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2020. __func__);
  2021. return false;
  2022. }
  2023. get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
  2024. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2025. for_each_cpu(cpu, cmask) {
  2026. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2027. if (on) {
  2028. if (reg->l & K8_MSR_MCGCTL_NBE)
  2029. pvt->flags.nb_mce_enable = 1;
  2030. reg->l |= K8_MSR_MCGCTL_NBE;
  2031. } else {
  2032. /*
  2033. * Turn off NB MCE reporting only when it was off before
  2034. */
  2035. if (!pvt->flags.nb_mce_enable)
  2036. reg->l &= ~K8_MSR_MCGCTL_NBE;
  2037. }
  2038. }
  2039. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2040. free_cpumask_var(cmask);
  2041. return 0;
  2042. }
  2043. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2044. {
  2045. struct amd64_pvt *pvt = mci->pvt_info;
  2046. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2047. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2048. /* turn on UECCn and CECCEn bits */
  2049. pvt->old_nbctl = value & mask;
  2050. pvt->nbctl_mcgctl_saved = 1;
  2051. value |= mask;
  2052. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2053. if (amd64_toggle_ecc_err_reporting(pvt, ON))
  2054. amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
  2055. "MCGCTL!\n");
  2056. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2057. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2058. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2059. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2060. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2061. amd64_printk(KERN_WARNING,
  2062. "This node reports that DRAM ECC is "
  2063. "currently Disabled; ENABLING now\n");
  2064. pvt->flags.nb_ecc_prev = 0;
  2065. /* Attempt to turn on DRAM ECC Enable */
  2066. value |= K8_NBCFG_ECC_ENABLE;
  2067. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2068. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2069. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2070. amd64_printk(KERN_WARNING,
  2071. "Hardware rejects Enabling DRAM ECC checking\n"
  2072. "Check memory DIMM configuration\n");
  2073. } else {
  2074. amd64_printk(KERN_DEBUG,
  2075. "Hardware accepted DRAM ECC Enable\n");
  2076. }
  2077. } else {
  2078. pvt->flags.nb_ecc_prev = 1;
  2079. }
  2080. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2081. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2082. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2083. pvt->ctl_error_info.nbcfg = value;
  2084. }
  2085. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2086. {
  2087. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2088. if (!pvt->nbctl_mcgctl_saved)
  2089. return;
  2090. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2091. value &= ~mask;
  2092. value |= pvt->old_nbctl;
  2093. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2094. /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
  2095. if (!pvt->flags.nb_ecc_prev) {
  2096. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2097. value &= ~K8_NBCFG_ECC_ENABLE;
  2098. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2099. }
  2100. /* restore the NB Enable MCGCTL bit */
  2101. if (amd64_toggle_ecc_err_reporting(pvt, OFF))
  2102. amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
  2103. }
  2104. /*
  2105. * EDAC requires that the BIOS have ECC enabled before taking over the
  2106. * processing of ECC errors. This is because the BIOS can properly initialize
  2107. * the memory system completely. A command line option allows to force-enable
  2108. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2109. */
  2110. static const char *ecc_msg =
  2111. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2112. " Either enable ECC checking or force module loading by setting "
  2113. "'ecc_enable_override'.\n"
  2114. " (Note that use of the override may cause unknown side effects.)\n";
  2115. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2116. {
  2117. u32 value;
  2118. u8 ecc_enabled = 0;
  2119. bool nb_mce_en = false;
  2120. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2121. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2122. if (!ecc_enabled)
  2123. amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
  2124. "is currently disabled, set F3x%x[22] (%s).\n",
  2125. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2126. else
  2127. amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
  2128. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2129. if (!nb_mce_en)
  2130. amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
  2131. "0x%08x[4] on node %d to enable.\n",
  2132. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2133. if (!ecc_enabled || !nb_mce_en) {
  2134. if (!ecc_enable_override) {
  2135. amd64_printk(KERN_NOTICE, "%s", ecc_msg);
  2136. return -ENODEV;
  2137. } else {
  2138. amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
  2139. }
  2140. }
  2141. return 0;
  2142. }
  2143. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2144. ARRAY_SIZE(amd64_inj_attrs) +
  2145. 1];
  2146. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2147. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2148. {
  2149. unsigned int i = 0, j = 0;
  2150. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2151. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2152. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2153. sysfs_attrs[i] = amd64_inj_attrs[j];
  2154. sysfs_attrs[i] = terminator;
  2155. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2156. }
  2157. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2158. {
  2159. struct amd64_pvt *pvt = mci->pvt_info;
  2160. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2161. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2162. if (pvt->nbcap & K8_NBCAP_SECDED)
  2163. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2164. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2165. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2166. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2167. mci->mod_name = EDAC_MOD_STR;
  2168. mci->mod_ver = EDAC_AMD64_VERSION;
  2169. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2170. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2171. mci->ctl_page_to_phys = NULL;
  2172. /* memory scrubber interface */
  2173. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2174. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2175. }
  2176. /*
  2177. * Init stuff for this DRAM Controller device.
  2178. *
  2179. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2180. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2181. * from the ECS registers. Since the loading of the module can occur on any
  2182. * 'core', and cores don't 'see' all the other processors ECS data when the
  2183. * others are NOT enabled. Our solution is to first enable ECS access in this
  2184. * routine on all processors, gather some data in a amd64_pvt structure and
  2185. * later come back in a finish-setup function to perform that final
  2186. * initialization. See also amd64_init_2nd_stage() for that.
  2187. */
  2188. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2189. int mc_type_index)
  2190. {
  2191. struct amd64_pvt *pvt = NULL;
  2192. int err = 0, ret;
  2193. ret = -ENOMEM;
  2194. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2195. if (!pvt)
  2196. goto err_exit;
  2197. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2198. pvt->dram_f2_ctl = dram_f2_ctl;
  2199. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2200. pvt->mc_type_index = mc_type_index;
  2201. pvt->ops = family_ops(mc_type_index);
  2202. /*
  2203. * We have the dram_f2_ctl device as an argument, now go reserve its
  2204. * sibling devices from the PCI system.
  2205. */
  2206. ret = -ENODEV;
  2207. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2208. if (err)
  2209. goto err_free;
  2210. ret = -EINVAL;
  2211. err = amd64_check_ecc_enabled(pvt);
  2212. if (err)
  2213. goto err_put;
  2214. /*
  2215. * Key operation here: setup of HW prior to performing ops on it. Some
  2216. * setup is required to access ECS data. After this is performed, the
  2217. * 'teardown' function must be called upon error and normal exit paths.
  2218. */
  2219. if (boot_cpu_data.x86 >= 0x10)
  2220. amd64_setup(pvt);
  2221. /*
  2222. * Save the pointer to the private data for use in 2nd initialization
  2223. * stage
  2224. */
  2225. pvt_lookup[pvt->mc_node_id] = pvt;
  2226. return 0;
  2227. err_put:
  2228. amd64_free_mc_sibling_devices(pvt);
  2229. err_free:
  2230. kfree(pvt);
  2231. err_exit:
  2232. return ret;
  2233. }
  2234. /*
  2235. * This is the finishing stage of the init code. Needs to be performed after all
  2236. * MCs' hardware have been prepped for accessing extended config space.
  2237. */
  2238. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2239. {
  2240. int node_id = pvt->mc_node_id;
  2241. struct mem_ctl_info *mci;
  2242. int ret = -ENODEV;
  2243. amd64_read_mc_registers(pvt);
  2244. /*
  2245. * We need to determine how many memory channels there are. Then use
  2246. * that information for calculating the size of the dynamic instance
  2247. * tables in the 'mci' structure
  2248. */
  2249. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2250. if (pvt->channel_count < 0)
  2251. goto err_exit;
  2252. ret = -ENOMEM;
  2253. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
  2254. if (!mci)
  2255. goto err_exit;
  2256. mci->pvt_info = pvt;
  2257. mci->dev = &pvt->dram_f2_ctl->dev;
  2258. amd64_setup_mci_misc_attributes(mci);
  2259. if (amd64_init_csrows(mci))
  2260. mci->edac_cap = EDAC_FLAG_NONE;
  2261. amd64_enable_ecc_error_reporting(mci);
  2262. amd64_set_mc_sysfs_attributes(mci);
  2263. ret = -ENODEV;
  2264. if (edac_mc_add_mc(mci)) {
  2265. debugf1("failed edac_mc_add_mc()\n");
  2266. goto err_add_mc;
  2267. }
  2268. mci_lookup[node_id] = mci;
  2269. pvt_lookup[node_id] = NULL;
  2270. /* register stuff with EDAC MCE */
  2271. if (report_gart_errors)
  2272. amd_report_gart_errors(true);
  2273. amd_register_ecc_decoder(amd64_decode_bus_error);
  2274. return 0;
  2275. err_add_mc:
  2276. edac_mc_free(mci);
  2277. err_exit:
  2278. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2279. amd64_restore_ecc_error_reporting(pvt);
  2280. if (boot_cpu_data.x86 > 0xf)
  2281. amd64_teardown(pvt);
  2282. amd64_free_mc_sibling_devices(pvt);
  2283. kfree(pvt_lookup[pvt->mc_node_id]);
  2284. pvt_lookup[node_id] = NULL;
  2285. return ret;
  2286. }
  2287. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2288. const struct pci_device_id *mc_type)
  2289. {
  2290. int ret = 0;
  2291. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2292. get_amd_family_name(mc_type->driver_data));
  2293. ret = pci_enable_device(pdev);
  2294. if (ret < 0)
  2295. ret = -EIO;
  2296. else
  2297. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2298. if (ret < 0)
  2299. debugf0("ret=%d\n", ret);
  2300. return ret;
  2301. }
  2302. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2303. {
  2304. struct mem_ctl_info *mci;
  2305. struct amd64_pvt *pvt;
  2306. /* Remove from EDAC CORE tracking list */
  2307. mci = edac_mc_del_mc(&pdev->dev);
  2308. if (!mci)
  2309. return;
  2310. pvt = mci->pvt_info;
  2311. amd64_restore_ecc_error_reporting(pvt);
  2312. if (boot_cpu_data.x86 > 0xf)
  2313. amd64_teardown(pvt);
  2314. amd64_free_mc_sibling_devices(pvt);
  2315. /* unregister from EDAC MCE */
  2316. amd_report_gart_errors(false);
  2317. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2318. /* Free the EDAC CORE resources */
  2319. mci->pvt_info = NULL;
  2320. mci_lookup[pvt->mc_node_id] = NULL;
  2321. kfree(pvt);
  2322. edac_mc_free(mci);
  2323. }
  2324. /*
  2325. * This table is part of the interface for loading drivers for PCI devices. The
  2326. * PCI core identifies what devices are on a system during boot, and then
  2327. * inquiry this table to see if this driver is for a given device found.
  2328. */
  2329. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2330. {
  2331. .vendor = PCI_VENDOR_ID_AMD,
  2332. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2333. .subvendor = PCI_ANY_ID,
  2334. .subdevice = PCI_ANY_ID,
  2335. .class = 0,
  2336. .class_mask = 0,
  2337. .driver_data = K8_CPUS
  2338. },
  2339. {
  2340. .vendor = PCI_VENDOR_ID_AMD,
  2341. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2342. .subvendor = PCI_ANY_ID,
  2343. .subdevice = PCI_ANY_ID,
  2344. .class = 0,
  2345. .class_mask = 0,
  2346. .driver_data = F10_CPUS
  2347. },
  2348. {0, }
  2349. };
  2350. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2351. static struct pci_driver amd64_pci_driver = {
  2352. .name = EDAC_MOD_STR,
  2353. .probe = amd64_init_one_instance,
  2354. .remove = __devexit_p(amd64_remove_one_instance),
  2355. .id_table = amd64_pci_table,
  2356. };
  2357. static void amd64_setup_pci_device(void)
  2358. {
  2359. struct mem_ctl_info *mci;
  2360. struct amd64_pvt *pvt;
  2361. if (amd64_ctl_pci)
  2362. return;
  2363. mci = mci_lookup[0];
  2364. if (mci) {
  2365. pvt = mci->pvt_info;
  2366. amd64_ctl_pci =
  2367. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2368. EDAC_MOD_STR);
  2369. if (!amd64_ctl_pci) {
  2370. pr_warning("%s(): Unable to create PCI control\n",
  2371. __func__);
  2372. pr_warning("%s(): PCI error report via EDAC not set\n",
  2373. __func__);
  2374. }
  2375. }
  2376. }
  2377. static int __init amd64_edac_init(void)
  2378. {
  2379. int nb, err = -ENODEV;
  2380. bool load_ok = false;
  2381. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2382. opstate_init();
  2383. if (amd_cache_northbridges() < 0)
  2384. goto err_ret;
  2385. msrs = msrs_alloc();
  2386. if (!msrs)
  2387. goto err_ret;
  2388. err = pci_register_driver(&amd64_pci_driver);
  2389. if (err)
  2390. goto err_pci;
  2391. /*
  2392. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2393. * amd64_pvt structs. These will be used in the 2nd stage init function
  2394. * to finish initialization of the MC instances.
  2395. */
  2396. err = -ENODEV;
  2397. for (nb = 0; nb < amd_nb_num(); nb++) {
  2398. if (!pvt_lookup[nb])
  2399. continue;
  2400. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2401. if (err)
  2402. goto err_2nd_stage;
  2403. load_ok = true;
  2404. }
  2405. if (load_ok) {
  2406. amd64_setup_pci_device();
  2407. return 0;
  2408. }
  2409. err_2nd_stage:
  2410. pci_unregister_driver(&amd64_pci_driver);
  2411. err_pci:
  2412. msrs_free(msrs);
  2413. msrs = NULL;
  2414. err_ret:
  2415. return err;
  2416. }
  2417. static void __exit amd64_edac_exit(void)
  2418. {
  2419. if (amd64_ctl_pci)
  2420. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2421. pci_unregister_driver(&amd64_pci_driver);
  2422. msrs_free(msrs);
  2423. msrs = NULL;
  2424. }
  2425. module_init(amd64_edac_init);
  2426. module_exit(amd64_edac_exit);
  2427. MODULE_LICENSE("GPL");
  2428. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2429. "Dave Peterson, Thayne Harbaugh");
  2430. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2431. EDAC_AMD64_VERSION);
  2432. module_param(edac_op_state, int, 0444);
  2433. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");