skbuff.h 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/netdev_features.h>
  31. /* Don't change this without changing skb_csum_unnecessary! */
  32. #define CHECKSUM_NONE 0
  33. #define CHECKSUM_UNNECESSARY 1
  34. #define CHECKSUM_COMPLETE 2
  35. #define CHECKSUM_PARTIAL 3
  36. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  37. ~(SMP_CACHE_BYTES - 1))
  38. #define SKB_WITH_OVERHEAD(X) \
  39. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  40. #define SKB_MAX_ORDER(X, ORDER) \
  41. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  42. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  43. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  44. /* return minimum truesize of one skb containing X bytes of data */
  45. #define SKB_TRUESIZE(X) ((X) + \
  46. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  47. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  48. /* A. Checksumming of received packets by device.
  49. *
  50. * NONE: device failed to checksum this packet.
  51. * skb->csum is undefined.
  52. *
  53. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  54. * skb->csum is undefined.
  55. * It is bad option, but, unfortunately, many of vendors do this.
  56. * Apparently with secret goal to sell you new device, when you
  57. * will add new protocol to your host. F.e. IPv6. 8)
  58. *
  59. * COMPLETE: the most generic way. Device supplied checksum of _all_
  60. * the packet as seen by netif_rx in skb->csum.
  61. * NOTE: Even if device supports only some protocols, but
  62. * is able to produce some skb->csum, it MUST use COMPLETE,
  63. * not UNNECESSARY.
  64. *
  65. * PARTIAL: identical to the case for output below. This may occur
  66. * on a packet received directly from another Linux OS, e.g.,
  67. * a virtualised Linux kernel on the same host. The packet can
  68. * be treated in the same way as UNNECESSARY except that on
  69. * output (i.e., forwarding) the checksum must be filled in
  70. * by the OS or the hardware.
  71. *
  72. * B. Checksumming on output.
  73. *
  74. * NONE: skb is checksummed by protocol or csum is not required.
  75. *
  76. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  77. * from skb->csum_start to the end and to record the checksum
  78. * at skb->csum_start + skb->csum_offset.
  79. *
  80. * Device must show its capabilities in dev->features, set
  81. * at device setup time.
  82. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  83. * everything.
  84. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  85. * TCP/UDP over IPv4. Sigh. Vendors like this
  86. * way by an unknown reason. Though, see comment above
  87. * about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  89. *
  90. * Any questions? No questions, good. --ANK
  91. */
  92. struct net_device;
  93. struct scatterlist;
  94. struct pipe_inode_info;
  95. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  96. struct nf_conntrack {
  97. atomic_t use;
  98. };
  99. #endif
  100. #ifdef CONFIG_BRIDGE_NETFILTER
  101. struct nf_bridge_info {
  102. atomic_t use;
  103. struct net_device *physindev;
  104. struct net_device *physoutdev;
  105. unsigned int mask;
  106. unsigned long data[32 / sizeof(unsigned long)];
  107. };
  108. #endif
  109. struct sk_buff_head {
  110. /* These two members must be first. */
  111. struct sk_buff *next;
  112. struct sk_buff *prev;
  113. __u32 qlen;
  114. spinlock_t lock;
  115. };
  116. struct sk_buff;
  117. /* To allow 64K frame to be packed as single skb without frag_list we
  118. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  119. * buffers which do not start on a page boundary.
  120. *
  121. * Since GRO uses frags we allocate at least 16 regardless of page
  122. * size.
  123. */
  124. #if (65536/PAGE_SIZE + 1) < 16
  125. #define MAX_SKB_FRAGS 16UL
  126. #else
  127. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  128. #endif
  129. typedef struct skb_frag_struct skb_frag_t;
  130. struct skb_frag_struct {
  131. struct {
  132. struct page *p;
  133. } page;
  134. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  135. __u32 page_offset;
  136. __u32 size;
  137. #else
  138. __u16 page_offset;
  139. __u16 size;
  140. #endif
  141. };
  142. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  143. {
  144. return frag->size;
  145. }
  146. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  147. {
  148. frag->size = size;
  149. }
  150. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  151. {
  152. frag->size += delta;
  153. }
  154. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  155. {
  156. frag->size -= delta;
  157. }
  158. #define HAVE_HW_TIME_STAMP
  159. /**
  160. * struct skb_shared_hwtstamps - hardware time stamps
  161. * @hwtstamp: hardware time stamp transformed into duration
  162. * since arbitrary point in time
  163. * @syststamp: hwtstamp transformed to system time base
  164. *
  165. * Software time stamps generated by ktime_get_real() are stored in
  166. * skb->tstamp. The relation between the different kinds of time
  167. * stamps is as follows:
  168. *
  169. * syststamp and tstamp can be compared against each other in
  170. * arbitrary combinations. The accuracy of a
  171. * syststamp/tstamp/"syststamp from other device" comparison is
  172. * limited by the accuracy of the transformation into system time
  173. * base. This depends on the device driver and its underlying
  174. * hardware.
  175. *
  176. * hwtstamps can only be compared against other hwtstamps from
  177. * the same device.
  178. *
  179. * This structure is attached to packets as part of the
  180. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  181. */
  182. struct skb_shared_hwtstamps {
  183. ktime_t hwtstamp;
  184. ktime_t syststamp;
  185. };
  186. /* Definitions for tx_flags in struct skb_shared_info */
  187. enum {
  188. /* generate hardware time stamp */
  189. SKBTX_HW_TSTAMP = 1 << 0,
  190. /* generate software time stamp */
  191. SKBTX_SW_TSTAMP = 1 << 1,
  192. /* device driver is going to provide hardware time stamp */
  193. SKBTX_IN_PROGRESS = 1 << 2,
  194. /* ensure the originating sk reference is available on driver level */
  195. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  196. /* device driver supports TX zero-copy buffers */
  197. SKBTX_DEV_ZEROCOPY = 1 << 4,
  198. /* generate wifi status information (where possible) */
  199. SKBTX_WIFI_STATUS = 1 << 5,
  200. };
  201. /*
  202. * The callback notifies userspace to release buffers when skb DMA is done in
  203. * lower device, the skb last reference should be 0 when calling this.
  204. * The desc is used to track userspace buffer index.
  205. */
  206. struct ubuf_info {
  207. void (*callback)(void *);
  208. void *arg;
  209. unsigned long desc;
  210. };
  211. /* This data is invariant across clones and lives at
  212. * the end of the header data, ie. at skb->end.
  213. */
  214. struct skb_shared_info {
  215. unsigned char nr_frags;
  216. __u8 tx_flags;
  217. unsigned short gso_size;
  218. /* Warning: this field is not always filled in (UFO)! */
  219. unsigned short gso_segs;
  220. unsigned short gso_type;
  221. struct sk_buff *frag_list;
  222. struct skb_shared_hwtstamps hwtstamps;
  223. __be32 ip6_frag_id;
  224. /*
  225. * Warning : all fields before dataref are cleared in __alloc_skb()
  226. */
  227. atomic_t dataref;
  228. /* Intermediate layers must ensure that destructor_arg
  229. * remains valid until skb destructor */
  230. void * destructor_arg;
  231. /* must be last field, see pskb_expand_head() */
  232. skb_frag_t frags[MAX_SKB_FRAGS];
  233. };
  234. /* We divide dataref into two halves. The higher 16 bits hold references
  235. * to the payload part of skb->data. The lower 16 bits hold references to
  236. * the entire skb->data. A clone of a headerless skb holds the length of
  237. * the header in skb->hdr_len.
  238. *
  239. * All users must obey the rule that the skb->data reference count must be
  240. * greater than or equal to the payload reference count.
  241. *
  242. * Holding a reference to the payload part means that the user does not
  243. * care about modifications to the header part of skb->data.
  244. */
  245. #define SKB_DATAREF_SHIFT 16
  246. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  247. enum {
  248. SKB_FCLONE_UNAVAILABLE,
  249. SKB_FCLONE_ORIG,
  250. SKB_FCLONE_CLONE,
  251. };
  252. enum {
  253. SKB_GSO_TCPV4 = 1 << 0,
  254. SKB_GSO_UDP = 1 << 1,
  255. /* This indicates the skb is from an untrusted source. */
  256. SKB_GSO_DODGY = 1 << 2,
  257. /* This indicates the tcp segment has CWR set. */
  258. SKB_GSO_TCP_ECN = 1 << 3,
  259. SKB_GSO_TCPV6 = 1 << 4,
  260. SKB_GSO_FCOE = 1 << 5,
  261. };
  262. #if BITS_PER_LONG > 32
  263. #define NET_SKBUFF_DATA_USES_OFFSET 1
  264. #endif
  265. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  266. typedef unsigned int sk_buff_data_t;
  267. #else
  268. typedef unsigned char *sk_buff_data_t;
  269. #endif
  270. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  271. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  272. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  273. #endif
  274. /**
  275. * struct sk_buff - socket buffer
  276. * @next: Next buffer in list
  277. * @prev: Previous buffer in list
  278. * @tstamp: Time we arrived
  279. * @sk: Socket we are owned by
  280. * @dev: Device we arrived on/are leaving by
  281. * @cb: Control buffer. Free for use by every layer. Put private vars here
  282. * @_skb_refdst: destination entry (with norefcount bit)
  283. * @sp: the security path, used for xfrm
  284. * @len: Length of actual data
  285. * @data_len: Data length
  286. * @mac_len: Length of link layer header
  287. * @hdr_len: writable header length of cloned skb
  288. * @csum: Checksum (must include start/offset pair)
  289. * @csum_start: Offset from skb->head where checksumming should start
  290. * @csum_offset: Offset from csum_start where checksum should be stored
  291. * @priority: Packet queueing priority
  292. * @local_df: allow local fragmentation
  293. * @cloned: Head may be cloned (check refcnt to be sure)
  294. * @ip_summed: Driver fed us an IP checksum
  295. * @nohdr: Payload reference only, must not modify header
  296. * @nfctinfo: Relationship of this skb to the connection
  297. * @pkt_type: Packet class
  298. * @fclone: skbuff clone status
  299. * @ipvs_property: skbuff is owned by ipvs
  300. * @peeked: this packet has been seen already, so stats have been
  301. * done for it, don't do them again
  302. * @nf_trace: netfilter packet trace flag
  303. * @protocol: Packet protocol from driver
  304. * @destructor: Destruct function
  305. * @nfct: Associated connection, if any
  306. * @nfct_reasm: netfilter conntrack re-assembly pointer
  307. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  308. * @skb_iif: ifindex of device we arrived on
  309. * @tc_index: Traffic control index
  310. * @tc_verd: traffic control verdict
  311. * @rxhash: the packet hash computed on receive
  312. * @queue_mapping: Queue mapping for multiqueue devices
  313. * @ndisc_nodetype: router type (from link layer)
  314. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  315. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  316. * ports.
  317. * @wifi_acked_valid: wifi_acked was set
  318. * @wifi_acked: whether frame was acked on wifi or not
  319. * @dma_cookie: a cookie to one of several possible DMA operations
  320. * done by skb DMA functions
  321. * @secmark: security marking
  322. * @mark: Generic packet mark
  323. * @dropcount: total number of sk_receive_queue overflows
  324. * @vlan_tci: vlan tag control information
  325. * @transport_header: Transport layer header
  326. * @network_header: Network layer header
  327. * @mac_header: Link layer header
  328. * @tail: Tail pointer
  329. * @end: End pointer
  330. * @head: Head of buffer
  331. * @data: Data head pointer
  332. * @truesize: Buffer size
  333. * @users: User count - see {datagram,tcp}.c
  334. */
  335. struct sk_buff {
  336. /* These two members must be first. */
  337. struct sk_buff *next;
  338. struct sk_buff *prev;
  339. ktime_t tstamp;
  340. struct sock *sk;
  341. struct net_device *dev;
  342. /*
  343. * This is the control buffer. It is free to use for every
  344. * layer. Please put your private variables there. If you
  345. * want to keep them across layers you have to do a skb_clone()
  346. * first. This is owned by whoever has the skb queued ATM.
  347. */
  348. char cb[48] __aligned(8);
  349. unsigned long _skb_refdst;
  350. #ifdef CONFIG_XFRM
  351. struct sec_path *sp;
  352. #endif
  353. unsigned int len,
  354. data_len;
  355. __u16 mac_len,
  356. hdr_len;
  357. union {
  358. __wsum csum;
  359. struct {
  360. __u16 csum_start;
  361. __u16 csum_offset;
  362. };
  363. };
  364. __u32 priority;
  365. kmemcheck_bitfield_begin(flags1);
  366. __u8 local_df:1,
  367. cloned:1,
  368. ip_summed:2,
  369. nohdr:1,
  370. nfctinfo:3;
  371. __u8 pkt_type:3,
  372. fclone:2,
  373. ipvs_property:1,
  374. peeked:1,
  375. nf_trace:1;
  376. kmemcheck_bitfield_end(flags1);
  377. __be16 protocol;
  378. void (*destructor)(struct sk_buff *skb);
  379. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  380. struct nf_conntrack *nfct;
  381. #endif
  382. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  383. struct sk_buff *nfct_reasm;
  384. #endif
  385. #ifdef CONFIG_BRIDGE_NETFILTER
  386. struct nf_bridge_info *nf_bridge;
  387. #endif
  388. int skb_iif;
  389. #ifdef CONFIG_NET_SCHED
  390. __u16 tc_index; /* traffic control index */
  391. #ifdef CONFIG_NET_CLS_ACT
  392. __u16 tc_verd; /* traffic control verdict */
  393. #endif
  394. #endif
  395. __u32 rxhash;
  396. __u16 queue_mapping;
  397. kmemcheck_bitfield_begin(flags2);
  398. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  399. __u8 ndisc_nodetype:2;
  400. #endif
  401. __u8 ooo_okay:1;
  402. __u8 l4_rxhash:1;
  403. __u8 wifi_acked_valid:1;
  404. __u8 wifi_acked:1;
  405. /* 10/12 bit hole (depending on ndisc_nodetype presence) */
  406. kmemcheck_bitfield_end(flags2);
  407. #ifdef CONFIG_NET_DMA
  408. dma_cookie_t dma_cookie;
  409. #endif
  410. #ifdef CONFIG_NETWORK_SECMARK
  411. __u32 secmark;
  412. #endif
  413. union {
  414. __u32 mark;
  415. __u32 dropcount;
  416. };
  417. __u16 vlan_tci;
  418. sk_buff_data_t transport_header;
  419. sk_buff_data_t network_header;
  420. sk_buff_data_t mac_header;
  421. /* These elements must be at the end, see alloc_skb() for details. */
  422. sk_buff_data_t tail;
  423. sk_buff_data_t end;
  424. unsigned char *head,
  425. *data;
  426. unsigned int truesize;
  427. atomic_t users;
  428. };
  429. #ifdef __KERNEL__
  430. /*
  431. * Handling routines are only of interest to the kernel
  432. */
  433. #include <linux/slab.h>
  434. #include <asm/system.h>
  435. /*
  436. * skb might have a dst pointer attached, refcounted or not.
  437. * _skb_refdst low order bit is set if refcount was _not_ taken
  438. */
  439. #define SKB_DST_NOREF 1UL
  440. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  441. /**
  442. * skb_dst - returns skb dst_entry
  443. * @skb: buffer
  444. *
  445. * Returns skb dst_entry, regardless of reference taken or not.
  446. */
  447. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  448. {
  449. /* If refdst was not refcounted, check we still are in a
  450. * rcu_read_lock section
  451. */
  452. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  453. !rcu_read_lock_held() &&
  454. !rcu_read_lock_bh_held());
  455. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  456. }
  457. /**
  458. * skb_dst_set - sets skb dst
  459. * @skb: buffer
  460. * @dst: dst entry
  461. *
  462. * Sets skb dst, assuming a reference was taken on dst and should
  463. * be released by skb_dst_drop()
  464. */
  465. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  466. {
  467. skb->_skb_refdst = (unsigned long)dst;
  468. }
  469. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  470. /**
  471. * skb_dst_is_noref - Test if skb dst isn't refcounted
  472. * @skb: buffer
  473. */
  474. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  475. {
  476. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  477. }
  478. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  479. {
  480. return (struct rtable *)skb_dst(skb);
  481. }
  482. extern void kfree_skb(struct sk_buff *skb);
  483. extern void consume_skb(struct sk_buff *skb);
  484. extern void __kfree_skb(struct sk_buff *skb);
  485. extern struct sk_buff *__alloc_skb(unsigned int size,
  486. gfp_t priority, int fclone, int node);
  487. extern struct sk_buff *build_skb(void *data);
  488. static inline struct sk_buff *alloc_skb(unsigned int size,
  489. gfp_t priority)
  490. {
  491. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  492. }
  493. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  494. gfp_t priority)
  495. {
  496. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  497. }
  498. extern void skb_recycle(struct sk_buff *skb);
  499. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  500. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  501. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  502. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  503. gfp_t priority);
  504. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  505. gfp_t priority);
  506. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  507. int headroom, gfp_t gfp_mask);
  508. extern int pskb_expand_head(struct sk_buff *skb,
  509. int nhead, int ntail,
  510. gfp_t gfp_mask);
  511. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  512. unsigned int headroom);
  513. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  514. int newheadroom, int newtailroom,
  515. gfp_t priority);
  516. extern int skb_to_sgvec(struct sk_buff *skb,
  517. struct scatterlist *sg, int offset,
  518. int len);
  519. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  520. struct sk_buff **trailer);
  521. extern int skb_pad(struct sk_buff *skb, int pad);
  522. #define dev_kfree_skb(a) consume_skb(a)
  523. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  524. int getfrag(void *from, char *to, int offset,
  525. int len,int odd, struct sk_buff *skb),
  526. void *from, int length);
  527. struct skb_seq_state {
  528. __u32 lower_offset;
  529. __u32 upper_offset;
  530. __u32 frag_idx;
  531. __u32 stepped_offset;
  532. struct sk_buff *root_skb;
  533. struct sk_buff *cur_skb;
  534. __u8 *frag_data;
  535. };
  536. extern void skb_prepare_seq_read(struct sk_buff *skb,
  537. unsigned int from, unsigned int to,
  538. struct skb_seq_state *st);
  539. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  540. struct skb_seq_state *st);
  541. extern void skb_abort_seq_read(struct skb_seq_state *st);
  542. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  543. unsigned int to, struct ts_config *config,
  544. struct ts_state *state);
  545. extern void __skb_get_rxhash(struct sk_buff *skb);
  546. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  547. {
  548. if (!skb->rxhash)
  549. __skb_get_rxhash(skb);
  550. return skb->rxhash;
  551. }
  552. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  553. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  554. {
  555. return skb->head + skb->end;
  556. }
  557. #else
  558. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  559. {
  560. return skb->end;
  561. }
  562. #endif
  563. /* Internal */
  564. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  565. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  566. {
  567. return &skb_shinfo(skb)->hwtstamps;
  568. }
  569. /**
  570. * skb_queue_empty - check if a queue is empty
  571. * @list: queue head
  572. *
  573. * Returns true if the queue is empty, false otherwise.
  574. */
  575. static inline int skb_queue_empty(const struct sk_buff_head *list)
  576. {
  577. return list->next == (struct sk_buff *)list;
  578. }
  579. /**
  580. * skb_queue_is_last - check if skb is the last entry in the queue
  581. * @list: queue head
  582. * @skb: buffer
  583. *
  584. * Returns true if @skb is the last buffer on the list.
  585. */
  586. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  587. const struct sk_buff *skb)
  588. {
  589. return skb->next == (struct sk_buff *)list;
  590. }
  591. /**
  592. * skb_queue_is_first - check if skb is the first entry in the queue
  593. * @list: queue head
  594. * @skb: buffer
  595. *
  596. * Returns true if @skb is the first buffer on the list.
  597. */
  598. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  599. const struct sk_buff *skb)
  600. {
  601. return skb->prev == (struct sk_buff *)list;
  602. }
  603. /**
  604. * skb_queue_next - return the next packet in the queue
  605. * @list: queue head
  606. * @skb: current buffer
  607. *
  608. * Return the next packet in @list after @skb. It is only valid to
  609. * call this if skb_queue_is_last() evaluates to false.
  610. */
  611. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  612. const struct sk_buff *skb)
  613. {
  614. /* This BUG_ON may seem severe, but if we just return then we
  615. * are going to dereference garbage.
  616. */
  617. BUG_ON(skb_queue_is_last(list, skb));
  618. return skb->next;
  619. }
  620. /**
  621. * skb_queue_prev - return the prev packet in the queue
  622. * @list: queue head
  623. * @skb: current buffer
  624. *
  625. * Return the prev packet in @list before @skb. It is only valid to
  626. * call this if skb_queue_is_first() evaluates to false.
  627. */
  628. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  629. const struct sk_buff *skb)
  630. {
  631. /* This BUG_ON may seem severe, but if we just return then we
  632. * are going to dereference garbage.
  633. */
  634. BUG_ON(skb_queue_is_first(list, skb));
  635. return skb->prev;
  636. }
  637. /**
  638. * skb_get - reference buffer
  639. * @skb: buffer to reference
  640. *
  641. * Makes another reference to a socket buffer and returns a pointer
  642. * to the buffer.
  643. */
  644. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  645. {
  646. atomic_inc(&skb->users);
  647. return skb;
  648. }
  649. /*
  650. * If users == 1, we are the only owner and are can avoid redundant
  651. * atomic change.
  652. */
  653. /**
  654. * skb_cloned - is the buffer a clone
  655. * @skb: buffer to check
  656. *
  657. * Returns true if the buffer was generated with skb_clone() and is
  658. * one of multiple shared copies of the buffer. Cloned buffers are
  659. * shared data so must not be written to under normal circumstances.
  660. */
  661. static inline int skb_cloned(const struct sk_buff *skb)
  662. {
  663. return skb->cloned &&
  664. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  665. }
  666. /**
  667. * skb_header_cloned - is the header a clone
  668. * @skb: buffer to check
  669. *
  670. * Returns true if modifying the header part of the buffer requires
  671. * the data to be copied.
  672. */
  673. static inline int skb_header_cloned(const struct sk_buff *skb)
  674. {
  675. int dataref;
  676. if (!skb->cloned)
  677. return 0;
  678. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  679. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  680. return dataref != 1;
  681. }
  682. /**
  683. * skb_header_release - release reference to header
  684. * @skb: buffer to operate on
  685. *
  686. * Drop a reference to the header part of the buffer. This is done
  687. * by acquiring a payload reference. You must not read from the header
  688. * part of skb->data after this.
  689. */
  690. static inline void skb_header_release(struct sk_buff *skb)
  691. {
  692. BUG_ON(skb->nohdr);
  693. skb->nohdr = 1;
  694. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  695. }
  696. /**
  697. * skb_shared - is the buffer shared
  698. * @skb: buffer to check
  699. *
  700. * Returns true if more than one person has a reference to this
  701. * buffer.
  702. */
  703. static inline int skb_shared(const struct sk_buff *skb)
  704. {
  705. return atomic_read(&skb->users) != 1;
  706. }
  707. /**
  708. * skb_share_check - check if buffer is shared and if so clone it
  709. * @skb: buffer to check
  710. * @pri: priority for memory allocation
  711. *
  712. * If the buffer is shared the buffer is cloned and the old copy
  713. * drops a reference. A new clone with a single reference is returned.
  714. * If the buffer is not shared the original buffer is returned. When
  715. * being called from interrupt status or with spinlocks held pri must
  716. * be GFP_ATOMIC.
  717. *
  718. * NULL is returned on a memory allocation failure.
  719. */
  720. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  721. gfp_t pri)
  722. {
  723. might_sleep_if(pri & __GFP_WAIT);
  724. if (skb_shared(skb)) {
  725. struct sk_buff *nskb = skb_clone(skb, pri);
  726. kfree_skb(skb);
  727. skb = nskb;
  728. }
  729. return skb;
  730. }
  731. /*
  732. * Copy shared buffers into a new sk_buff. We effectively do COW on
  733. * packets to handle cases where we have a local reader and forward
  734. * and a couple of other messy ones. The normal one is tcpdumping
  735. * a packet thats being forwarded.
  736. */
  737. /**
  738. * skb_unshare - make a copy of a shared buffer
  739. * @skb: buffer to check
  740. * @pri: priority for memory allocation
  741. *
  742. * If the socket buffer is a clone then this function creates a new
  743. * copy of the data, drops a reference count on the old copy and returns
  744. * the new copy with the reference count at 1. If the buffer is not a clone
  745. * the original buffer is returned. When called with a spinlock held or
  746. * from interrupt state @pri must be %GFP_ATOMIC
  747. *
  748. * %NULL is returned on a memory allocation failure.
  749. */
  750. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  751. gfp_t pri)
  752. {
  753. might_sleep_if(pri & __GFP_WAIT);
  754. if (skb_cloned(skb)) {
  755. struct sk_buff *nskb = skb_copy(skb, pri);
  756. kfree_skb(skb); /* Free our shared copy */
  757. skb = nskb;
  758. }
  759. return skb;
  760. }
  761. /**
  762. * skb_peek - peek at the head of an &sk_buff_head
  763. * @list_: list to peek at
  764. *
  765. * Peek an &sk_buff. Unlike most other operations you _MUST_
  766. * be careful with this one. A peek leaves the buffer on the
  767. * list and someone else may run off with it. You must hold
  768. * the appropriate locks or have a private queue to do this.
  769. *
  770. * Returns %NULL for an empty list or a pointer to the head element.
  771. * The reference count is not incremented and the reference is therefore
  772. * volatile. Use with caution.
  773. */
  774. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  775. {
  776. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  777. if (list == (struct sk_buff *)list_)
  778. list = NULL;
  779. return list;
  780. }
  781. /**
  782. * skb_peek_tail - peek at the tail of an &sk_buff_head
  783. * @list_: list to peek at
  784. *
  785. * Peek an &sk_buff. Unlike most other operations you _MUST_
  786. * be careful with this one. A peek leaves the buffer on the
  787. * list and someone else may run off with it. You must hold
  788. * the appropriate locks or have a private queue to do this.
  789. *
  790. * Returns %NULL for an empty list or a pointer to the tail element.
  791. * The reference count is not incremented and the reference is therefore
  792. * volatile. Use with caution.
  793. */
  794. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  795. {
  796. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  797. if (list == (struct sk_buff *)list_)
  798. list = NULL;
  799. return list;
  800. }
  801. /**
  802. * skb_queue_len - get queue length
  803. * @list_: list to measure
  804. *
  805. * Return the length of an &sk_buff queue.
  806. */
  807. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  808. {
  809. return list_->qlen;
  810. }
  811. /**
  812. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  813. * @list: queue to initialize
  814. *
  815. * This initializes only the list and queue length aspects of
  816. * an sk_buff_head object. This allows to initialize the list
  817. * aspects of an sk_buff_head without reinitializing things like
  818. * the spinlock. It can also be used for on-stack sk_buff_head
  819. * objects where the spinlock is known to not be used.
  820. */
  821. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  822. {
  823. list->prev = list->next = (struct sk_buff *)list;
  824. list->qlen = 0;
  825. }
  826. /*
  827. * This function creates a split out lock class for each invocation;
  828. * this is needed for now since a whole lot of users of the skb-queue
  829. * infrastructure in drivers have different locking usage (in hardirq)
  830. * than the networking core (in softirq only). In the long run either the
  831. * network layer or drivers should need annotation to consolidate the
  832. * main types of usage into 3 classes.
  833. */
  834. static inline void skb_queue_head_init(struct sk_buff_head *list)
  835. {
  836. spin_lock_init(&list->lock);
  837. __skb_queue_head_init(list);
  838. }
  839. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  840. struct lock_class_key *class)
  841. {
  842. skb_queue_head_init(list);
  843. lockdep_set_class(&list->lock, class);
  844. }
  845. /*
  846. * Insert an sk_buff on a list.
  847. *
  848. * The "__skb_xxxx()" functions are the non-atomic ones that
  849. * can only be called with interrupts disabled.
  850. */
  851. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  852. static inline void __skb_insert(struct sk_buff *newsk,
  853. struct sk_buff *prev, struct sk_buff *next,
  854. struct sk_buff_head *list)
  855. {
  856. newsk->next = next;
  857. newsk->prev = prev;
  858. next->prev = prev->next = newsk;
  859. list->qlen++;
  860. }
  861. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  862. struct sk_buff *prev,
  863. struct sk_buff *next)
  864. {
  865. struct sk_buff *first = list->next;
  866. struct sk_buff *last = list->prev;
  867. first->prev = prev;
  868. prev->next = first;
  869. last->next = next;
  870. next->prev = last;
  871. }
  872. /**
  873. * skb_queue_splice - join two skb lists, this is designed for stacks
  874. * @list: the new list to add
  875. * @head: the place to add it in the first list
  876. */
  877. static inline void skb_queue_splice(const struct sk_buff_head *list,
  878. struct sk_buff_head *head)
  879. {
  880. if (!skb_queue_empty(list)) {
  881. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  882. head->qlen += list->qlen;
  883. }
  884. }
  885. /**
  886. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  887. * @list: the new list to add
  888. * @head: the place to add it in the first list
  889. *
  890. * The list at @list is reinitialised
  891. */
  892. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  893. struct sk_buff_head *head)
  894. {
  895. if (!skb_queue_empty(list)) {
  896. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  897. head->qlen += list->qlen;
  898. __skb_queue_head_init(list);
  899. }
  900. }
  901. /**
  902. * skb_queue_splice_tail - join two skb lists, each list being a queue
  903. * @list: the new list to add
  904. * @head: the place to add it in the first list
  905. */
  906. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  907. struct sk_buff_head *head)
  908. {
  909. if (!skb_queue_empty(list)) {
  910. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  911. head->qlen += list->qlen;
  912. }
  913. }
  914. /**
  915. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  916. * @list: the new list to add
  917. * @head: the place to add it in the first list
  918. *
  919. * Each of the lists is a queue.
  920. * The list at @list is reinitialised
  921. */
  922. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  923. struct sk_buff_head *head)
  924. {
  925. if (!skb_queue_empty(list)) {
  926. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  927. head->qlen += list->qlen;
  928. __skb_queue_head_init(list);
  929. }
  930. }
  931. /**
  932. * __skb_queue_after - queue a buffer at the list head
  933. * @list: list to use
  934. * @prev: place after this buffer
  935. * @newsk: buffer to queue
  936. *
  937. * Queue a buffer int the middle of a list. This function takes no locks
  938. * and you must therefore hold required locks before calling it.
  939. *
  940. * A buffer cannot be placed on two lists at the same time.
  941. */
  942. static inline void __skb_queue_after(struct sk_buff_head *list,
  943. struct sk_buff *prev,
  944. struct sk_buff *newsk)
  945. {
  946. __skb_insert(newsk, prev, prev->next, list);
  947. }
  948. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  949. struct sk_buff_head *list);
  950. static inline void __skb_queue_before(struct sk_buff_head *list,
  951. struct sk_buff *next,
  952. struct sk_buff *newsk)
  953. {
  954. __skb_insert(newsk, next->prev, next, list);
  955. }
  956. /**
  957. * __skb_queue_head - queue a buffer at the list head
  958. * @list: list to use
  959. * @newsk: buffer to queue
  960. *
  961. * Queue a buffer at the start of a list. This function takes no locks
  962. * and you must therefore hold required locks before calling it.
  963. *
  964. * A buffer cannot be placed on two lists at the same time.
  965. */
  966. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  967. static inline void __skb_queue_head(struct sk_buff_head *list,
  968. struct sk_buff *newsk)
  969. {
  970. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  971. }
  972. /**
  973. * __skb_queue_tail - queue a buffer at the list tail
  974. * @list: list to use
  975. * @newsk: buffer to queue
  976. *
  977. * Queue a buffer at the end of a list. This function takes no locks
  978. * and you must therefore hold required locks before calling it.
  979. *
  980. * A buffer cannot be placed on two lists at the same time.
  981. */
  982. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  983. static inline void __skb_queue_tail(struct sk_buff_head *list,
  984. struct sk_buff *newsk)
  985. {
  986. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  987. }
  988. /*
  989. * remove sk_buff from list. _Must_ be called atomically, and with
  990. * the list known..
  991. */
  992. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  993. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  994. {
  995. struct sk_buff *next, *prev;
  996. list->qlen--;
  997. next = skb->next;
  998. prev = skb->prev;
  999. skb->next = skb->prev = NULL;
  1000. next->prev = prev;
  1001. prev->next = next;
  1002. }
  1003. /**
  1004. * __skb_dequeue - remove from the head of the queue
  1005. * @list: list to dequeue from
  1006. *
  1007. * Remove the head of the list. This function does not take any locks
  1008. * so must be used with appropriate locks held only. The head item is
  1009. * returned or %NULL if the list is empty.
  1010. */
  1011. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1012. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1013. {
  1014. struct sk_buff *skb = skb_peek(list);
  1015. if (skb)
  1016. __skb_unlink(skb, list);
  1017. return skb;
  1018. }
  1019. /**
  1020. * __skb_dequeue_tail - remove from the tail of the queue
  1021. * @list: list to dequeue from
  1022. *
  1023. * Remove the tail of the list. This function does not take any locks
  1024. * so must be used with appropriate locks held only. The tail item is
  1025. * returned or %NULL if the list is empty.
  1026. */
  1027. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1028. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1029. {
  1030. struct sk_buff *skb = skb_peek_tail(list);
  1031. if (skb)
  1032. __skb_unlink(skb, list);
  1033. return skb;
  1034. }
  1035. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1036. {
  1037. return skb->data_len;
  1038. }
  1039. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1040. {
  1041. return skb->len - skb->data_len;
  1042. }
  1043. static inline int skb_pagelen(const struct sk_buff *skb)
  1044. {
  1045. int i, len = 0;
  1046. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1047. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1048. return len + skb_headlen(skb);
  1049. }
  1050. /**
  1051. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1052. * @skb: buffer containing fragment to be initialised
  1053. * @i: paged fragment index to initialise
  1054. * @page: the page to use for this fragment
  1055. * @off: the offset to the data with @page
  1056. * @size: the length of the data
  1057. *
  1058. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1059. * offset @off within @page.
  1060. *
  1061. * Does not take any additional reference on the fragment.
  1062. */
  1063. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1064. struct page *page, int off, int size)
  1065. {
  1066. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1067. frag->page.p = page;
  1068. frag->page_offset = off;
  1069. skb_frag_size_set(frag, size);
  1070. }
  1071. /**
  1072. * skb_fill_page_desc - initialise a paged fragment in an skb
  1073. * @skb: buffer containing fragment to be initialised
  1074. * @i: paged fragment index to initialise
  1075. * @page: the page to use for this fragment
  1076. * @off: the offset to the data with @page
  1077. * @size: the length of the data
  1078. *
  1079. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1080. * @skb to point to &size bytes at offset @off within @page. In
  1081. * addition updates @skb such that @i is the last fragment.
  1082. *
  1083. * Does not take any additional reference on the fragment.
  1084. */
  1085. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1086. struct page *page, int off, int size)
  1087. {
  1088. __skb_fill_page_desc(skb, i, page, off, size);
  1089. skb_shinfo(skb)->nr_frags = i + 1;
  1090. }
  1091. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1092. int off, int size);
  1093. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1094. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1095. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1096. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1097. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1098. {
  1099. return skb->head + skb->tail;
  1100. }
  1101. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1102. {
  1103. skb->tail = skb->data - skb->head;
  1104. }
  1105. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1106. {
  1107. skb_reset_tail_pointer(skb);
  1108. skb->tail += offset;
  1109. }
  1110. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1111. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1112. {
  1113. return skb->tail;
  1114. }
  1115. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1116. {
  1117. skb->tail = skb->data;
  1118. }
  1119. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1120. {
  1121. skb->tail = skb->data + offset;
  1122. }
  1123. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1124. /*
  1125. * Add data to an sk_buff
  1126. */
  1127. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1128. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1129. {
  1130. unsigned char *tmp = skb_tail_pointer(skb);
  1131. SKB_LINEAR_ASSERT(skb);
  1132. skb->tail += len;
  1133. skb->len += len;
  1134. return tmp;
  1135. }
  1136. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1137. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1138. {
  1139. skb->data -= len;
  1140. skb->len += len;
  1141. return skb->data;
  1142. }
  1143. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1144. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1145. {
  1146. skb->len -= len;
  1147. BUG_ON(skb->len < skb->data_len);
  1148. return skb->data += len;
  1149. }
  1150. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1151. {
  1152. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1153. }
  1154. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1155. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1156. {
  1157. if (len > skb_headlen(skb) &&
  1158. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1159. return NULL;
  1160. skb->len -= len;
  1161. return skb->data += len;
  1162. }
  1163. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1164. {
  1165. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1166. }
  1167. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1168. {
  1169. if (likely(len <= skb_headlen(skb)))
  1170. return 1;
  1171. if (unlikely(len > skb->len))
  1172. return 0;
  1173. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1174. }
  1175. /**
  1176. * skb_headroom - bytes at buffer head
  1177. * @skb: buffer to check
  1178. *
  1179. * Return the number of bytes of free space at the head of an &sk_buff.
  1180. */
  1181. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1182. {
  1183. return skb->data - skb->head;
  1184. }
  1185. /**
  1186. * skb_tailroom - bytes at buffer end
  1187. * @skb: buffer to check
  1188. *
  1189. * Return the number of bytes of free space at the tail of an sk_buff
  1190. */
  1191. static inline int skb_tailroom(const struct sk_buff *skb)
  1192. {
  1193. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1194. }
  1195. /**
  1196. * skb_reserve - adjust headroom
  1197. * @skb: buffer to alter
  1198. * @len: bytes to move
  1199. *
  1200. * Increase the headroom of an empty &sk_buff by reducing the tail
  1201. * room. This is only allowed for an empty buffer.
  1202. */
  1203. static inline void skb_reserve(struct sk_buff *skb, int len)
  1204. {
  1205. skb->data += len;
  1206. skb->tail += len;
  1207. }
  1208. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1209. {
  1210. skb->mac_len = skb->network_header - skb->mac_header;
  1211. }
  1212. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1213. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1214. {
  1215. return skb->head + skb->transport_header;
  1216. }
  1217. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1218. {
  1219. skb->transport_header = skb->data - skb->head;
  1220. }
  1221. static inline void skb_set_transport_header(struct sk_buff *skb,
  1222. const int offset)
  1223. {
  1224. skb_reset_transport_header(skb);
  1225. skb->transport_header += offset;
  1226. }
  1227. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1228. {
  1229. return skb->head + skb->network_header;
  1230. }
  1231. static inline void skb_reset_network_header(struct sk_buff *skb)
  1232. {
  1233. skb->network_header = skb->data - skb->head;
  1234. }
  1235. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1236. {
  1237. skb_reset_network_header(skb);
  1238. skb->network_header += offset;
  1239. }
  1240. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1241. {
  1242. return skb->head + skb->mac_header;
  1243. }
  1244. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1245. {
  1246. return skb->mac_header != ~0U;
  1247. }
  1248. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1249. {
  1250. skb->mac_header = skb->data - skb->head;
  1251. }
  1252. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1253. {
  1254. skb_reset_mac_header(skb);
  1255. skb->mac_header += offset;
  1256. }
  1257. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1258. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1259. {
  1260. return skb->transport_header;
  1261. }
  1262. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1263. {
  1264. skb->transport_header = skb->data;
  1265. }
  1266. static inline void skb_set_transport_header(struct sk_buff *skb,
  1267. const int offset)
  1268. {
  1269. skb->transport_header = skb->data + offset;
  1270. }
  1271. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1272. {
  1273. return skb->network_header;
  1274. }
  1275. static inline void skb_reset_network_header(struct sk_buff *skb)
  1276. {
  1277. skb->network_header = skb->data;
  1278. }
  1279. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1280. {
  1281. skb->network_header = skb->data + offset;
  1282. }
  1283. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1284. {
  1285. return skb->mac_header;
  1286. }
  1287. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1288. {
  1289. return skb->mac_header != NULL;
  1290. }
  1291. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1292. {
  1293. skb->mac_header = skb->data;
  1294. }
  1295. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1296. {
  1297. skb->mac_header = skb->data + offset;
  1298. }
  1299. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1300. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1301. {
  1302. return skb->csum_start - skb_headroom(skb);
  1303. }
  1304. static inline int skb_transport_offset(const struct sk_buff *skb)
  1305. {
  1306. return skb_transport_header(skb) - skb->data;
  1307. }
  1308. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1309. {
  1310. return skb->transport_header - skb->network_header;
  1311. }
  1312. static inline int skb_network_offset(const struct sk_buff *skb)
  1313. {
  1314. return skb_network_header(skb) - skb->data;
  1315. }
  1316. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1317. {
  1318. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1319. }
  1320. /*
  1321. * CPUs often take a performance hit when accessing unaligned memory
  1322. * locations. The actual performance hit varies, it can be small if the
  1323. * hardware handles it or large if we have to take an exception and fix it
  1324. * in software.
  1325. *
  1326. * Since an ethernet header is 14 bytes network drivers often end up with
  1327. * the IP header at an unaligned offset. The IP header can be aligned by
  1328. * shifting the start of the packet by 2 bytes. Drivers should do this
  1329. * with:
  1330. *
  1331. * skb_reserve(skb, NET_IP_ALIGN);
  1332. *
  1333. * The downside to this alignment of the IP header is that the DMA is now
  1334. * unaligned. On some architectures the cost of an unaligned DMA is high
  1335. * and this cost outweighs the gains made by aligning the IP header.
  1336. *
  1337. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1338. * to be overridden.
  1339. */
  1340. #ifndef NET_IP_ALIGN
  1341. #define NET_IP_ALIGN 2
  1342. #endif
  1343. /*
  1344. * The networking layer reserves some headroom in skb data (via
  1345. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1346. * the header has to grow. In the default case, if the header has to grow
  1347. * 32 bytes or less we avoid the reallocation.
  1348. *
  1349. * Unfortunately this headroom changes the DMA alignment of the resulting
  1350. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1351. * on some architectures. An architecture can override this value,
  1352. * perhaps setting it to a cacheline in size (since that will maintain
  1353. * cacheline alignment of the DMA). It must be a power of 2.
  1354. *
  1355. * Various parts of the networking layer expect at least 32 bytes of
  1356. * headroom, you should not reduce this.
  1357. *
  1358. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1359. * to reduce average number of cache lines per packet.
  1360. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1361. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1362. */
  1363. #ifndef NET_SKB_PAD
  1364. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1365. #endif
  1366. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1367. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1368. {
  1369. if (unlikely(skb_is_nonlinear(skb))) {
  1370. WARN_ON(1);
  1371. return;
  1372. }
  1373. skb->len = len;
  1374. skb_set_tail_pointer(skb, len);
  1375. }
  1376. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1377. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1378. {
  1379. if (skb->data_len)
  1380. return ___pskb_trim(skb, len);
  1381. __skb_trim(skb, len);
  1382. return 0;
  1383. }
  1384. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1385. {
  1386. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1387. }
  1388. /**
  1389. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1390. * @skb: buffer to alter
  1391. * @len: new length
  1392. *
  1393. * This is identical to pskb_trim except that the caller knows that
  1394. * the skb is not cloned so we should never get an error due to out-
  1395. * of-memory.
  1396. */
  1397. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1398. {
  1399. int err = pskb_trim(skb, len);
  1400. BUG_ON(err);
  1401. }
  1402. /**
  1403. * skb_orphan - orphan a buffer
  1404. * @skb: buffer to orphan
  1405. *
  1406. * If a buffer currently has an owner then we call the owner's
  1407. * destructor function and make the @skb unowned. The buffer continues
  1408. * to exist but is no longer charged to its former owner.
  1409. */
  1410. static inline void skb_orphan(struct sk_buff *skb)
  1411. {
  1412. if (skb->destructor)
  1413. skb->destructor(skb);
  1414. skb->destructor = NULL;
  1415. skb->sk = NULL;
  1416. }
  1417. /**
  1418. * __skb_queue_purge - empty a list
  1419. * @list: list to empty
  1420. *
  1421. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1422. * the list and one reference dropped. This function does not take the
  1423. * list lock and the caller must hold the relevant locks to use it.
  1424. */
  1425. extern void skb_queue_purge(struct sk_buff_head *list);
  1426. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1427. {
  1428. struct sk_buff *skb;
  1429. while ((skb = __skb_dequeue(list)) != NULL)
  1430. kfree_skb(skb);
  1431. }
  1432. /**
  1433. * __dev_alloc_skb - allocate an skbuff for receiving
  1434. * @length: length to allocate
  1435. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1436. *
  1437. * Allocate a new &sk_buff and assign it a usage count of one. The
  1438. * buffer has unspecified headroom built in. Users should allocate
  1439. * the headroom they think they need without accounting for the
  1440. * built in space. The built in space is used for optimisations.
  1441. *
  1442. * %NULL is returned if there is no free memory.
  1443. */
  1444. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1445. gfp_t gfp_mask)
  1446. {
  1447. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1448. if (likely(skb))
  1449. skb_reserve(skb, NET_SKB_PAD);
  1450. return skb;
  1451. }
  1452. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1453. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1454. unsigned int length, gfp_t gfp_mask);
  1455. /**
  1456. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1457. * @dev: network device to receive on
  1458. * @length: length to allocate
  1459. *
  1460. * Allocate a new &sk_buff and assign it a usage count of one. The
  1461. * buffer has unspecified headroom built in. Users should allocate
  1462. * the headroom they think they need without accounting for the
  1463. * built in space. The built in space is used for optimisations.
  1464. *
  1465. * %NULL is returned if there is no free memory. Although this function
  1466. * allocates memory it can be called from an interrupt.
  1467. */
  1468. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1469. unsigned int length)
  1470. {
  1471. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1472. }
  1473. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1474. unsigned int length, gfp_t gfp)
  1475. {
  1476. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1477. if (NET_IP_ALIGN && skb)
  1478. skb_reserve(skb, NET_IP_ALIGN);
  1479. return skb;
  1480. }
  1481. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1482. unsigned int length)
  1483. {
  1484. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1485. }
  1486. /**
  1487. * skb_frag_page - retrieve the page refered to by a paged fragment
  1488. * @frag: the paged fragment
  1489. *
  1490. * Returns the &struct page associated with @frag.
  1491. */
  1492. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1493. {
  1494. return frag->page.p;
  1495. }
  1496. /**
  1497. * __skb_frag_ref - take an addition reference on a paged fragment.
  1498. * @frag: the paged fragment
  1499. *
  1500. * Takes an additional reference on the paged fragment @frag.
  1501. */
  1502. static inline void __skb_frag_ref(skb_frag_t *frag)
  1503. {
  1504. get_page(skb_frag_page(frag));
  1505. }
  1506. /**
  1507. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1508. * @skb: the buffer
  1509. * @f: the fragment offset.
  1510. *
  1511. * Takes an additional reference on the @f'th paged fragment of @skb.
  1512. */
  1513. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1514. {
  1515. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1516. }
  1517. /**
  1518. * __skb_frag_unref - release a reference on a paged fragment.
  1519. * @frag: the paged fragment
  1520. *
  1521. * Releases a reference on the paged fragment @frag.
  1522. */
  1523. static inline void __skb_frag_unref(skb_frag_t *frag)
  1524. {
  1525. put_page(skb_frag_page(frag));
  1526. }
  1527. /**
  1528. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1529. * @skb: the buffer
  1530. * @f: the fragment offset
  1531. *
  1532. * Releases a reference on the @f'th paged fragment of @skb.
  1533. */
  1534. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1535. {
  1536. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1537. }
  1538. /**
  1539. * skb_frag_address - gets the address of the data contained in a paged fragment
  1540. * @frag: the paged fragment buffer
  1541. *
  1542. * Returns the address of the data within @frag. The page must already
  1543. * be mapped.
  1544. */
  1545. static inline void *skb_frag_address(const skb_frag_t *frag)
  1546. {
  1547. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1548. }
  1549. /**
  1550. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1551. * @frag: the paged fragment buffer
  1552. *
  1553. * Returns the address of the data within @frag. Checks that the page
  1554. * is mapped and returns %NULL otherwise.
  1555. */
  1556. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1557. {
  1558. void *ptr = page_address(skb_frag_page(frag));
  1559. if (unlikely(!ptr))
  1560. return NULL;
  1561. return ptr + frag->page_offset;
  1562. }
  1563. /**
  1564. * __skb_frag_set_page - sets the page contained in a paged fragment
  1565. * @frag: the paged fragment
  1566. * @page: the page to set
  1567. *
  1568. * Sets the fragment @frag to contain @page.
  1569. */
  1570. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1571. {
  1572. frag->page.p = page;
  1573. }
  1574. /**
  1575. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1576. * @skb: the buffer
  1577. * @f: the fragment offset
  1578. * @page: the page to set
  1579. *
  1580. * Sets the @f'th fragment of @skb to contain @page.
  1581. */
  1582. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1583. struct page *page)
  1584. {
  1585. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1586. }
  1587. /**
  1588. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1589. * @dev: the device to map the fragment to
  1590. * @frag: the paged fragment to map
  1591. * @offset: the offset within the fragment (starting at the
  1592. * fragment's own offset)
  1593. * @size: the number of bytes to map
  1594. * @dir: the direction of the mapping (%PCI_DMA_*)
  1595. *
  1596. * Maps the page associated with @frag to @device.
  1597. */
  1598. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1599. const skb_frag_t *frag,
  1600. size_t offset, size_t size,
  1601. enum dma_data_direction dir)
  1602. {
  1603. return dma_map_page(dev, skb_frag_page(frag),
  1604. frag->page_offset + offset, size, dir);
  1605. }
  1606. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1607. gfp_t gfp_mask)
  1608. {
  1609. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1610. }
  1611. /**
  1612. * skb_clone_writable - is the header of a clone writable
  1613. * @skb: buffer to check
  1614. * @len: length up to which to write
  1615. *
  1616. * Returns true if modifying the header part of the cloned buffer
  1617. * does not requires the data to be copied.
  1618. */
  1619. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1620. {
  1621. return !skb_header_cloned(skb) &&
  1622. skb_headroom(skb) + len <= skb->hdr_len;
  1623. }
  1624. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1625. int cloned)
  1626. {
  1627. int delta = 0;
  1628. if (headroom < NET_SKB_PAD)
  1629. headroom = NET_SKB_PAD;
  1630. if (headroom > skb_headroom(skb))
  1631. delta = headroom - skb_headroom(skb);
  1632. if (delta || cloned)
  1633. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1634. GFP_ATOMIC);
  1635. return 0;
  1636. }
  1637. /**
  1638. * skb_cow - copy header of skb when it is required
  1639. * @skb: buffer to cow
  1640. * @headroom: needed headroom
  1641. *
  1642. * If the skb passed lacks sufficient headroom or its data part
  1643. * is shared, data is reallocated. If reallocation fails, an error
  1644. * is returned and original skb is not changed.
  1645. *
  1646. * The result is skb with writable area skb->head...skb->tail
  1647. * and at least @headroom of space at head.
  1648. */
  1649. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1650. {
  1651. return __skb_cow(skb, headroom, skb_cloned(skb));
  1652. }
  1653. /**
  1654. * skb_cow_head - skb_cow but only making the head writable
  1655. * @skb: buffer to cow
  1656. * @headroom: needed headroom
  1657. *
  1658. * This function is identical to skb_cow except that we replace the
  1659. * skb_cloned check by skb_header_cloned. It should be used when
  1660. * you only need to push on some header and do not need to modify
  1661. * the data.
  1662. */
  1663. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1664. {
  1665. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1666. }
  1667. /**
  1668. * skb_padto - pad an skbuff up to a minimal size
  1669. * @skb: buffer to pad
  1670. * @len: minimal length
  1671. *
  1672. * Pads up a buffer to ensure the trailing bytes exist and are
  1673. * blanked. If the buffer already contains sufficient data it
  1674. * is untouched. Otherwise it is extended. Returns zero on
  1675. * success. The skb is freed on error.
  1676. */
  1677. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1678. {
  1679. unsigned int size = skb->len;
  1680. if (likely(size >= len))
  1681. return 0;
  1682. return skb_pad(skb, len - size);
  1683. }
  1684. static inline int skb_add_data(struct sk_buff *skb,
  1685. char __user *from, int copy)
  1686. {
  1687. const int off = skb->len;
  1688. if (skb->ip_summed == CHECKSUM_NONE) {
  1689. int err = 0;
  1690. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1691. copy, 0, &err);
  1692. if (!err) {
  1693. skb->csum = csum_block_add(skb->csum, csum, off);
  1694. return 0;
  1695. }
  1696. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1697. return 0;
  1698. __skb_trim(skb, off);
  1699. return -EFAULT;
  1700. }
  1701. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1702. const struct page *page, int off)
  1703. {
  1704. if (i) {
  1705. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1706. return page == skb_frag_page(frag) &&
  1707. off == frag->page_offset + skb_frag_size(frag);
  1708. }
  1709. return 0;
  1710. }
  1711. static inline int __skb_linearize(struct sk_buff *skb)
  1712. {
  1713. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1714. }
  1715. /**
  1716. * skb_linearize - convert paged skb to linear one
  1717. * @skb: buffer to linarize
  1718. *
  1719. * If there is no free memory -ENOMEM is returned, otherwise zero
  1720. * is returned and the old skb data released.
  1721. */
  1722. static inline int skb_linearize(struct sk_buff *skb)
  1723. {
  1724. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1725. }
  1726. /**
  1727. * skb_linearize_cow - make sure skb is linear and writable
  1728. * @skb: buffer to process
  1729. *
  1730. * If there is no free memory -ENOMEM is returned, otherwise zero
  1731. * is returned and the old skb data released.
  1732. */
  1733. static inline int skb_linearize_cow(struct sk_buff *skb)
  1734. {
  1735. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1736. __skb_linearize(skb) : 0;
  1737. }
  1738. /**
  1739. * skb_postpull_rcsum - update checksum for received skb after pull
  1740. * @skb: buffer to update
  1741. * @start: start of data before pull
  1742. * @len: length of data pulled
  1743. *
  1744. * After doing a pull on a received packet, you need to call this to
  1745. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1746. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1747. */
  1748. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1749. const void *start, unsigned int len)
  1750. {
  1751. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1752. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1753. }
  1754. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1755. /**
  1756. * pskb_trim_rcsum - trim received skb and update checksum
  1757. * @skb: buffer to trim
  1758. * @len: new length
  1759. *
  1760. * This is exactly the same as pskb_trim except that it ensures the
  1761. * checksum of received packets are still valid after the operation.
  1762. */
  1763. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1764. {
  1765. if (likely(len >= skb->len))
  1766. return 0;
  1767. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1768. skb->ip_summed = CHECKSUM_NONE;
  1769. return __pskb_trim(skb, len);
  1770. }
  1771. #define skb_queue_walk(queue, skb) \
  1772. for (skb = (queue)->next; \
  1773. skb != (struct sk_buff *)(queue); \
  1774. skb = skb->next)
  1775. #define skb_queue_walk_safe(queue, skb, tmp) \
  1776. for (skb = (queue)->next, tmp = skb->next; \
  1777. skb != (struct sk_buff *)(queue); \
  1778. skb = tmp, tmp = skb->next)
  1779. #define skb_queue_walk_from(queue, skb) \
  1780. for (; skb != (struct sk_buff *)(queue); \
  1781. skb = skb->next)
  1782. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1783. for (tmp = skb->next; \
  1784. skb != (struct sk_buff *)(queue); \
  1785. skb = tmp, tmp = skb->next)
  1786. #define skb_queue_reverse_walk(queue, skb) \
  1787. for (skb = (queue)->prev; \
  1788. skb != (struct sk_buff *)(queue); \
  1789. skb = skb->prev)
  1790. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1791. for (skb = (queue)->prev, tmp = skb->prev; \
  1792. skb != (struct sk_buff *)(queue); \
  1793. skb = tmp, tmp = skb->prev)
  1794. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1795. for (tmp = skb->prev; \
  1796. skb != (struct sk_buff *)(queue); \
  1797. skb = tmp, tmp = skb->prev)
  1798. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1799. {
  1800. return skb_shinfo(skb)->frag_list != NULL;
  1801. }
  1802. static inline void skb_frag_list_init(struct sk_buff *skb)
  1803. {
  1804. skb_shinfo(skb)->frag_list = NULL;
  1805. }
  1806. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1807. {
  1808. frag->next = skb_shinfo(skb)->frag_list;
  1809. skb_shinfo(skb)->frag_list = frag;
  1810. }
  1811. #define skb_walk_frags(skb, iter) \
  1812. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1813. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1814. int *peeked, int *err);
  1815. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1816. int noblock, int *err);
  1817. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1818. struct poll_table_struct *wait);
  1819. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1820. int offset, struct iovec *to,
  1821. int size);
  1822. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1823. int hlen,
  1824. struct iovec *iov);
  1825. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1826. int offset,
  1827. const struct iovec *from,
  1828. int from_offset,
  1829. int len);
  1830. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1831. int offset,
  1832. const struct iovec *to,
  1833. int to_offset,
  1834. int size);
  1835. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1836. extern void skb_free_datagram_locked(struct sock *sk,
  1837. struct sk_buff *skb);
  1838. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1839. unsigned int flags);
  1840. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1841. int len, __wsum csum);
  1842. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1843. void *to, int len);
  1844. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1845. const void *from, int len);
  1846. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1847. int offset, u8 *to, int len,
  1848. __wsum csum);
  1849. extern int skb_splice_bits(struct sk_buff *skb,
  1850. unsigned int offset,
  1851. struct pipe_inode_info *pipe,
  1852. unsigned int len,
  1853. unsigned int flags);
  1854. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1855. extern void skb_split(struct sk_buff *skb,
  1856. struct sk_buff *skb1, const u32 len);
  1857. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1858. int shiftlen);
  1859. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1860. netdev_features_t features);
  1861. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1862. int len, void *buffer)
  1863. {
  1864. int hlen = skb_headlen(skb);
  1865. if (hlen - offset >= len)
  1866. return skb->data + offset;
  1867. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1868. return NULL;
  1869. return buffer;
  1870. }
  1871. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1872. void *to,
  1873. const unsigned int len)
  1874. {
  1875. memcpy(to, skb->data, len);
  1876. }
  1877. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1878. const int offset, void *to,
  1879. const unsigned int len)
  1880. {
  1881. memcpy(to, skb->data + offset, len);
  1882. }
  1883. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1884. const void *from,
  1885. const unsigned int len)
  1886. {
  1887. memcpy(skb->data, from, len);
  1888. }
  1889. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1890. const int offset,
  1891. const void *from,
  1892. const unsigned int len)
  1893. {
  1894. memcpy(skb->data + offset, from, len);
  1895. }
  1896. extern void skb_init(void);
  1897. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1898. {
  1899. return skb->tstamp;
  1900. }
  1901. /**
  1902. * skb_get_timestamp - get timestamp from a skb
  1903. * @skb: skb to get stamp from
  1904. * @stamp: pointer to struct timeval to store stamp in
  1905. *
  1906. * Timestamps are stored in the skb as offsets to a base timestamp.
  1907. * This function converts the offset back to a struct timeval and stores
  1908. * it in stamp.
  1909. */
  1910. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1911. struct timeval *stamp)
  1912. {
  1913. *stamp = ktime_to_timeval(skb->tstamp);
  1914. }
  1915. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1916. struct timespec *stamp)
  1917. {
  1918. *stamp = ktime_to_timespec(skb->tstamp);
  1919. }
  1920. static inline void __net_timestamp(struct sk_buff *skb)
  1921. {
  1922. skb->tstamp = ktime_get_real();
  1923. }
  1924. static inline ktime_t net_timedelta(ktime_t t)
  1925. {
  1926. return ktime_sub(ktime_get_real(), t);
  1927. }
  1928. static inline ktime_t net_invalid_timestamp(void)
  1929. {
  1930. return ktime_set(0, 0);
  1931. }
  1932. extern void skb_timestamping_init(void);
  1933. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1934. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1935. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1936. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1937. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1938. {
  1939. }
  1940. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1941. {
  1942. return false;
  1943. }
  1944. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1945. /**
  1946. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1947. *
  1948. * PHY drivers may accept clones of transmitted packets for
  1949. * timestamping via their phy_driver.txtstamp method. These drivers
  1950. * must call this function to return the skb back to the stack, with
  1951. * or without a timestamp.
  1952. *
  1953. * @skb: clone of the the original outgoing packet
  1954. * @hwtstamps: hardware time stamps, may be NULL if not available
  1955. *
  1956. */
  1957. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1958. struct skb_shared_hwtstamps *hwtstamps);
  1959. /**
  1960. * skb_tstamp_tx - queue clone of skb with send time stamps
  1961. * @orig_skb: the original outgoing packet
  1962. * @hwtstamps: hardware time stamps, may be NULL if not available
  1963. *
  1964. * If the skb has a socket associated, then this function clones the
  1965. * skb (thus sharing the actual data and optional structures), stores
  1966. * the optional hardware time stamping information (if non NULL) or
  1967. * generates a software time stamp (otherwise), then queues the clone
  1968. * to the error queue of the socket. Errors are silently ignored.
  1969. */
  1970. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1971. struct skb_shared_hwtstamps *hwtstamps);
  1972. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1973. {
  1974. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1975. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1976. skb_tstamp_tx(skb, NULL);
  1977. }
  1978. /**
  1979. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1980. *
  1981. * Ethernet MAC Drivers should call this function in their hard_xmit()
  1982. * function immediately before giving the sk_buff to the MAC hardware.
  1983. *
  1984. * @skb: A socket buffer.
  1985. */
  1986. static inline void skb_tx_timestamp(struct sk_buff *skb)
  1987. {
  1988. skb_clone_tx_timestamp(skb);
  1989. sw_tx_timestamp(skb);
  1990. }
  1991. /**
  1992. * skb_complete_wifi_ack - deliver skb with wifi status
  1993. *
  1994. * @skb: the original outgoing packet
  1995. * @acked: ack status
  1996. *
  1997. */
  1998. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  1999. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2000. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2001. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2002. {
  2003. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2004. }
  2005. /**
  2006. * skb_checksum_complete - Calculate checksum of an entire packet
  2007. * @skb: packet to process
  2008. *
  2009. * This function calculates the checksum over the entire packet plus
  2010. * the value of skb->csum. The latter can be used to supply the
  2011. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2012. * checksum.
  2013. *
  2014. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2015. * this function can be used to verify that checksum on received
  2016. * packets. In that case the function should return zero if the
  2017. * checksum is correct. In particular, this function will return zero
  2018. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2019. * hardware has already verified the correctness of the checksum.
  2020. */
  2021. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2022. {
  2023. return skb_csum_unnecessary(skb) ?
  2024. 0 : __skb_checksum_complete(skb);
  2025. }
  2026. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2027. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2028. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2029. {
  2030. if (nfct && atomic_dec_and_test(&nfct->use))
  2031. nf_conntrack_destroy(nfct);
  2032. }
  2033. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2034. {
  2035. if (nfct)
  2036. atomic_inc(&nfct->use);
  2037. }
  2038. #endif
  2039. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2040. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2041. {
  2042. if (skb)
  2043. atomic_inc(&skb->users);
  2044. }
  2045. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2046. {
  2047. if (skb)
  2048. kfree_skb(skb);
  2049. }
  2050. #endif
  2051. #ifdef CONFIG_BRIDGE_NETFILTER
  2052. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2053. {
  2054. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2055. kfree(nf_bridge);
  2056. }
  2057. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2058. {
  2059. if (nf_bridge)
  2060. atomic_inc(&nf_bridge->use);
  2061. }
  2062. #endif /* CONFIG_BRIDGE_NETFILTER */
  2063. static inline void nf_reset(struct sk_buff *skb)
  2064. {
  2065. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2066. nf_conntrack_put(skb->nfct);
  2067. skb->nfct = NULL;
  2068. #endif
  2069. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2070. nf_conntrack_put_reasm(skb->nfct_reasm);
  2071. skb->nfct_reasm = NULL;
  2072. #endif
  2073. #ifdef CONFIG_BRIDGE_NETFILTER
  2074. nf_bridge_put(skb->nf_bridge);
  2075. skb->nf_bridge = NULL;
  2076. #endif
  2077. }
  2078. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2079. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2080. {
  2081. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2082. dst->nfct = src->nfct;
  2083. nf_conntrack_get(src->nfct);
  2084. dst->nfctinfo = src->nfctinfo;
  2085. #endif
  2086. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2087. dst->nfct_reasm = src->nfct_reasm;
  2088. nf_conntrack_get_reasm(src->nfct_reasm);
  2089. #endif
  2090. #ifdef CONFIG_BRIDGE_NETFILTER
  2091. dst->nf_bridge = src->nf_bridge;
  2092. nf_bridge_get(src->nf_bridge);
  2093. #endif
  2094. }
  2095. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2096. {
  2097. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2098. nf_conntrack_put(dst->nfct);
  2099. #endif
  2100. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2101. nf_conntrack_put_reasm(dst->nfct_reasm);
  2102. #endif
  2103. #ifdef CONFIG_BRIDGE_NETFILTER
  2104. nf_bridge_put(dst->nf_bridge);
  2105. #endif
  2106. __nf_copy(dst, src);
  2107. }
  2108. #ifdef CONFIG_NETWORK_SECMARK
  2109. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2110. {
  2111. to->secmark = from->secmark;
  2112. }
  2113. static inline void skb_init_secmark(struct sk_buff *skb)
  2114. {
  2115. skb->secmark = 0;
  2116. }
  2117. #else
  2118. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2119. { }
  2120. static inline void skb_init_secmark(struct sk_buff *skb)
  2121. { }
  2122. #endif
  2123. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2124. {
  2125. skb->queue_mapping = queue_mapping;
  2126. }
  2127. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2128. {
  2129. return skb->queue_mapping;
  2130. }
  2131. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2132. {
  2133. to->queue_mapping = from->queue_mapping;
  2134. }
  2135. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2136. {
  2137. skb->queue_mapping = rx_queue + 1;
  2138. }
  2139. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2140. {
  2141. return skb->queue_mapping - 1;
  2142. }
  2143. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2144. {
  2145. return skb->queue_mapping != 0;
  2146. }
  2147. extern u16 __skb_tx_hash(const struct net_device *dev,
  2148. const struct sk_buff *skb,
  2149. unsigned int num_tx_queues);
  2150. #ifdef CONFIG_XFRM
  2151. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2152. {
  2153. return skb->sp;
  2154. }
  2155. #else
  2156. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2157. {
  2158. return NULL;
  2159. }
  2160. #endif
  2161. static inline int skb_is_gso(const struct sk_buff *skb)
  2162. {
  2163. return skb_shinfo(skb)->gso_size;
  2164. }
  2165. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2166. {
  2167. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2168. }
  2169. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2170. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2171. {
  2172. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2173. * wanted then gso_type will be set. */
  2174. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2175. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2176. unlikely(shinfo->gso_type == 0)) {
  2177. __skb_warn_lro_forwarding(skb);
  2178. return true;
  2179. }
  2180. return false;
  2181. }
  2182. static inline void skb_forward_csum(struct sk_buff *skb)
  2183. {
  2184. /* Unfortunately we don't support this one. Any brave souls? */
  2185. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2186. skb->ip_summed = CHECKSUM_NONE;
  2187. }
  2188. /**
  2189. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2190. * @skb: skb to check
  2191. *
  2192. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2193. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2194. * use this helper, to document places where we make this assertion.
  2195. */
  2196. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2197. {
  2198. #ifdef DEBUG
  2199. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2200. #endif
  2201. }
  2202. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2203. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2204. {
  2205. if (irqs_disabled())
  2206. return false;
  2207. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2208. return false;
  2209. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2210. return false;
  2211. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2212. if (skb_end_pointer(skb) - skb->head < skb_size)
  2213. return false;
  2214. if (skb_shared(skb) || skb_cloned(skb))
  2215. return false;
  2216. return true;
  2217. }
  2218. #endif /* __KERNEL__ */
  2219. #endif /* _LINUX_SKBUFF_H */