ordered-data.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. #include "disk-io.h"
  27. static struct kmem_cache *btrfs_ordered_extent_cache;
  28. static u64 entry_end(struct btrfs_ordered_extent *entry)
  29. {
  30. if (entry->file_offset + entry->len < entry->file_offset)
  31. return (u64)-1;
  32. return entry->file_offset + entry->len;
  33. }
  34. /* returns NULL if the insertion worked, or it returns the node it did find
  35. * in the tree
  36. */
  37. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  38. struct rb_node *node)
  39. {
  40. struct rb_node **p = &root->rb_node;
  41. struct rb_node *parent = NULL;
  42. struct btrfs_ordered_extent *entry;
  43. while (*p) {
  44. parent = *p;
  45. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46. if (file_offset < entry->file_offset)
  47. p = &(*p)->rb_left;
  48. else if (file_offset >= entry_end(entry))
  49. p = &(*p)->rb_right;
  50. else
  51. return parent;
  52. }
  53. rb_link_node(node, parent, p);
  54. rb_insert_color(node, root);
  55. return NULL;
  56. }
  57. static void ordered_data_tree_panic(struct inode *inode, int errno,
  58. u64 offset)
  59. {
  60. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  61. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  62. "%llu\n", offset);
  63. }
  64. /*
  65. * look for a given offset in the tree, and if it can't be found return the
  66. * first lesser offset
  67. */
  68. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  69. struct rb_node **prev_ret)
  70. {
  71. struct rb_node *n = root->rb_node;
  72. struct rb_node *prev = NULL;
  73. struct rb_node *test;
  74. struct btrfs_ordered_extent *entry;
  75. struct btrfs_ordered_extent *prev_entry = NULL;
  76. while (n) {
  77. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78. prev = n;
  79. prev_entry = entry;
  80. if (file_offset < entry->file_offset)
  81. n = n->rb_left;
  82. else if (file_offset >= entry_end(entry))
  83. n = n->rb_right;
  84. else
  85. return n;
  86. }
  87. if (!prev_ret)
  88. return NULL;
  89. while (prev && file_offset >= entry_end(prev_entry)) {
  90. test = rb_next(prev);
  91. if (!test)
  92. break;
  93. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94. rb_node);
  95. if (file_offset < entry_end(prev_entry))
  96. break;
  97. prev = test;
  98. }
  99. if (prev)
  100. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  101. rb_node);
  102. while (prev && file_offset < entry_end(prev_entry)) {
  103. test = rb_prev(prev);
  104. if (!test)
  105. break;
  106. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  107. rb_node);
  108. prev = test;
  109. }
  110. *prev_ret = prev;
  111. return NULL;
  112. }
  113. /*
  114. * helper to check if a given offset is inside a given entry
  115. */
  116. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  117. {
  118. if (file_offset < entry->file_offset ||
  119. entry->file_offset + entry->len <= file_offset)
  120. return 0;
  121. return 1;
  122. }
  123. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  124. u64 len)
  125. {
  126. if (file_offset + len <= entry->file_offset ||
  127. entry->file_offset + entry->len <= file_offset)
  128. return 0;
  129. return 1;
  130. }
  131. /*
  132. * look find the first ordered struct that has this offset, otherwise
  133. * the first one less than this offset
  134. */
  135. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  136. u64 file_offset)
  137. {
  138. struct rb_root *root = &tree->tree;
  139. struct rb_node *prev = NULL;
  140. struct rb_node *ret;
  141. struct btrfs_ordered_extent *entry;
  142. if (tree->last) {
  143. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  144. rb_node);
  145. if (offset_in_entry(entry, file_offset))
  146. return tree->last;
  147. }
  148. ret = __tree_search(root, file_offset, &prev);
  149. if (!ret)
  150. ret = prev;
  151. if (ret)
  152. tree->last = ret;
  153. return ret;
  154. }
  155. /* allocate and add a new ordered_extent into the per-inode tree.
  156. * file_offset is the logical offset in the file
  157. *
  158. * start is the disk block number of an extent already reserved in the
  159. * extent allocation tree
  160. *
  161. * len is the length of the extent
  162. *
  163. * The tree is given a single reference on the ordered extent that was
  164. * inserted.
  165. */
  166. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  167. u64 start, u64 len, u64 disk_len,
  168. int type, int dio, int compress_type)
  169. {
  170. struct btrfs_root *root = BTRFS_I(inode)->root;
  171. struct btrfs_ordered_inode_tree *tree;
  172. struct rb_node *node;
  173. struct btrfs_ordered_extent *entry;
  174. tree = &BTRFS_I(inode)->ordered_tree;
  175. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  176. if (!entry)
  177. return -ENOMEM;
  178. entry->file_offset = file_offset;
  179. entry->start = start;
  180. entry->len = len;
  181. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
  182. !(type == BTRFS_ORDERED_NOCOW))
  183. entry->csum_bytes_left = disk_len;
  184. entry->disk_len = disk_len;
  185. entry->bytes_left = len;
  186. entry->inode = igrab(inode);
  187. entry->compress_type = compress_type;
  188. entry->truncated_len = (u64)-1;
  189. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  190. set_bit(type, &entry->flags);
  191. if (dio)
  192. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  193. /* one ref for the tree */
  194. atomic_set(&entry->refs, 1);
  195. init_waitqueue_head(&entry->wait);
  196. INIT_LIST_HEAD(&entry->list);
  197. INIT_LIST_HEAD(&entry->root_extent_list);
  198. INIT_LIST_HEAD(&entry->work_list);
  199. init_completion(&entry->completion);
  200. INIT_LIST_HEAD(&entry->log_list);
  201. trace_btrfs_ordered_extent_add(inode, entry);
  202. spin_lock_irq(&tree->lock);
  203. node = tree_insert(&tree->tree, file_offset,
  204. &entry->rb_node);
  205. if (node)
  206. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  207. spin_unlock_irq(&tree->lock);
  208. spin_lock(&root->ordered_extent_lock);
  209. list_add_tail(&entry->root_extent_list,
  210. &root->ordered_extents);
  211. root->nr_ordered_extents++;
  212. if (root->nr_ordered_extents == 1) {
  213. spin_lock(&root->fs_info->ordered_root_lock);
  214. BUG_ON(!list_empty(&root->ordered_root));
  215. list_add_tail(&root->ordered_root,
  216. &root->fs_info->ordered_roots);
  217. spin_unlock(&root->fs_info->ordered_root_lock);
  218. }
  219. spin_unlock(&root->ordered_extent_lock);
  220. return 0;
  221. }
  222. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  223. u64 start, u64 len, u64 disk_len, int type)
  224. {
  225. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  226. disk_len, type, 0,
  227. BTRFS_COMPRESS_NONE);
  228. }
  229. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  230. u64 start, u64 len, u64 disk_len, int type)
  231. {
  232. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  233. disk_len, type, 1,
  234. BTRFS_COMPRESS_NONE);
  235. }
  236. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  237. u64 start, u64 len, u64 disk_len,
  238. int type, int compress_type)
  239. {
  240. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  241. disk_len, type, 0,
  242. compress_type);
  243. }
  244. /*
  245. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  246. * when an ordered extent is finished. If the list covers more than one
  247. * ordered extent, it is split across multiples.
  248. */
  249. void btrfs_add_ordered_sum(struct inode *inode,
  250. struct btrfs_ordered_extent *entry,
  251. struct btrfs_ordered_sum *sum)
  252. {
  253. struct btrfs_ordered_inode_tree *tree;
  254. tree = &BTRFS_I(inode)->ordered_tree;
  255. spin_lock_irq(&tree->lock);
  256. list_add_tail(&sum->list, &entry->list);
  257. WARN_ON(entry->csum_bytes_left < sum->len);
  258. entry->csum_bytes_left -= sum->len;
  259. if (entry->csum_bytes_left == 0)
  260. wake_up(&entry->wait);
  261. spin_unlock_irq(&tree->lock);
  262. }
  263. /*
  264. * this is used to account for finished IO across a given range
  265. * of the file. The IO may span ordered extents. If
  266. * a given ordered_extent is completely done, 1 is returned, otherwise
  267. * 0.
  268. *
  269. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  270. * to make sure this function only returns 1 once for a given ordered extent.
  271. *
  272. * file_offset is updated to one byte past the range that is recorded as
  273. * complete. This allows you to walk forward in the file.
  274. */
  275. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  276. struct btrfs_ordered_extent **cached,
  277. u64 *file_offset, u64 io_size, int uptodate)
  278. {
  279. struct btrfs_ordered_inode_tree *tree;
  280. struct rb_node *node;
  281. struct btrfs_ordered_extent *entry = NULL;
  282. int ret;
  283. unsigned long flags;
  284. u64 dec_end;
  285. u64 dec_start;
  286. u64 to_dec;
  287. tree = &BTRFS_I(inode)->ordered_tree;
  288. spin_lock_irqsave(&tree->lock, flags);
  289. node = tree_search(tree, *file_offset);
  290. if (!node) {
  291. ret = 1;
  292. goto out;
  293. }
  294. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  295. if (!offset_in_entry(entry, *file_offset)) {
  296. ret = 1;
  297. goto out;
  298. }
  299. dec_start = max(*file_offset, entry->file_offset);
  300. dec_end = min(*file_offset + io_size, entry->file_offset +
  301. entry->len);
  302. *file_offset = dec_end;
  303. if (dec_start > dec_end) {
  304. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  305. dec_start, dec_end);
  306. }
  307. to_dec = dec_end - dec_start;
  308. if (to_dec > entry->bytes_left) {
  309. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  310. entry->bytes_left, to_dec);
  311. }
  312. entry->bytes_left -= to_dec;
  313. if (!uptodate)
  314. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  315. if (entry->bytes_left == 0)
  316. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  317. else
  318. ret = 1;
  319. out:
  320. if (!ret && cached && entry) {
  321. *cached = entry;
  322. atomic_inc(&entry->refs);
  323. }
  324. spin_unlock_irqrestore(&tree->lock, flags);
  325. return ret == 0;
  326. }
  327. /*
  328. * this is used to account for finished IO across a given range
  329. * of the file. The IO should not span ordered extents. If
  330. * a given ordered_extent is completely done, 1 is returned, otherwise
  331. * 0.
  332. *
  333. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  334. * to make sure this function only returns 1 once for a given ordered extent.
  335. */
  336. int btrfs_dec_test_ordered_pending(struct inode *inode,
  337. struct btrfs_ordered_extent **cached,
  338. u64 file_offset, u64 io_size, int uptodate)
  339. {
  340. struct btrfs_ordered_inode_tree *tree;
  341. struct rb_node *node;
  342. struct btrfs_ordered_extent *entry = NULL;
  343. unsigned long flags;
  344. int ret;
  345. tree = &BTRFS_I(inode)->ordered_tree;
  346. spin_lock_irqsave(&tree->lock, flags);
  347. if (cached && *cached) {
  348. entry = *cached;
  349. goto have_entry;
  350. }
  351. node = tree_search(tree, file_offset);
  352. if (!node) {
  353. ret = 1;
  354. goto out;
  355. }
  356. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  357. have_entry:
  358. if (!offset_in_entry(entry, file_offset)) {
  359. ret = 1;
  360. goto out;
  361. }
  362. if (io_size > entry->bytes_left) {
  363. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  364. entry->bytes_left, io_size);
  365. }
  366. entry->bytes_left -= io_size;
  367. if (!uptodate)
  368. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  369. if (entry->bytes_left == 0)
  370. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  371. else
  372. ret = 1;
  373. out:
  374. if (!ret && cached && entry) {
  375. *cached = entry;
  376. atomic_inc(&entry->refs);
  377. }
  378. spin_unlock_irqrestore(&tree->lock, flags);
  379. return ret == 0;
  380. }
  381. /* Needs to either be called under a log transaction or the log_mutex */
  382. void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
  383. {
  384. struct btrfs_ordered_inode_tree *tree;
  385. struct btrfs_ordered_extent *ordered;
  386. struct rb_node *n;
  387. int index = log->log_transid % 2;
  388. tree = &BTRFS_I(inode)->ordered_tree;
  389. spin_lock_irq(&tree->lock);
  390. for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
  391. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  392. spin_lock(&log->log_extents_lock[index]);
  393. if (list_empty(&ordered->log_list)) {
  394. list_add_tail(&ordered->log_list, &log->logged_list[index]);
  395. atomic_inc(&ordered->refs);
  396. }
  397. spin_unlock(&log->log_extents_lock[index]);
  398. }
  399. spin_unlock_irq(&tree->lock);
  400. }
  401. void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
  402. {
  403. struct btrfs_ordered_extent *ordered;
  404. int index = transid % 2;
  405. spin_lock_irq(&log->log_extents_lock[index]);
  406. while (!list_empty(&log->logged_list[index])) {
  407. ordered = list_first_entry(&log->logged_list[index],
  408. struct btrfs_ordered_extent,
  409. log_list);
  410. list_del_init(&ordered->log_list);
  411. spin_unlock_irq(&log->log_extents_lock[index]);
  412. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  413. &ordered->flags));
  414. btrfs_put_ordered_extent(ordered);
  415. spin_lock_irq(&log->log_extents_lock[index]);
  416. }
  417. spin_unlock_irq(&log->log_extents_lock[index]);
  418. }
  419. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  420. {
  421. struct btrfs_ordered_extent *ordered;
  422. int index = transid % 2;
  423. spin_lock_irq(&log->log_extents_lock[index]);
  424. while (!list_empty(&log->logged_list[index])) {
  425. ordered = list_first_entry(&log->logged_list[index],
  426. struct btrfs_ordered_extent,
  427. log_list);
  428. list_del_init(&ordered->log_list);
  429. spin_unlock_irq(&log->log_extents_lock[index]);
  430. btrfs_put_ordered_extent(ordered);
  431. spin_lock_irq(&log->log_extents_lock[index]);
  432. }
  433. spin_unlock_irq(&log->log_extents_lock[index]);
  434. }
  435. /*
  436. * used to drop a reference on an ordered extent. This will free
  437. * the extent if the last reference is dropped
  438. */
  439. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  440. {
  441. struct list_head *cur;
  442. struct btrfs_ordered_sum *sum;
  443. trace_btrfs_ordered_extent_put(entry->inode, entry);
  444. if (atomic_dec_and_test(&entry->refs)) {
  445. if (entry->inode)
  446. btrfs_add_delayed_iput(entry->inode);
  447. while (!list_empty(&entry->list)) {
  448. cur = entry->list.next;
  449. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  450. list_del(&sum->list);
  451. kfree(sum);
  452. }
  453. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  454. }
  455. }
  456. /*
  457. * remove an ordered extent from the tree. No references are dropped
  458. * and waiters are woken up.
  459. */
  460. void btrfs_remove_ordered_extent(struct inode *inode,
  461. struct btrfs_ordered_extent *entry)
  462. {
  463. struct btrfs_ordered_inode_tree *tree;
  464. struct btrfs_root *root = BTRFS_I(inode)->root;
  465. struct rb_node *node;
  466. tree = &BTRFS_I(inode)->ordered_tree;
  467. spin_lock_irq(&tree->lock);
  468. node = &entry->rb_node;
  469. rb_erase(node, &tree->tree);
  470. tree->last = NULL;
  471. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  472. spin_unlock_irq(&tree->lock);
  473. spin_lock(&root->ordered_extent_lock);
  474. list_del_init(&entry->root_extent_list);
  475. root->nr_ordered_extents--;
  476. trace_btrfs_ordered_extent_remove(inode, entry);
  477. /*
  478. * we have no more ordered extents for this inode and
  479. * no dirty pages. We can safely remove it from the
  480. * list of ordered extents
  481. */
  482. if (RB_EMPTY_ROOT(&tree->tree) &&
  483. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  484. spin_lock(&root->fs_info->ordered_root_lock);
  485. list_del_init(&BTRFS_I(inode)->ordered_operations);
  486. spin_unlock(&root->fs_info->ordered_root_lock);
  487. }
  488. if (!root->nr_ordered_extents) {
  489. spin_lock(&root->fs_info->ordered_root_lock);
  490. BUG_ON(list_empty(&root->ordered_root));
  491. list_del_init(&root->ordered_root);
  492. spin_unlock(&root->fs_info->ordered_root_lock);
  493. }
  494. spin_unlock(&root->ordered_extent_lock);
  495. wake_up(&entry->wait);
  496. }
  497. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  498. {
  499. struct btrfs_ordered_extent *ordered;
  500. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  501. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  502. complete(&ordered->completion);
  503. }
  504. /*
  505. * wait for all the ordered extents in a root. This is done when balancing
  506. * space between drives.
  507. */
  508. void btrfs_wait_ordered_extents(struct btrfs_root *root)
  509. {
  510. struct list_head splice, works;
  511. struct btrfs_ordered_extent *ordered, *next;
  512. INIT_LIST_HEAD(&splice);
  513. INIT_LIST_HEAD(&works);
  514. mutex_lock(&root->fs_info->ordered_operations_mutex);
  515. spin_lock(&root->ordered_extent_lock);
  516. list_splice_init(&root->ordered_extents, &splice);
  517. while (!list_empty(&splice)) {
  518. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  519. root_extent_list);
  520. list_move_tail(&ordered->root_extent_list,
  521. &root->ordered_extents);
  522. atomic_inc(&ordered->refs);
  523. spin_unlock(&root->ordered_extent_lock);
  524. ordered->flush_work.func = btrfs_run_ordered_extent_work;
  525. list_add_tail(&ordered->work_list, &works);
  526. btrfs_queue_worker(&root->fs_info->flush_workers,
  527. &ordered->flush_work);
  528. cond_resched();
  529. spin_lock(&root->ordered_extent_lock);
  530. }
  531. spin_unlock(&root->ordered_extent_lock);
  532. list_for_each_entry_safe(ordered, next, &works, work_list) {
  533. list_del_init(&ordered->work_list);
  534. wait_for_completion(&ordered->completion);
  535. btrfs_put_ordered_extent(ordered);
  536. cond_resched();
  537. }
  538. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  539. }
  540. void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info)
  541. {
  542. struct btrfs_root *root;
  543. struct list_head splice;
  544. INIT_LIST_HEAD(&splice);
  545. spin_lock(&fs_info->ordered_root_lock);
  546. list_splice_init(&fs_info->ordered_roots, &splice);
  547. while (!list_empty(&splice)) {
  548. root = list_first_entry(&splice, struct btrfs_root,
  549. ordered_root);
  550. root = btrfs_grab_fs_root(root);
  551. BUG_ON(!root);
  552. list_move_tail(&root->ordered_root,
  553. &fs_info->ordered_roots);
  554. spin_unlock(&fs_info->ordered_root_lock);
  555. btrfs_wait_ordered_extents(root);
  556. btrfs_put_fs_root(root);
  557. spin_lock(&fs_info->ordered_root_lock);
  558. }
  559. spin_unlock(&fs_info->ordered_root_lock);
  560. }
  561. /*
  562. * this is used during transaction commit to write all the inodes
  563. * added to the ordered operation list. These files must be fully on
  564. * disk before the transaction commits.
  565. *
  566. * we have two modes here, one is to just start the IO via filemap_flush
  567. * and the other is to wait for all the io. When we wait, we have an
  568. * extra check to make sure the ordered operation list really is empty
  569. * before we return
  570. */
  571. int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
  572. struct btrfs_root *root, int wait)
  573. {
  574. struct btrfs_inode *btrfs_inode;
  575. struct inode *inode;
  576. struct btrfs_transaction *cur_trans = trans->transaction;
  577. struct list_head splice;
  578. struct list_head works;
  579. struct btrfs_delalloc_work *work, *next;
  580. int ret = 0;
  581. INIT_LIST_HEAD(&splice);
  582. INIT_LIST_HEAD(&works);
  583. mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
  584. spin_lock(&root->fs_info->ordered_root_lock);
  585. list_splice_init(&cur_trans->ordered_operations, &splice);
  586. while (!list_empty(&splice)) {
  587. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  588. ordered_operations);
  589. inode = &btrfs_inode->vfs_inode;
  590. list_del_init(&btrfs_inode->ordered_operations);
  591. /*
  592. * the inode may be getting freed (in sys_unlink path).
  593. */
  594. inode = igrab(inode);
  595. if (!inode)
  596. continue;
  597. if (!wait)
  598. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  599. &cur_trans->ordered_operations);
  600. spin_unlock(&root->fs_info->ordered_root_lock);
  601. work = btrfs_alloc_delalloc_work(inode, wait, 1);
  602. if (!work) {
  603. spin_lock(&root->fs_info->ordered_root_lock);
  604. if (list_empty(&BTRFS_I(inode)->ordered_operations))
  605. list_add_tail(&btrfs_inode->ordered_operations,
  606. &splice);
  607. list_splice_tail(&splice,
  608. &cur_trans->ordered_operations);
  609. spin_unlock(&root->fs_info->ordered_root_lock);
  610. ret = -ENOMEM;
  611. goto out;
  612. }
  613. list_add_tail(&work->list, &works);
  614. btrfs_queue_worker(&root->fs_info->flush_workers,
  615. &work->work);
  616. cond_resched();
  617. spin_lock(&root->fs_info->ordered_root_lock);
  618. }
  619. spin_unlock(&root->fs_info->ordered_root_lock);
  620. out:
  621. list_for_each_entry_safe(work, next, &works, list) {
  622. list_del_init(&work->list);
  623. btrfs_wait_and_free_delalloc_work(work);
  624. }
  625. mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
  626. return ret;
  627. }
  628. /*
  629. * Used to start IO or wait for a given ordered extent to finish.
  630. *
  631. * If wait is one, this effectively waits on page writeback for all the pages
  632. * in the extent, and it waits on the io completion code to insert
  633. * metadata into the btree corresponding to the extent
  634. */
  635. void btrfs_start_ordered_extent(struct inode *inode,
  636. struct btrfs_ordered_extent *entry,
  637. int wait)
  638. {
  639. u64 start = entry->file_offset;
  640. u64 end = start + entry->len - 1;
  641. trace_btrfs_ordered_extent_start(inode, entry);
  642. /*
  643. * pages in the range can be dirty, clean or writeback. We
  644. * start IO on any dirty ones so the wait doesn't stall waiting
  645. * for the flusher thread to find them
  646. */
  647. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  648. filemap_fdatawrite_range(inode->i_mapping, start, end);
  649. if (wait) {
  650. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  651. &entry->flags));
  652. }
  653. }
  654. /*
  655. * Used to wait on ordered extents across a large range of bytes.
  656. */
  657. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  658. {
  659. int ret = 0;
  660. u64 end;
  661. u64 orig_end;
  662. struct btrfs_ordered_extent *ordered;
  663. if (start + len < start) {
  664. orig_end = INT_LIMIT(loff_t);
  665. } else {
  666. orig_end = start + len - 1;
  667. if (orig_end > INT_LIMIT(loff_t))
  668. orig_end = INT_LIMIT(loff_t);
  669. }
  670. /* start IO across the range first to instantiate any delalloc
  671. * extents
  672. */
  673. ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  674. if (ret)
  675. return ret;
  676. /*
  677. * So with compression we will find and lock a dirty page and clear the
  678. * first one as dirty, setup an async extent, and immediately return
  679. * with the entire range locked but with nobody actually marked with
  680. * writeback. So we can't just filemap_write_and_wait_range() and
  681. * expect it to work since it will just kick off a thread to do the
  682. * actual work. So we need to call filemap_fdatawrite_range _again_
  683. * since it will wait on the page lock, which won't be unlocked until
  684. * after the pages have been marked as writeback and so we're good to go
  685. * from there. We have to do this otherwise we'll miss the ordered
  686. * extents and that results in badness. Please Josef, do not think you
  687. * know better and pull this out at some point in the future, it is
  688. * right and you are wrong.
  689. */
  690. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  691. &BTRFS_I(inode)->runtime_flags)) {
  692. ret = filemap_fdatawrite_range(inode->i_mapping, start,
  693. orig_end);
  694. if (ret)
  695. return ret;
  696. }
  697. ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  698. if (ret)
  699. return ret;
  700. end = orig_end;
  701. while (1) {
  702. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  703. if (!ordered)
  704. break;
  705. if (ordered->file_offset > orig_end) {
  706. btrfs_put_ordered_extent(ordered);
  707. break;
  708. }
  709. if (ordered->file_offset + ordered->len < start) {
  710. btrfs_put_ordered_extent(ordered);
  711. break;
  712. }
  713. btrfs_start_ordered_extent(inode, ordered, 1);
  714. end = ordered->file_offset;
  715. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  716. ret = -EIO;
  717. btrfs_put_ordered_extent(ordered);
  718. if (ret || end == 0 || end == start)
  719. break;
  720. end--;
  721. }
  722. return ret;
  723. }
  724. /*
  725. * find an ordered extent corresponding to file_offset. return NULL if
  726. * nothing is found, otherwise take a reference on the extent and return it
  727. */
  728. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  729. u64 file_offset)
  730. {
  731. struct btrfs_ordered_inode_tree *tree;
  732. struct rb_node *node;
  733. struct btrfs_ordered_extent *entry = NULL;
  734. tree = &BTRFS_I(inode)->ordered_tree;
  735. spin_lock_irq(&tree->lock);
  736. node = tree_search(tree, file_offset);
  737. if (!node)
  738. goto out;
  739. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  740. if (!offset_in_entry(entry, file_offset))
  741. entry = NULL;
  742. if (entry)
  743. atomic_inc(&entry->refs);
  744. out:
  745. spin_unlock_irq(&tree->lock);
  746. return entry;
  747. }
  748. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  749. * extents that exist in the range, rather than just the start of the range.
  750. */
  751. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  752. u64 file_offset,
  753. u64 len)
  754. {
  755. struct btrfs_ordered_inode_tree *tree;
  756. struct rb_node *node;
  757. struct btrfs_ordered_extent *entry = NULL;
  758. tree = &BTRFS_I(inode)->ordered_tree;
  759. spin_lock_irq(&tree->lock);
  760. node = tree_search(tree, file_offset);
  761. if (!node) {
  762. node = tree_search(tree, file_offset + len);
  763. if (!node)
  764. goto out;
  765. }
  766. while (1) {
  767. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  768. if (range_overlaps(entry, file_offset, len))
  769. break;
  770. if (entry->file_offset >= file_offset + len) {
  771. entry = NULL;
  772. break;
  773. }
  774. entry = NULL;
  775. node = rb_next(node);
  776. if (!node)
  777. break;
  778. }
  779. out:
  780. if (entry)
  781. atomic_inc(&entry->refs);
  782. spin_unlock_irq(&tree->lock);
  783. return entry;
  784. }
  785. /*
  786. * lookup and return any extent before 'file_offset'. NULL is returned
  787. * if none is found
  788. */
  789. struct btrfs_ordered_extent *
  790. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  791. {
  792. struct btrfs_ordered_inode_tree *tree;
  793. struct rb_node *node;
  794. struct btrfs_ordered_extent *entry = NULL;
  795. tree = &BTRFS_I(inode)->ordered_tree;
  796. spin_lock_irq(&tree->lock);
  797. node = tree_search(tree, file_offset);
  798. if (!node)
  799. goto out;
  800. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  801. atomic_inc(&entry->refs);
  802. out:
  803. spin_unlock_irq(&tree->lock);
  804. return entry;
  805. }
  806. /*
  807. * After an extent is done, call this to conditionally update the on disk
  808. * i_size. i_size is updated to cover any fully written part of the file.
  809. */
  810. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  811. struct btrfs_ordered_extent *ordered)
  812. {
  813. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  814. u64 disk_i_size;
  815. u64 new_i_size;
  816. u64 i_size = i_size_read(inode);
  817. struct rb_node *node;
  818. struct rb_node *prev = NULL;
  819. struct btrfs_ordered_extent *test;
  820. int ret = 1;
  821. spin_lock_irq(&tree->lock);
  822. if (ordered) {
  823. offset = entry_end(ordered);
  824. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  825. offset = min(offset,
  826. ordered->file_offset +
  827. ordered->truncated_len);
  828. } else {
  829. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  830. }
  831. disk_i_size = BTRFS_I(inode)->disk_i_size;
  832. /* truncate file */
  833. if (disk_i_size > i_size) {
  834. BTRFS_I(inode)->disk_i_size = i_size;
  835. ret = 0;
  836. goto out;
  837. }
  838. /*
  839. * if the disk i_size is already at the inode->i_size, or
  840. * this ordered extent is inside the disk i_size, we're done
  841. */
  842. if (disk_i_size == i_size)
  843. goto out;
  844. /*
  845. * We still need to update disk_i_size if outstanding_isize is greater
  846. * than disk_i_size.
  847. */
  848. if (offset <= disk_i_size &&
  849. (!ordered || ordered->outstanding_isize <= disk_i_size))
  850. goto out;
  851. /*
  852. * walk backward from this ordered extent to disk_i_size.
  853. * if we find an ordered extent then we can't update disk i_size
  854. * yet
  855. */
  856. if (ordered) {
  857. node = rb_prev(&ordered->rb_node);
  858. } else {
  859. prev = tree_search(tree, offset);
  860. /*
  861. * we insert file extents without involving ordered struct,
  862. * so there should be no ordered struct cover this offset
  863. */
  864. if (prev) {
  865. test = rb_entry(prev, struct btrfs_ordered_extent,
  866. rb_node);
  867. BUG_ON(offset_in_entry(test, offset));
  868. }
  869. node = prev;
  870. }
  871. for (; node; node = rb_prev(node)) {
  872. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  873. /* We treat this entry as if it doesnt exist */
  874. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  875. continue;
  876. if (test->file_offset + test->len <= disk_i_size)
  877. break;
  878. if (test->file_offset >= i_size)
  879. break;
  880. if (entry_end(test) > disk_i_size) {
  881. /*
  882. * we don't update disk_i_size now, so record this
  883. * undealt i_size. Or we will not know the real
  884. * i_size.
  885. */
  886. if (test->outstanding_isize < offset)
  887. test->outstanding_isize = offset;
  888. if (ordered &&
  889. ordered->outstanding_isize >
  890. test->outstanding_isize)
  891. test->outstanding_isize =
  892. ordered->outstanding_isize;
  893. goto out;
  894. }
  895. }
  896. new_i_size = min_t(u64, offset, i_size);
  897. /*
  898. * Some ordered extents may completed before the current one, and
  899. * we hold the real i_size in ->outstanding_isize.
  900. */
  901. if (ordered && ordered->outstanding_isize > new_i_size)
  902. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  903. BTRFS_I(inode)->disk_i_size = new_i_size;
  904. ret = 0;
  905. out:
  906. /*
  907. * We need to do this because we can't remove ordered extents until
  908. * after the i_disk_size has been updated and then the inode has been
  909. * updated to reflect the change, so we need to tell anybody who finds
  910. * this ordered extent that we've already done all the real work, we
  911. * just haven't completed all the other work.
  912. */
  913. if (ordered)
  914. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  915. spin_unlock_irq(&tree->lock);
  916. return ret;
  917. }
  918. /*
  919. * search the ordered extents for one corresponding to 'offset' and
  920. * try to find a checksum. This is used because we allow pages to
  921. * be reclaimed before their checksum is actually put into the btree
  922. */
  923. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  924. u32 *sum, int len)
  925. {
  926. struct btrfs_ordered_sum *ordered_sum;
  927. struct btrfs_ordered_extent *ordered;
  928. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  929. unsigned long num_sectors;
  930. unsigned long i;
  931. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  932. int index = 0;
  933. ordered = btrfs_lookup_ordered_extent(inode, offset);
  934. if (!ordered)
  935. return 0;
  936. spin_lock_irq(&tree->lock);
  937. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  938. if (disk_bytenr >= ordered_sum->bytenr &&
  939. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  940. i = (disk_bytenr - ordered_sum->bytenr) >>
  941. inode->i_sb->s_blocksize_bits;
  942. num_sectors = ordered_sum->len >>
  943. inode->i_sb->s_blocksize_bits;
  944. num_sectors = min_t(int, len - index, num_sectors - i);
  945. memcpy(sum + index, ordered_sum->sums + i,
  946. num_sectors);
  947. index += (int)num_sectors;
  948. if (index == len)
  949. goto out;
  950. disk_bytenr += num_sectors * sectorsize;
  951. }
  952. }
  953. out:
  954. spin_unlock_irq(&tree->lock);
  955. btrfs_put_ordered_extent(ordered);
  956. return index;
  957. }
  958. /*
  959. * add a given inode to the list of inodes that must be fully on
  960. * disk before a transaction commit finishes.
  961. *
  962. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  963. * used to make sure renamed files are fully on disk.
  964. *
  965. * It is a noop if the inode is already fully on disk.
  966. *
  967. * If trans is not null, we'll do a friendly check for a transaction that
  968. * is already flushing things and force the IO down ourselves.
  969. */
  970. void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  971. struct btrfs_root *root, struct inode *inode)
  972. {
  973. struct btrfs_transaction *cur_trans = trans->transaction;
  974. u64 last_mod;
  975. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  976. /*
  977. * if this file hasn't been changed since the last transaction
  978. * commit, we can safely return without doing anything
  979. */
  980. if (last_mod <= root->fs_info->last_trans_committed)
  981. return;
  982. spin_lock(&root->fs_info->ordered_root_lock);
  983. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  984. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  985. &cur_trans->ordered_operations);
  986. }
  987. spin_unlock(&root->fs_info->ordered_root_lock);
  988. }
  989. int __init ordered_data_init(void)
  990. {
  991. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  992. sizeof(struct btrfs_ordered_extent), 0,
  993. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  994. NULL);
  995. if (!btrfs_ordered_extent_cache)
  996. return -ENOMEM;
  997. return 0;
  998. }
  999. void ordered_data_exit(void)
  1000. {
  1001. if (btrfs_ordered_extent_cache)
  1002. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1003. }