huge_memory.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is disabled in order that avoid
  28. * to risk increase the memory footprint of applications without a guaranteed
  29. * benefit. When transparent hugepage support is enabled, is for all mappings,
  30. * and khugepaged scans all mappings.
  31. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  32. * for all hugepage allocations.
  33. */
  34. unsigned long transparent_hugepage_flags __read_mostly =
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  36. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  37. #endif
  38. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  39. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  40. #endif
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  43. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  44. /* default scan 8*512 pte (or vmas) every 30 second */
  45. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  46. static unsigned int khugepaged_pages_collapsed;
  47. static unsigned int khugepaged_full_scans;
  48. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  49. /* during fragmentation poll the hugepage allocator once every minute */
  50. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  51. static struct task_struct *khugepaged_thread __read_mostly;
  52. static DEFINE_MUTEX(khugepaged_mutex);
  53. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  54. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  55. /*
  56. * default collapse hugepages if there is at least one pte mapped like
  57. * it would have happened if the vma was large enough during page
  58. * fault.
  59. */
  60. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  61. static int khugepaged(void *none);
  62. static int khugepaged_slab_init(void);
  63. #define MM_SLOTS_HASH_BITS 10
  64. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  65. static struct kmem_cache *mm_slot_cache __read_mostly;
  66. /**
  67. * struct mm_slot - hash lookup from mm to mm_slot
  68. * @hash: hash collision list
  69. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  70. * @mm: the mm that this information is valid for
  71. */
  72. struct mm_slot {
  73. struct hlist_node hash;
  74. struct list_head mm_node;
  75. struct mm_struct *mm;
  76. };
  77. /**
  78. * struct khugepaged_scan - cursor for scanning
  79. * @mm_head: the head of the mm list to scan
  80. * @mm_slot: the current mm_slot we are scanning
  81. * @address: the next address inside that to be scanned
  82. *
  83. * There is only the one khugepaged_scan instance of this cursor structure.
  84. */
  85. struct khugepaged_scan {
  86. struct list_head mm_head;
  87. struct mm_slot *mm_slot;
  88. unsigned long address;
  89. };
  90. static struct khugepaged_scan khugepaged_scan = {
  91. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  92. };
  93. static int set_recommended_min_free_kbytes(void)
  94. {
  95. struct zone *zone;
  96. int nr_zones = 0;
  97. unsigned long recommended_min;
  98. if (!khugepaged_enabled())
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. if (!khugepaged_thread)
  127. khugepaged_thread = kthread_run(khugepaged, NULL,
  128. "khugepaged");
  129. if (unlikely(IS_ERR(khugepaged_thread))) {
  130. printk(KERN_ERR
  131. "khugepaged: kthread_run(khugepaged) failed\n");
  132. err = PTR_ERR(khugepaged_thread);
  133. khugepaged_thread = NULL;
  134. }
  135. if (!list_empty(&khugepaged_scan.mm_head))
  136. wake_up_interruptible(&khugepaged_wait);
  137. set_recommended_min_free_kbytes();
  138. } else if (khugepaged_thread) {
  139. kthread_stop(khugepaged_thread);
  140. khugepaged_thread = NULL;
  141. }
  142. return err;
  143. }
  144. static atomic_t huge_zero_refcount;
  145. static struct page *huge_zero_page __read_mostly;
  146. static inline bool is_huge_zero_page(struct page *page)
  147. {
  148. return ACCESS_ONCE(huge_zero_page) == page;
  149. }
  150. static inline bool is_huge_zero_pmd(pmd_t pmd)
  151. {
  152. return is_huge_zero_page(pmd_page(pmd));
  153. }
  154. static struct page *get_huge_zero_page(void)
  155. {
  156. struct page *zero_page;
  157. retry:
  158. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  159. return ACCESS_ONCE(huge_zero_page);
  160. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  161. HPAGE_PMD_ORDER);
  162. if (!zero_page) {
  163. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  164. return NULL;
  165. }
  166. count_vm_event(THP_ZERO_PAGE_ALLOC);
  167. preempt_disable();
  168. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  169. preempt_enable();
  170. __free_page(zero_page);
  171. goto retry;
  172. }
  173. /* We take additional reference here. It will be put back by shrinker */
  174. atomic_set(&huge_zero_refcount, 2);
  175. preempt_enable();
  176. return ACCESS_ONCE(huge_zero_page);
  177. }
  178. static void put_huge_zero_page(void)
  179. {
  180. /*
  181. * Counter should never go to zero here. Only shrinker can put
  182. * last reference.
  183. */
  184. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  185. }
  186. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  187. struct shrink_control *sc)
  188. {
  189. /* we can free zero page only if last reference remains */
  190. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  191. }
  192. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  193. struct shrink_control *sc)
  194. {
  195. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  196. struct page *zero_page = xchg(&huge_zero_page, NULL);
  197. BUG_ON(zero_page == NULL);
  198. __free_page(zero_page);
  199. return HPAGE_PMD_NR;
  200. }
  201. return 0;
  202. }
  203. static struct shrinker huge_zero_page_shrinker = {
  204. .count_objects = shrink_huge_zero_page_count,
  205. .scan_objects = shrink_huge_zero_page_scan,
  206. .seeks = DEFAULT_SEEKS,
  207. };
  208. #ifdef CONFIG_SYSFS
  209. static ssize_t double_flag_show(struct kobject *kobj,
  210. struct kobj_attribute *attr, char *buf,
  211. enum transparent_hugepage_flag enabled,
  212. enum transparent_hugepage_flag req_madv)
  213. {
  214. if (test_bit(enabled, &transparent_hugepage_flags)) {
  215. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  216. return sprintf(buf, "[always] madvise never\n");
  217. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  218. return sprintf(buf, "always [madvise] never\n");
  219. else
  220. return sprintf(buf, "always madvise [never]\n");
  221. }
  222. static ssize_t double_flag_store(struct kobject *kobj,
  223. struct kobj_attribute *attr,
  224. const char *buf, size_t count,
  225. enum transparent_hugepage_flag enabled,
  226. enum transparent_hugepage_flag req_madv)
  227. {
  228. if (!memcmp("always", buf,
  229. min(sizeof("always")-1, count))) {
  230. set_bit(enabled, &transparent_hugepage_flags);
  231. clear_bit(req_madv, &transparent_hugepage_flags);
  232. } else if (!memcmp("madvise", buf,
  233. min(sizeof("madvise")-1, count))) {
  234. clear_bit(enabled, &transparent_hugepage_flags);
  235. set_bit(req_madv, &transparent_hugepage_flags);
  236. } else if (!memcmp("never", buf,
  237. min(sizeof("never")-1, count))) {
  238. clear_bit(enabled, &transparent_hugepage_flags);
  239. clear_bit(req_madv, &transparent_hugepage_flags);
  240. } else
  241. return -EINVAL;
  242. return count;
  243. }
  244. static ssize_t enabled_show(struct kobject *kobj,
  245. struct kobj_attribute *attr, char *buf)
  246. {
  247. return double_flag_show(kobj, attr, buf,
  248. TRANSPARENT_HUGEPAGE_FLAG,
  249. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  250. }
  251. static ssize_t enabled_store(struct kobject *kobj,
  252. struct kobj_attribute *attr,
  253. const char *buf, size_t count)
  254. {
  255. ssize_t ret;
  256. ret = double_flag_store(kobj, attr, buf, count,
  257. TRANSPARENT_HUGEPAGE_FLAG,
  258. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  259. if (ret > 0) {
  260. int err;
  261. mutex_lock(&khugepaged_mutex);
  262. err = start_khugepaged();
  263. mutex_unlock(&khugepaged_mutex);
  264. if (err)
  265. ret = err;
  266. }
  267. return ret;
  268. }
  269. static struct kobj_attribute enabled_attr =
  270. __ATTR(enabled, 0644, enabled_show, enabled_store);
  271. static ssize_t single_flag_show(struct kobject *kobj,
  272. struct kobj_attribute *attr, char *buf,
  273. enum transparent_hugepage_flag flag)
  274. {
  275. return sprintf(buf, "%d\n",
  276. !!test_bit(flag, &transparent_hugepage_flags));
  277. }
  278. static ssize_t single_flag_store(struct kobject *kobj,
  279. struct kobj_attribute *attr,
  280. const char *buf, size_t count,
  281. enum transparent_hugepage_flag flag)
  282. {
  283. unsigned long value;
  284. int ret;
  285. ret = kstrtoul(buf, 10, &value);
  286. if (ret < 0)
  287. return ret;
  288. if (value > 1)
  289. return -EINVAL;
  290. if (value)
  291. set_bit(flag, &transparent_hugepage_flags);
  292. else
  293. clear_bit(flag, &transparent_hugepage_flags);
  294. return count;
  295. }
  296. /*
  297. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  298. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  299. * memory just to allocate one more hugepage.
  300. */
  301. static ssize_t defrag_show(struct kobject *kobj,
  302. struct kobj_attribute *attr, char *buf)
  303. {
  304. return double_flag_show(kobj, attr, buf,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  306. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  307. }
  308. static ssize_t defrag_store(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. return double_flag_store(kobj, attr, buf, count,
  313. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  314. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  315. }
  316. static struct kobj_attribute defrag_attr =
  317. __ATTR(defrag, 0644, defrag_show, defrag_store);
  318. static ssize_t use_zero_page_show(struct kobject *kobj,
  319. struct kobj_attribute *attr, char *buf)
  320. {
  321. return single_flag_show(kobj, attr, buf,
  322. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  323. }
  324. static ssize_t use_zero_page_store(struct kobject *kobj,
  325. struct kobj_attribute *attr, const char *buf, size_t count)
  326. {
  327. return single_flag_store(kobj, attr, buf, count,
  328. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  329. }
  330. static struct kobj_attribute use_zero_page_attr =
  331. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  332. #ifdef CONFIG_DEBUG_VM
  333. static ssize_t debug_cow_show(struct kobject *kobj,
  334. struct kobj_attribute *attr, char *buf)
  335. {
  336. return single_flag_show(kobj, attr, buf,
  337. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  338. }
  339. static ssize_t debug_cow_store(struct kobject *kobj,
  340. struct kobj_attribute *attr,
  341. const char *buf, size_t count)
  342. {
  343. return single_flag_store(kobj, attr, buf, count,
  344. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  345. }
  346. static struct kobj_attribute debug_cow_attr =
  347. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  348. #endif /* CONFIG_DEBUG_VM */
  349. static struct attribute *hugepage_attr[] = {
  350. &enabled_attr.attr,
  351. &defrag_attr.attr,
  352. &use_zero_page_attr.attr,
  353. #ifdef CONFIG_DEBUG_VM
  354. &debug_cow_attr.attr,
  355. #endif
  356. NULL,
  357. };
  358. static struct attribute_group hugepage_attr_group = {
  359. .attrs = hugepage_attr,
  360. };
  361. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  362. struct kobj_attribute *attr,
  363. char *buf)
  364. {
  365. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  366. }
  367. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  368. struct kobj_attribute *attr,
  369. const char *buf, size_t count)
  370. {
  371. unsigned long msecs;
  372. int err;
  373. err = kstrtoul(buf, 10, &msecs);
  374. if (err || msecs > UINT_MAX)
  375. return -EINVAL;
  376. khugepaged_scan_sleep_millisecs = msecs;
  377. wake_up_interruptible(&khugepaged_wait);
  378. return count;
  379. }
  380. static struct kobj_attribute scan_sleep_millisecs_attr =
  381. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  382. scan_sleep_millisecs_store);
  383. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  384. struct kobj_attribute *attr,
  385. char *buf)
  386. {
  387. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  388. }
  389. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  390. struct kobj_attribute *attr,
  391. const char *buf, size_t count)
  392. {
  393. unsigned long msecs;
  394. int err;
  395. err = kstrtoul(buf, 10, &msecs);
  396. if (err || msecs > UINT_MAX)
  397. return -EINVAL;
  398. khugepaged_alloc_sleep_millisecs = msecs;
  399. wake_up_interruptible(&khugepaged_wait);
  400. return count;
  401. }
  402. static struct kobj_attribute alloc_sleep_millisecs_attr =
  403. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  404. alloc_sleep_millisecs_store);
  405. static ssize_t pages_to_scan_show(struct kobject *kobj,
  406. struct kobj_attribute *attr,
  407. char *buf)
  408. {
  409. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  410. }
  411. static ssize_t pages_to_scan_store(struct kobject *kobj,
  412. struct kobj_attribute *attr,
  413. const char *buf, size_t count)
  414. {
  415. int err;
  416. unsigned long pages;
  417. err = kstrtoul(buf, 10, &pages);
  418. if (err || !pages || pages > UINT_MAX)
  419. return -EINVAL;
  420. khugepaged_pages_to_scan = pages;
  421. return count;
  422. }
  423. static struct kobj_attribute pages_to_scan_attr =
  424. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  425. pages_to_scan_store);
  426. static ssize_t pages_collapsed_show(struct kobject *kobj,
  427. struct kobj_attribute *attr,
  428. char *buf)
  429. {
  430. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  431. }
  432. static struct kobj_attribute pages_collapsed_attr =
  433. __ATTR_RO(pages_collapsed);
  434. static ssize_t full_scans_show(struct kobject *kobj,
  435. struct kobj_attribute *attr,
  436. char *buf)
  437. {
  438. return sprintf(buf, "%u\n", khugepaged_full_scans);
  439. }
  440. static struct kobj_attribute full_scans_attr =
  441. __ATTR_RO(full_scans);
  442. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  443. struct kobj_attribute *attr, char *buf)
  444. {
  445. return single_flag_show(kobj, attr, buf,
  446. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  447. }
  448. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  449. struct kobj_attribute *attr,
  450. const char *buf, size_t count)
  451. {
  452. return single_flag_store(kobj, attr, buf, count,
  453. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  454. }
  455. static struct kobj_attribute khugepaged_defrag_attr =
  456. __ATTR(defrag, 0644, khugepaged_defrag_show,
  457. khugepaged_defrag_store);
  458. /*
  459. * max_ptes_none controls if khugepaged should collapse hugepages over
  460. * any unmapped ptes in turn potentially increasing the memory
  461. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  462. * reduce the available free memory in the system as it
  463. * runs. Increasing max_ptes_none will instead potentially reduce the
  464. * free memory in the system during the khugepaged scan.
  465. */
  466. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  467. struct kobj_attribute *attr,
  468. char *buf)
  469. {
  470. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  471. }
  472. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  473. struct kobj_attribute *attr,
  474. const char *buf, size_t count)
  475. {
  476. int err;
  477. unsigned long max_ptes_none;
  478. err = kstrtoul(buf, 10, &max_ptes_none);
  479. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  480. return -EINVAL;
  481. khugepaged_max_ptes_none = max_ptes_none;
  482. return count;
  483. }
  484. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  485. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  486. khugepaged_max_ptes_none_store);
  487. static struct attribute *khugepaged_attr[] = {
  488. &khugepaged_defrag_attr.attr,
  489. &khugepaged_max_ptes_none_attr.attr,
  490. &pages_to_scan_attr.attr,
  491. &pages_collapsed_attr.attr,
  492. &full_scans_attr.attr,
  493. &scan_sleep_millisecs_attr.attr,
  494. &alloc_sleep_millisecs_attr.attr,
  495. NULL,
  496. };
  497. static struct attribute_group khugepaged_attr_group = {
  498. .attrs = khugepaged_attr,
  499. .name = "khugepaged",
  500. };
  501. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  502. {
  503. int err;
  504. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  505. if (unlikely(!*hugepage_kobj)) {
  506. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  507. return -ENOMEM;
  508. }
  509. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  510. if (err) {
  511. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  512. goto delete_obj;
  513. }
  514. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  515. if (err) {
  516. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  517. goto remove_hp_group;
  518. }
  519. return 0;
  520. remove_hp_group:
  521. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  522. delete_obj:
  523. kobject_put(*hugepage_kobj);
  524. return err;
  525. }
  526. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  527. {
  528. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  529. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  530. kobject_put(hugepage_kobj);
  531. }
  532. #else
  533. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  534. {
  535. return 0;
  536. }
  537. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  538. {
  539. }
  540. #endif /* CONFIG_SYSFS */
  541. static int __init hugepage_init(void)
  542. {
  543. int err;
  544. struct kobject *hugepage_kobj;
  545. if (!has_transparent_hugepage()) {
  546. transparent_hugepage_flags = 0;
  547. return -EINVAL;
  548. }
  549. err = hugepage_init_sysfs(&hugepage_kobj);
  550. if (err)
  551. return err;
  552. err = khugepaged_slab_init();
  553. if (err)
  554. goto out;
  555. register_shrinker(&huge_zero_page_shrinker);
  556. /*
  557. * By default disable transparent hugepages on smaller systems,
  558. * where the extra memory used could hurt more than TLB overhead
  559. * is likely to save. The admin can still enable it through /sys.
  560. */
  561. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  562. transparent_hugepage_flags = 0;
  563. start_khugepaged();
  564. return 0;
  565. out:
  566. hugepage_exit_sysfs(hugepage_kobj);
  567. return err;
  568. }
  569. module_init(hugepage_init)
  570. static int __init setup_transparent_hugepage(char *str)
  571. {
  572. int ret = 0;
  573. if (!str)
  574. goto out;
  575. if (!strcmp(str, "always")) {
  576. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  577. &transparent_hugepage_flags);
  578. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  579. &transparent_hugepage_flags);
  580. ret = 1;
  581. } else if (!strcmp(str, "madvise")) {
  582. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  583. &transparent_hugepage_flags);
  584. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  585. &transparent_hugepage_flags);
  586. ret = 1;
  587. } else if (!strcmp(str, "never")) {
  588. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  589. &transparent_hugepage_flags);
  590. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  591. &transparent_hugepage_flags);
  592. ret = 1;
  593. }
  594. out:
  595. if (!ret)
  596. printk(KERN_WARNING
  597. "transparent_hugepage= cannot parse, ignored\n");
  598. return ret;
  599. }
  600. __setup("transparent_hugepage=", setup_transparent_hugepage);
  601. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  602. {
  603. if (likely(vma->vm_flags & VM_WRITE))
  604. pmd = pmd_mkwrite(pmd);
  605. return pmd;
  606. }
  607. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  608. {
  609. pmd_t entry;
  610. entry = mk_pmd(page, prot);
  611. entry = pmd_mkhuge(entry);
  612. return entry;
  613. }
  614. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  615. struct vm_area_struct *vma,
  616. unsigned long haddr, pmd_t *pmd,
  617. struct page *page)
  618. {
  619. pgtable_t pgtable;
  620. VM_BUG_ON(!PageCompound(page));
  621. pgtable = pte_alloc_one(mm, haddr);
  622. if (unlikely(!pgtable))
  623. return VM_FAULT_OOM;
  624. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  625. /*
  626. * The memory barrier inside __SetPageUptodate makes sure that
  627. * clear_huge_page writes become visible before the set_pmd_at()
  628. * write.
  629. */
  630. __SetPageUptodate(page);
  631. spin_lock(&mm->page_table_lock);
  632. if (unlikely(!pmd_none(*pmd))) {
  633. spin_unlock(&mm->page_table_lock);
  634. mem_cgroup_uncharge_page(page);
  635. put_page(page);
  636. pte_free(mm, pgtable);
  637. } else {
  638. pmd_t entry;
  639. entry = mk_huge_pmd(page, vma->vm_page_prot);
  640. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  641. page_add_new_anon_rmap(page, vma, haddr);
  642. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  643. set_pmd_at(mm, haddr, pmd, entry);
  644. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  645. mm->nr_ptes++;
  646. spin_unlock(&mm->page_table_lock);
  647. }
  648. return 0;
  649. }
  650. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  651. {
  652. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  653. }
  654. static inline struct page *alloc_hugepage_vma(int defrag,
  655. struct vm_area_struct *vma,
  656. unsigned long haddr, int nd,
  657. gfp_t extra_gfp)
  658. {
  659. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  660. HPAGE_PMD_ORDER, vma, haddr, nd);
  661. }
  662. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  663. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  664. struct page *zero_page)
  665. {
  666. pmd_t entry;
  667. if (!pmd_none(*pmd))
  668. return false;
  669. entry = mk_pmd(zero_page, vma->vm_page_prot);
  670. entry = pmd_wrprotect(entry);
  671. entry = pmd_mkhuge(entry);
  672. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  673. set_pmd_at(mm, haddr, pmd, entry);
  674. mm->nr_ptes++;
  675. return true;
  676. }
  677. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  678. unsigned long address, pmd_t *pmd,
  679. unsigned int flags)
  680. {
  681. struct page *page;
  682. unsigned long haddr = address & HPAGE_PMD_MASK;
  683. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  684. return VM_FAULT_FALLBACK;
  685. if (unlikely(anon_vma_prepare(vma)))
  686. return VM_FAULT_OOM;
  687. if (unlikely(khugepaged_enter(vma)))
  688. return VM_FAULT_OOM;
  689. if (!(flags & FAULT_FLAG_WRITE) &&
  690. transparent_hugepage_use_zero_page()) {
  691. pgtable_t pgtable;
  692. struct page *zero_page;
  693. bool set;
  694. pgtable = pte_alloc_one(mm, haddr);
  695. if (unlikely(!pgtable))
  696. return VM_FAULT_OOM;
  697. zero_page = get_huge_zero_page();
  698. if (unlikely(!zero_page)) {
  699. pte_free(mm, pgtable);
  700. count_vm_event(THP_FAULT_FALLBACK);
  701. return VM_FAULT_FALLBACK;
  702. }
  703. spin_lock(&mm->page_table_lock);
  704. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  705. zero_page);
  706. spin_unlock(&mm->page_table_lock);
  707. if (!set) {
  708. pte_free(mm, pgtable);
  709. put_huge_zero_page();
  710. }
  711. return 0;
  712. }
  713. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  714. vma, haddr, numa_node_id(), 0);
  715. if (unlikely(!page)) {
  716. count_vm_event(THP_FAULT_FALLBACK);
  717. return VM_FAULT_FALLBACK;
  718. }
  719. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  720. put_page(page);
  721. count_vm_event(THP_FAULT_FALLBACK);
  722. return VM_FAULT_FALLBACK;
  723. }
  724. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  725. mem_cgroup_uncharge_page(page);
  726. put_page(page);
  727. count_vm_event(THP_FAULT_FALLBACK);
  728. return VM_FAULT_FALLBACK;
  729. }
  730. count_vm_event(THP_FAULT_ALLOC);
  731. return 0;
  732. }
  733. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  734. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  735. struct vm_area_struct *vma)
  736. {
  737. struct page *src_page;
  738. pmd_t pmd;
  739. pgtable_t pgtable;
  740. int ret;
  741. ret = -ENOMEM;
  742. pgtable = pte_alloc_one(dst_mm, addr);
  743. if (unlikely(!pgtable))
  744. goto out;
  745. spin_lock(&dst_mm->page_table_lock);
  746. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  747. ret = -EAGAIN;
  748. pmd = *src_pmd;
  749. if (unlikely(!pmd_trans_huge(pmd))) {
  750. pte_free(dst_mm, pgtable);
  751. goto out_unlock;
  752. }
  753. /*
  754. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  755. * under splitting since we don't split the page itself, only pmd to
  756. * a page table.
  757. */
  758. if (is_huge_zero_pmd(pmd)) {
  759. struct page *zero_page;
  760. bool set;
  761. /*
  762. * get_huge_zero_page() will never allocate a new page here,
  763. * since we already have a zero page to copy. It just takes a
  764. * reference.
  765. */
  766. zero_page = get_huge_zero_page();
  767. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  768. zero_page);
  769. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  770. ret = 0;
  771. goto out_unlock;
  772. }
  773. if (unlikely(pmd_trans_splitting(pmd))) {
  774. /* split huge page running from under us */
  775. spin_unlock(&src_mm->page_table_lock);
  776. spin_unlock(&dst_mm->page_table_lock);
  777. pte_free(dst_mm, pgtable);
  778. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  779. goto out;
  780. }
  781. src_page = pmd_page(pmd);
  782. VM_BUG_ON(!PageHead(src_page));
  783. get_page(src_page);
  784. page_dup_rmap(src_page);
  785. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  786. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  787. pmd = pmd_mkold(pmd_wrprotect(pmd));
  788. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  789. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  790. dst_mm->nr_ptes++;
  791. ret = 0;
  792. out_unlock:
  793. spin_unlock(&src_mm->page_table_lock);
  794. spin_unlock(&dst_mm->page_table_lock);
  795. out:
  796. return ret;
  797. }
  798. void huge_pmd_set_accessed(struct mm_struct *mm,
  799. struct vm_area_struct *vma,
  800. unsigned long address,
  801. pmd_t *pmd, pmd_t orig_pmd,
  802. int dirty)
  803. {
  804. pmd_t entry;
  805. unsigned long haddr;
  806. spin_lock(&mm->page_table_lock);
  807. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  808. goto unlock;
  809. entry = pmd_mkyoung(orig_pmd);
  810. haddr = address & HPAGE_PMD_MASK;
  811. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  812. update_mmu_cache_pmd(vma, address, pmd);
  813. unlock:
  814. spin_unlock(&mm->page_table_lock);
  815. }
  816. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  817. struct vm_area_struct *vma, unsigned long address,
  818. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  819. {
  820. pgtable_t pgtable;
  821. pmd_t _pmd;
  822. struct page *page;
  823. int i, ret = 0;
  824. unsigned long mmun_start; /* For mmu_notifiers */
  825. unsigned long mmun_end; /* For mmu_notifiers */
  826. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  827. if (!page) {
  828. ret |= VM_FAULT_OOM;
  829. goto out;
  830. }
  831. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  832. put_page(page);
  833. ret |= VM_FAULT_OOM;
  834. goto out;
  835. }
  836. clear_user_highpage(page, address);
  837. __SetPageUptodate(page);
  838. mmun_start = haddr;
  839. mmun_end = haddr + HPAGE_PMD_SIZE;
  840. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  841. spin_lock(&mm->page_table_lock);
  842. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  843. goto out_free_page;
  844. pmdp_clear_flush(vma, haddr, pmd);
  845. /* leave pmd empty until pte is filled */
  846. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  847. pmd_populate(mm, &_pmd, pgtable);
  848. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  849. pte_t *pte, entry;
  850. if (haddr == (address & PAGE_MASK)) {
  851. entry = mk_pte(page, vma->vm_page_prot);
  852. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  853. page_add_new_anon_rmap(page, vma, haddr);
  854. } else {
  855. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  856. entry = pte_mkspecial(entry);
  857. }
  858. pte = pte_offset_map(&_pmd, haddr);
  859. VM_BUG_ON(!pte_none(*pte));
  860. set_pte_at(mm, haddr, pte, entry);
  861. pte_unmap(pte);
  862. }
  863. smp_wmb(); /* make pte visible before pmd */
  864. pmd_populate(mm, pmd, pgtable);
  865. spin_unlock(&mm->page_table_lock);
  866. put_huge_zero_page();
  867. inc_mm_counter(mm, MM_ANONPAGES);
  868. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  869. ret |= VM_FAULT_WRITE;
  870. out:
  871. return ret;
  872. out_free_page:
  873. spin_unlock(&mm->page_table_lock);
  874. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  875. mem_cgroup_uncharge_page(page);
  876. put_page(page);
  877. goto out;
  878. }
  879. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  880. struct vm_area_struct *vma,
  881. unsigned long address,
  882. pmd_t *pmd, pmd_t orig_pmd,
  883. struct page *page,
  884. unsigned long haddr)
  885. {
  886. pgtable_t pgtable;
  887. pmd_t _pmd;
  888. int ret = 0, i;
  889. struct page **pages;
  890. unsigned long mmun_start; /* For mmu_notifiers */
  891. unsigned long mmun_end; /* For mmu_notifiers */
  892. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  893. GFP_KERNEL);
  894. if (unlikely(!pages)) {
  895. ret |= VM_FAULT_OOM;
  896. goto out;
  897. }
  898. for (i = 0; i < HPAGE_PMD_NR; i++) {
  899. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  900. __GFP_OTHER_NODE,
  901. vma, address, page_to_nid(page));
  902. if (unlikely(!pages[i] ||
  903. mem_cgroup_newpage_charge(pages[i], mm,
  904. GFP_KERNEL))) {
  905. if (pages[i])
  906. put_page(pages[i]);
  907. mem_cgroup_uncharge_start();
  908. while (--i >= 0) {
  909. mem_cgroup_uncharge_page(pages[i]);
  910. put_page(pages[i]);
  911. }
  912. mem_cgroup_uncharge_end();
  913. kfree(pages);
  914. ret |= VM_FAULT_OOM;
  915. goto out;
  916. }
  917. }
  918. for (i = 0; i < HPAGE_PMD_NR; i++) {
  919. copy_user_highpage(pages[i], page + i,
  920. haddr + PAGE_SIZE * i, vma);
  921. __SetPageUptodate(pages[i]);
  922. cond_resched();
  923. }
  924. mmun_start = haddr;
  925. mmun_end = haddr + HPAGE_PMD_SIZE;
  926. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  927. spin_lock(&mm->page_table_lock);
  928. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  929. goto out_free_pages;
  930. VM_BUG_ON(!PageHead(page));
  931. pmdp_clear_flush(vma, haddr, pmd);
  932. /* leave pmd empty until pte is filled */
  933. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  934. pmd_populate(mm, &_pmd, pgtable);
  935. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  936. pte_t *pte, entry;
  937. entry = mk_pte(pages[i], vma->vm_page_prot);
  938. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  939. page_add_new_anon_rmap(pages[i], vma, haddr);
  940. pte = pte_offset_map(&_pmd, haddr);
  941. VM_BUG_ON(!pte_none(*pte));
  942. set_pte_at(mm, haddr, pte, entry);
  943. pte_unmap(pte);
  944. }
  945. kfree(pages);
  946. smp_wmb(); /* make pte visible before pmd */
  947. pmd_populate(mm, pmd, pgtable);
  948. page_remove_rmap(page);
  949. spin_unlock(&mm->page_table_lock);
  950. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  951. ret |= VM_FAULT_WRITE;
  952. put_page(page);
  953. out:
  954. return ret;
  955. out_free_pages:
  956. spin_unlock(&mm->page_table_lock);
  957. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  958. mem_cgroup_uncharge_start();
  959. for (i = 0; i < HPAGE_PMD_NR; i++) {
  960. mem_cgroup_uncharge_page(pages[i]);
  961. put_page(pages[i]);
  962. }
  963. mem_cgroup_uncharge_end();
  964. kfree(pages);
  965. goto out;
  966. }
  967. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  968. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  969. {
  970. int ret = 0;
  971. struct page *page = NULL, *new_page;
  972. unsigned long haddr;
  973. unsigned long mmun_start; /* For mmu_notifiers */
  974. unsigned long mmun_end; /* For mmu_notifiers */
  975. VM_BUG_ON(!vma->anon_vma);
  976. haddr = address & HPAGE_PMD_MASK;
  977. if (is_huge_zero_pmd(orig_pmd))
  978. goto alloc;
  979. spin_lock(&mm->page_table_lock);
  980. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  981. goto out_unlock;
  982. page = pmd_page(orig_pmd);
  983. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  984. if (page_mapcount(page) == 1) {
  985. pmd_t entry;
  986. entry = pmd_mkyoung(orig_pmd);
  987. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  988. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  989. update_mmu_cache_pmd(vma, address, pmd);
  990. ret |= VM_FAULT_WRITE;
  991. goto out_unlock;
  992. }
  993. get_page(page);
  994. spin_unlock(&mm->page_table_lock);
  995. alloc:
  996. if (transparent_hugepage_enabled(vma) &&
  997. !transparent_hugepage_debug_cow())
  998. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  999. vma, haddr, numa_node_id(), 0);
  1000. else
  1001. new_page = NULL;
  1002. if (unlikely(!new_page)) {
  1003. if (is_huge_zero_pmd(orig_pmd)) {
  1004. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1005. address, pmd, orig_pmd, haddr);
  1006. } else {
  1007. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1008. pmd, orig_pmd, page, haddr);
  1009. if (ret & VM_FAULT_OOM)
  1010. split_huge_page(page);
  1011. put_page(page);
  1012. }
  1013. count_vm_event(THP_FAULT_FALLBACK);
  1014. goto out;
  1015. }
  1016. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1017. put_page(new_page);
  1018. if (page) {
  1019. split_huge_page(page);
  1020. put_page(page);
  1021. }
  1022. count_vm_event(THP_FAULT_FALLBACK);
  1023. ret |= VM_FAULT_OOM;
  1024. goto out;
  1025. }
  1026. count_vm_event(THP_FAULT_ALLOC);
  1027. if (is_huge_zero_pmd(orig_pmd))
  1028. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1029. else
  1030. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1031. __SetPageUptodate(new_page);
  1032. mmun_start = haddr;
  1033. mmun_end = haddr + HPAGE_PMD_SIZE;
  1034. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1035. spin_lock(&mm->page_table_lock);
  1036. if (page)
  1037. put_page(page);
  1038. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1039. spin_unlock(&mm->page_table_lock);
  1040. mem_cgroup_uncharge_page(new_page);
  1041. put_page(new_page);
  1042. goto out_mn;
  1043. } else {
  1044. pmd_t entry;
  1045. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1046. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1047. pmdp_clear_flush(vma, haddr, pmd);
  1048. page_add_new_anon_rmap(new_page, vma, haddr);
  1049. set_pmd_at(mm, haddr, pmd, entry);
  1050. update_mmu_cache_pmd(vma, address, pmd);
  1051. if (is_huge_zero_pmd(orig_pmd)) {
  1052. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1053. put_huge_zero_page();
  1054. } else {
  1055. VM_BUG_ON(!PageHead(page));
  1056. page_remove_rmap(page);
  1057. put_page(page);
  1058. }
  1059. ret |= VM_FAULT_WRITE;
  1060. }
  1061. spin_unlock(&mm->page_table_lock);
  1062. out_mn:
  1063. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1064. out:
  1065. return ret;
  1066. out_unlock:
  1067. spin_unlock(&mm->page_table_lock);
  1068. return ret;
  1069. }
  1070. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1071. unsigned long addr,
  1072. pmd_t *pmd,
  1073. unsigned int flags)
  1074. {
  1075. struct mm_struct *mm = vma->vm_mm;
  1076. struct page *page = NULL;
  1077. assert_spin_locked(&mm->page_table_lock);
  1078. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1079. goto out;
  1080. /* Avoid dumping huge zero page */
  1081. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1082. return ERR_PTR(-EFAULT);
  1083. page = pmd_page(*pmd);
  1084. VM_BUG_ON(!PageHead(page));
  1085. if (flags & FOLL_TOUCH) {
  1086. pmd_t _pmd;
  1087. /*
  1088. * We should set the dirty bit only for FOLL_WRITE but
  1089. * for now the dirty bit in the pmd is meaningless.
  1090. * And if the dirty bit will become meaningful and
  1091. * we'll only set it with FOLL_WRITE, an atomic
  1092. * set_bit will be required on the pmd to set the
  1093. * young bit, instead of the current set_pmd_at.
  1094. */
  1095. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1096. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1097. pmd, _pmd, 1))
  1098. update_mmu_cache_pmd(vma, addr, pmd);
  1099. }
  1100. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1101. if (page->mapping && trylock_page(page)) {
  1102. lru_add_drain();
  1103. if (page->mapping)
  1104. mlock_vma_page(page);
  1105. unlock_page(page);
  1106. }
  1107. }
  1108. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1109. VM_BUG_ON(!PageCompound(page));
  1110. if (flags & FOLL_GET)
  1111. get_page_foll(page);
  1112. out:
  1113. return page;
  1114. }
  1115. /* NUMA hinting page fault entry point for trans huge pmds */
  1116. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1117. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1118. {
  1119. struct anon_vma *anon_vma = NULL;
  1120. struct page *page;
  1121. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1122. int page_nid = -1, this_nid = numa_node_id();
  1123. int target_nid, last_cpupid = -1;
  1124. bool page_locked;
  1125. bool migrated = false;
  1126. int flags = 0;
  1127. spin_lock(&mm->page_table_lock);
  1128. if (unlikely(!pmd_same(pmd, *pmdp)))
  1129. goto out_unlock;
  1130. page = pmd_page(pmd);
  1131. BUG_ON(is_huge_zero_page(page));
  1132. page_nid = page_to_nid(page);
  1133. last_cpupid = page_cpupid_last(page);
  1134. count_vm_numa_event(NUMA_HINT_FAULTS);
  1135. if (page_nid == this_nid) {
  1136. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1137. flags |= TNF_FAULT_LOCAL;
  1138. }
  1139. /*
  1140. * Avoid grouping on DSO/COW pages in specific and RO pages
  1141. * in general, RO pages shouldn't hurt as much anyway since
  1142. * they can be in shared cache state.
  1143. */
  1144. if (!pmd_write(pmd))
  1145. flags |= TNF_NO_GROUP;
  1146. /*
  1147. * Acquire the page lock to serialise THP migrations but avoid dropping
  1148. * page_table_lock if at all possible
  1149. */
  1150. page_locked = trylock_page(page);
  1151. target_nid = mpol_misplaced(page, vma, haddr);
  1152. if (target_nid == -1) {
  1153. /* If the page was locked, there are no parallel migrations */
  1154. if (page_locked)
  1155. goto clear_pmdnuma;
  1156. /*
  1157. * Otherwise wait for potential migrations and retry. We do
  1158. * relock and check_same as the page may no longer be mapped.
  1159. * As the fault is being retried, do not account for it.
  1160. */
  1161. spin_unlock(&mm->page_table_lock);
  1162. wait_on_page_locked(page);
  1163. page_nid = -1;
  1164. goto out;
  1165. }
  1166. /* Page is misplaced, serialise migrations and parallel THP splits */
  1167. get_page(page);
  1168. spin_unlock(&mm->page_table_lock);
  1169. if (!page_locked)
  1170. lock_page(page);
  1171. anon_vma = page_lock_anon_vma_read(page);
  1172. /* Confirm the PMD did not change while page_table_lock was released */
  1173. spin_lock(&mm->page_table_lock);
  1174. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1175. unlock_page(page);
  1176. put_page(page);
  1177. page_nid = -1;
  1178. goto out_unlock;
  1179. }
  1180. /*
  1181. * Migrate the THP to the requested node, returns with page unlocked
  1182. * and pmd_numa cleared.
  1183. */
  1184. spin_unlock(&mm->page_table_lock);
  1185. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1186. pmdp, pmd, addr, page, target_nid);
  1187. if (migrated) {
  1188. flags |= TNF_MIGRATED;
  1189. page_nid = target_nid;
  1190. }
  1191. goto out;
  1192. clear_pmdnuma:
  1193. BUG_ON(!PageLocked(page));
  1194. pmd = pmd_mknonnuma(pmd);
  1195. set_pmd_at(mm, haddr, pmdp, pmd);
  1196. VM_BUG_ON(pmd_numa(*pmdp));
  1197. update_mmu_cache_pmd(vma, addr, pmdp);
  1198. unlock_page(page);
  1199. out_unlock:
  1200. spin_unlock(&mm->page_table_lock);
  1201. out:
  1202. if (anon_vma)
  1203. page_unlock_anon_vma_read(anon_vma);
  1204. if (page_nid != -1)
  1205. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1206. return 0;
  1207. }
  1208. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1209. pmd_t *pmd, unsigned long addr)
  1210. {
  1211. int ret = 0;
  1212. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1213. struct page *page;
  1214. pgtable_t pgtable;
  1215. pmd_t orig_pmd;
  1216. /*
  1217. * For architectures like ppc64 we look at deposited pgtable
  1218. * when calling pmdp_get_and_clear. So do the
  1219. * pgtable_trans_huge_withdraw after finishing pmdp related
  1220. * operations.
  1221. */
  1222. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1223. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1224. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1225. if (is_huge_zero_pmd(orig_pmd)) {
  1226. tlb->mm->nr_ptes--;
  1227. spin_unlock(&tlb->mm->page_table_lock);
  1228. put_huge_zero_page();
  1229. } else {
  1230. page = pmd_page(orig_pmd);
  1231. page_remove_rmap(page);
  1232. VM_BUG_ON(page_mapcount(page) < 0);
  1233. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1234. VM_BUG_ON(!PageHead(page));
  1235. tlb->mm->nr_ptes--;
  1236. spin_unlock(&tlb->mm->page_table_lock);
  1237. tlb_remove_page(tlb, page);
  1238. }
  1239. pte_free(tlb->mm, pgtable);
  1240. ret = 1;
  1241. }
  1242. return ret;
  1243. }
  1244. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1245. unsigned long addr, unsigned long end,
  1246. unsigned char *vec)
  1247. {
  1248. int ret = 0;
  1249. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1250. /*
  1251. * All logical pages in the range are present
  1252. * if backed by a huge page.
  1253. */
  1254. spin_unlock(&vma->vm_mm->page_table_lock);
  1255. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1256. ret = 1;
  1257. }
  1258. return ret;
  1259. }
  1260. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1261. unsigned long old_addr,
  1262. unsigned long new_addr, unsigned long old_end,
  1263. pmd_t *old_pmd, pmd_t *new_pmd)
  1264. {
  1265. int ret = 0;
  1266. pmd_t pmd;
  1267. struct mm_struct *mm = vma->vm_mm;
  1268. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1269. (new_addr & ~HPAGE_PMD_MASK) ||
  1270. old_end - old_addr < HPAGE_PMD_SIZE ||
  1271. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1272. goto out;
  1273. /*
  1274. * The destination pmd shouldn't be established, free_pgtables()
  1275. * should have release it.
  1276. */
  1277. if (WARN_ON(!pmd_none(*new_pmd))) {
  1278. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1279. goto out;
  1280. }
  1281. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1282. if (ret == 1) {
  1283. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1284. VM_BUG_ON(!pmd_none(*new_pmd));
  1285. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1286. spin_unlock(&mm->page_table_lock);
  1287. }
  1288. out:
  1289. return ret;
  1290. }
  1291. /*
  1292. * Returns
  1293. * - 0 if PMD could not be locked
  1294. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1295. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1296. */
  1297. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1298. unsigned long addr, pgprot_t newprot, int prot_numa)
  1299. {
  1300. struct mm_struct *mm = vma->vm_mm;
  1301. int ret = 0;
  1302. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1303. pmd_t entry;
  1304. ret = 1;
  1305. if (!prot_numa) {
  1306. entry = pmdp_get_and_clear(mm, addr, pmd);
  1307. entry = pmd_modify(entry, newprot);
  1308. ret = HPAGE_PMD_NR;
  1309. BUG_ON(pmd_write(entry));
  1310. } else {
  1311. struct page *page = pmd_page(*pmd);
  1312. /*
  1313. * Do not trap faults against the zero page. The
  1314. * read-only data is likely to be read-cached on the
  1315. * local CPU cache and it is less useful to know about
  1316. * local vs remote hits on the zero page.
  1317. */
  1318. if (!is_huge_zero_page(page) &&
  1319. !pmd_numa(*pmd)) {
  1320. entry = pmdp_get_and_clear(mm, addr, pmd);
  1321. entry = pmd_mknuma(entry);
  1322. ret = HPAGE_PMD_NR;
  1323. }
  1324. }
  1325. /* Set PMD if cleared earlier */
  1326. if (ret == HPAGE_PMD_NR)
  1327. set_pmd_at(mm, addr, pmd, entry);
  1328. spin_unlock(&vma->vm_mm->page_table_lock);
  1329. }
  1330. return ret;
  1331. }
  1332. /*
  1333. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1334. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1335. *
  1336. * Note that if it returns 1, this routine returns without unlocking page
  1337. * table locks. So callers must unlock them.
  1338. */
  1339. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1340. {
  1341. spin_lock(&vma->vm_mm->page_table_lock);
  1342. if (likely(pmd_trans_huge(*pmd))) {
  1343. if (unlikely(pmd_trans_splitting(*pmd))) {
  1344. spin_unlock(&vma->vm_mm->page_table_lock);
  1345. wait_split_huge_page(vma->anon_vma, pmd);
  1346. return -1;
  1347. } else {
  1348. /* Thp mapped by 'pmd' is stable, so we can
  1349. * handle it as it is. */
  1350. return 1;
  1351. }
  1352. }
  1353. spin_unlock(&vma->vm_mm->page_table_lock);
  1354. return 0;
  1355. }
  1356. pmd_t *page_check_address_pmd(struct page *page,
  1357. struct mm_struct *mm,
  1358. unsigned long address,
  1359. enum page_check_address_pmd_flag flag)
  1360. {
  1361. pmd_t *pmd, *ret = NULL;
  1362. if (address & ~HPAGE_PMD_MASK)
  1363. goto out;
  1364. pmd = mm_find_pmd(mm, address);
  1365. if (!pmd)
  1366. goto out;
  1367. if (pmd_none(*pmd))
  1368. goto out;
  1369. if (pmd_page(*pmd) != page)
  1370. goto out;
  1371. /*
  1372. * split_vma() may create temporary aliased mappings. There is
  1373. * no risk as long as all huge pmd are found and have their
  1374. * splitting bit set before __split_huge_page_refcount
  1375. * runs. Finding the same huge pmd more than once during the
  1376. * same rmap walk is not a problem.
  1377. */
  1378. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1379. pmd_trans_splitting(*pmd))
  1380. goto out;
  1381. if (pmd_trans_huge(*pmd)) {
  1382. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1383. !pmd_trans_splitting(*pmd));
  1384. ret = pmd;
  1385. }
  1386. out:
  1387. return ret;
  1388. }
  1389. static int __split_huge_page_splitting(struct page *page,
  1390. struct vm_area_struct *vma,
  1391. unsigned long address)
  1392. {
  1393. struct mm_struct *mm = vma->vm_mm;
  1394. pmd_t *pmd;
  1395. int ret = 0;
  1396. /* For mmu_notifiers */
  1397. const unsigned long mmun_start = address;
  1398. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1399. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1400. spin_lock(&mm->page_table_lock);
  1401. pmd = page_check_address_pmd(page, mm, address,
  1402. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1403. if (pmd) {
  1404. /*
  1405. * We can't temporarily set the pmd to null in order
  1406. * to split it, the pmd must remain marked huge at all
  1407. * times or the VM won't take the pmd_trans_huge paths
  1408. * and it won't wait on the anon_vma->root->rwsem to
  1409. * serialize against split_huge_page*.
  1410. */
  1411. pmdp_splitting_flush(vma, address, pmd);
  1412. ret = 1;
  1413. }
  1414. spin_unlock(&mm->page_table_lock);
  1415. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1416. return ret;
  1417. }
  1418. static void __split_huge_page_refcount(struct page *page,
  1419. struct list_head *list)
  1420. {
  1421. int i;
  1422. struct zone *zone = page_zone(page);
  1423. struct lruvec *lruvec;
  1424. int tail_count = 0;
  1425. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1426. spin_lock_irq(&zone->lru_lock);
  1427. lruvec = mem_cgroup_page_lruvec(page, zone);
  1428. compound_lock(page);
  1429. /* complete memcg works before add pages to LRU */
  1430. mem_cgroup_split_huge_fixup(page);
  1431. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1432. struct page *page_tail = page + i;
  1433. /* tail_page->_mapcount cannot change */
  1434. BUG_ON(page_mapcount(page_tail) < 0);
  1435. tail_count += page_mapcount(page_tail);
  1436. /* check for overflow */
  1437. BUG_ON(tail_count < 0);
  1438. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1439. /*
  1440. * tail_page->_count is zero and not changing from
  1441. * under us. But get_page_unless_zero() may be running
  1442. * from under us on the tail_page. If we used
  1443. * atomic_set() below instead of atomic_add(), we
  1444. * would then run atomic_set() concurrently with
  1445. * get_page_unless_zero(), and atomic_set() is
  1446. * implemented in C not using locked ops. spin_unlock
  1447. * on x86 sometime uses locked ops because of PPro
  1448. * errata 66, 92, so unless somebody can guarantee
  1449. * atomic_set() here would be safe on all archs (and
  1450. * not only on x86), it's safer to use atomic_add().
  1451. */
  1452. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1453. &page_tail->_count);
  1454. /* after clearing PageTail the gup refcount can be released */
  1455. smp_mb();
  1456. /*
  1457. * retain hwpoison flag of the poisoned tail page:
  1458. * fix for the unsuitable process killed on Guest Machine(KVM)
  1459. * by the memory-failure.
  1460. */
  1461. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1462. page_tail->flags |= (page->flags &
  1463. ((1L << PG_referenced) |
  1464. (1L << PG_swapbacked) |
  1465. (1L << PG_mlocked) |
  1466. (1L << PG_uptodate) |
  1467. (1L << PG_active) |
  1468. (1L << PG_unevictable)));
  1469. page_tail->flags |= (1L << PG_dirty);
  1470. /* clear PageTail before overwriting first_page */
  1471. smp_wmb();
  1472. /*
  1473. * __split_huge_page_splitting() already set the
  1474. * splitting bit in all pmd that could map this
  1475. * hugepage, that will ensure no CPU can alter the
  1476. * mapcount on the head page. The mapcount is only
  1477. * accounted in the head page and it has to be
  1478. * transferred to all tail pages in the below code. So
  1479. * for this code to be safe, the split the mapcount
  1480. * can't change. But that doesn't mean userland can't
  1481. * keep changing and reading the page contents while
  1482. * we transfer the mapcount, so the pmd splitting
  1483. * status is achieved setting a reserved bit in the
  1484. * pmd, not by clearing the present bit.
  1485. */
  1486. page_tail->_mapcount = page->_mapcount;
  1487. BUG_ON(page_tail->mapping);
  1488. page_tail->mapping = page->mapping;
  1489. page_tail->index = page->index + i;
  1490. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1491. BUG_ON(!PageAnon(page_tail));
  1492. BUG_ON(!PageUptodate(page_tail));
  1493. BUG_ON(!PageDirty(page_tail));
  1494. BUG_ON(!PageSwapBacked(page_tail));
  1495. lru_add_page_tail(page, page_tail, lruvec, list);
  1496. }
  1497. atomic_sub(tail_count, &page->_count);
  1498. BUG_ON(atomic_read(&page->_count) <= 0);
  1499. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1500. ClearPageCompound(page);
  1501. compound_unlock(page);
  1502. spin_unlock_irq(&zone->lru_lock);
  1503. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1504. struct page *page_tail = page + i;
  1505. BUG_ON(page_count(page_tail) <= 0);
  1506. /*
  1507. * Tail pages may be freed if there wasn't any mapping
  1508. * like if add_to_swap() is running on a lru page that
  1509. * had its mapping zapped. And freeing these pages
  1510. * requires taking the lru_lock so we do the put_page
  1511. * of the tail pages after the split is complete.
  1512. */
  1513. put_page(page_tail);
  1514. }
  1515. /*
  1516. * Only the head page (now become a regular page) is required
  1517. * to be pinned by the caller.
  1518. */
  1519. BUG_ON(page_count(page) <= 0);
  1520. }
  1521. static int __split_huge_page_map(struct page *page,
  1522. struct vm_area_struct *vma,
  1523. unsigned long address)
  1524. {
  1525. struct mm_struct *mm = vma->vm_mm;
  1526. pmd_t *pmd, _pmd;
  1527. int ret = 0, i;
  1528. pgtable_t pgtable;
  1529. unsigned long haddr;
  1530. spin_lock(&mm->page_table_lock);
  1531. pmd = page_check_address_pmd(page, mm, address,
  1532. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1533. if (pmd) {
  1534. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1535. pmd_populate(mm, &_pmd, pgtable);
  1536. haddr = address;
  1537. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1538. pte_t *pte, entry;
  1539. BUG_ON(PageCompound(page+i));
  1540. entry = mk_pte(page + i, vma->vm_page_prot);
  1541. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1542. if (!pmd_write(*pmd))
  1543. entry = pte_wrprotect(entry);
  1544. else
  1545. BUG_ON(page_mapcount(page) != 1);
  1546. if (!pmd_young(*pmd))
  1547. entry = pte_mkold(entry);
  1548. if (pmd_numa(*pmd))
  1549. entry = pte_mknuma(entry);
  1550. pte = pte_offset_map(&_pmd, haddr);
  1551. BUG_ON(!pte_none(*pte));
  1552. set_pte_at(mm, haddr, pte, entry);
  1553. pte_unmap(pte);
  1554. }
  1555. smp_wmb(); /* make pte visible before pmd */
  1556. /*
  1557. * Up to this point the pmd is present and huge and
  1558. * userland has the whole access to the hugepage
  1559. * during the split (which happens in place). If we
  1560. * overwrite the pmd with the not-huge version
  1561. * pointing to the pte here (which of course we could
  1562. * if all CPUs were bug free), userland could trigger
  1563. * a small page size TLB miss on the small sized TLB
  1564. * while the hugepage TLB entry is still established
  1565. * in the huge TLB. Some CPU doesn't like that. See
  1566. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1567. * Erratum 383 on page 93. Intel should be safe but is
  1568. * also warns that it's only safe if the permission
  1569. * and cache attributes of the two entries loaded in
  1570. * the two TLB is identical (which should be the case
  1571. * here). But it is generally safer to never allow
  1572. * small and huge TLB entries for the same virtual
  1573. * address to be loaded simultaneously. So instead of
  1574. * doing "pmd_populate(); flush_tlb_range();" we first
  1575. * mark the current pmd notpresent (atomically because
  1576. * here the pmd_trans_huge and pmd_trans_splitting
  1577. * must remain set at all times on the pmd until the
  1578. * split is complete for this pmd), then we flush the
  1579. * SMP TLB and finally we write the non-huge version
  1580. * of the pmd entry with pmd_populate.
  1581. */
  1582. pmdp_invalidate(vma, address, pmd);
  1583. pmd_populate(mm, pmd, pgtable);
  1584. ret = 1;
  1585. }
  1586. spin_unlock(&mm->page_table_lock);
  1587. return ret;
  1588. }
  1589. /* must be called with anon_vma->root->rwsem held */
  1590. static void __split_huge_page(struct page *page,
  1591. struct anon_vma *anon_vma,
  1592. struct list_head *list)
  1593. {
  1594. int mapcount, mapcount2;
  1595. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1596. struct anon_vma_chain *avc;
  1597. BUG_ON(!PageHead(page));
  1598. BUG_ON(PageTail(page));
  1599. mapcount = 0;
  1600. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1601. struct vm_area_struct *vma = avc->vma;
  1602. unsigned long addr = vma_address(page, vma);
  1603. BUG_ON(is_vma_temporary_stack(vma));
  1604. mapcount += __split_huge_page_splitting(page, vma, addr);
  1605. }
  1606. /*
  1607. * It is critical that new vmas are added to the tail of the
  1608. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1609. * and establishes a child pmd before
  1610. * __split_huge_page_splitting() freezes the parent pmd (so if
  1611. * we fail to prevent copy_huge_pmd() from running until the
  1612. * whole __split_huge_page() is complete), we will still see
  1613. * the newly established pmd of the child later during the
  1614. * walk, to be able to set it as pmd_trans_splitting too.
  1615. */
  1616. if (mapcount != page_mapcount(page))
  1617. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1618. mapcount, page_mapcount(page));
  1619. BUG_ON(mapcount != page_mapcount(page));
  1620. __split_huge_page_refcount(page, list);
  1621. mapcount2 = 0;
  1622. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1623. struct vm_area_struct *vma = avc->vma;
  1624. unsigned long addr = vma_address(page, vma);
  1625. BUG_ON(is_vma_temporary_stack(vma));
  1626. mapcount2 += __split_huge_page_map(page, vma, addr);
  1627. }
  1628. if (mapcount != mapcount2)
  1629. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1630. mapcount, mapcount2, page_mapcount(page));
  1631. BUG_ON(mapcount != mapcount2);
  1632. }
  1633. /*
  1634. * Split a hugepage into normal pages. This doesn't change the position of head
  1635. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1636. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1637. * from the hugepage.
  1638. * Return 0 if the hugepage is split successfully otherwise return 1.
  1639. */
  1640. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1641. {
  1642. struct anon_vma *anon_vma;
  1643. int ret = 1;
  1644. BUG_ON(is_huge_zero_page(page));
  1645. BUG_ON(!PageAnon(page));
  1646. /*
  1647. * The caller does not necessarily hold an mmap_sem that would prevent
  1648. * the anon_vma disappearing so we first we take a reference to it
  1649. * and then lock the anon_vma for write. This is similar to
  1650. * page_lock_anon_vma_read except the write lock is taken to serialise
  1651. * against parallel split or collapse operations.
  1652. */
  1653. anon_vma = page_get_anon_vma(page);
  1654. if (!anon_vma)
  1655. goto out;
  1656. anon_vma_lock_write(anon_vma);
  1657. ret = 0;
  1658. if (!PageCompound(page))
  1659. goto out_unlock;
  1660. BUG_ON(!PageSwapBacked(page));
  1661. __split_huge_page(page, anon_vma, list);
  1662. count_vm_event(THP_SPLIT);
  1663. BUG_ON(PageCompound(page));
  1664. out_unlock:
  1665. anon_vma_unlock_write(anon_vma);
  1666. put_anon_vma(anon_vma);
  1667. out:
  1668. return ret;
  1669. }
  1670. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1671. int hugepage_madvise(struct vm_area_struct *vma,
  1672. unsigned long *vm_flags, int advice)
  1673. {
  1674. struct mm_struct *mm = vma->vm_mm;
  1675. switch (advice) {
  1676. case MADV_HUGEPAGE:
  1677. /*
  1678. * Be somewhat over-protective like KSM for now!
  1679. */
  1680. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1681. return -EINVAL;
  1682. if (mm->def_flags & VM_NOHUGEPAGE)
  1683. return -EINVAL;
  1684. *vm_flags &= ~VM_NOHUGEPAGE;
  1685. *vm_flags |= VM_HUGEPAGE;
  1686. /*
  1687. * If the vma become good for khugepaged to scan,
  1688. * register it here without waiting a page fault that
  1689. * may not happen any time soon.
  1690. */
  1691. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1692. return -ENOMEM;
  1693. break;
  1694. case MADV_NOHUGEPAGE:
  1695. /*
  1696. * Be somewhat over-protective like KSM for now!
  1697. */
  1698. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1699. return -EINVAL;
  1700. *vm_flags &= ~VM_HUGEPAGE;
  1701. *vm_flags |= VM_NOHUGEPAGE;
  1702. /*
  1703. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1704. * this vma even if we leave the mm registered in khugepaged if
  1705. * it got registered before VM_NOHUGEPAGE was set.
  1706. */
  1707. break;
  1708. }
  1709. return 0;
  1710. }
  1711. static int __init khugepaged_slab_init(void)
  1712. {
  1713. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1714. sizeof(struct mm_slot),
  1715. __alignof__(struct mm_slot), 0, NULL);
  1716. if (!mm_slot_cache)
  1717. return -ENOMEM;
  1718. return 0;
  1719. }
  1720. static inline struct mm_slot *alloc_mm_slot(void)
  1721. {
  1722. if (!mm_slot_cache) /* initialization failed */
  1723. return NULL;
  1724. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1725. }
  1726. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1727. {
  1728. kmem_cache_free(mm_slot_cache, mm_slot);
  1729. }
  1730. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1731. {
  1732. struct mm_slot *mm_slot;
  1733. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1734. if (mm == mm_slot->mm)
  1735. return mm_slot;
  1736. return NULL;
  1737. }
  1738. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1739. struct mm_slot *mm_slot)
  1740. {
  1741. mm_slot->mm = mm;
  1742. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1743. }
  1744. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1745. {
  1746. return atomic_read(&mm->mm_users) == 0;
  1747. }
  1748. int __khugepaged_enter(struct mm_struct *mm)
  1749. {
  1750. struct mm_slot *mm_slot;
  1751. int wakeup;
  1752. mm_slot = alloc_mm_slot();
  1753. if (!mm_slot)
  1754. return -ENOMEM;
  1755. /* __khugepaged_exit() must not run from under us */
  1756. VM_BUG_ON(khugepaged_test_exit(mm));
  1757. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1758. free_mm_slot(mm_slot);
  1759. return 0;
  1760. }
  1761. spin_lock(&khugepaged_mm_lock);
  1762. insert_to_mm_slots_hash(mm, mm_slot);
  1763. /*
  1764. * Insert just behind the scanning cursor, to let the area settle
  1765. * down a little.
  1766. */
  1767. wakeup = list_empty(&khugepaged_scan.mm_head);
  1768. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1769. spin_unlock(&khugepaged_mm_lock);
  1770. atomic_inc(&mm->mm_count);
  1771. if (wakeup)
  1772. wake_up_interruptible(&khugepaged_wait);
  1773. return 0;
  1774. }
  1775. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1776. {
  1777. unsigned long hstart, hend;
  1778. if (!vma->anon_vma)
  1779. /*
  1780. * Not yet faulted in so we will register later in the
  1781. * page fault if needed.
  1782. */
  1783. return 0;
  1784. if (vma->vm_ops)
  1785. /* khugepaged not yet working on file or special mappings */
  1786. return 0;
  1787. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1788. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1789. hend = vma->vm_end & HPAGE_PMD_MASK;
  1790. if (hstart < hend)
  1791. return khugepaged_enter(vma);
  1792. return 0;
  1793. }
  1794. void __khugepaged_exit(struct mm_struct *mm)
  1795. {
  1796. struct mm_slot *mm_slot;
  1797. int free = 0;
  1798. spin_lock(&khugepaged_mm_lock);
  1799. mm_slot = get_mm_slot(mm);
  1800. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1801. hash_del(&mm_slot->hash);
  1802. list_del(&mm_slot->mm_node);
  1803. free = 1;
  1804. }
  1805. spin_unlock(&khugepaged_mm_lock);
  1806. if (free) {
  1807. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1808. free_mm_slot(mm_slot);
  1809. mmdrop(mm);
  1810. } else if (mm_slot) {
  1811. /*
  1812. * This is required to serialize against
  1813. * khugepaged_test_exit() (which is guaranteed to run
  1814. * under mmap sem read mode). Stop here (after we
  1815. * return all pagetables will be destroyed) until
  1816. * khugepaged has finished working on the pagetables
  1817. * under the mmap_sem.
  1818. */
  1819. down_write(&mm->mmap_sem);
  1820. up_write(&mm->mmap_sem);
  1821. }
  1822. }
  1823. static void release_pte_page(struct page *page)
  1824. {
  1825. /* 0 stands for page_is_file_cache(page) == false */
  1826. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1827. unlock_page(page);
  1828. putback_lru_page(page);
  1829. }
  1830. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1831. {
  1832. while (--_pte >= pte) {
  1833. pte_t pteval = *_pte;
  1834. if (!pte_none(pteval))
  1835. release_pte_page(pte_page(pteval));
  1836. }
  1837. }
  1838. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1839. unsigned long address,
  1840. pte_t *pte)
  1841. {
  1842. struct page *page;
  1843. pte_t *_pte;
  1844. int referenced = 0, none = 0;
  1845. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1846. _pte++, address += PAGE_SIZE) {
  1847. pte_t pteval = *_pte;
  1848. if (pte_none(pteval)) {
  1849. if (++none <= khugepaged_max_ptes_none)
  1850. continue;
  1851. else
  1852. goto out;
  1853. }
  1854. if (!pte_present(pteval) || !pte_write(pteval))
  1855. goto out;
  1856. page = vm_normal_page(vma, address, pteval);
  1857. if (unlikely(!page))
  1858. goto out;
  1859. VM_BUG_ON(PageCompound(page));
  1860. BUG_ON(!PageAnon(page));
  1861. VM_BUG_ON(!PageSwapBacked(page));
  1862. /* cannot use mapcount: can't collapse if there's a gup pin */
  1863. if (page_count(page) != 1)
  1864. goto out;
  1865. /*
  1866. * We can do it before isolate_lru_page because the
  1867. * page can't be freed from under us. NOTE: PG_lock
  1868. * is needed to serialize against split_huge_page
  1869. * when invoked from the VM.
  1870. */
  1871. if (!trylock_page(page))
  1872. goto out;
  1873. /*
  1874. * Isolate the page to avoid collapsing an hugepage
  1875. * currently in use by the VM.
  1876. */
  1877. if (isolate_lru_page(page)) {
  1878. unlock_page(page);
  1879. goto out;
  1880. }
  1881. /* 0 stands for page_is_file_cache(page) == false */
  1882. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1883. VM_BUG_ON(!PageLocked(page));
  1884. VM_BUG_ON(PageLRU(page));
  1885. /* If there is no mapped pte young don't collapse the page */
  1886. if (pte_young(pteval) || PageReferenced(page) ||
  1887. mmu_notifier_test_young(vma->vm_mm, address))
  1888. referenced = 1;
  1889. }
  1890. if (likely(referenced))
  1891. return 1;
  1892. out:
  1893. release_pte_pages(pte, _pte);
  1894. return 0;
  1895. }
  1896. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1897. struct vm_area_struct *vma,
  1898. unsigned long address,
  1899. spinlock_t *ptl)
  1900. {
  1901. pte_t *_pte;
  1902. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1903. pte_t pteval = *_pte;
  1904. struct page *src_page;
  1905. if (pte_none(pteval)) {
  1906. clear_user_highpage(page, address);
  1907. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1908. } else {
  1909. src_page = pte_page(pteval);
  1910. copy_user_highpage(page, src_page, address, vma);
  1911. VM_BUG_ON(page_mapcount(src_page) != 1);
  1912. release_pte_page(src_page);
  1913. /*
  1914. * ptl mostly unnecessary, but preempt has to
  1915. * be disabled to update the per-cpu stats
  1916. * inside page_remove_rmap().
  1917. */
  1918. spin_lock(ptl);
  1919. /*
  1920. * paravirt calls inside pte_clear here are
  1921. * superfluous.
  1922. */
  1923. pte_clear(vma->vm_mm, address, _pte);
  1924. page_remove_rmap(src_page);
  1925. spin_unlock(ptl);
  1926. free_page_and_swap_cache(src_page);
  1927. }
  1928. address += PAGE_SIZE;
  1929. page++;
  1930. }
  1931. }
  1932. static void khugepaged_alloc_sleep(void)
  1933. {
  1934. wait_event_freezable_timeout(khugepaged_wait, false,
  1935. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1936. }
  1937. static int khugepaged_node_load[MAX_NUMNODES];
  1938. #ifdef CONFIG_NUMA
  1939. static int khugepaged_find_target_node(void)
  1940. {
  1941. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1942. int nid, target_node = 0, max_value = 0;
  1943. /* find first node with max normal pages hit */
  1944. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1945. if (khugepaged_node_load[nid] > max_value) {
  1946. max_value = khugepaged_node_load[nid];
  1947. target_node = nid;
  1948. }
  1949. /* do some balance if several nodes have the same hit record */
  1950. if (target_node <= last_khugepaged_target_node)
  1951. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1952. nid++)
  1953. if (max_value == khugepaged_node_load[nid]) {
  1954. target_node = nid;
  1955. break;
  1956. }
  1957. last_khugepaged_target_node = target_node;
  1958. return target_node;
  1959. }
  1960. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1961. {
  1962. if (IS_ERR(*hpage)) {
  1963. if (!*wait)
  1964. return false;
  1965. *wait = false;
  1966. *hpage = NULL;
  1967. khugepaged_alloc_sleep();
  1968. } else if (*hpage) {
  1969. put_page(*hpage);
  1970. *hpage = NULL;
  1971. }
  1972. return true;
  1973. }
  1974. static struct page
  1975. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1976. struct vm_area_struct *vma, unsigned long address,
  1977. int node)
  1978. {
  1979. VM_BUG_ON(*hpage);
  1980. /*
  1981. * Allocate the page while the vma is still valid and under
  1982. * the mmap_sem read mode so there is no memory allocation
  1983. * later when we take the mmap_sem in write mode. This is more
  1984. * friendly behavior (OTOH it may actually hide bugs) to
  1985. * filesystems in userland with daemons allocating memory in
  1986. * the userland I/O paths. Allocating memory with the
  1987. * mmap_sem in read mode is good idea also to allow greater
  1988. * scalability.
  1989. */
  1990. *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
  1991. khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
  1992. /*
  1993. * After allocating the hugepage, release the mmap_sem read lock in
  1994. * preparation for taking it in write mode.
  1995. */
  1996. up_read(&mm->mmap_sem);
  1997. if (unlikely(!*hpage)) {
  1998. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1999. *hpage = ERR_PTR(-ENOMEM);
  2000. return NULL;
  2001. }
  2002. count_vm_event(THP_COLLAPSE_ALLOC);
  2003. return *hpage;
  2004. }
  2005. #else
  2006. static int khugepaged_find_target_node(void)
  2007. {
  2008. return 0;
  2009. }
  2010. static inline struct page *alloc_hugepage(int defrag)
  2011. {
  2012. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2013. HPAGE_PMD_ORDER);
  2014. }
  2015. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2016. {
  2017. struct page *hpage;
  2018. do {
  2019. hpage = alloc_hugepage(khugepaged_defrag());
  2020. if (!hpage) {
  2021. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2022. if (!*wait)
  2023. return NULL;
  2024. *wait = false;
  2025. khugepaged_alloc_sleep();
  2026. } else
  2027. count_vm_event(THP_COLLAPSE_ALLOC);
  2028. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2029. return hpage;
  2030. }
  2031. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2032. {
  2033. if (!*hpage)
  2034. *hpage = khugepaged_alloc_hugepage(wait);
  2035. if (unlikely(!*hpage))
  2036. return false;
  2037. return true;
  2038. }
  2039. static struct page
  2040. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  2041. struct vm_area_struct *vma, unsigned long address,
  2042. int node)
  2043. {
  2044. up_read(&mm->mmap_sem);
  2045. VM_BUG_ON(!*hpage);
  2046. return *hpage;
  2047. }
  2048. #endif
  2049. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2050. {
  2051. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2052. (vma->vm_flags & VM_NOHUGEPAGE))
  2053. return false;
  2054. if (!vma->anon_vma || vma->vm_ops)
  2055. return false;
  2056. if (is_vma_temporary_stack(vma))
  2057. return false;
  2058. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2059. return true;
  2060. }
  2061. static void collapse_huge_page(struct mm_struct *mm,
  2062. unsigned long address,
  2063. struct page **hpage,
  2064. struct vm_area_struct *vma,
  2065. int node)
  2066. {
  2067. pmd_t *pmd, _pmd;
  2068. pte_t *pte;
  2069. pgtable_t pgtable;
  2070. struct page *new_page;
  2071. spinlock_t *ptl;
  2072. int isolated;
  2073. unsigned long hstart, hend;
  2074. unsigned long mmun_start; /* For mmu_notifiers */
  2075. unsigned long mmun_end; /* For mmu_notifiers */
  2076. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2077. /* release the mmap_sem read lock. */
  2078. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2079. if (!new_page)
  2080. return;
  2081. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2082. return;
  2083. /*
  2084. * Prevent all access to pagetables with the exception of
  2085. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2086. * handled by the anon_vma lock + PG_lock.
  2087. */
  2088. down_write(&mm->mmap_sem);
  2089. if (unlikely(khugepaged_test_exit(mm)))
  2090. goto out;
  2091. vma = find_vma(mm, address);
  2092. if (!vma)
  2093. goto out;
  2094. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2095. hend = vma->vm_end & HPAGE_PMD_MASK;
  2096. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2097. goto out;
  2098. if (!hugepage_vma_check(vma))
  2099. goto out;
  2100. pmd = mm_find_pmd(mm, address);
  2101. if (!pmd)
  2102. goto out;
  2103. if (pmd_trans_huge(*pmd))
  2104. goto out;
  2105. anon_vma_lock_write(vma->anon_vma);
  2106. pte = pte_offset_map(pmd, address);
  2107. ptl = pte_lockptr(mm, pmd);
  2108. mmun_start = address;
  2109. mmun_end = address + HPAGE_PMD_SIZE;
  2110. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2111. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2112. /*
  2113. * After this gup_fast can't run anymore. This also removes
  2114. * any huge TLB entry from the CPU so we won't allow
  2115. * huge and small TLB entries for the same virtual address
  2116. * to avoid the risk of CPU bugs in that area.
  2117. */
  2118. _pmd = pmdp_clear_flush(vma, address, pmd);
  2119. spin_unlock(&mm->page_table_lock);
  2120. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2121. spin_lock(ptl);
  2122. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2123. spin_unlock(ptl);
  2124. if (unlikely(!isolated)) {
  2125. pte_unmap(pte);
  2126. spin_lock(&mm->page_table_lock);
  2127. BUG_ON(!pmd_none(*pmd));
  2128. /*
  2129. * We can only use set_pmd_at when establishing
  2130. * hugepmds and never for establishing regular pmds that
  2131. * points to regular pagetables. Use pmd_populate for that
  2132. */
  2133. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2134. spin_unlock(&mm->page_table_lock);
  2135. anon_vma_unlock_write(vma->anon_vma);
  2136. goto out;
  2137. }
  2138. /*
  2139. * All pages are isolated and locked so anon_vma rmap
  2140. * can't run anymore.
  2141. */
  2142. anon_vma_unlock_write(vma->anon_vma);
  2143. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2144. pte_unmap(pte);
  2145. __SetPageUptodate(new_page);
  2146. pgtable = pmd_pgtable(_pmd);
  2147. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2148. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2149. /*
  2150. * spin_lock() below is not the equivalent of smp_wmb(), so
  2151. * this is needed to avoid the copy_huge_page writes to become
  2152. * visible after the set_pmd_at() write.
  2153. */
  2154. smp_wmb();
  2155. spin_lock(&mm->page_table_lock);
  2156. BUG_ON(!pmd_none(*pmd));
  2157. page_add_new_anon_rmap(new_page, vma, address);
  2158. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2159. set_pmd_at(mm, address, pmd, _pmd);
  2160. update_mmu_cache_pmd(vma, address, pmd);
  2161. spin_unlock(&mm->page_table_lock);
  2162. *hpage = NULL;
  2163. khugepaged_pages_collapsed++;
  2164. out_up_write:
  2165. up_write(&mm->mmap_sem);
  2166. return;
  2167. out:
  2168. mem_cgroup_uncharge_page(new_page);
  2169. goto out_up_write;
  2170. }
  2171. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2172. struct vm_area_struct *vma,
  2173. unsigned long address,
  2174. struct page **hpage)
  2175. {
  2176. pmd_t *pmd;
  2177. pte_t *pte, *_pte;
  2178. int ret = 0, referenced = 0, none = 0;
  2179. struct page *page;
  2180. unsigned long _address;
  2181. spinlock_t *ptl;
  2182. int node = NUMA_NO_NODE;
  2183. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2184. pmd = mm_find_pmd(mm, address);
  2185. if (!pmd)
  2186. goto out;
  2187. if (pmd_trans_huge(*pmd))
  2188. goto out;
  2189. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2190. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2191. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2192. _pte++, _address += PAGE_SIZE) {
  2193. pte_t pteval = *_pte;
  2194. if (pte_none(pteval)) {
  2195. if (++none <= khugepaged_max_ptes_none)
  2196. continue;
  2197. else
  2198. goto out_unmap;
  2199. }
  2200. if (!pte_present(pteval) || !pte_write(pteval))
  2201. goto out_unmap;
  2202. page = vm_normal_page(vma, _address, pteval);
  2203. if (unlikely(!page))
  2204. goto out_unmap;
  2205. /*
  2206. * Record which node the original page is from and save this
  2207. * information to khugepaged_node_load[].
  2208. * Khupaged will allocate hugepage from the node has the max
  2209. * hit record.
  2210. */
  2211. node = page_to_nid(page);
  2212. khugepaged_node_load[node]++;
  2213. VM_BUG_ON(PageCompound(page));
  2214. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2215. goto out_unmap;
  2216. /* cannot use mapcount: can't collapse if there's a gup pin */
  2217. if (page_count(page) != 1)
  2218. goto out_unmap;
  2219. if (pte_young(pteval) || PageReferenced(page) ||
  2220. mmu_notifier_test_young(vma->vm_mm, address))
  2221. referenced = 1;
  2222. }
  2223. if (referenced)
  2224. ret = 1;
  2225. out_unmap:
  2226. pte_unmap_unlock(pte, ptl);
  2227. if (ret) {
  2228. node = khugepaged_find_target_node();
  2229. /* collapse_huge_page will return with the mmap_sem released */
  2230. collapse_huge_page(mm, address, hpage, vma, node);
  2231. }
  2232. out:
  2233. return ret;
  2234. }
  2235. static void collect_mm_slot(struct mm_slot *mm_slot)
  2236. {
  2237. struct mm_struct *mm = mm_slot->mm;
  2238. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2239. if (khugepaged_test_exit(mm)) {
  2240. /* free mm_slot */
  2241. hash_del(&mm_slot->hash);
  2242. list_del(&mm_slot->mm_node);
  2243. /*
  2244. * Not strictly needed because the mm exited already.
  2245. *
  2246. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2247. */
  2248. /* khugepaged_mm_lock actually not necessary for the below */
  2249. free_mm_slot(mm_slot);
  2250. mmdrop(mm);
  2251. }
  2252. }
  2253. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2254. struct page **hpage)
  2255. __releases(&khugepaged_mm_lock)
  2256. __acquires(&khugepaged_mm_lock)
  2257. {
  2258. struct mm_slot *mm_slot;
  2259. struct mm_struct *mm;
  2260. struct vm_area_struct *vma;
  2261. int progress = 0;
  2262. VM_BUG_ON(!pages);
  2263. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2264. if (khugepaged_scan.mm_slot)
  2265. mm_slot = khugepaged_scan.mm_slot;
  2266. else {
  2267. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2268. struct mm_slot, mm_node);
  2269. khugepaged_scan.address = 0;
  2270. khugepaged_scan.mm_slot = mm_slot;
  2271. }
  2272. spin_unlock(&khugepaged_mm_lock);
  2273. mm = mm_slot->mm;
  2274. down_read(&mm->mmap_sem);
  2275. if (unlikely(khugepaged_test_exit(mm)))
  2276. vma = NULL;
  2277. else
  2278. vma = find_vma(mm, khugepaged_scan.address);
  2279. progress++;
  2280. for (; vma; vma = vma->vm_next) {
  2281. unsigned long hstart, hend;
  2282. cond_resched();
  2283. if (unlikely(khugepaged_test_exit(mm))) {
  2284. progress++;
  2285. break;
  2286. }
  2287. if (!hugepage_vma_check(vma)) {
  2288. skip:
  2289. progress++;
  2290. continue;
  2291. }
  2292. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2293. hend = vma->vm_end & HPAGE_PMD_MASK;
  2294. if (hstart >= hend)
  2295. goto skip;
  2296. if (khugepaged_scan.address > hend)
  2297. goto skip;
  2298. if (khugepaged_scan.address < hstart)
  2299. khugepaged_scan.address = hstart;
  2300. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2301. while (khugepaged_scan.address < hend) {
  2302. int ret;
  2303. cond_resched();
  2304. if (unlikely(khugepaged_test_exit(mm)))
  2305. goto breakouterloop;
  2306. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2307. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2308. hend);
  2309. ret = khugepaged_scan_pmd(mm, vma,
  2310. khugepaged_scan.address,
  2311. hpage);
  2312. /* move to next address */
  2313. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2314. progress += HPAGE_PMD_NR;
  2315. if (ret)
  2316. /* we released mmap_sem so break loop */
  2317. goto breakouterloop_mmap_sem;
  2318. if (progress >= pages)
  2319. goto breakouterloop;
  2320. }
  2321. }
  2322. breakouterloop:
  2323. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2324. breakouterloop_mmap_sem:
  2325. spin_lock(&khugepaged_mm_lock);
  2326. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2327. /*
  2328. * Release the current mm_slot if this mm is about to die, or
  2329. * if we scanned all vmas of this mm.
  2330. */
  2331. if (khugepaged_test_exit(mm) || !vma) {
  2332. /*
  2333. * Make sure that if mm_users is reaching zero while
  2334. * khugepaged runs here, khugepaged_exit will find
  2335. * mm_slot not pointing to the exiting mm.
  2336. */
  2337. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2338. khugepaged_scan.mm_slot = list_entry(
  2339. mm_slot->mm_node.next,
  2340. struct mm_slot, mm_node);
  2341. khugepaged_scan.address = 0;
  2342. } else {
  2343. khugepaged_scan.mm_slot = NULL;
  2344. khugepaged_full_scans++;
  2345. }
  2346. collect_mm_slot(mm_slot);
  2347. }
  2348. return progress;
  2349. }
  2350. static int khugepaged_has_work(void)
  2351. {
  2352. return !list_empty(&khugepaged_scan.mm_head) &&
  2353. khugepaged_enabled();
  2354. }
  2355. static int khugepaged_wait_event(void)
  2356. {
  2357. return !list_empty(&khugepaged_scan.mm_head) ||
  2358. kthread_should_stop();
  2359. }
  2360. static void khugepaged_do_scan(void)
  2361. {
  2362. struct page *hpage = NULL;
  2363. unsigned int progress = 0, pass_through_head = 0;
  2364. unsigned int pages = khugepaged_pages_to_scan;
  2365. bool wait = true;
  2366. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2367. while (progress < pages) {
  2368. if (!khugepaged_prealloc_page(&hpage, &wait))
  2369. break;
  2370. cond_resched();
  2371. if (unlikely(kthread_should_stop() || freezing(current)))
  2372. break;
  2373. spin_lock(&khugepaged_mm_lock);
  2374. if (!khugepaged_scan.mm_slot)
  2375. pass_through_head++;
  2376. if (khugepaged_has_work() &&
  2377. pass_through_head < 2)
  2378. progress += khugepaged_scan_mm_slot(pages - progress,
  2379. &hpage);
  2380. else
  2381. progress = pages;
  2382. spin_unlock(&khugepaged_mm_lock);
  2383. }
  2384. if (!IS_ERR_OR_NULL(hpage))
  2385. put_page(hpage);
  2386. }
  2387. static void khugepaged_wait_work(void)
  2388. {
  2389. try_to_freeze();
  2390. if (khugepaged_has_work()) {
  2391. if (!khugepaged_scan_sleep_millisecs)
  2392. return;
  2393. wait_event_freezable_timeout(khugepaged_wait,
  2394. kthread_should_stop(),
  2395. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2396. return;
  2397. }
  2398. if (khugepaged_enabled())
  2399. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2400. }
  2401. static int khugepaged(void *none)
  2402. {
  2403. struct mm_slot *mm_slot;
  2404. set_freezable();
  2405. set_user_nice(current, 19);
  2406. while (!kthread_should_stop()) {
  2407. khugepaged_do_scan();
  2408. khugepaged_wait_work();
  2409. }
  2410. spin_lock(&khugepaged_mm_lock);
  2411. mm_slot = khugepaged_scan.mm_slot;
  2412. khugepaged_scan.mm_slot = NULL;
  2413. if (mm_slot)
  2414. collect_mm_slot(mm_slot);
  2415. spin_unlock(&khugepaged_mm_lock);
  2416. return 0;
  2417. }
  2418. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2419. unsigned long haddr, pmd_t *pmd)
  2420. {
  2421. struct mm_struct *mm = vma->vm_mm;
  2422. pgtable_t pgtable;
  2423. pmd_t _pmd;
  2424. int i;
  2425. pmdp_clear_flush(vma, haddr, pmd);
  2426. /* leave pmd empty until pte is filled */
  2427. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2428. pmd_populate(mm, &_pmd, pgtable);
  2429. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2430. pte_t *pte, entry;
  2431. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2432. entry = pte_mkspecial(entry);
  2433. pte = pte_offset_map(&_pmd, haddr);
  2434. VM_BUG_ON(!pte_none(*pte));
  2435. set_pte_at(mm, haddr, pte, entry);
  2436. pte_unmap(pte);
  2437. }
  2438. smp_wmb(); /* make pte visible before pmd */
  2439. pmd_populate(mm, pmd, pgtable);
  2440. put_huge_zero_page();
  2441. }
  2442. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2443. pmd_t *pmd)
  2444. {
  2445. struct page *page;
  2446. struct mm_struct *mm = vma->vm_mm;
  2447. unsigned long haddr = address & HPAGE_PMD_MASK;
  2448. unsigned long mmun_start; /* For mmu_notifiers */
  2449. unsigned long mmun_end; /* For mmu_notifiers */
  2450. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2451. mmun_start = haddr;
  2452. mmun_end = haddr + HPAGE_PMD_SIZE;
  2453. again:
  2454. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2455. spin_lock(&mm->page_table_lock);
  2456. if (unlikely(!pmd_trans_huge(*pmd))) {
  2457. spin_unlock(&mm->page_table_lock);
  2458. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2459. return;
  2460. }
  2461. if (is_huge_zero_pmd(*pmd)) {
  2462. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2463. spin_unlock(&mm->page_table_lock);
  2464. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2465. return;
  2466. }
  2467. page = pmd_page(*pmd);
  2468. VM_BUG_ON(!page_count(page));
  2469. get_page(page);
  2470. spin_unlock(&mm->page_table_lock);
  2471. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2472. split_huge_page(page);
  2473. put_page(page);
  2474. /*
  2475. * We don't always have down_write of mmap_sem here: a racing
  2476. * do_huge_pmd_wp_page() might have copied-on-write to another
  2477. * huge page before our split_huge_page() got the anon_vma lock.
  2478. */
  2479. if (unlikely(pmd_trans_huge(*pmd)))
  2480. goto again;
  2481. }
  2482. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2483. pmd_t *pmd)
  2484. {
  2485. struct vm_area_struct *vma;
  2486. vma = find_vma(mm, address);
  2487. BUG_ON(vma == NULL);
  2488. split_huge_page_pmd(vma, address, pmd);
  2489. }
  2490. static void split_huge_page_address(struct mm_struct *mm,
  2491. unsigned long address)
  2492. {
  2493. pmd_t *pmd;
  2494. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2495. pmd = mm_find_pmd(mm, address);
  2496. if (!pmd)
  2497. return;
  2498. /*
  2499. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2500. * materialize from under us.
  2501. */
  2502. split_huge_page_pmd_mm(mm, address, pmd);
  2503. }
  2504. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2505. unsigned long start,
  2506. unsigned long end,
  2507. long adjust_next)
  2508. {
  2509. /*
  2510. * If the new start address isn't hpage aligned and it could
  2511. * previously contain an hugepage: check if we need to split
  2512. * an huge pmd.
  2513. */
  2514. if (start & ~HPAGE_PMD_MASK &&
  2515. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2516. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2517. split_huge_page_address(vma->vm_mm, start);
  2518. /*
  2519. * If the new end address isn't hpage aligned and it could
  2520. * previously contain an hugepage: check if we need to split
  2521. * an huge pmd.
  2522. */
  2523. if (end & ~HPAGE_PMD_MASK &&
  2524. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2525. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2526. split_huge_page_address(vma->vm_mm, end);
  2527. /*
  2528. * If we're also updating the vma->vm_next->vm_start, if the new
  2529. * vm_next->vm_start isn't page aligned and it could previously
  2530. * contain an hugepage: check if we need to split an huge pmd.
  2531. */
  2532. if (adjust_next > 0) {
  2533. struct vm_area_struct *next = vma->vm_next;
  2534. unsigned long nstart = next->vm_start;
  2535. nstart += adjust_next << PAGE_SHIFT;
  2536. if (nstart & ~HPAGE_PMD_MASK &&
  2537. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2538. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2539. split_huge_page_address(next->vm_mm, nstart);
  2540. }
  2541. }