dma-mapping.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. #ifndef ASMARM_DMA_MAPPING_H
  2. #define ASMARM_DMA_MAPPING_H
  3. #ifdef __KERNEL__
  4. #include <linux/mm_types.h>
  5. #include <linux/scatterlist.h>
  6. #include <asm-generic/dma-coherent.h>
  7. #include <asm/memory.h>
  8. #ifdef __arch_page_to_dma
  9. #error Please update to __arch_pfn_to_dma
  10. #endif
  11. /*
  12. * dma_to_pfn/pfn_to_dma/dma_to_virt/virt_to_dma are architecture private
  13. * functions used internally by the DMA-mapping API to provide DMA
  14. * addresses. They must not be used by drivers.
  15. */
  16. #ifndef __arch_pfn_to_dma
  17. static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
  18. {
  19. return (dma_addr_t)__pfn_to_bus(pfn);
  20. }
  21. static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
  22. {
  23. return __bus_to_pfn(addr);
  24. }
  25. static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
  26. {
  27. return (void *)__bus_to_virt(addr);
  28. }
  29. static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
  30. {
  31. return (dma_addr_t)__virt_to_bus((unsigned long)(addr));
  32. }
  33. #else
  34. static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
  35. {
  36. return __arch_pfn_to_dma(dev, pfn);
  37. }
  38. static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
  39. {
  40. return __arch_dma_to_pfn(dev, addr);
  41. }
  42. static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
  43. {
  44. return __arch_dma_to_virt(dev, addr);
  45. }
  46. static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
  47. {
  48. return __arch_virt_to_dma(dev, addr);
  49. }
  50. #endif
  51. /*
  52. * The DMA API is built upon the notion of "buffer ownership". A buffer
  53. * is either exclusively owned by the CPU (and therefore may be accessed
  54. * by it) or exclusively owned by the DMA device. These helper functions
  55. * represent the transitions between these two ownership states.
  56. *
  57. * Note, however, that on later ARMs, this notion does not work due to
  58. * speculative prefetches. We model our approach on the assumption that
  59. * the CPU does do speculative prefetches, which means we clean caches
  60. * before transfers and delay cache invalidation until transfer completion.
  61. *
  62. * Private support functions: these are not part of the API and are
  63. * liable to change. Drivers must not use these.
  64. */
  65. static inline void __dma_single_cpu_to_dev(const void *kaddr, size_t size,
  66. enum dma_data_direction dir)
  67. {
  68. extern void ___dma_single_cpu_to_dev(const void *, size_t,
  69. enum dma_data_direction);
  70. if (!arch_is_coherent())
  71. ___dma_single_cpu_to_dev(kaddr, size, dir);
  72. }
  73. static inline void __dma_single_dev_to_cpu(const void *kaddr, size_t size,
  74. enum dma_data_direction dir)
  75. {
  76. extern void ___dma_single_dev_to_cpu(const void *, size_t,
  77. enum dma_data_direction);
  78. if (!arch_is_coherent())
  79. ___dma_single_dev_to_cpu(kaddr, size, dir);
  80. }
  81. static inline void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  82. size_t size, enum dma_data_direction dir)
  83. {
  84. extern void ___dma_page_cpu_to_dev(struct page *, unsigned long,
  85. size_t, enum dma_data_direction);
  86. if (!arch_is_coherent())
  87. ___dma_page_cpu_to_dev(page, off, size, dir);
  88. }
  89. static inline void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  90. size_t size, enum dma_data_direction dir)
  91. {
  92. extern void ___dma_page_dev_to_cpu(struct page *, unsigned long,
  93. size_t, enum dma_data_direction);
  94. if (!arch_is_coherent())
  95. ___dma_page_dev_to_cpu(page, off, size, dir);
  96. }
  97. /*
  98. * Return whether the given device DMA address mask can be supported
  99. * properly. For example, if your device can only drive the low 24-bits
  100. * during bus mastering, then you would pass 0x00ffffff as the mask
  101. * to this function.
  102. *
  103. * FIXME: This should really be a platform specific issue - we should
  104. * return false if GFP_DMA allocations may not satisfy the supplied 'mask'.
  105. */
  106. static inline int dma_supported(struct device *dev, u64 mask)
  107. {
  108. if (mask < ISA_DMA_THRESHOLD)
  109. return 0;
  110. return 1;
  111. }
  112. static inline int dma_set_mask(struct device *dev, u64 dma_mask)
  113. {
  114. #ifdef CONFIG_DMABOUNCE
  115. if (dev->archdata.dmabounce) {
  116. if (dma_mask >= ISA_DMA_THRESHOLD)
  117. return 0;
  118. else
  119. return -EIO;
  120. }
  121. #endif
  122. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  123. return -EIO;
  124. *dev->dma_mask = dma_mask;
  125. return 0;
  126. }
  127. /*
  128. * DMA errors are defined by all-bits-set in the DMA address.
  129. */
  130. static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  131. {
  132. return dma_addr == ~0;
  133. }
  134. /*
  135. * Dummy noncoherent implementation. We don't provide a dma_cache_sync
  136. * function so drivers using this API are highlighted with build warnings.
  137. */
  138. static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
  139. dma_addr_t *handle, gfp_t gfp)
  140. {
  141. return NULL;
  142. }
  143. static inline void dma_free_noncoherent(struct device *dev, size_t size,
  144. void *cpu_addr, dma_addr_t handle)
  145. {
  146. }
  147. /**
  148. * dma_alloc_coherent - allocate consistent memory for DMA
  149. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  150. * @size: required memory size
  151. * @handle: bus-specific DMA address
  152. *
  153. * Allocate some uncached, unbuffered memory for a device for
  154. * performing DMA. This function allocates pages, and will
  155. * return the CPU-viewed address, and sets @handle to be the
  156. * device-viewed address.
  157. */
  158. extern void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, gfp_t);
  159. /**
  160. * dma_free_coherent - free memory allocated by dma_alloc_coherent
  161. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  162. * @size: size of memory originally requested in dma_alloc_coherent
  163. * @cpu_addr: CPU-view address returned from dma_alloc_coherent
  164. * @handle: device-view address returned from dma_alloc_coherent
  165. *
  166. * Free (and unmap) a DMA buffer previously allocated by
  167. * dma_alloc_coherent().
  168. *
  169. * References to memory and mappings associated with cpu_addr/handle
  170. * during and after this call executing are illegal.
  171. */
  172. extern void dma_free_coherent(struct device *, size_t, void *, dma_addr_t);
  173. /**
  174. * dma_mmap_coherent - map a coherent DMA allocation into user space
  175. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  176. * @vma: vm_area_struct describing requested user mapping
  177. * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
  178. * @handle: device-view address returned from dma_alloc_coherent
  179. * @size: size of memory originally requested in dma_alloc_coherent
  180. *
  181. * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
  182. * into user space. The coherent DMA buffer must not be freed by the
  183. * driver until the user space mapping has been released.
  184. */
  185. int dma_mmap_coherent(struct device *, struct vm_area_struct *,
  186. void *, dma_addr_t, size_t);
  187. /**
  188. * dma_alloc_writecombine - allocate writecombining memory for DMA
  189. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  190. * @size: required memory size
  191. * @handle: bus-specific DMA address
  192. *
  193. * Allocate some uncached, buffered memory for a device for
  194. * performing DMA. This function allocates pages, and will
  195. * return the CPU-viewed address, and sets @handle to be the
  196. * device-viewed address.
  197. */
  198. extern void *dma_alloc_writecombine(struct device *, size_t, dma_addr_t *,
  199. gfp_t);
  200. #define dma_free_writecombine(dev,size,cpu_addr,handle) \
  201. dma_free_coherent(dev,size,cpu_addr,handle)
  202. int dma_mmap_writecombine(struct device *, struct vm_area_struct *,
  203. void *, dma_addr_t, size_t);
  204. #ifdef CONFIG_DMABOUNCE
  205. /*
  206. * For SA-1111, IXP425, and ADI systems the dma-mapping functions are "magic"
  207. * and utilize bounce buffers as needed to work around limited DMA windows.
  208. *
  209. * On the SA-1111, a bug limits DMA to only certain regions of RAM.
  210. * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
  211. * On some ADI engineering systems, PCI inbound window is 32MB (12MB total RAM)
  212. *
  213. * The following are helper functions used by the dmabounce subystem
  214. *
  215. */
  216. /**
  217. * dmabounce_register_dev
  218. *
  219. * @dev: valid struct device pointer
  220. * @small_buf_size: size of buffers to use with small buffer pool
  221. * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
  222. *
  223. * This function should be called by low-level platform code to register
  224. * a device as requireing DMA buffer bouncing. The function will allocate
  225. * appropriate DMA pools for the device.
  226. *
  227. */
  228. extern int dmabounce_register_dev(struct device *, unsigned long,
  229. unsigned long);
  230. /**
  231. * dmabounce_unregister_dev
  232. *
  233. * @dev: valid struct device pointer
  234. *
  235. * This function should be called by low-level platform code when device
  236. * that was previously registered with dmabounce_register_dev is removed
  237. * from the system.
  238. *
  239. */
  240. extern void dmabounce_unregister_dev(struct device *);
  241. /**
  242. * dma_needs_bounce
  243. *
  244. * @dev: valid struct device pointer
  245. * @dma_handle: dma_handle of unbounced buffer
  246. * @size: size of region being mapped
  247. *
  248. * Platforms that utilize the dmabounce mechanism must implement
  249. * this function.
  250. *
  251. * The dmabounce routines call this function whenever a dma-mapping
  252. * is requested to determine whether a given buffer needs to be bounced
  253. * or not. The function must return 0 if the buffer is OK for
  254. * DMA access and 1 if the buffer needs to be bounced.
  255. *
  256. */
  257. extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
  258. /*
  259. * The DMA API, implemented by dmabounce.c. See below for descriptions.
  260. */
  261. extern dma_addr_t dma_map_single(struct device *, void *, size_t,
  262. enum dma_data_direction);
  263. extern void dma_unmap_single(struct device *, dma_addr_t, size_t,
  264. enum dma_data_direction);
  265. extern dma_addr_t dma_map_page(struct device *, struct page *,
  266. unsigned long, size_t, enum dma_data_direction);
  267. extern void dma_unmap_page(struct device *, dma_addr_t, size_t,
  268. enum dma_data_direction);
  269. /*
  270. * Private functions
  271. */
  272. int dmabounce_sync_for_cpu(struct device *, dma_addr_t, unsigned long,
  273. size_t, enum dma_data_direction);
  274. int dmabounce_sync_for_device(struct device *, dma_addr_t, unsigned long,
  275. size_t, enum dma_data_direction);
  276. #else
  277. static inline int dmabounce_sync_for_cpu(struct device *d, dma_addr_t addr,
  278. unsigned long offset, size_t size, enum dma_data_direction dir)
  279. {
  280. return 1;
  281. }
  282. static inline int dmabounce_sync_for_device(struct device *d, dma_addr_t addr,
  283. unsigned long offset, size_t size, enum dma_data_direction dir)
  284. {
  285. return 1;
  286. }
  287. /**
  288. * dma_map_single - map a single buffer for streaming DMA
  289. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  290. * @cpu_addr: CPU direct mapped address of buffer
  291. * @size: size of buffer to map
  292. * @dir: DMA transfer direction
  293. *
  294. * Ensure that any data held in the cache is appropriately discarded
  295. * or written back.
  296. *
  297. * The device owns this memory once this call has completed. The CPU
  298. * can regain ownership by calling dma_unmap_single() or
  299. * dma_sync_single_for_cpu().
  300. */
  301. static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr,
  302. size_t size, enum dma_data_direction dir)
  303. {
  304. BUG_ON(!valid_dma_direction(dir));
  305. __dma_single_cpu_to_dev(cpu_addr, size, dir);
  306. return virt_to_dma(dev, cpu_addr);
  307. }
  308. /**
  309. * dma_map_page - map a portion of a page for streaming DMA
  310. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  311. * @page: page that buffer resides in
  312. * @offset: offset into page for start of buffer
  313. * @size: size of buffer to map
  314. * @dir: DMA transfer direction
  315. *
  316. * Ensure that any data held in the cache is appropriately discarded
  317. * or written back.
  318. *
  319. * The device owns this memory once this call has completed. The CPU
  320. * can regain ownership by calling dma_unmap_page().
  321. */
  322. static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
  323. unsigned long offset, size_t size, enum dma_data_direction dir)
  324. {
  325. BUG_ON(!valid_dma_direction(dir));
  326. __dma_page_cpu_to_dev(page, offset, size, dir);
  327. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  328. }
  329. /**
  330. * dma_unmap_single - unmap a single buffer previously mapped
  331. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  332. * @handle: DMA address of buffer
  333. * @size: size of buffer (same as passed to dma_map_single)
  334. * @dir: DMA transfer direction (same as passed to dma_map_single)
  335. *
  336. * Unmap a single streaming mode DMA translation. The handle and size
  337. * must match what was provided in the previous dma_map_single() call.
  338. * All other usages are undefined.
  339. *
  340. * After this call, reads by the CPU to the buffer are guaranteed to see
  341. * whatever the device wrote there.
  342. */
  343. static inline void dma_unmap_single(struct device *dev, dma_addr_t handle,
  344. size_t size, enum dma_data_direction dir)
  345. {
  346. __dma_single_dev_to_cpu(dma_to_virt(dev, handle), size, dir);
  347. }
  348. /**
  349. * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  350. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  351. * @handle: DMA address of buffer
  352. * @size: size of buffer (same as passed to dma_map_page)
  353. * @dir: DMA transfer direction (same as passed to dma_map_page)
  354. *
  355. * Unmap a page streaming mode DMA translation. The handle and size
  356. * must match what was provided in the previous dma_map_page() call.
  357. * All other usages are undefined.
  358. *
  359. * After this call, reads by the CPU to the buffer are guaranteed to see
  360. * whatever the device wrote there.
  361. */
  362. static inline void dma_unmap_page(struct device *dev, dma_addr_t handle,
  363. size_t size, enum dma_data_direction dir)
  364. {
  365. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  366. handle & ~PAGE_MASK, size, dir);
  367. }
  368. #endif /* CONFIG_DMABOUNCE */
  369. /**
  370. * dma_sync_single_range_for_cpu
  371. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  372. * @handle: DMA address of buffer
  373. * @offset: offset of region to start sync
  374. * @size: size of region to sync
  375. * @dir: DMA transfer direction (same as passed to dma_map_single)
  376. *
  377. * Make physical memory consistent for a single streaming mode DMA
  378. * translation after a transfer.
  379. *
  380. * If you perform a dma_map_single() but wish to interrogate the
  381. * buffer using the cpu, yet do not wish to teardown the PCI dma
  382. * mapping, you must call this function before doing so. At the
  383. * next point you give the PCI dma address back to the card, you
  384. * must first the perform a dma_sync_for_device, and then the
  385. * device again owns the buffer.
  386. */
  387. static inline void dma_sync_single_range_for_cpu(struct device *dev,
  388. dma_addr_t handle, unsigned long offset, size_t size,
  389. enum dma_data_direction dir)
  390. {
  391. BUG_ON(!valid_dma_direction(dir));
  392. if (!dmabounce_sync_for_cpu(dev, handle, offset, size, dir))
  393. return;
  394. __dma_single_dev_to_cpu(dma_to_virt(dev, handle) + offset, size, dir);
  395. }
  396. static inline void dma_sync_single_range_for_device(struct device *dev,
  397. dma_addr_t handle, unsigned long offset, size_t size,
  398. enum dma_data_direction dir)
  399. {
  400. BUG_ON(!valid_dma_direction(dir));
  401. if (!dmabounce_sync_for_device(dev, handle, offset, size, dir))
  402. return;
  403. __dma_single_cpu_to_dev(dma_to_virt(dev, handle) + offset, size, dir);
  404. }
  405. static inline void dma_sync_single_for_cpu(struct device *dev,
  406. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  407. {
  408. dma_sync_single_range_for_cpu(dev, handle, 0, size, dir);
  409. }
  410. static inline void dma_sync_single_for_device(struct device *dev,
  411. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  412. {
  413. dma_sync_single_range_for_device(dev, handle, 0, size, dir);
  414. }
  415. /*
  416. * The scatter list versions of the above methods.
  417. */
  418. extern int dma_map_sg(struct device *, struct scatterlist *, int,
  419. enum dma_data_direction);
  420. extern void dma_unmap_sg(struct device *, struct scatterlist *, int,
  421. enum dma_data_direction);
  422. extern void dma_sync_sg_for_cpu(struct device *, struct scatterlist *, int,
  423. enum dma_data_direction);
  424. extern void dma_sync_sg_for_device(struct device *, struct scatterlist *, int,
  425. enum dma_data_direction);
  426. #endif /* __KERNEL__ */
  427. #endif