mmu.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/setup.h>
  20. #include <asm/sizes.h>
  21. #include <asm/tlb.h>
  22. #include <asm/mach/arch.h>
  23. #include <asm/mach/map.h>
  24. #include "mm.h"
  25. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  26. /*
  27. * empty_zero_page is a special page that is used for
  28. * zero-initialized data and COW.
  29. */
  30. struct page *empty_zero_page;
  31. EXPORT_SYMBOL(empty_zero_page);
  32. /*
  33. * The pmd table for the upper-most set of pages.
  34. */
  35. pmd_t *top_pmd;
  36. #define CPOLICY_UNCACHED 0
  37. #define CPOLICY_BUFFERED 1
  38. #define CPOLICY_WRITETHROUGH 2
  39. #define CPOLICY_WRITEBACK 3
  40. #define CPOLICY_WRITEALLOC 4
  41. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  42. static unsigned int ecc_mask __initdata = 0;
  43. pgprot_t pgprot_user;
  44. pgprot_t pgprot_kernel;
  45. EXPORT_SYMBOL(pgprot_user);
  46. EXPORT_SYMBOL(pgprot_kernel);
  47. struct cachepolicy {
  48. const char policy[16];
  49. unsigned int cr_mask;
  50. unsigned int pmd;
  51. unsigned int pte;
  52. };
  53. static struct cachepolicy cache_policies[] __initdata = {
  54. {
  55. .policy = "uncached",
  56. .cr_mask = CR_W|CR_C,
  57. .pmd = PMD_SECT_UNCACHED,
  58. .pte = L_PTE_MT_UNCACHED,
  59. }, {
  60. .policy = "buffered",
  61. .cr_mask = CR_C,
  62. .pmd = PMD_SECT_BUFFERED,
  63. .pte = L_PTE_MT_BUFFERABLE,
  64. }, {
  65. .policy = "writethrough",
  66. .cr_mask = 0,
  67. .pmd = PMD_SECT_WT,
  68. .pte = L_PTE_MT_WRITETHROUGH,
  69. }, {
  70. .policy = "writeback",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WB,
  73. .pte = L_PTE_MT_WRITEBACK,
  74. }, {
  75. .policy = "writealloc",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WBWA,
  78. .pte = L_PTE_MT_WRITEALLOC,
  79. }
  80. };
  81. /*
  82. * These are useful for identifying cache coherency
  83. * problems by allowing the cache or the cache and
  84. * writebuffer to be turned off. (Note: the write
  85. * buffer should not be on and the cache off).
  86. */
  87. static void __init early_cachepolicy(char **p)
  88. {
  89. int i;
  90. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  91. int len = strlen(cache_policies[i].policy);
  92. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  93. cachepolicy = i;
  94. cr_alignment &= ~cache_policies[i].cr_mask;
  95. cr_no_alignment &= ~cache_policies[i].cr_mask;
  96. *p += len;
  97. break;
  98. }
  99. }
  100. if (i == ARRAY_SIZE(cache_policies))
  101. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  102. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  103. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  104. cachepolicy = CPOLICY_WRITEBACK;
  105. }
  106. flush_cache_all();
  107. set_cr(cr_alignment);
  108. }
  109. __early_param("cachepolicy=", early_cachepolicy);
  110. static void __init early_nocache(char **__unused)
  111. {
  112. char *p = "buffered";
  113. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  114. early_cachepolicy(&p);
  115. }
  116. __early_param("nocache", early_nocache);
  117. static void __init early_nowrite(char **__unused)
  118. {
  119. char *p = "uncached";
  120. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  121. early_cachepolicy(&p);
  122. }
  123. __early_param("nowb", early_nowrite);
  124. static void __init early_ecc(char **p)
  125. {
  126. if (memcmp(*p, "on", 2) == 0) {
  127. ecc_mask = PMD_PROTECTION;
  128. *p += 2;
  129. } else if (memcmp(*p, "off", 3) == 0) {
  130. ecc_mask = 0;
  131. *p += 3;
  132. }
  133. }
  134. __early_param("ecc=", early_ecc);
  135. static int __init noalign_setup(char *__unused)
  136. {
  137. cr_alignment &= ~CR_A;
  138. cr_no_alignment &= ~CR_A;
  139. set_cr(cr_alignment);
  140. return 1;
  141. }
  142. __setup("noalign", noalign_setup);
  143. #ifndef CONFIG_SMP
  144. void adjust_cr(unsigned long mask, unsigned long set)
  145. {
  146. unsigned long flags;
  147. mask &= ~CR_A;
  148. set &= mask;
  149. local_irq_save(flags);
  150. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  151. cr_alignment = (cr_alignment & ~mask) | set;
  152. set_cr((get_cr() & ~mask) | set);
  153. local_irq_restore(flags);
  154. }
  155. #endif
  156. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  157. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  158. static struct mem_type mem_types[] = {
  159. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  160. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  161. L_PTE_SHARED,
  162. .prot_l1 = PMD_TYPE_TABLE,
  163. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  164. .domain = DOMAIN_IO,
  165. },
  166. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  167. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  168. .prot_l1 = PMD_TYPE_TABLE,
  169. .prot_sect = PROT_SECT_DEVICE,
  170. .domain = DOMAIN_IO,
  171. },
  172. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  173. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_WC] = { /* ioremap_wc */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_CACHECLEAN] = {
  185. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  186. .domain = DOMAIN_KERNEL,
  187. },
  188. [MT_MINICLEAN] = {
  189. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  190. .domain = DOMAIN_KERNEL,
  191. },
  192. [MT_LOW_VECTORS] = {
  193. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  194. L_PTE_EXEC,
  195. .prot_l1 = PMD_TYPE_TABLE,
  196. .domain = DOMAIN_USER,
  197. },
  198. [MT_HIGH_VECTORS] = {
  199. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  200. L_PTE_USER | L_PTE_EXEC,
  201. .prot_l1 = PMD_TYPE_TABLE,
  202. .domain = DOMAIN_USER,
  203. },
  204. [MT_MEMORY] = {
  205. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  206. .domain = DOMAIN_KERNEL,
  207. },
  208. [MT_ROM] = {
  209. .prot_sect = PMD_TYPE_SECT,
  210. .domain = DOMAIN_KERNEL,
  211. },
  212. };
  213. const struct mem_type *get_mem_type(unsigned int type)
  214. {
  215. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  216. }
  217. /*
  218. * Adjust the PMD section entries according to the CPU in use.
  219. */
  220. static void __init build_mem_type_table(void)
  221. {
  222. struct cachepolicy *cp;
  223. unsigned int cr = get_cr();
  224. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  225. int cpu_arch = cpu_architecture();
  226. int i;
  227. if (cpu_arch < CPU_ARCH_ARMv6) {
  228. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  229. if (cachepolicy > CPOLICY_BUFFERED)
  230. cachepolicy = CPOLICY_BUFFERED;
  231. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  232. if (cachepolicy > CPOLICY_WRITETHROUGH)
  233. cachepolicy = CPOLICY_WRITETHROUGH;
  234. #endif
  235. }
  236. if (cpu_arch < CPU_ARCH_ARMv5) {
  237. if (cachepolicy >= CPOLICY_WRITEALLOC)
  238. cachepolicy = CPOLICY_WRITEBACK;
  239. ecc_mask = 0;
  240. }
  241. #ifdef CONFIG_SMP
  242. cachepolicy = CPOLICY_WRITEALLOC;
  243. #endif
  244. /*
  245. * Strip out features not present on earlier architectures.
  246. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  247. * without extended page tables don't have the 'Shared' bit.
  248. */
  249. if (cpu_arch < CPU_ARCH_ARMv5)
  250. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  251. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  252. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  253. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  254. mem_types[i].prot_sect &= ~PMD_SECT_S;
  255. /*
  256. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  257. * "update-able on write" bit on ARM610). However, Xscale and
  258. * Xscale3 require this bit to be cleared.
  259. */
  260. if (cpu_is_xscale() || cpu_is_xsc3()) {
  261. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  262. mem_types[i].prot_sect &= ~PMD_BIT4;
  263. mem_types[i].prot_l1 &= ~PMD_BIT4;
  264. }
  265. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  266. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  267. if (mem_types[i].prot_l1)
  268. mem_types[i].prot_l1 |= PMD_BIT4;
  269. if (mem_types[i].prot_sect)
  270. mem_types[i].prot_sect |= PMD_BIT4;
  271. }
  272. }
  273. /*
  274. * Mark the device areas according to the CPU/architecture.
  275. */
  276. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  277. if (!cpu_is_xsc3()) {
  278. /*
  279. * Mark device regions on ARMv6+ as execute-never
  280. * to prevent speculative instruction fetches.
  281. */
  282. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  283. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  284. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  285. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  286. }
  287. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  288. /*
  289. * For ARMv7 with TEX remapping,
  290. * - shared device is SXCB=1100
  291. * - nonshared device is SXCB=0100
  292. * - write combine device mem is SXCB=0001
  293. * (Uncached Normal memory)
  294. */
  295. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  296. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  297. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  298. } else if (cpu_is_xsc3()) {
  299. /*
  300. * For Xscale3,
  301. * - shared device is TEXCB=00101
  302. * - nonshared device is TEXCB=01000
  303. * - write combine device mem is TEXCB=00100
  304. * (Inner/Outer Uncacheable in xsc3 parlance)
  305. */
  306. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  307. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  308. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  309. } else {
  310. /*
  311. * For ARMv6 and ARMv7 without TEX remapping,
  312. * - shared device is TEXCB=00001
  313. * - nonshared device is TEXCB=01000
  314. * - write combine device mem is TEXCB=00100
  315. * (Uncached Normal in ARMv6 parlance).
  316. */
  317. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  318. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  319. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  320. }
  321. } else {
  322. /*
  323. * On others, write combining is "Uncached/Buffered"
  324. */
  325. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  326. }
  327. /*
  328. * Now deal with the memory-type mappings
  329. */
  330. cp = &cache_policies[cachepolicy];
  331. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  332. #ifndef CONFIG_SMP
  333. /*
  334. * Only use write-through for non-SMP systems
  335. */
  336. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  337. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  338. #endif
  339. /*
  340. * Enable CPU-specific coherency if supported.
  341. * (Only available on XSC3 at the moment.)
  342. */
  343. if (arch_is_coherent() && cpu_is_xsc3())
  344. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  345. /*
  346. * ARMv6 and above have extended page tables.
  347. */
  348. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  349. /*
  350. * Mark cache clean areas and XIP ROM read only
  351. * from SVC mode and no access from userspace.
  352. */
  353. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  354. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  355. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  356. #ifdef CONFIG_SMP
  357. /*
  358. * Mark memory with the "shared" attribute for SMP systems
  359. */
  360. user_pgprot |= L_PTE_SHARED;
  361. kern_pgprot |= L_PTE_SHARED;
  362. vecs_pgprot |= L_PTE_SHARED;
  363. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  364. #endif
  365. }
  366. for (i = 0; i < 16; i++) {
  367. unsigned long v = pgprot_val(protection_map[i]);
  368. protection_map[i] = __pgprot(v | user_pgprot);
  369. }
  370. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  371. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  372. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  373. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  374. L_PTE_DIRTY | L_PTE_WRITE |
  375. L_PTE_EXEC | kern_pgprot);
  376. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  377. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  378. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  379. mem_types[MT_ROM].prot_sect |= cp->pmd;
  380. switch (cp->pmd) {
  381. case PMD_SECT_WT:
  382. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  383. break;
  384. case PMD_SECT_WB:
  385. case PMD_SECT_WBWA:
  386. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  387. break;
  388. }
  389. printk("Memory policy: ECC %sabled, Data cache %s\n",
  390. ecc_mask ? "en" : "dis", cp->policy);
  391. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  392. struct mem_type *t = &mem_types[i];
  393. if (t->prot_l1)
  394. t->prot_l1 |= PMD_DOMAIN(t->domain);
  395. if (t->prot_sect)
  396. t->prot_sect |= PMD_DOMAIN(t->domain);
  397. }
  398. }
  399. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  400. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  401. unsigned long end, unsigned long pfn,
  402. const struct mem_type *type)
  403. {
  404. pte_t *pte;
  405. if (pmd_none(*pmd)) {
  406. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  407. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  408. }
  409. pte = pte_offset_kernel(pmd, addr);
  410. do {
  411. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  412. pfn++;
  413. } while (pte++, addr += PAGE_SIZE, addr != end);
  414. }
  415. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  416. unsigned long end, unsigned long phys,
  417. const struct mem_type *type)
  418. {
  419. pmd_t *pmd = pmd_offset(pgd, addr);
  420. /*
  421. * Try a section mapping - end, addr and phys must all be aligned
  422. * to a section boundary. Note that PMDs refer to the individual
  423. * L1 entries, whereas PGDs refer to a group of L1 entries making
  424. * up one logical pointer to an L2 table.
  425. */
  426. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  427. pmd_t *p = pmd;
  428. if (addr & SECTION_SIZE)
  429. pmd++;
  430. do {
  431. *pmd = __pmd(phys | type->prot_sect);
  432. phys += SECTION_SIZE;
  433. } while (pmd++, addr += SECTION_SIZE, addr != end);
  434. flush_pmd_entry(p);
  435. } else {
  436. /*
  437. * No need to loop; pte's aren't interested in the
  438. * individual L1 entries.
  439. */
  440. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  441. }
  442. }
  443. static void __init create_36bit_mapping(struct map_desc *md,
  444. const struct mem_type *type)
  445. {
  446. unsigned long phys, addr, length, end;
  447. pgd_t *pgd;
  448. addr = md->virtual;
  449. phys = (unsigned long)__pfn_to_phys(md->pfn);
  450. length = PAGE_ALIGN(md->length);
  451. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  452. printk(KERN_ERR "MM: CPU does not support supersection "
  453. "mapping for 0x%08llx at 0x%08lx\n",
  454. __pfn_to_phys((u64)md->pfn), addr);
  455. return;
  456. }
  457. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  458. * Since domain assignments can in fact be arbitrary, the
  459. * 'domain == 0' check below is required to insure that ARMv6
  460. * supersections are only allocated for domain 0 regardless
  461. * of the actual domain assignments in use.
  462. */
  463. if (type->domain) {
  464. printk(KERN_ERR "MM: invalid domain in supersection "
  465. "mapping for 0x%08llx at 0x%08lx\n",
  466. __pfn_to_phys((u64)md->pfn), addr);
  467. return;
  468. }
  469. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  470. printk(KERN_ERR "MM: cannot create mapping for "
  471. "0x%08llx at 0x%08lx invalid alignment\n",
  472. __pfn_to_phys((u64)md->pfn), addr);
  473. return;
  474. }
  475. /*
  476. * Shift bits [35:32] of address into bits [23:20] of PMD
  477. * (See ARMv6 spec).
  478. */
  479. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  480. pgd = pgd_offset_k(addr);
  481. end = addr + length;
  482. do {
  483. pmd_t *pmd = pmd_offset(pgd, addr);
  484. int i;
  485. for (i = 0; i < 16; i++)
  486. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  487. addr += SUPERSECTION_SIZE;
  488. phys += SUPERSECTION_SIZE;
  489. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  490. } while (addr != end);
  491. }
  492. /*
  493. * Create the page directory entries and any necessary
  494. * page tables for the mapping specified by `md'. We
  495. * are able to cope here with varying sizes and address
  496. * offsets, and we take full advantage of sections and
  497. * supersections.
  498. */
  499. void __init create_mapping(struct map_desc *md)
  500. {
  501. unsigned long phys, addr, length, end;
  502. const struct mem_type *type;
  503. pgd_t *pgd;
  504. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  505. printk(KERN_WARNING "BUG: not creating mapping for "
  506. "0x%08llx at 0x%08lx in user region\n",
  507. __pfn_to_phys((u64)md->pfn), md->virtual);
  508. return;
  509. }
  510. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  511. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  512. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  513. "overlaps vmalloc space\n",
  514. __pfn_to_phys((u64)md->pfn), md->virtual);
  515. }
  516. type = &mem_types[md->type];
  517. /*
  518. * Catch 36-bit addresses
  519. */
  520. if (md->pfn >= 0x100000) {
  521. create_36bit_mapping(md, type);
  522. return;
  523. }
  524. addr = md->virtual & PAGE_MASK;
  525. phys = (unsigned long)__pfn_to_phys(md->pfn);
  526. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  527. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  528. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  529. "be mapped using pages, ignoring.\n",
  530. __pfn_to_phys(md->pfn), addr);
  531. return;
  532. }
  533. pgd = pgd_offset_k(addr);
  534. end = addr + length;
  535. do {
  536. unsigned long next = pgd_addr_end(addr, end);
  537. alloc_init_section(pgd, addr, next, phys, type);
  538. phys += next - addr;
  539. addr = next;
  540. } while (pgd++, addr != end);
  541. }
  542. /*
  543. * Create the architecture specific mappings
  544. */
  545. void __init iotable_init(struct map_desc *io_desc, int nr)
  546. {
  547. int i;
  548. for (i = 0; i < nr; i++)
  549. create_mapping(io_desc + i);
  550. }
  551. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  552. /*
  553. * vmalloc=size forces the vmalloc area to be exactly 'size'
  554. * bytes. This can be used to increase (or decrease) the vmalloc
  555. * area - the default is 128m.
  556. */
  557. static void __init early_vmalloc(char **arg)
  558. {
  559. vmalloc_reserve = memparse(*arg, arg);
  560. if (vmalloc_reserve < SZ_16M) {
  561. vmalloc_reserve = SZ_16M;
  562. printk(KERN_WARNING
  563. "vmalloc area too small, limiting to %luMB\n",
  564. vmalloc_reserve >> 20);
  565. }
  566. }
  567. __early_param("vmalloc=", early_vmalloc);
  568. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  569. static int __init check_membank_valid(struct membank *mb)
  570. {
  571. /*
  572. * Check whether this memory region has non-zero size or
  573. * invalid node number.
  574. */
  575. if (mb->size == 0 || mb->node >= MAX_NUMNODES)
  576. return 0;
  577. /*
  578. * Check whether this memory region would entirely overlap
  579. * the vmalloc area.
  580. */
  581. if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
  582. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  583. "(vmalloc region overlap).\n",
  584. mb->start, mb->start + mb->size - 1);
  585. return 0;
  586. }
  587. /*
  588. * Check whether this memory region would partially overlap
  589. * the vmalloc area.
  590. */
  591. if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
  592. phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
  593. unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
  594. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  595. "to -%.8lx (vmalloc region overlap).\n",
  596. mb->start, mb->start + mb->size - 1,
  597. mb->start + newsize - 1);
  598. mb->size = newsize;
  599. }
  600. return 1;
  601. }
  602. static void __init sanity_check_meminfo(struct meminfo *mi)
  603. {
  604. int i, j;
  605. for (i = 0, j = 0; i < mi->nr_banks; i++) {
  606. if (check_membank_valid(&mi->bank[i]))
  607. mi->bank[j++] = mi->bank[i];
  608. }
  609. mi->nr_banks = j;
  610. }
  611. static inline void prepare_page_table(struct meminfo *mi)
  612. {
  613. unsigned long addr;
  614. /*
  615. * Clear out all the mappings below the kernel image.
  616. */
  617. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  618. pmd_clear(pmd_off_k(addr));
  619. #ifdef CONFIG_XIP_KERNEL
  620. /* The XIP kernel is mapped in the module area -- skip over it */
  621. addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  622. #endif
  623. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  624. pmd_clear(pmd_off_k(addr));
  625. /*
  626. * Clear out all the kernel space mappings, except for the first
  627. * memory bank, up to the end of the vmalloc region.
  628. */
  629. for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
  630. addr < VMALLOC_END; addr += PGDIR_SIZE)
  631. pmd_clear(pmd_off_k(addr));
  632. }
  633. /*
  634. * Reserve the various regions of node 0
  635. */
  636. void __init reserve_node_zero(pg_data_t *pgdat)
  637. {
  638. unsigned long res_size = 0;
  639. /*
  640. * Register the kernel text and data with bootmem.
  641. * Note that this can only be in node 0.
  642. */
  643. #ifdef CONFIG_XIP_KERNEL
  644. reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
  645. BOOTMEM_DEFAULT);
  646. #else
  647. reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
  648. BOOTMEM_DEFAULT);
  649. #endif
  650. /*
  651. * Reserve the page tables. These are already in use,
  652. * and can only be in node 0.
  653. */
  654. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  655. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  656. /*
  657. * Hmm... This should go elsewhere, but we really really need to
  658. * stop things allocating the low memory; ideally we need a better
  659. * implementation of GFP_DMA which does not assume that DMA-able
  660. * memory starts at zero.
  661. */
  662. if (machine_is_integrator() || machine_is_cintegrator())
  663. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  664. /*
  665. * These should likewise go elsewhere. They pre-reserve the
  666. * screen memory region at the start of main system memory.
  667. */
  668. if (machine_is_edb7211())
  669. res_size = 0x00020000;
  670. if (machine_is_p720t())
  671. res_size = 0x00014000;
  672. /* H1940 and RX3715 need to reserve this for suspend */
  673. if (machine_is_h1940() || machine_is_rx3715()) {
  674. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  675. BOOTMEM_DEFAULT);
  676. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  677. BOOTMEM_DEFAULT);
  678. }
  679. #ifdef CONFIG_SA1111
  680. /*
  681. * Because of the SA1111 DMA bug, we want to preserve our
  682. * precious DMA-able memory...
  683. */
  684. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  685. #endif
  686. if (res_size)
  687. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  688. BOOTMEM_DEFAULT);
  689. }
  690. /*
  691. * Set up device the mappings. Since we clear out the page tables for all
  692. * mappings above VMALLOC_END, we will remove any debug device mappings.
  693. * This means you have to be careful how you debug this function, or any
  694. * called function. This means you can't use any function or debugging
  695. * method which may touch any device, otherwise the kernel _will_ crash.
  696. */
  697. static void __init devicemaps_init(struct machine_desc *mdesc)
  698. {
  699. struct map_desc map;
  700. unsigned long addr;
  701. void *vectors;
  702. /*
  703. * Allocate the vector page early.
  704. */
  705. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  706. BUG_ON(!vectors);
  707. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  708. pmd_clear(pmd_off_k(addr));
  709. /*
  710. * Map the kernel if it is XIP.
  711. * It is always first in the modulearea.
  712. */
  713. #ifdef CONFIG_XIP_KERNEL
  714. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  715. map.virtual = MODULES_VADDR;
  716. map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  717. map.type = MT_ROM;
  718. create_mapping(&map);
  719. #endif
  720. /*
  721. * Map the cache flushing regions.
  722. */
  723. #ifdef FLUSH_BASE
  724. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  725. map.virtual = FLUSH_BASE;
  726. map.length = SZ_1M;
  727. map.type = MT_CACHECLEAN;
  728. create_mapping(&map);
  729. #endif
  730. #ifdef FLUSH_BASE_MINICACHE
  731. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  732. map.virtual = FLUSH_BASE_MINICACHE;
  733. map.length = SZ_1M;
  734. map.type = MT_MINICLEAN;
  735. create_mapping(&map);
  736. #endif
  737. /*
  738. * Create a mapping for the machine vectors at the high-vectors
  739. * location (0xffff0000). If we aren't using high-vectors, also
  740. * create a mapping at the low-vectors virtual address.
  741. */
  742. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  743. map.virtual = 0xffff0000;
  744. map.length = PAGE_SIZE;
  745. map.type = MT_HIGH_VECTORS;
  746. create_mapping(&map);
  747. if (!vectors_high()) {
  748. map.virtual = 0;
  749. map.type = MT_LOW_VECTORS;
  750. create_mapping(&map);
  751. }
  752. /*
  753. * Ask the machine support to map in the statically mapped devices.
  754. */
  755. if (mdesc->map_io)
  756. mdesc->map_io();
  757. /*
  758. * Finally flush the caches and tlb to ensure that we're in a
  759. * consistent state wrt the writebuffer. This also ensures that
  760. * any write-allocated cache lines in the vector page are written
  761. * back. After this point, we can start to touch devices again.
  762. */
  763. local_flush_tlb_all();
  764. flush_cache_all();
  765. }
  766. /*
  767. * paging_init() sets up the page tables, initialises the zone memory
  768. * maps, and sets up the zero page, bad page and bad page tables.
  769. */
  770. void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
  771. {
  772. void *zero_page;
  773. build_mem_type_table();
  774. sanity_check_meminfo(mi);
  775. prepare_page_table(mi);
  776. bootmem_init(mi);
  777. devicemaps_init(mdesc);
  778. top_pmd = pmd_off_k(0xffff0000);
  779. /*
  780. * allocate the zero page. Note that we count on this going ok.
  781. */
  782. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  783. memzero(zero_page, PAGE_SIZE);
  784. empty_zero_page = virt_to_page(zero_page);
  785. flush_dcache_page(empty_zero_page);
  786. }
  787. /*
  788. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  789. * the user-mode pages. This will then ensure that we have predictable
  790. * results when turning the mmu off
  791. */
  792. void setup_mm_for_reboot(char mode)
  793. {
  794. unsigned long base_pmdval;
  795. pgd_t *pgd;
  796. int i;
  797. if (current->mm && current->mm->pgd)
  798. pgd = current->mm->pgd;
  799. else
  800. pgd = init_mm.pgd;
  801. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  802. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  803. base_pmdval |= PMD_BIT4;
  804. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  805. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  806. pmd_t *pmd;
  807. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  808. pmd[0] = __pmd(pmdval);
  809. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  810. flush_pmd_entry(pmd);
  811. }
  812. }