intel_display.c 252 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 8, .max = 18 },
  141. .m2 = { .min = 3, .max = 7 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 8, .max = 18 },
  154. .m2 = { .min = 3, .max = 7 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  384. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  385. DRM_ERROR("DPIO idle wait timed out\n");
  386. return 0;
  387. }
  388. I915_WRITE(DPIO_REG, reg);
  389. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  390. DPIO_BYTE);
  391. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  392. DRM_ERROR("DPIO read wait timed out\n");
  393. return 0;
  394. }
  395. return I915_READ(DPIO_DATA);
  396. }
  397. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  398. u32 val)
  399. {
  400. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  401. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  402. DRM_ERROR("DPIO idle wait timed out\n");
  403. return;
  404. }
  405. I915_WRITE(DPIO_DATA, val);
  406. I915_WRITE(DPIO_REG, reg);
  407. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  408. DPIO_BYTE);
  409. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  410. DRM_ERROR("DPIO write wait timed out\n");
  411. }
  412. static void vlv_init_dpio(struct drm_device *dev)
  413. {
  414. struct drm_i915_private *dev_priv = dev->dev_private;
  415. /* Reset the DPIO config */
  416. I915_WRITE(DPIO_CTL, 0);
  417. POSTING_READ(DPIO_CTL);
  418. I915_WRITE(DPIO_CTL, 1);
  419. POSTING_READ(DPIO_CTL);
  420. }
  421. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  422. int refclk)
  423. {
  424. struct drm_device *dev = crtc->dev;
  425. const intel_limit_t *limit;
  426. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  427. if (intel_is_dual_link_lvds(dev)) {
  428. /* LVDS dual channel */
  429. if (refclk == 100000)
  430. limit = &intel_limits_ironlake_dual_lvds_100m;
  431. else
  432. limit = &intel_limits_ironlake_dual_lvds;
  433. } else {
  434. if (refclk == 100000)
  435. limit = &intel_limits_ironlake_single_lvds_100m;
  436. else
  437. limit = &intel_limits_ironlake_single_lvds;
  438. }
  439. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  440. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  441. limit = &intel_limits_ironlake_display_port;
  442. else
  443. limit = &intel_limits_ironlake_dac;
  444. return limit;
  445. }
  446. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  447. {
  448. struct drm_device *dev = crtc->dev;
  449. const intel_limit_t *limit;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. if (intel_is_dual_link_lvds(dev))
  452. /* LVDS with dual channel */
  453. limit = &intel_limits_g4x_dual_channel_lvds;
  454. else
  455. /* LVDS with dual channel */
  456. limit = &intel_limits_g4x_single_channel_lvds;
  457. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  458. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  459. limit = &intel_limits_g4x_hdmi;
  460. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  461. limit = &intel_limits_g4x_sdvo;
  462. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  463. limit = &intel_limits_g4x_display_port;
  464. } else /* The option is for other outputs */
  465. limit = &intel_limits_i9xx_sdvo;
  466. return limit;
  467. }
  468. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  469. {
  470. struct drm_device *dev = crtc->dev;
  471. const intel_limit_t *limit;
  472. if (HAS_PCH_SPLIT(dev))
  473. limit = intel_ironlake_limit(crtc, refclk);
  474. else if (IS_G4X(dev)) {
  475. limit = intel_g4x_limit(crtc);
  476. } else if (IS_PINEVIEW(dev)) {
  477. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  478. limit = &intel_limits_pineview_lvds;
  479. else
  480. limit = &intel_limits_pineview_sdvo;
  481. } else if (IS_VALLEYVIEW(dev)) {
  482. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  483. limit = &intel_limits_vlv_dac;
  484. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  485. limit = &intel_limits_vlv_hdmi;
  486. else
  487. limit = &intel_limits_vlv_dp;
  488. } else if (!IS_GEN2(dev)) {
  489. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  490. limit = &intel_limits_i9xx_lvds;
  491. else
  492. limit = &intel_limits_i9xx_sdvo;
  493. } else {
  494. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  495. limit = &intel_limits_i8xx_lvds;
  496. else
  497. limit = &intel_limits_i8xx_dvo;
  498. }
  499. return limit;
  500. }
  501. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  502. static void pineview_clock(int refclk, intel_clock_t *clock)
  503. {
  504. clock->m = clock->m2 + 2;
  505. clock->p = clock->p1 * clock->p2;
  506. clock->vco = refclk * clock->m / clock->n;
  507. clock->dot = clock->vco / clock->p;
  508. }
  509. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  510. {
  511. if (IS_PINEVIEW(dev)) {
  512. pineview_clock(refclk, clock);
  513. return;
  514. }
  515. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  516. clock->p = clock->p1 * clock->p2;
  517. clock->vco = refclk * clock->m / (clock->n + 2);
  518. clock->dot = clock->vco / clock->p;
  519. }
  520. /**
  521. * Returns whether any output on the specified pipe is of the specified type
  522. */
  523. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  524. {
  525. struct drm_device *dev = crtc->dev;
  526. struct intel_encoder *encoder;
  527. for_each_encoder_on_crtc(dev, crtc, encoder)
  528. if (encoder->type == type)
  529. return true;
  530. return false;
  531. }
  532. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  533. /**
  534. * Returns whether the given set of divisors are valid for a given refclk with
  535. * the given connectors.
  536. */
  537. static bool intel_PLL_is_valid(struct drm_device *dev,
  538. const intel_limit_t *limit,
  539. const intel_clock_t *clock)
  540. {
  541. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  542. INTELPllInvalid("p1 out of range\n");
  543. if (clock->p < limit->p.min || limit->p.max < clock->p)
  544. INTELPllInvalid("p out of range\n");
  545. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  546. INTELPllInvalid("m2 out of range\n");
  547. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  548. INTELPllInvalid("m1 out of range\n");
  549. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  550. INTELPllInvalid("m1 <= m2\n");
  551. if (clock->m < limit->m.min || limit->m.max < clock->m)
  552. INTELPllInvalid("m out of range\n");
  553. if (clock->n < limit->n.min || limit->n.max < clock->n)
  554. INTELPllInvalid("n out of range\n");
  555. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  556. INTELPllInvalid("vco out of range\n");
  557. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  558. * connector, etc., rather than just a single range.
  559. */
  560. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  561. INTELPllInvalid("dot out of range\n");
  562. return true;
  563. }
  564. static bool
  565. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  566. int target, int refclk, intel_clock_t *match_clock,
  567. intel_clock_t *best_clock)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. intel_clock_t clock;
  571. int err = target;
  572. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  573. /*
  574. * For LVDS just rely on its current settings for dual-channel.
  575. * We haven't figured out how to reliably set up different
  576. * single/dual channel state, if we even can.
  577. */
  578. if (intel_is_dual_link_lvds(dev))
  579. clock.p2 = limit->p2.p2_fast;
  580. else
  581. clock.p2 = limit->p2.p2_slow;
  582. } else {
  583. if (target < limit->p2.dot_limit)
  584. clock.p2 = limit->p2.p2_slow;
  585. else
  586. clock.p2 = limit->p2.p2_fast;
  587. }
  588. memset(best_clock, 0, sizeof(*best_clock));
  589. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  590. clock.m1++) {
  591. for (clock.m2 = limit->m2.min;
  592. clock.m2 <= limit->m2.max; clock.m2++) {
  593. /* m1 is always 0 in Pineview */
  594. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  595. break;
  596. for (clock.n = limit->n.min;
  597. clock.n <= limit->n.max; clock.n++) {
  598. for (clock.p1 = limit->p1.min;
  599. clock.p1 <= limit->p1.max; clock.p1++) {
  600. int this_err;
  601. intel_clock(dev, refclk, &clock);
  602. if (!intel_PLL_is_valid(dev, limit,
  603. &clock))
  604. continue;
  605. if (match_clock &&
  606. clock.p != match_clock->p)
  607. continue;
  608. this_err = abs(clock.dot - target);
  609. if (this_err < err) {
  610. *best_clock = clock;
  611. err = this_err;
  612. }
  613. }
  614. }
  615. }
  616. }
  617. return (err != target);
  618. }
  619. static bool
  620. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  621. int target, int refclk, intel_clock_t *match_clock,
  622. intel_clock_t *best_clock)
  623. {
  624. struct drm_device *dev = crtc->dev;
  625. intel_clock_t clock;
  626. int max_n;
  627. bool found;
  628. /* approximately equals target * 0.00585 */
  629. int err_most = (target >> 8) + (target >> 9);
  630. found = false;
  631. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  632. int lvds_reg;
  633. if (HAS_PCH_SPLIT(dev))
  634. lvds_reg = PCH_LVDS;
  635. else
  636. lvds_reg = LVDS;
  637. if (intel_is_dual_link_lvds(dev))
  638. clock.p2 = limit->p2.p2_fast;
  639. else
  640. clock.p2 = limit->p2.p2_slow;
  641. } else {
  642. if (target < limit->p2.dot_limit)
  643. clock.p2 = limit->p2.p2_slow;
  644. else
  645. clock.p2 = limit->p2.p2_fast;
  646. }
  647. memset(best_clock, 0, sizeof(*best_clock));
  648. max_n = limit->n.max;
  649. /* based on hardware requirement, prefer smaller n to precision */
  650. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  651. /* based on hardware requirement, prefere larger m1,m2 */
  652. for (clock.m1 = limit->m1.max;
  653. clock.m1 >= limit->m1.min; clock.m1--) {
  654. for (clock.m2 = limit->m2.max;
  655. clock.m2 >= limit->m2.min; clock.m2--) {
  656. for (clock.p1 = limit->p1.max;
  657. clock.p1 >= limit->p1.min; clock.p1--) {
  658. int this_err;
  659. intel_clock(dev, refclk, &clock);
  660. if (!intel_PLL_is_valid(dev, limit,
  661. &clock))
  662. continue;
  663. if (match_clock &&
  664. clock.p != match_clock->p)
  665. continue;
  666. this_err = abs(clock.dot - target);
  667. if (this_err < err_most) {
  668. *best_clock = clock;
  669. err_most = this_err;
  670. max_n = clock.n;
  671. found = true;
  672. }
  673. }
  674. }
  675. }
  676. }
  677. return found;
  678. }
  679. static bool
  680. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  681. int target, int refclk, intel_clock_t *match_clock,
  682. intel_clock_t *best_clock)
  683. {
  684. struct drm_device *dev = crtc->dev;
  685. intel_clock_t clock;
  686. if (target < 200000) {
  687. clock.n = 1;
  688. clock.p1 = 2;
  689. clock.p2 = 10;
  690. clock.m1 = 12;
  691. clock.m2 = 9;
  692. } else {
  693. clock.n = 2;
  694. clock.p1 = 1;
  695. clock.p2 = 10;
  696. clock.m1 = 14;
  697. clock.m2 = 8;
  698. }
  699. intel_clock(dev, refclk, &clock);
  700. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  701. return true;
  702. }
  703. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  704. static bool
  705. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  706. int target, int refclk, intel_clock_t *match_clock,
  707. intel_clock_t *best_clock)
  708. {
  709. intel_clock_t clock;
  710. if (target < 200000) {
  711. clock.p1 = 2;
  712. clock.p2 = 10;
  713. clock.n = 2;
  714. clock.m1 = 23;
  715. clock.m2 = 8;
  716. } else {
  717. clock.p1 = 1;
  718. clock.p2 = 10;
  719. clock.n = 1;
  720. clock.m1 = 14;
  721. clock.m2 = 2;
  722. }
  723. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  724. clock.p = (clock.p1 * clock.p2);
  725. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  726. clock.vco = 0;
  727. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  728. return true;
  729. }
  730. static bool
  731. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  732. int target, int refclk, intel_clock_t *match_clock,
  733. intel_clock_t *best_clock)
  734. {
  735. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  736. u32 m, n, fastclk;
  737. u32 updrate, minupdate, fracbits, p;
  738. unsigned long bestppm, ppm, absppm;
  739. int dotclk, flag;
  740. flag = 0;
  741. dotclk = target * 1000;
  742. bestppm = 1000000;
  743. ppm = absppm = 0;
  744. fastclk = dotclk / (2*100);
  745. updrate = 0;
  746. minupdate = 19200;
  747. fracbits = 1;
  748. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  749. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  750. /* based on hardware requirement, prefer smaller n to precision */
  751. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  752. updrate = refclk / n;
  753. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  754. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  755. if (p2 > 10)
  756. p2 = p2 - 1;
  757. p = p1 * p2;
  758. /* based on hardware requirement, prefer bigger m1,m2 values */
  759. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  760. m2 = (((2*(fastclk * p * n / m1 )) +
  761. refclk) / (2*refclk));
  762. m = m1 * m2;
  763. vco = updrate * m;
  764. if (vco >= limit->vco.min && vco < limit->vco.max) {
  765. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  766. absppm = (ppm > 0) ? ppm : (-ppm);
  767. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  768. bestppm = 0;
  769. flag = 1;
  770. }
  771. if (absppm < bestppm - 10) {
  772. bestppm = absppm;
  773. flag = 1;
  774. }
  775. if (flag) {
  776. bestn = n;
  777. bestm1 = m1;
  778. bestm2 = m2;
  779. bestp1 = p1;
  780. bestp2 = p2;
  781. flag = 0;
  782. }
  783. }
  784. }
  785. }
  786. }
  787. }
  788. best_clock->n = bestn;
  789. best_clock->m1 = bestm1;
  790. best_clock->m2 = bestm2;
  791. best_clock->p1 = bestp1;
  792. best_clock->p2 = bestp2;
  793. return true;
  794. }
  795. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  796. enum pipe pipe)
  797. {
  798. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  800. return intel_crtc->cpu_transcoder;
  801. }
  802. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  803. {
  804. struct drm_i915_private *dev_priv = dev->dev_private;
  805. u32 frame, frame_reg = PIPEFRAME(pipe);
  806. frame = I915_READ(frame_reg);
  807. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  808. DRM_DEBUG_KMS("vblank wait timed out\n");
  809. }
  810. /**
  811. * intel_wait_for_vblank - wait for vblank on a given pipe
  812. * @dev: drm device
  813. * @pipe: pipe to wait for
  814. *
  815. * Wait for vblank to occur on a given pipe. Needed for various bits of
  816. * mode setting code.
  817. */
  818. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  819. {
  820. struct drm_i915_private *dev_priv = dev->dev_private;
  821. int pipestat_reg = PIPESTAT(pipe);
  822. if (INTEL_INFO(dev)->gen >= 5) {
  823. ironlake_wait_for_vblank(dev, pipe);
  824. return;
  825. }
  826. /* Clear existing vblank status. Note this will clear any other
  827. * sticky status fields as well.
  828. *
  829. * This races with i915_driver_irq_handler() with the result
  830. * that either function could miss a vblank event. Here it is not
  831. * fatal, as we will either wait upon the next vblank interrupt or
  832. * timeout. Generally speaking intel_wait_for_vblank() is only
  833. * called during modeset at which time the GPU should be idle and
  834. * should *not* be performing page flips and thus not waiting on
  835. * vblanks...
  836. * Currently, the result of us stealing a vblank from the irq
  837. * handler is that a single frame will be skipped during swapbuffers.
  838. */
  839. I915_WRITE(pipestat_reg,
  840. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  841. /* Wait for vblank interrupt bit to set */
  842. if (wait_for(I915_READ(pipestat_reg) &
  843. PIPE_VBLANK_INTERRUPT_STATUS,
  844. 50))
  845. DRM_DEBUG_KMS("vblank wait timed out\n");
  846. }
  847. /*
  848. * intel_wait_for_pipe_off - wait for pipe to turn off
  849. * @dev: drm device
  850. * @pipe: pipe to wait for
  851. *
  852. * After disabling a pipe, we can't wait for vblank in the usual way,
  853. * spinning on the vblank interrupt status bit, since we won't actually
  854. * see an interrupt when the pipe is disabled.
  855. *
  856. * On Gen4 and above:
  857. * wait for the pipe register state bit to turn off
  858. *
  859. * Otherwise:
  860. * wait for the display line value to settle (it usually
  861. * ends up stopping at the start of the next frame).
  862. *
  863. */
  864. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  865. {
  866. struct drm_i915_private *dev_priv = dev->dev_private;
  867. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  868. pipe);
  869. if (INTEL_INFO(dev)->gen >= 4) {
  870. int reg = PIPECONF(cpu_transcoder);
  871. /* Wait for the Pipe State to go off */
  872. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  873. 100))
  874. WARN(1, "pipe_off wait timed out\n");
  875. } else {
  876. u32 last_line, line_mask;
  877. int reg = PIPEDSL(pipe);
  878. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  879. if (IS_GEN2(dev))
  880. line_mask = DSL_LINEMASK_GEN2;
  881. else
  882. line_mask = DSL_LINEMASK_GEN3;
  883. /* Wait for the display line to settle */
  884. do {
  885. last_line = I915_READ(reg) & line_mask;
  886. mdelay(5);
  887. } while (((I915_READ(reg) & line_mask) != last_line) &&
  888. time_after(timeout, jiffies));
  889. if (time_after(jiffies, timeout))
  890. WARN(1, "pipe_off wait timed out\n");
  891. }
  892. }
  893. /*
  894. * ibx_digital_port_connected - is the specified port connected?
  895. * @dev_priv: i915 private structure
  896. * @port: the port to test
  897. *
  898. * Returns true if @port is connected, false otherwise.
  899. */
  900. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  901. struct intel_digital_port *port)
  902. {
  903. u32 bit;
  904. if (HAS_PCH_IBX(dev_priv->dev)) {
  905. switch(port->port) {
  906. case PORT_B:
  907. bit = SDE_PORTB_HOTPLUG;
  908. break;
  909. case PORT_C:
  910. bit = SDE_PORTC_HOTPLUG;
  911. break;
  912. case PORT_D:
  913. bit = SDE_PORTD_HOTPLUG;
  914. break;
  915. default:
  916. return true;
  917. }
  918. } else {
  919. switch(port->port) {
  920. case PORT_B:
  921. bit = SDE_PORTB_HOTPLUG_CPT;
  922. break;
  923. case PORT_C:
  924. bit = SDE_PORTC_HOTPLUG_CPT;
  925. break;
  926. case PORT_D:
  927. bit = SDE_PORTD_HOTPLUG_CPT;
  928. break;
  929. default:
  930. return true;
  931. }
  932. }
  933. return I915_READ(SDEISR) & bit;
  934. }
  935. static const char *state_string(bool enabled)
  936. {
  937. return enabled ? "on" : "off";
  938. }
  939. /* Only for pre-ILK configs */
  940. static void assert_pll(struct drm_i915_private *dev_priv,
  941. enum pipe pipe, bool state)
  942. {
  943. int reg;
  944. u32 val;
  945. bool cur_state;
  946. reg = DPLL(pipe);
  947. val = I915_READ(reg);
  948. cur_state = !!(val & DPLL_VCO_ENABLE);
  949. WARN(cur_state != state,
  950. "PLL state assertion failure (expected %s, current %s)\n",
  951. state_string(state), state_string(cur_state));
  952. }
  953. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  954. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  955. /* For ILK+ */
  956. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  957. struct intel_pch_pll *pll,
  958. struct intel_crtc *crtc,
  959. bool state)
  960. {
  961. u32 val;
  962. bool cur_state;
  963. if (HAS_PCH_LPT(dev_priv->dev)) {
  964. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  965. return;
  966. }
  967. if (WARN (!pll,
  968. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  969. return;
  970. val = I915_READ(pll->pll_reg);
  971. cur_state = !!(val & DPLL_VCO_ENABLE);
  972. WARN(cur_state != state,
  973. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  974. pll->pll_reg, state_string(state), state_string(cur_state), val);
  975. /* Make sure the selected PLL is correctly attached to the transcoder */
  976. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  977. u32 pch_dpll;
  978. pch_dpll = I915_READ(PCH_DPLL_SEL);
  979. cur_state = pll->pll_reg == _PCH_DPLL_B;
  980. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  981. "PLL[%d] not attached to this transcoder %d: %08x\n",
  982. cur_state, crtc->pipe, pch_dpll)) {
  983. cur_state = !!(val >> (4*crtc->pipe + 3));
  984. WARN(cur_state != state,
  985. "PLL[%d] not %s on this transcoder %d: %08x\n",
  986. pll->pll_reg == _PCH_DPLL_B,
  987. state_string(state),
  988. crtc->pipe,
  989. val);
  990. }
  991. }
  992. }
  993. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  994. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  995. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  996. enum pipe pipe, bool state)
  997. {
  998. int reg;
  999. u32 val;
  1000. bool cur_state;
  1001. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1002. pipe);
  1003. if (HAS_DDI(dev_priv->dev)) {
  1004. /* DDI does not have a specific FDI_TX register */
  1005. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1006. val = I915_READ(reg);
  1007. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1008. } else {
  1009. reg = FDI_TX_CTL(pipe);
  1010. val = I915_READ(reg);
  1011. cur_state = !!(val & FDI_TX_ENABLE);
  1012. }
  1013. WARN(cur_state != state,
  1014. "FDI TX state assertion failure (expected %s, current %s)\n",
  1015. state_string(state), state_string(cur_state));
  1016. }
  1017. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1018. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1019. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1020. enum pipe pipe, bool state)
  1021. {
  1022. int reg;
  1023. u32 val;
  1024. bool cur_state;
  1025. reg = FDI_RX_CTL(pipe);
  1026. val = I915_READ(reg);
  1027. cur_state = !!(val & FDI_RX_ENABLE);
  1028. WARN(cur_state != state,
  1029. "FDI RX state assertion failure (expected %s, current %s)\n",
  1030. state_string(state), state_string(cur_state));
  1031. }
  1032. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1033. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1034. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1035. enum pipe pipe)
  1036. {
  1037. int reg;
  1038. u32 val;
  1039. /* ILK FDI PLL is always enabled */
  1040. if (dev_priv->info->gen == 5)
  1041. return;
  1042. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1043. if (HAS_DDI(dev_priv->dev))
  1044. return;
  1045. reg = FDI_TX_CTL(pipe);
  1046. val = I915_READ(reg);
  1047. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1048. }
  1049. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1050. enum pipe pipe)
  1051. {
  1052. int reg;
  1053. u32 val;
  1054. reg = FDI_RX_CTL(pipe);
  1055. val = I915_READ(reg);
  1056. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1057. }
  1058. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1059. enum pipe pipe)
  1060. {
  1061. int pp_reg, lvds_reg;
  1062. u32 val;
  1063. enum pipe panel_pipe = PIPE_A;
  1064. bool locked = true;
  1065. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1066. pp_reg = PCH_PP_CONTROL;
  1067. lvds_reg = PCH_LVDS;
  1068. } else {
  1069. pp_reg = PP_CONTROL;
  1070. lvds_reg = LVDS;
  1071. }
  1072. val = I915_READ(pp_reg);
  1073. if (!(val & PANEL_POWER_ON) ||
  1074. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1075. locked = false;
  1076. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1077. panel_pipe = PIPE_B;
  1078. WARN(panel_pipe == pipe && locked,
  1079. "panel assertion failure, pipe %c regs locked\n",
  1080. pipe_name(pipe));
  1081. }
  1082. void assert_pipe(struct drm_i915_private *dev_priv,
  1083. enum pipe pipe, bool state)
  1084. {
  1085. int reg;
  1086. u32 val;
  1087. bool cur_state;
  1088. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1089. pipe);
  1090. /* if we need the pipe A quirk it must be always on */
  1091. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1092. state = true;
  1093. if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
  1094. !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
  1095. cur_state = false;
  1096. } else {
  1097. reg = PIPECONF(cpu_transcoder);
  1098. val = I915_READ(reg);
  1099. cur_state = !!(val & PIPECONF_ENABLE);
  1100. }
  1101. WARN(cur_state != state,
  1102. "pipe %c assertion failure (expected %s, current %s)\n",
  1103. pipe_name(pipe), state_string(state), state_string(cur_state));
  1104. }
  1105. static void assert_plane(struct drm_i915_private *dev_priv,
  1106. enum plane plane, bool state)
  1107. {
  1108. int reg;
  1109. u32 val;
  1110. bool cur_state;
  1111. reg = DSPCNTR(plane);
  1112. val = I915_READ(reg);
  1113. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1114. WARN(cur_state != state,
  1115. "plane %c assertion failure (expected %s, current %s)\n",
  1116. plane_name(plane), state_string(state), state_string(cur_state));
  1117. }
  1118. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1119. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1120. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1121. enum pipe pipe)
  1122. {
  1123. int reg, i;
  1124. u32 val;
  1125. int cur_pipe;
  1126. /* Planes are fixed to pipes on ILK+ */
  1127. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1128. reg = DSPCNTR(pipe);
  1129. val = I915_READ(reg);
  1130. WARN((val & DISPLAY_PLANE_ENABLE),
  1131. "plane %c assertion failure, should be disabled but not\n",
  1132. plane_name(pipe));
  1133. return;
  1134. }
  1135. /* Need to check both planes against the pipe */
  1136. for (i = 0; i < 2; i++) {
  1137. reg = DSPCNTR(i);
  1138. val = I915_READ(reg);
  1139. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1140. DISPPLANE_SEL_PIPE_SHIFT;
  1141. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1142. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1143. plane_name(i), pipe_name(pipe));
  1144. }
  1145. }
  1146. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1147. {
  1148. u32 val;
  1149. bool enabled;
  1150. if (HAS_PCH_LPT(dev_priv->dev)) {
  1151. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1152. return;
  1153. }
  1154. val = I915_READ(PCH_DREF_CONTROL);
  1155. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1156. DREF_SUPERSPREAD_SOURCE_MASK));
  1157. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1158. }
  1159. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1160. enum pipe pipe)
  1161. {
  1162. int reg;
  1163. u32 val;
  1164. bool enabled;
  1165. reg = TRANSCONF(pipe);
  1166. val = I915_READ(reg);
  1167. enabled = !!(val & TRANS_ENABLE);
  1168. WARN(enabled,
  1169. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1170. pipe_name(pipe));
  1171. }
  1172. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1173. enum pipe pipe, u32 port_sel, u32 val)
  1174. {
  1175. if ((val & DP_PORT_EN) == 0)
  1176. return false;
  1177. if (HAS_PCH_CPT(dev_priv->dev)) {
  1178. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1179. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1180. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1181. return false;
  1182. } else {
  1183. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1184. return false;
  1185. }
  1186. return true;
  1187. }
  1188. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1189. enum pipe pipe, u32 val)
  1190. {
  1191. if ((val & PORT_ENABLE) == 0)
  1192. return false;
  1193. if (HAS_PCH_CPT(dev_priv->dev)) {
  1194. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1195. return false;
  1196. } else {
  1197. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1198. return false;
  1199. }
  1200. return true;
  1201. }
  1202. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1203. enum pipe pipe, u32 val)
  1204. {
  1205. if ((val & LVDS_PORT_EN) == 0)
  1206. return false;
  1207. if (HAS_PCH_CPT(dev_priv->dev)) {
  1208. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1209. return false;
  1210. } else {
  1211. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1212. return false;
  1213. }
  1214. return true;
  1215. }
  1216. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1217. enum pipe pipe, u32 val)
  1218. {
  1219. if ((val & ADPA_DAC_ENABLE) == 0)
  1220. return false;
  1221. if (HAS_PCH_CPT(dev_priv->dev)) {
  1222. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1223. return false;
  1224. } else {
  1225. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1226. return false;
  1227. }
  1228. return true;
  1229. }
  1230. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1231. enum pipe pipe, int reg, u32 port_sel)
  1232. {
  1233. u32 val = I915_READ(reg);
  1234. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1235. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1236. reg, pipe_name(pipe));
  1237. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1238. && (val & DP_PIPEB_SELECT),
  1239. "IBX PCH dp port still using transcoder B\n");
  1240. }
  1241. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1242. enum pipe pipe, int reg)
  1243. {
  1244. u32 val = I915_READ(reg);
  1245. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1246. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1247. reg, pipe_name(pipe));
  1248. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1249. && (val & SDVO_PIPE_B_SELECT),
  1250. "IBX PCH hdmi port still using transcoder B\n");
  1251. }
  1252. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1253. enum pipe pipe)
  1254. {
  1255. int reg;
  1256. u32 val;
  1257. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1258. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1259. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1260. reg = PCH_ADPA;
  1261. val = I915_READ(reg);
  1262. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1263. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1264. pipe_name(pipe));
  1265. reg = PCH_LVDS;
  1266. val = I915_READ(reg);
  1267. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1268. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1269. pipe_name(pipe));
  1270. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1271. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1272. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1273. }
  1274. /**
  1275. * intel_enable_pll - enable a PLL
  1276. * @dev_priv: i915 private structure
  1277. * @pipe: pipe PLL to enable
  1278. *
  1279. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1280. * make sure the PLL reg is writable first though, since the panel write
  1281. * protect mechanism may be enabled.
  1282. *
  1283. * Note! This is for pre-ILK only.
  1284. *
  1285. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1286. */
  1287. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1288. {
  1289. int reg;
  1290. u32 val;
  1291. /* No really, not for ILK+ */
  1292. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1293. /* PLL is protected by panel, make sure we can write it */
  1294. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1295. assert_panel_unlocked(dev_priv, pipe);
  1296. reg = DPLL(pipe);
  1297. val = I915_READ(reg);
  1298. val |= DPLL_VCO_ENABLE;
  1299. /* We do this three times for luck */
  1300. I915_WRITE(reg, val);
  1301. POSTING_READ(reg);
  1302. udelay(150); /* wait for warmup */
  1303. I915_WRITE(reg, val);
  1304. POSTING_READ(reg);
  1305. udelay(150); /* wait for warmup */
  1306. I915_WRITE(reg, val);
  1307. POSTING_READ(reg);
  1308. udelay(150); /* wait for warmup */
  1309. }
  1310. /**
  1311. * intel_disable_pll - disable a PLL
  1312. * @dev_priv: i915 private structure
  1313. * @pipe: pipe PLL to disable
  1314. *
  1315. * Disable the PLL for @pipe, making sure the pipe is off first.
  1316. *
  1317. * Note! This is for pre-ILK only.
  1318. */
  1319. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1320. {
  1321. int reg;
  1322. u32 val;
  1323. /* Don't disable pipe A or pipe A PLLs if needed */
  1324. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1325. return;
  1326. /* Make sure the pipe isn't still relying on us */
  1327. assert_pipe_disabled(dev_priv, pipe);
  1328. reg = DPLL(pipe);
  1329. val = I915_READ(reg);
  1330. val &= ~DPLL_VCO_ENABLE;
  1331. I915_WRITE(reg, val);
  1332. POSTING_READ(reg);
  1333. }
  1334. /* SBI access */
  1335. static void
  1336. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1337. enum intel_sbi_destination destination)
  1338. {
  1339. u32 tmp;
  1340. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1341. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1342. 100)) {
  1343. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1344. return;
  1345. }
  1346. I915_WRITE(SBI_ADDR, (reg << 16));
  1347. I915_WRITE(SBI_DATA, value);
  1348. if (destination == SBI_ICLK)
  1349. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1350. else
  1351. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1352. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1353. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1354. 100)) {
  1355. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1356. return;
  1357. }
  1358. }
  1359. static u32
  1360. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1361. enum intel_sbi_destination destination)
  1362. {
  1363. u32 value = 0;
  1364. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1365. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1366. 100)) {
  1367. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1368. return 0;
  1369. }
  1370. I915_WRITE(SBI_ADDR, (reg << 16));
  1371. if (destination == SBI_ICLK)
  1372. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1373. else
  1374. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1375. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1376. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1377. 100)) {
  1378. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1379. return 0;
  1380. }
  1381. return I915_READ(SBI_DATA);
  1382. }
  1383. /**
  1384. * ironlake_enable_pch_pll - enable PCH PLL
  1385. * @dev_priv: i915 private structure
  1386. * @pipe: pipe PLL to enable
  1387. *
  1388. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1389. * drives the transcoder clock.
  1390. */
  1391. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1392. {
  1393. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1394. struct intel_pch_pll *pll;
  1395. int reg;
  1396. u32 val;
  1397. /* PCH PLLs only available on ILK, SNB and IVB */
  1398. BUG_ON(dev_priv->info->gen < 5);
  1399. pll = intel_crtc->pch_pll;
  1400. if (pll == NULL)
  1401. return;
  1402. if (WARN_ON(pll->refcount == 0))
  1403. return;
  1404. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1405. pll->pll_reg, pll->active, pll->on,
  1406. intel_crtc->base.base.id);
  1407. /* PCH refclock must be enabled first */
  1408. assert_pch_refclk_enabled(dev_priv);
  1409. if (pll->active++ && pll->on) {
  1410. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1411. return;
  1412. }
  1413. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1414. reg = pll->pll_reg;
  1415. val = I915_READ(reg);
  1416. val |= DPLL_VCO_ENABLE;
  1417. I915_WRITE(reg, val);
  1418. POSTING_READ(reg);
  1419. udelay(200);
  1420. pll->on = true;
  1421. }
  1422. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1423. {
  1424. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1425. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1426. int reg;
  1427. u32 val;
  1428. /* PCH only available on ILK+ */
  1429. BUG_ON(dev_priv->info->gen < 5);
  1430. if (pll == NULL)
  1431. return;
  1432. if (WARN_ON(pll->refcount == 0))
  1433. return;
  1434. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1435. pll->pll_reg, pll->active, pll->on,
  1436. intel_crtc->base.base.id);
  1437. if (WARN_ON(pll->active == 0)) {
  1438. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1439. return;
  1440. }
  1441. if (--pll->active) {
  1442. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1443. return;
  1444. }
  1445. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1446. /* Make sure transcoder isn't still depending on us */
  1447. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1448. reg = pll->pll_reg;
  1449. val = I915_READ(reg);
  1450. val &= ~DPLL_VCO_ENABLE;
  1451. I915_WRITE(reg, val);
  1452. POSTING_READ(reg);
  1453. udelay(200);
  1454. pll->on = false;
  1455. }
  1456. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1457. enum pipe pipe)
  1458. {
  1459. struct drm_device *dev = dev_priv->dev;
  1460. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1461. uint32_t reg, val, pipeconf_val;
  1462. /* PCH only available on ILK+ */
  1463. BUG_ON(dev_priv->info->gen < 5);
  1464. /* Make sure PCH DPLL is enabled */
  1465. assert_pch_pll_enabled(dev_priv,
  1466. to_intel_crtc(crtc)->pch_pll,
  1467. to_intel_crtc(crtc));
  1468. /* FDI must be feeding us bits for PCH ports */
  1469. assert_fdi_tx_enabled(dev_priv, pipe);
  1470. assert_fdi_rx_enabled(dev_priv, pipe);
  1471. if (HAS_PCH_CPT(dev)) {
  1472. /* Workaround: Set the timing override bit before enabling the
  1473. * pch transcoder. */
  1474. reg = TRANS_CHICKEN2(pipe);
  1475. val = I915_READ(reg);
  1476. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1477. I915_WRITE(reg, val);
  1478. }
  1479. reg = TRANSCONF(pipe);
  1480. val = I915_READ(reg);
  1481. pipeconf_val = I915_READ(PIPECONF(pipe));
  1482. if (HAS_PCH_IBX(dev_priv->dev)) {
  1483. /*
  1484. * make the BPC in transcoder be consistent with
  1485. * that in pipeconf reg.
  1486. */
  1487. val &= ~PIPECONF_BPC_MASK;
  1488. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1489. }
  1490. val &= ~TRANS_INTERLACE_MASK;
  1491. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1492. if (HAS_PCH_IBX(dev_priv->dev) &&
  1493. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1494. val |= TRANS_LEGACY_INTERLACED_ILK;
  1495. else
  1496. val |= TRANS_INTERLACED;
  1497. else
  1498. val |= TRANS_PROGRESSIVE;
  1499. I915_WRITE(reg, val | TRANS_ENABLE);
  1500. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1501. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1502. }
  1503. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1504. enum transcoder cpu_transcoder)
  1505. {
  1506. u32 val, pipeconf_val;
  1507. /* PCH only available on ILK+ */
  1508. BUG_ON(dev_priv->info->gen < 5);
  1509. /* FDI must be feeding us bits for PCH ports */
  1510. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1511. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1512. /* Workaround: set timing override bit. */
  1513. val = I915_READ(_TRANSA_CHICKEN2);
  1514. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1515. I915_WRITE(_TRANSA_CHICKEN2, val);
  1516. val = TRANS_ENABLE;
  1517. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1518. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1519. PIPECONF_INTERLACED_ILK)
  1520. val |= TRANS_INTERLACED;
  1521. else
  1522. val |= TRANS_PROGRESSIVE;
  1523. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1524. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1525. DRM_ERROR("Failed to enable PCH transcoder\n");
  1526. }
  1527. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1528. enum pipe pipe)
  1529. {
  1530. struct drm_device *dev = dev_priv->dev;
  1531. uint32_t reg, val;
  1532. /* FDI relies on the transcoder */
  1533. assert_fdi_tx_disabled(dev_priv, pipe);
  1534. assert_fdi_rx_disabled(dev_priv, pipe);
  1535. /* Ports must be off as well */
  1536. assert_pch_ports_disabled(dev_priv, pipe);
  1537. reg = TRANSCONF(pipe);
  1538. val = I915_READ(reg);
  1539. val &= ~TRANS_ENABLE;
  1540. I915_WRITE(reg, val);
  1541. /* wait for PCH transcoder off, transcoder state */
  1542. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1543. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1544. if (!HAS_PCH_IBX(dev)) {
  1545. /* Workaround: Clear the timing override chicken bit again. */
  1546. reg = TRANS_CHICKEN2(pipe);
  1547. val = I915_READ(reg);
  1548. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1549. I915_WRITE(reg, val);
  1550. }
  1551. }
  1552. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1553. {
  1554. u32 val;
  1555. val = I915_READ(_TRANSACONF);
  1556. val &= ~TRANS_ENABLE;
  1557. I915_WRITE(_TRANSACONF, val);
  1558. /* wait for PCH transcoder off, transcoder state */
  1559. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1560. DRM_ERROR("Failed to disable PCH transcoder\n");
  1561. /* Workaround: clear timing override bit. */
  1562. val = I915_READ(_TRANSA_CHICKEN2);
  1563. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1564. I915_WRITE(_TRANSA_CHICKEN2, val);
  1565. }
  1566. /**
  1567. * intel_enable_pipe - enable a pipe, asserting requirements
  1568. * @dev_priv: i915 private structure
  1569. * @pipe: pipe to enable
  1570. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1571. *
  1572. * Enable @pipe, making sure that various hardware specific requirements
  1573. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1574. *
  1575. * @pipe should be %PIPE_A or %PIPE_B.
  1576. *
  1577. * Will wait until the pipe is actually running (i.e. first vblank) before
  1578. * returning.
  1579. */
  1580. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1581. bool pch_port)
  1582. {
  1583. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1584. pipe);
  1585. enum pipe pch_transcoder;
  1586. int reg;
  1587. u32 val;
  1588. if (HAS_PCH_LPT(dev_priv->dev))
  1589. pch_transcoder = TRANSCODER_A;
  1590. else
  1591. pch_transcoder = pipe;
  1592. /*
  1593. * A pipe without a PLL won't actually be able to drive bits from
  1594. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1595. * need the check.
  1596. */
  1597. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1598. assert_pll_enabled(dev_priv, pipe);
  1599. else {
  1600. if (pch_port) {
  1601. /* if driving the PCH, we need FDI enabled */
  1602. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1603. assert_fdi_tx_pll_enabled(dev_priv,
  1604. (enum pipe) cpu_transcoder);
  1605. }
  1606. /* FIXME: assert CPU port conditions for SNB+ */
  1607. }
  1608. reg = PIPECONF(cpu_transcoder);
  1609. val = I915_READ(reg);
  1610. if (val & PIPECONF_ENABLE)
  1611. return;
  1612. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1613. intel_wait_for_vblank(dev_priv->dev, pipe);
  1614. }
  1615. /**
  1616. * intel_disable_pipe - disable a pipe, asserting requirements
  1617. * @dev_priv: i915 private structure
  1618. * @pipe: pipe to disable
  1619. *
  1620. * Disable @pipe, making sure that various hardware specific requirements
  1621. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1622. *
  1623. * @pipe should be %PIPE_A or %PIPE_B.
  1624. *
  1625. * Will wait until the pipe has shut down before returning.
  1626. */
  1627. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1628. enum pipe pipe)
  1629. {
  1630. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1631. pipe);
  1632. int reg;
  1633. u32 val;
  1634. /*
  1635. * Make sure planes won't keep trying to pump pixels to us,
  1636. * or we might hang the display.
  1637. */
  1638. assert_planes_disabled(dev_priv, pipe);
  1639. /* Don't disable pipe A or pipe A PLLs if needed */
  1640. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1641. return;
  1642. reg = PIPECONF(cpu_transcoder);
  1643. val = I915_READ(reg);
  1644. if ((val & PIPECONF_ENABLE) == 0)
  1645. return;
  1646. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1647. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1648. }
  1649. /*
  1650. * Plane regs are double buffered, going from enabled->disabled needs a
  1651. * trigger in order to latch. The display address reg provides this.
  1652. */
  1653. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1654. enum plane plane)
  1655. {
  1656. if (dev_priv->info->gen >= 4)
  1657. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1658. else
  1659. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1660. }
  1661. /**
  1662. * intel_enable_plane - enable a display plane on a given pipe
  1663. * @dev_priv: i915 private structure
  1664. * @plane: plane to enable
  1665. * @pipe: pipe being fed
  1666. *
  1667. * Enable @plane on @pipe, making sure that @pipe is running first.
  1668. */
  1669. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1670. enum plane plane, enum pipe pipe)
  1671. {
  1672. int reg;
  1673. u32 val;
  1674. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1675. assert_pipe_enabled(dev_priv, pipe);
  1676. reg = DSPCNTR(plane);
  1677. val = I915_READ(reg);
  1678. if (val & DISPLAY_PLANE_ENABLE)
  1679. return;
  1680. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1681. intel_flush_display_plane(dev_priv, plane);
  1682. intel_wait_for_vblank(dev_priv->dev, pipe);
  1683. }
  1684. /**
  1685. * intel_disable_plane - disable a display plane
  1686. * @dev_priv: i915 private structure
  1687. * @plane: plane to disable
  1688. * @pipe: pipe consuming the data
  1689. *
  1690. * Disable @plane; should be an independent operation.
  1691. */
  1692. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1693. enum plane plane, enum pipe pipe)
  1694. {
  1695. int reg;
  1696. u32 val;
  1697. reg = DSPCNTR(plane);
  1698. val = I915_READ(reg);
  1699. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1700. return;
  1701. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1702. intel_flush_display_plane(dev_priv, plane);
  1703. intel_wait_for_vblank(dev_priv->dev, pipe);
  1704. }
  1705. int
  1706. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1707. struct drm_i915_gem_object *obj,
  1708. struct intel_ring_buffer *pipelined)
  1709. {
  1710. struct drm_i915_private *dev_priv = dev->dev_private;
  1711. u32 alignment;
  1712. int ret;
  1713. switch (obj->tiling_mode) {
  1714. case I915_TILING_NONE:
  1715. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1716. alignment = 128 * 1024;
  1717. else if (INTEL_INFO(dev)->gen >= 4)
  1718. alignment = 4 * 1024;
  1719. else
  1720. alignment = 64 * 1024;
  1721. break;
  1722. case I915_TILING_X:
  1723. /* pin() will align the object as required by fence */
  1724. alignment = 0;
  1725. break;
  1726. case I915_TILING_Y:
  1727. /* FIXME: Is this true? */
  1728. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1729. return -EINVAL;
  1730. default:
  1731. BUG();
  1732. }
  1733. dev_priv->mm.interruptible = false;
  1734. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1735. if (ret)
  1736. goto err_interruptible;
  1737. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1738. * fence, whereas 965+ only requires a fence if using
  1739. * framebuffer compression. For simplicity, we always install
  1740. * a fence as the cost is not that onerous.
  1741. */
  1742. ret = i915_gem_object_get_fence(obj);
  1743. if (ret)
  1744. goto err_unpin;
  1745. i915_gem_object_pin_fence(obj);
  1746. dev_priv->mm.interruptible = true;
  1747. return 0;
  1748. err_unpin:
  1749. i915_gem_object_unpin(obj);
  1750. err_interruptible:
  1751. dev_priv->mm.interruptible = true;
  1752. return ret;
  1753. }
  1754. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1755. {
  1756. i915_gem_object_unpin_fence(obj);
  1757. i915_gem_object_unpin(obj);
  1758. }
  1759. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1760. * is assumed to be a power-of-two. */
  1761. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1762. unsigned int bpp,
  1763. unsigned int pitch)
  1764. {
  1765. int tile_rows, tiles;
  1766. tile_rows = *y / 8;
  1767. *y %= 8;
  1768. tiles = *x / (512/bpp);
  1769. *x %= 512/bpp;
  1770. return tile_rows * pitch * 8 + tiles * 4096;
  1771. }
  1772. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1773. int x, int y)
  1774. {
  1775. struct drm_device *dev = crtc->dev;
  1776. struct drm_i915_private *dev_priv = dev->dev_private;
  1777. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1778. struct intel_framebuffer *intel_fb;
  1779. struct drm_i915_gem_object *obj;
  1780. int plane = intel_crtc->plane;
  1781. unsigned long linear_offset;
  1782. u32 dspcntr;
  1783. u32 reg;
  1784. switch (plane) {
  1785. case 0:
  1786. case 1:
  1787. break;
  1788. default:
  1789. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1790. return -EINVAL;
  1791. }
  1792. intel_fb = to_intel_framebuffer(fb);
  1793. obj = intel_fb->obj;
  1794. reg = DSPCNTR(plane);
  1795. dspcntr = I915_READ(reg);
  1796. /* Mask out pixel format bits in case we change it */
  1797. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1798. switch (fb->pixel_format) {
  1799. case DRM_FORMAT_C8:
  1800. dspcntr |= DISPPLANE_8BPP;
  1801. break;
  1802. case DRM_FORMAT_XRGB1555:
  1803. case DRM_FORMAT_ARGB1555:
  1804. dspcntr |= DISPPLANE_BGRX555;
  1805. break;
  1806. case DRM_FORMAT_RGB565:
  1807. dspcntr |= DISPPLANE_BGRX565;
  1808. break;
  1809. case DRM_FORMAT_XRGB8888:
  1810. case DRM_FORMAT_ARGB8888:
  1811. dspcntr |= DISPPLANE_BGRX888;
  1812. break;
  1813. case DRM_FORMAT_XBGR8888:
  1814. case DRM_FORMAT_ABGR8888:
  1815. dspcntr |= DISPPLANE_RGBX888;
  1816. break;
  1817. case DRM_FORMAT_XRGB2101010:
  1818. case DRM_FORMAT_ARGB2101010:
  1819. dspcntr |= DISPPLANE_BGRX101010;
  1820. break;
  1821. case DRM_FORMAT_XBGR2101010:
  1822. case DRM_FORMAT_ABGR2101010:
  1823. dspcntr |= DISPPLANE_RGBX101010;
  1824. break;
  1825. default:
  1826. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1827. return -EINVAL;
  1828. }
  1829. if (INTEL_INFO(dev)->gen >= 4) {
  1830. if (obj->tiling_mode != I915_TILING_NONE)
  1831. dspcntr |= DISPPLANE_TILED;
  1832. else
  1833. dspcntr &= ~DISPPLANE_TILED;
  1834. }
  1835. I915_WRITE(reg, dspcntr);
  1836. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1837. if (INTEL_INFO(dev)->gen >= 4) {
  1838. intel_crtc->dspaddr_offset =
  1839. intel_gen4_compute_offset_xtiled(&x, &y,
  1840. fb->bits_per_pixel / 8,
  1841. fb->pitches[0]);
  1842. linear_offset -= intel_crtc->dspaddr_offset;
  1843. } else {
  1844. intel_crtc->dspaddr_offset = linear_offset;
  1845. }
  1846. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1847. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1848. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1849. if (INTEL_INFO(dev)->gen >= 4) {
  1850. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1851. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1852. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1853. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1854. } else
  1855. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1856. POSTING_READ(reg);
  1857. return 0;
  1858. }
  1859. static int ironlake_update_plane(struct drm_crtc *crtc,
  1860. struct drm_framebuffer *fb, int x, int y)
  1861. {
  1862. struct drm_device *dev = crtc->dev;
  1863. struct drm_i915_private *dev_priv = dev->dev_private;
  1864. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1865. struct intel_framebuffer *intel_fb;
  1866. struct drm_i915_gem_object *obj;
  1867. int plane = intel_crtc->plane;
  1868. unsigned long linear_offset;
  1869. u32 dspcntr;
  1870. u32 reg;
  1871. switch (plane) {
  1872. case 0:
  1873. case 1:
  1874. case 2:
  1875. break;
  1876. default:
  1877. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1878. return -EINVAL;
  1879. }
  1880. intel_fb = to_intel_framebuffer(fb);
  1881. obj = intel_fb->obj;
  1882. reg = DSPCNTR(plane);
  1883. dspcntr = I915_READ(reg);
  1884. /* Mask out pixel format bits in case we change it */
  1885. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1886. switch (fb->pixel_format) {
  1887. case DRM_FORMAT_C8:
  1888. dspcntr |= DISPPLANE_8BPP;
  1889. break;
  1890. case DRM_FORMAT_RGB565:
  1891. dspcntr |= DISPPLANE_BGRX565;
  1892. break;
  1893. case DRM_FORMAT_XRGB8888:
  1894. case DRM_FORMAT_ARGB8888:
  1895. dspcntr |= DISPPLANE_BGRX888;
  1896. break;
  1897. case DRM_FORMAT_XBGR8888:
  1898. case DRM_FORMAT_ABGR8888:
  1899. dspcntr |= DISPPLANE_RGBX888;
  1900. break;
  1901. case DRM_FORMAT_XRGB2101010:
  1902. case DRM_FORMAT_ARGB2101010:
  1903. dspcntr |= DISPPLANE_BGRX101010;
  1904. break;
  1905. case DRM_FORMAT_XBGR2101010:
  1906. case DRM_FORMAT_ABGR2101010:
  1907. dspcntr |= DISPPLANE_RGBX101010;
  1908. break;
  1909. default:
  1910. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1911. return -EINVAL;
  1912. }
  1913. if (obj->tiling_mode != I915_TILING_NONE)
  1914. dspcntr |= DISPPLANE_TILED;
  1915. else
  1916. dspcntr &= ~DISPPLANE_TILED;
  1917. /* must disable */
  1918. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1919. I915_WRITE(reg, dspcntr);
  1920. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1921. intel_crtc->dspaddr_offset =
  1922. intel_gen4_compute_offset_xtiled(&x, &y,
  1923. fb->bits_per_pixel / 8,
  1924. fb->pitches[0]);
  1925. linear_offset -= intel_crtc->dspaddr_offset;
  1926. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1927. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1928. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1929. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1930. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1931. if (IS_HASWELL(dev)) {
  1932. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1933. } else {
  1934. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1935. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1936. }
  1937. POSTING_READ(reg);
  1938. return 0;
  1939. }
  1940. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1941. static int
  1942. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1943. int x, int y, enum mode_set_atomic state)
  1944. {
  1945. struct drm_device *dev = crtc->dev;
  1946. struct drm_i915_private *dev_priv = dev->dev_private;
  1947. if (dev_priv->display.disable_fbc)
  1948. dev_priv->display.disable_fbc(dev);
  1949. intel_increase_pllclock(crtc);
  1950. return dev_priv->display.update_plane(crtc, fb, x, y);
  1951. }
  1952. void intel_display_handle_reset(struct drm_device *dev)
  1953. {
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. struct drm_crtc *crtc;
  1956. /*
  1957. * Flips in the rings have been nuked by the reset,
  1958. * so complete all pending flips so that user space
  1959. * will get its events and not get stuck.
  1960. *
  1961. * Also update the base address of all primary
  1962. * planes to the the last fb to make sure we're
  1963. * showing the correct fb after a reset.
  1964. *
  1965. * Need to make two loops over the crtcs so that we
  1966. * don't try to grab a crtc mutex before the
  1967. * pending_flip_queue really got woken up.
  1968. */
  1969. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1970. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1971. enum plane plane = intel_crtc->plane;
  1972. intel_prepare_page_flip(dev, plane);
  1973. intel_finish_page_flip_plane(dev, plane);
  1974. }
  1975. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1976. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1977. mutex_lock(&crtc->mutex);
  1978. if (intel_crtc->active)
  1979. dev_priv->display.update_plane(crtc, crtc->fb,
  1980. crtc->x, crtc->y);
  1981. mutex_unlock(&crtc->mutex);
  1982. }
  1983. }
  1984. static int
  1985. intel_finish_fb(struct drm_framebuffer *old_fb)
  1986. {
  1987. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1988. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1989. bool was_interruptible = dev_priv->mm.interruptible;
  1990. int ret;
  1991. /* Big Hammer, we also need to ensure that any pending
  1992. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1993. * current scanout is retired before unpinning the old
  1994. * framebuffer.
  1995. *
  1996. * This should only fail upon a hung GPU, in which case we
  1997. * can safely continue.
  1998. */
  1999. dev_priv->mm.interruptible = false;
  2000. ret = i915_gem_object_finish_gpu(obj);
  2001. dev_priv->mm.interruptible = was_interruptible;
  2002. return ret;
  2003. }
  2004. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  2005. {
  2006. struct drm_device *dev = crtc->dev;
  2007. struct drm_i915_master_private *master_priv;
  2008. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2009. if (!dev->primary->master)
  2010. return;
  2011. master_priv = dev->primary->master->driver_priv;
  2012. if (!master_priv->sarea_priv)
  2013. return;
  2014. switch (intel_crtc->pipe) {
  2015. case 0:
  2016. master_priv->sarea_priv->pipeA_x = x;
  2017. master_priv->sarea_priv->pipeA_y = y;
  2018. break;
  2019. case 1:
  2020. master_priv->sarea_priv->pipeB_x = x;
  2021. master_priv->sarea_priv->pipeB_y = y;
  2022. break;
  2023. default:
  2024. break;
  2025. }
  2026. }
  2027. static int
  2028. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2029. struct drm_framebuffer *fb)
  2030. {
  2031. struct drm_device *dev = crtc->dev;
  2032. struct drm_i915_private *dev_priv = dev->dev_private;
  2033. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2034. struct drm_framebuffer *old_fb;
  2035. int ret;
  2036. /* no fb bound */
  2037. if (!fb) {
  2038. DRM_ERROR("No FB bound\n");
  2039. return 0;
  2040. }
  2041. if(intel_crtc->plane > dev_priv->num_pipe) {
  2042. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  2043. intel_crtc->plane,
  2044. dev_priv->num_pipe);
  2045. return -EINVAL;
  2046. }
  2047. mutex_lock(&dev->struct_mutex);
  2048. ret = intel_pin_and_fence_fb_obj(dev,
  2049. to_intel_framebuffer(fb)->obj,
  2050. NULL);
  2051. if (ret != 0) {
  2052. mutex_unlock(&dev->struct_mutex);
  2053. DRM_ERROR("pin & fence failed\n");
  2054. return ret;
  2055. }
  2056. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2057. if (ret) {
  2058. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2059. mutex_unlock(&dev->struct_mutex);
  2060. DRM_ERROR("failed to update base address\n");
  2061. return ret;
  2062. }
  2063. old_fb = crtc->fb;
  2064. crtc->fb = fb;
  2065. crtc->x = x;
  2066. crtc->y = y;
  2067. if (old_fb) {
  2068. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2069. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2070. }
  2071. intel_update_fbc(dev);
  2072. mutex_unlock(&dev->struct_mutex);
  2073. intel_crtc_update_sarea_pos(crtc, x, y);
  2074. return 0;
  2075. }
  2076. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2077. {
  2078. struct drm_device *dev = crtc->dev;
  2079. struct drm_i915_private *dev_priv = dev->dev_private;
  2080. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2081. int pipe = intel_crtc->pipe;
  2082. u32 reg, temp;
  2083. /* enable normal train */
  2084. reg = FDI_TX_CTL(pipe);
  2085. temp = I915_READ(reg);
  2086. if (IS_IVYBRIDGE(dev)) {
  2087. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2088. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2089. } else {
  2090. temp &= ~FDI_LINK_TRAIN_NONE;
  2091. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2092. }
  2093. I915_WRITE(reg, temp);
  2094. reg = FDI_RX_CTL(pipe);
  2095. temp = I915_READ(reg);
  2096. if (HAS_PCH_CPT(dev)) {
  2097. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2098. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2099. } else {
  2100. temp &= ~FDI_LINK_TRAIN_NONE;
  2101. temp |= FDI_LINK_TRAIN_NONE;
  2102. }
  2103. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2104. /* wait one idle pattern time */
  2105. POSTING_READ(reg);
  2106. udelay(1000);
  2107. /* IVB wants error correction enabled */
  2108. if (IS_IVYBRIDGE(dev))
  2109. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2110. FDI_FE_ERRC_ENABLE);
  2111. }
  2112. static void ivb_modeset_global_resources(struct drm_device *dev)
  2113. {
  2114. struct drm_i915_private *dev_priv = dev->dev_private;
  2115. struct intel_crtc *pipe_B_crtc =
  2116. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2117. struct intel_crtc *pipe_C_crtc =
  2118. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2119. uint32_t temp;
  2120. /* When everything is off disable fdi C so that we could enable fdi B
  2121. * with all lanes. XXX: This misses the case where a pipe is not using
  2122. * any pch resources and so doesn't need any fdi lanes. */
  2123. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2124. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2125. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2126. temp = I915_READ(SOUTH_CHICKEN1);
  2127. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2128. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2129. I915_WRITE(SOUTH_CHICKEN1, temp);
  2130. }
  2131. }
  2132. /* The FDI link training functions for ILK/Ibexpeak. */
  2133. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2134. {
  2135. struct drm_device *dev = crtc->dev;
  2136. struct drm_i915_private *dev_priv = dev->dev_private;
  2137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2138. int pipe = intel_crtc->pipe;
  2139. int plane = intel_crtc->plane;
  2140. u32 reg, temp, tries;
  2141. /* FDI needs bits from pipe & plane first */
  2142. assert_pipe_enabled(dev_priv, pipe);
  2143. assert_plane_enabled(dev_priv, plane);
  2144. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2145. for train result */
  2146. reg = FDI_RX_IMR(pipe);
  2147. temp = I915_READ(reg);
  2148. temp &= ~FDI_RX_SYMBOL_LOCK;
  2149. temp &= ~FDI_RX_BIT_LOCK;
  2150. I915_WRITE(reg, temp);
  2151. I915_READ(reg);
  2152. udelay(150);
  2153. /* enable CPU FDI TX and PCH FDI RX */
  2154. reg = FDI_TX_CTL(pipe);
  2155. temp = I915_READ(reg);
  2156. temp &= ~(7 << 19);
  2157. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2158. temp &= ~FDI_LINK_TRAIN_NONE;
  2159. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2160. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2161. reg = FDI_RX_CTL(pipe);
  2162. temp = I915_READ(reg);
  2163. temp &= ~FDI_LINK_TRAIN_NONE;
  2164. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2165. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2166. POSTING_READ(reg);
  2167. udelay(150);
  2168. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2169. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2170. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2171. FDI_RX_PHASE_SYNC_POINTER_EN);
  2172. reg = FDI_RX_IIR(pipe);
  2173. for (tries = 0; tries < 5; tries++) {
  2174. temp = I915_READ(reg);
  2175. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2176. if ((temp & FDI_RX_BIT_LOCK)) {
  2177. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2178. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2179. break;
  2180. }
  2181. }
  2182. if (tries == 5)
  2183. DRM_ERROR("FDI train 1 fail!\n");
  2184. /* Train 2 */
  2185. reg = FDI_TX_CTL(pipe);
  2186. temp = I915_READ(reg);
  2187. temp &= ~FDI_LINK_TRAIN_NONE;
  2188. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2189. I915_WRITE(reg, temp);
  2190. reg = FDI_RX_CTL(pipe);
  2191. temp = I915_READ(reg);
  2192. temp &= ~FDI_LINK_TRAIN_NONE;
  2193. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2194. I915_WRITE(reg, temp);
  2195. POSTING_READ(reg);
  2196. udelay(150);
  2197. reg = FDI_RX_IIR(pipe);
  2198. for (tries = 0; tries < 5; tries++) {
  2199. temp = I915_READ(reg);
  2200. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2201. if (temp & FDI_RX_SYMBOL_LOCK) {
  2202. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2203. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2204. break;
  2205. }
  2206. }
  2207. if (tries == 5)
  2208. DRM_ERROR("FDI train 2 fail!\n");
  2209. DRM_DEBUG_KMS("FDI train done\n");
  2210. }
  2211. static const int snb_b_fdi_train_param[] = {
  2212. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2213. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2214. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2215. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2216. };
  2217. /* The FDI link training functions for SNB/Cougarpoint. */
  2218. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2219. {
  2220. struct drm_device *dev = crtc->dev;
  2221. struct drm_i915_private *dev_priv = dev->dev_private;
  2222. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2223. int pipe = intel_crtc->pipe;
  2224. u32 reg, temp, i, retry;
  2225. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2226. for train result */
  2227. reg = FDI_RX_IMR(pipe);
  2228. temp = I915_READ(reg);
  2229. temp &= ~FDI_RX_SYMBOL_LOCK;
  2230. temp &= ~FDI_RX_BIT_LOCK;
  2231. I915_WRITE(reg, temp);
  2232. POSTING_READ(reg);
  2233. udelay(150);
  2234. /* enable CPU FDI TX and PCH FDI RX */
  2235. reg = FDI_TX_CTL(pipe);
  2236. temp = I915_READ(reg);
  2237. temp &= ~(7 << 19);
  2238. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2239. temp &= ~FDI_LINK_TRAIN_NONE;
  2240. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2241. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2242. /* SNB-B */
  2243. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2244. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2245. I915_WRITE(FDI_RX_MISC(pipe),
  2246. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2247. reg = FDI_RX_CTL(pipe);
  2248. temp = I915_READ(reg);
  2249. if (HAS_PCH_CPT(dev)) {
  2250. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2251. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2252. } else {
  2253. temp &= ~FDI_LINK_TRAIN_NONE;
  2254. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2255. }
  2256. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2257. POSTING_READ(reg);
  2258. udelay(150);
  2259. for (i = 0; i < 4; i++) {
  2260. reg = FDI_TX_CTL(pipe);
  2261. temp = I915_READ(reg);
  2262. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2263. temp |= snb_b_fdi_train_param[i];
  2264. I915_WRITE(reg, temp);
  2265. POSTING_READ(reg);
  2266. udelay(500);
  2267. for (retry = 0; retry < 5; retry++) {
  2268. reg = FDI_RX_IIR(pipe);
  2269. temp = I915_READ(reg);
  2270. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2271. if (temp & FDI_RX_BIT_LOCK) {
  2272. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2273. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2274. break;
  2275. }
  2276. udelay(50);
  2277. }
  2278. if (retry < 5)
  2279. break;
  2280. }
  2281. if (i == 4)
  2282. DRM_ERROR("FDI train 1 fail!\n");
  2283. /* Train 2 */
  2284. reg = FDI_TX_CTL(pipe);
  2285. temp = I915_READ(reg);
  2286. temp &= ~FDI_LINK_TRAIN_NONE;
  2287. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2288. if (IS_GEN6(dev)) {
  2289. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2290. /* SNB-B */
  2291. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2292. }
  2293. I915_WRITE(reg, temp);
  2294. reg = FDI_RX_CTL(pipe);
  2295. temp = I915_READ(reg);
  2296. if (HAS_PCH_CPT(dev)) {
  2297. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2298. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2299. } else {
  2300. temp &= ~FDI_LINK_TRAIN_NONE;
  2301. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2302. }
  2303. I915_WRITE(reg, temp);
  2304. POSTING_READ(reg);
  2305. udelay(150);
  2306. for (i = 0; i < 4; i++) {
  2307. reg = FDI_TX_CTL(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2310. temp |= snb_b_fdi_train_param[i];
  2311. I915_WRITE(reg, temp);
  2312. POSTING_READ(reg);
  2313. udelay(500);
  2314. for (retry = 0; retry < 5; retry++) {
  2315. reg = FDI_RX_IIR(pipe);
  2316. temp = I915_READ(reg);
  2317. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2318. if (temp & FDI_RX_SYMBOL_LOCK) {
  2319. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2320. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2321. break;
  2322. }
  2323. udelay(50);
  2324. }
  2325. if (retry < 5)
  2326. break;
  2327. }
  2328. if (i == 4)
  2329. DRM_ERROR("FDI train 2 fail!\n");
  2330. DRM_DEBUG_KMS("FDI train done.\n");
  2331. }
  2332. /* Manual link training for Ivy Bridge A0 parts */
  2333. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2334. {
  2335. struct drm_device *dev = crtc->dev;
  2336. struct drm_i915_private *dev_priv = dev->dev_private;
  2337. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2338. int pipe = intel_crtc->pipe;
  2339. u32 reg, temp, i;
  2340. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2341. for train result */
  2342. reg = FDI_RX_IMR(pipe);
  2343. temp = I915_READ(reg);
  2344. temp &= ~FDI_RX_SYMBOL_LOCK;
  2345. temp &= ~FDI_RX_BIT_LOCK;
  2346. I915_WRITE(reg, temp);
  2347. POSTING_READ(reg);
  2348. udelay(150);
  2349. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2350. I915_READ(FDI_RX_IIR(pipe)));
  2351. /* enable CPU FDI TX and PCH FDI RX */
  2352. reg = FDI_TX_CTL(pipe);
  2353. temp = I915_READ(reg);
  2354. temp &= ~(7 << 19);
  2355. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2356. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2357. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2358. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2359. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2360. temp |= FDI_COMPOSITE_SYNC;
  2361. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2362. I915_WRITE(FDI_RX_MISC(pipe),
  2363. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2364. reg = FDI_RX_CTL(pipe);
  2365. temp = I915_READ(reg);
  2366. temp &= ~FDI_LINK_TRAIN_AUTO;
  2367. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2368. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2369. temp |= FDI_COMPOSITE_SYNC;
  2370. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2371. POSTING_READ(reg);
  2372. udelay(150);
  2373. for (i = 0; i < 4; i++) {
  2374. reg = FDI_TX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2377. temp |= snb_b_fdi_train_param[i];
  2378. I915_WRITE(reg, temp);
  2379. POSTING_READ(reg);
  2380. udelay(500);
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_BIT_LOCK ||
  2385. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2386. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2387. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2388. break;
  2389. }
  2390. }
  2391. if (i == 4)
  2392. DRM_ERROR("FDI train 1 fail!\n");
  2393. /* Train 2 */
  2394. reg = FDI_TX_CTL(pipe);
  2395. temp = I915_READ(reg);
  2396. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2397. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2398. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2399. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2400. I915_WRITE(reg, temp);
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2404. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2405. I915_WRITE(reg, temp);
  2406. POSTING_READ(reg);
  2407. udelay(150);
  2408. for (i = 0; i < 4; i++) {
  2409. reg = FDI_TX_CTL(pipe);
  2410. temp = I915_READ(reg);
  2411. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2412. temp |= snb_b_fdi_train_param[i];
  2413. I915_WRITE(reg, temp);
  2414. POSTING_READ(reg);
  2415. udelay(500);
  2416. reg = FDI_RX_IIR(pipe);
  2417. temp = I915_READ(reg);
  2418. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2419. if (temp & FDI_RX_SYMBOL_LOCK) {
  2420. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2421. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2422. break;
  2423. }
  2424. }
  2425. if (i == 4)
  2426. DRM_ERROR("FDI train 2 fail!\n");
  2427. DRM_DEBUG_KMS("FDI train done.\n");
  2428. }
  2429. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2430. {
  2431. struct drm_device *dev = intel_crtc->base.dev;
  2432. struct drm_i915_private *dev_priv = dev->dev_private;
  2433. int pipe = intel_crtc->pipe;
  2434. u32 reg, temp;
  2435. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2436. reg = FDI_RX_CTL(pipe);
  2437. temp = I915_READ(reg);
  2438. temp &= ~((0x7 << 19) | (0x7 << 16));
  2439. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2440. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2441. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2442. POSTING_READ(reg);
  2443. udelay(200);
  2444. /* Switch from Rawclk to PCDclk */
  2445. temp = I915_READ(reg);
  2446. I915_WRITE(reg, temp | FDI_PCDCLK);
  2447. POSTING_READ(reg);
  2448. udelay(200);
  2449. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2450. reg = FDI_TX_CTL(pipe);
  2451. temp = I915_READ(reg);
  2452. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2453. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2454. POSTING_READ(reg);
  2455. udelay(100);
  2456. }
  2457. }
  2458. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2459. {
  2460. struct drm_device *dev = intel_crtc->base.dev;
  2461. struct drm_i915_private *dev_priv = dev->dev_private;
  2462. int pipe = intel_crtc->pipe;
  2463. u32 reg, temp;
  2464. /* Switch from PCDclk to Rawclk */
  2465. reg = FDI_RX_CTL(pipe);
  2466. temp = I915_READ(reg);
  2467. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2468. /* Disable CPU FDI TX PLL */
  2469. reg = FDI_TX_CTL(pipe);
  2470. temp = I915_READ(reg);
  2471. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2472. POSTING_READ(reg);
  2473. udelay(100);
  2474. reg = FDI_RX_CTL(pipe);
  2475. temp = I915_READ(reg);
  2476. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2477. /* Wait for the clocks to turn off. */
  2478. POSTING_READ(reg);
  2479. udelay(100);
  2480. }
  2481. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2482. {
  2483. struct drm_device *dev = crtc->dev;
  2484. struct drm_i915_private *dev_priv = dev->dev_private;
  2485. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2486. int pipe = intel_crtc->pipe;
  2487. u32 reg, temp;
  2488. /* disable CPU FDI tx and PCH FDI rx */
  2489. reg = FDI_TX_CTL(pipe);
  2490. temp = I915_READ(reg);
  2491. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2492. POSTING_READ(reg);
  2493. reg = FDI_RX_CTL(pipe);
  2494. temp = I915_READ(reg);
  2495. temp &= ~(0x7 << 16);
  2496. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2497. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2498. POSTING_READ(reg);
  2499. udelay(100);
  2500. /* Ironlake workaround, disable clock pointer after downing FDI */
  2501. if (HAS_PCH_IBX(dev)) {
  2502. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2503. }
  2504. /* still set train pattern 1 */
  2505. reg = FDI_TX_CTL(pipe);
  2506. temp = I915_READ(reg);
  2507. temp &= ~FDI_LINK_TRAIN_NONE;
  2508. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2509. I915_WRITE(reg, temp);
  2510. reg = FDI_RX_CTL(pipe);
  2511. temp = I915_READ(reg);
  2512. if (HAS_PCH_CPT(dev)) {
  2513. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2514. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2515. } else {
  2516. temp &= ~FDI_LINK_TRAIN_NONE;
  2517. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2518. }
  2519. /* BPC in FDI rx is consistent with that in PIPECONF */
  2520. temp &= ~(0x07 << 16);
  2521. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2522. I915_WRITE(reg, temp);
  2523. POSTING_READ(reg);
  2524. udelay(100);
  2525. }
  2526. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2527. {
  2528. struct drm_device *dev = crtc->dev;
  2529. struct drm_i915_private *dev_priv = dev->dev_private;
  2530. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2531. unsigned long flags;
  2532. bool pending;
  2533. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2534. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2535. return false;
  2536. spin_lock_irqsave(&dev->event_lock, flags);
  2537. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2538. spin_unlock_irqrestore(&dev->event_lock, flags);
  2539. return pending;
  2540. }
  2541. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2542. {
  2543. struct drm_device *dev = crtc->dev;
  2544. struct drm_i915_private *dev_priv = dev->dev_private;
  2545. if (crtc->fb == NULL)
  2546. return;
  2547. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2548. wait_event(dev_priv->pending_flip_queue,
  2549. !intel_crtc_has_pending_flip(crtc));
  2550. mutex_lock(&dev->struct_mutex);
  2551. intel_finish_fb(crtc->fb);
  2552. mutex_unlock(&dev->struct_mutex);
  2553. }
  2554. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2555. {
  2556. struct drm_device *dev = crtc->dev;
  2557. struct intel_encoder *intel_encoder;
  2558. /*
  2559. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2560. * must be driven by its own crtc; no sharing is possible.
  2561. */
  2562. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2563. switch (intel_encoder->type) {
  2564. case INTEL_OUTPUT_EDP:
  2565. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2566. return false;
  2567. continue;
  2568. }
  2569. }
  2570. return true;
  2571. }
  2572. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2573. {
  2574. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2575. }
  2576. /* Program iCLKIP clock to the desired frequency */
  2577. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2578. {
  2579. struct drm_device *dev = crtc->dev;
  2580. struct drm_i915_private *dev_priv = dev->dev_private;
  2581. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2582. u32 temp;
  2583. mutex_lock(&dev_priv->dpio_lock);
  2584. /* It is necessary to ungate the pixclk gate prior to programming
  2585. * the divisors, and gate it back when it is done.
  2586. */
  2587. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2588. /* Disable SSCCTL */
  2589. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2590. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2591. SBI_SSCCTL_DISABLE,
  2592. SBI_ICLK);
  2593. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2594. if (crtc->mode.clock == 20000) {
  2595. auxdiv = 1;
  2596. divsel = 0x41;
  2597. phaseinc = 0x20;
  2598. } else {
  2599. /* The iCLK virtual clock root frequency is in MHz,
  2600. * but the crtc->mode.clock in in KHz. To get the divisors,
  2601. * it is necessary to divide one by another, so we
  2602. * convert the virtual clock precision to KHz here for higher
  2603. * precision.
  2604. */
  2605. u32 iclk_virtual_root_freq = 172800 * 1000;
  2606. u32 iclk_pi_range = 64;
  2607. u32 desired_divisor, msb_divisor_value, pi_value;
  2608. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2609. msb_divisor_value = desired_divisor / iclk_pi_range;
  2610. pi_value = desired_divisor % iclk_pi_range;
  2611. auxdiv = 0;
  2612. divsel = msb_divisor_value - 2;
  2613. phaseinc = pi_value;
  2614. }
  2615. /* This should not happen with any sane values */
  2616. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2617. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2618. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2619. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2620. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2621. crtc->mode.clock,
  2622. auxdiv,
  2623. divsel,
  2624. phasedir,
  2625. phaseinc);
  2626. /* Program SSCDIVINTPHASE6 */
  2627. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2628. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2629. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2630. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2631. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2632. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2633. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2634. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2635. /* Program SSCAUXDIV */
  2636. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2637. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2638. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2639. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2640. /* Enable modulator and associated divider */
  2641. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2642. temp &= ~SBI_SSCCTL_DISABLE;
  2643. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2644. /* Wait for initialization time */
  2645. udelay(24);
  2646. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2647. mutex_unlock(&dev_priv->dpio_lock);
  2648. }
  2649. /*
  2650. * Enable PCH resources required for PCH ports:
  2651. * - PCH PLLs
  2652. * - FDI training & RX/TX
  2653. * - update transcoder timings
  2654. * - DP transcoding bits
  2655. * - transcoder
  2656. */
  2657. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2658. {
  2659. struct drm_device *dev = crtc->dev;
  2660. struct drm_i915_private *dev_priv = dev->dev_private;
  2661. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2662. int pipe = intel_crtc->pipe;
  2663. u32 reg, temp;
  2664. assert_transcoder_disabled(dev_priv, pipe);
  2665. /* Write the TU size bits before fdi link training, so that error
  2666. * detection works. */
  2667. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2668. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2669. /* For PCH output, training FDI link */
  2670. dev_priv->display.fdi_link_train(crtc);
  2671. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2672. * transcoder, and we actually should do this to not upset any PCH
  2673. * transcoder that already use the clock when we share it.
  2674. *
  2675. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2676. * unconditionally resets the pll - we need that to have the right LVDS
  2677. * enable sequence. */
  2678. ironlake_enable_pch_pll(intel_crtc);
  2679. if (HAS_PCH_CPT(dev)) {
  2680. u32 sel;
  2681. temp = I915_READ(PCH_DPLL_SEL);
  2682. switch (pipe) {
  2683. default:
  2684. case 0:
  2685. temp |= TRANSA_DPLL_ENABLE;
  2686. sel = TRANSA_DPLLB_SEL;
  2687. break;
  2688. case 1:
  2689. temp |= TRANSB_DPLL_ENABLE;
  2690. sel = TRANSB_DPLLB_SEL;
  2691. break;
  2692. case 2:
  2693. temp |= TRANSC_DPLL_ENABLE;
  2694. sel = TRANSC_DPLLB_SEL;
  2695. break;
  2696. }
  2697. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2698. temp |= sel;
  2699. else
  2700. temp &= ~sel;
  2701. I915_WRITE(PCH_DPLL_SEL, temp);
  2702. }
  2703. /* set transcoder timing, panel must allow it */
  2704. assert_panel_unlocked(dev_priv, pipe);
  2705. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2706. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2707. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2708. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2709. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2710. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2711. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2712. intel_fdi_normal_train(crtc);
  2713. /* For PCH DP, enable TRANS_DP_CTL */
  2714. if (HAS_PCH_CPT(dev) &&
  2715. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2716. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2717. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2718. reg = TRANS_DP_CTL(pipe);
  2719. temp = I915_READ(reg);
  2720. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2721. TRANS_DP_SYNC_MASK |
  2722. TRANS_DP_BPC_MASK);
  2723. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2724. TRANS_DP_ENH_FRAMING);
  2725. temp |= bpc << 9; /* same format but at 11:9 */
  2726. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2727. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2728. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2729. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2730. switch (intel_trans_dp_port_sel(crtc)) {
  2731. case PCH_DP_B:
  2732. temp |= TRANS_DP_PORT_SEL_B;
  2733. break;
  2734. case PCH_DP_C:
  2735. temp |= TRANS_DP_PORT_SEL_C;
  2736. break;
  2737. case PCH_DP_D:
  2738. temp |= TRANS_DP_PORT_SEL_D;
  2739. break;
  2740. default:
  2741. BUG();
  2742. }
  2743. I915_WRITE(reg, temp);
  2744. }
  2745. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2746. }
  2747. static void lpt_pch_enable(struct drm_crtc *crtc)
  2748. {
  2749. struct drm_device *dev = crtc->dev;
  2750. struct drm_i915_private *dev_priv = dev->dev_private;
  2751. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2752. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2753. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2754. lpt_program_iclkip(crtc);
  2755. /* Set transcoder timing. */
  2756. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2757. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2758. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2759. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2760. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2761. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2762. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2763. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2764. }
  2765. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2766. {
  2767. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2768. if (pll == NULL)
  2769. return;
  2770. if (pll->refcount == 0) {
  2771. WARN(1, "bad PCH PLL refcount\n");
  2772. return;
  2773. }
  2774. --pll->refcount;
  2775. intel_crtc->pch_pll = NULL;
  2776. }
  2777. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2778. {
  2779. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2780. struct intel_pch_pll *pll;
  2781. int i;
  2782. pll = intel_crtc->pch_pll;
  2783. if (pll) {
  2784. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2785. intel_crtc->base.base.id, pll->pll_reg);
  2786. goto prepare;
  2787. }
  2788. if (HAS_PCH_IBX(dev_priv->dev)) {
  2789. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2790. i = intel_crtc->pipe;
  2791. pll = &dev_priv->pch_plls[i];
  2792. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2793. intel_crtc->base.base.id, pll->pll_reg);
  2794. goto found;
  2795. }
  2796. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2797. pll = &dev_priv->pch_plls[i];
  2798. /* Only want to check enabled timings first */
  2799. if (pll->refcount == 0)
  2800. continue;
  2801. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2802. fp == I915_READ(pll->fp0_reg)) {
  2803. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2804. intel_crtc->base.base.id,
  2805. pll->pll_reg, pll->refcount, pll->active);
  2806. goto found;
  2807. }
  2808. }
  2809. /* Ok no matching timings, maybe there's a free one? */
  2810. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2811. pll = &dev_priv->pch_plls[i];
  2812. if (pll->refcount == 0) {
  2813. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2814. intel_crtc->base.base.id, pll->pll_reg);
  2815. goto found;
  2816. }
  2817. }
  2818. return NULL;
  2819. found:
  2820. intel_crtc->pch_pll = pll;
  2821. pll->refcount++;
  2822. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2823. prepare: /* separate function? */
  2824. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2825. /* Wait for the clocks to stabilize before rewriting the regs */
  2826. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2827. POSTING_READ(pll->pll_reg);
  2828. udelay(150);
  2829. I915_WRITE(pll->fp0_reg, fp);
  2830. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2831. pll->on = false;
  2832. return pll;
  2833. }
  2834. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2835. {
  2836. struct drm_i915_private *dev_priv = dev->dev_private;
  2837. int dslreg = PIPEDSL(pipe);
  2838. u32 temp;
  2839. temp = I915_READ(dslreg);
  2840. udelay(500);
  2841. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2842. if (wait_for(I915_READ(dslreg) != temp, 5))
  2843. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2844. }
  2845. }
  2846. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2847. {
  2848. struct drm_device *dev = crtc->dev;
  2849. struct drm_i915_private *dev_priv = dev->dev_private;
  2850. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2851. struct intel_encoder *encoder;
  2852. int pipe = intel_crtc->pipe;
  2853. int plane = intel_crtc->plane;
  2854. u32 temp;
  2855. bool is_pch_port;
  2856. WARN_ON(!crtc->enabled);
  2857. if (intel_crtc->active)
  2858. return;
  2859. intel_crtc->active = true;
  2860. intel_update_watermarks(dev);
  2861. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2862. temp = I915_READ(PCH_LVDS);
  2863. if ((temp & LVDS_PORT_EN) == 0)
  2864. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2865. }
  2866. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2867. if (is_pch_port) {
  2868. /* Note: FDI PLL enabling _must_ be done before we enable the
  2869. * cpu pipes, hence this is separate from all the other fdi/pch
  2870. * enabling. */
  2871. ironlake_fdi_pll_enable(intel_crtc);
  2872. } else {
  2873. assert_fdi_tx_disabled(dev_priv, pipe);
  2874. assert_fdi_rx_disabled(dev_priv, pipe);
  2875. }
  2876. for_each_encoder_on_crtc(dev, crtc, encoder)
  2877. if (encoder->pre_enable)
  2878. encoder->pre_enable(encoder);
  2879. /* Enable panel fitting for LVDS */
  2880. if (dev_priv->pch_pf_size &&
  2881. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2882. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2883. /* Force use of hard-coded filter coefficients
  2884. * as some pre-programmed values are broken,
  2885. * e.g. x201.
  2886. */
  2887. if (IS_IVYBRIDGE(dev))
  2888. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2889. PF_PIPE_SEL_IVB(pipe));
  2890. else
  2891. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2892. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2893. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2894. }
  2895. /*
  2896. * On ILK+ LUT must be loaded before the pipe is running but with
  2897. * clocks enabled
  2898. */
  2899. intel_crtc_load_lut(crtc);
  2900. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2901. intel_enable_plane(dev_priv, plane, pipe);
  2902. if (is_pch_port)
  2903. ironlake_pch_enable(crtc);
  2904. mutex_lock(&dev->struct_mutex);
  2905. intel_update_fbc(dev);
  2906. mutex_unlock(&dev->struct_mutex);
  2907. intel_crtc_update_cursor(crtc, true);
  2908. for_each_encoder_on_crtc(dev, crtc, encoder)
  2909. encoder->enable(encoder);
  2910. if (HAS_PCH_CPT(dev))
  2911. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2912. /*
  2913. * There seems to be a race in PCH platform hw (at least on some
  2914. * outputs) where an enabled pipe still completes any pageflip right
  2915. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2916. * as the first vblank happend, everything works as expected. Hence just
  2917. * wait for one vblank before returning to avoid strange things
  2918. * happening.
  2919. */
  2920. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2921. }
  2922. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2923. {
  2924. struct drm_device *dev = crtc->dev;
  2925. struct drm_i915_private *dev_priv = dev->dev_private;
  2926. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2927. struct intel_encoder *encoder;
  2928. int pipe = intel_crtc->pipe;
  2929. int plane = intel_crtc->plane;
  2930. bool is_pch_port;
  2931. WARN_ON(!crtc->enabled);
  2932. if (intel_crtc->active)
  2933. return;
  2934. intel_crtc->active = true;
  2935. intel_update_watermarks(dev);
  2936. is_pch_port = haswell_crtc_driving_pch(crtc);
  2937. if (is_pch_port)
  2938. dev_priv->display.fdi_link_train(crtc);
  2939. for_each_encoder_on_crtc(dev, crtc, encoder)
  2940. if (encoder->pre_enable)
  2941. encoder->pre_enable(encoder);
  2942. intel_ddi_enable_pipe_clock(intel_crtc);
  2943. /* Enable panel fitting for eDP */
  2944. if (dev_priv->pch_pf_size &&
  2945. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2946. /* Force use of hard-coded filter coefficients
  2947. * as some pre-programmed values are broken,
  2948. * e.g. x201.
  2949. */
  2950. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2951. PF_PIPE_SEL_IVB(pipe));
  2952. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2953. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2954. }
  2955. /*
  2956. * On ILK+ LUT must be loaded before the pipe is running but with
  2957. * clocks enabled
  2958. */
  2959. intel_crtc_load_lut(crtc);
  2960. intel_ddi_set_pipe_settings(crtc);
  2961. intel_ddi_enable_pipe_func(crtc);
  2962. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2963. intel_enable_plane(dev_priv, plane, pipe);
  2964. if (is_pch_port)
  2965. lpt_pch_enable(crtc);
  2966. mutex_lock(&dev->struct_mutex);
  2967. intel_update_fbc(dev);
  2968. mutex_unlock(&dev->struct_mutex);
  2969. intel_crtc_update_cursor(crtc, true);
  2970. for_each_encoder_on_crtc(dev, crtc, encoder)
  2971. encoder->enable(encoder);
  2972. /*
  2973. * There seems to be a race in PCH platform hw (at least on some
  2974. * outputs) where an enabled pipe still completes any pageflip right
  2975. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2976. * as the first vblank happend, everything works as expected. Hence just
  2977. * wait for one vblank before returning to avoid strange things
  2978. * happening.
  2979. */
  2980. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2981. }
  2982. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2983. {
  2984. struct drm_device *dev = crtc->dev;
  2985. struct drm_i915_private *dev_priv = dev->dev_private;
  2986. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2987. struct intel_encoder *encoder;
  2988. int pipe = intel_crtc->pipe;
  2989. int plane = intel_crtc->plane;
  2990. u32 reg, temp;
  2991. if (!intel_crtc->active)
  2992. return;
  2993. for_each_encoder_on_crtc(dev, crtc, encoder)
  2994. encoder->disable(encoder);
  2995. intel_crtc_wait_for_pending_flips(crtc);
  2996. drm_vblank_off(dev, pipe);
  2997. intel_crtc_update_cursor(crtc, false);
  2998. intel_disable_plane(dev_priv, plane, pipe);
  2999. if (dev_priv->cfb_plane == plane)
  3000. intel_disable_fbc(dev);
  3001. intel_disable_pipe(dev_priv, pipe);
  3002. /* Disable PF */
  3003. I915_WRITE(PF_CTL(pipe), 0);
  3004. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3005. for_each_encoder_on_crtc(dev, crtc, encoder)
  3006. if (encoder->post_disable)
  3007. encoder->post_disable(encoder);
  3008. ironlake_fdi_disable(crtc);
  3009. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3010. if (HAS_PCH_CPT(dev)) {
  3011. /* disable TRANS_DP_CTL */
  3012. reg = TRANS_DP_CTL(pipe);
  3013. temp = I915_READ(reg);
  3014. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3015. temp |= TRANS_DP_PORT_SEL_NONE;
  3016. I915_WRITE(reg, temp);
  3017. /* disable DPLL_SEL */
  3018. temp = I915_READ(PCH_DPLL_SEL);
  3019. switch (pipe) {
  3020. case 0:
  3021. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3022. break;
  3023. case 1:
  3024. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3025. break;
  3026. case 2:
  3027. /* C shares PLL A or B */
  3028. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3029. break;
  3030. default:
  3031. BUG(); /* wtf */
  3032. }
  3033. I915_WRITE(PCH_DPLL_SEL, temp);
  3034. }
  3035. /* disable PCH DPLL */
  3036. intel_disable_pch_pll(intel_crtc);
  3037. ironlake_fdi_pll_disable(intel_crtc);
  3038. intel_crtc->active = false;
  3039. intel_update_watermarks(dev);
  3040. mutex_lock(&dev->struct_mutex);
  3041. intel_update_fbc(dev);
  3042. mutex_unlock(&dev->struct_mutex);
  3043. }
  3044. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3045. {
  3046. struct drm_device *dev = crtc->dev;
  3047. struct drm_i915_private *dev_priv = dev->dev_private;
  3048. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3049. struct intel_encoder *encoder;
  3050. int pipe = intel_crtc->pipe;
  3051. int plane = intel_crtc->plane;
  3052. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3053. bool is_pch_port;
  3054. if (!intel_crtc->active)
  3055. return;
  3056. is_pch_port = haswell_crtc_driving_pch(crtc);
  3057. for_each_encoder_on_crtc(dev, crtc, encoder)
  3058. encoder->disable(encoder);
  3059. intel_crtc_wait_for_pending_flips(crtc);
  3060. drm_vblank_off(dev, pipe);
  3061. intel_crtc_update_cursor(crtc, false);
  3062. intel_disable_plane(dev_priv, plane, pipe);
  3063. if (dev_priv->cfb_plane == plane)
  3064. intel_disable_fbc(dev);
  3065. intel_disable_pipe(dev_priv, pipe);
  3066. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3067. /* Disable PF */
  3068. I915_WRITE(PF_CTL(pipe), 0);
  3069. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3070. intel_ddi_disable_pipe_clock(intel_crtc);
  3071. for_each_encoder_on_crtc(dev, crtc, encoder)
  3072. if (encoder->post_disable)
  3073. encoder->post_disable(encoder);
  3074. if (is_pch_port) {
  3075. lpt_disable_pch_transcoder(dev_priv);
  3076. intel_ddi_fdi_disable(crtc);
  3077. }
  3078. intel_crtc->active = false;
  3079. intel_update_watermarks(dev);
  3080. mutex_lock(&dev->struct_mutex);
  3081. intel_update_fbc(dev);
  3082. mutex_unlock(&dev->struct_mutex);
  3083. }
  3084. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3085. {
  3086. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3087. intel_put_pch_pll(intel_crtc);
  3088. }
  3089. static void haswell_crtc_off(struct drm_crtc *crtc)
  3090. {
  3091. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3092. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3093. * start using it. */
  3094. intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3095. intel_ddi_put_crtc_pll(crtc);
  3096. }
  3097. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3098. {
  3099. if (!enable && intel_crtc->overlay) {
  3100. struct drm_device *dev = intel_crtc->base.dev;
  3101. struct drm_i915_private *dev_priv = dev->dev_private;
  3102. mutex_lock(&dev->struct_mutex);
  3103. dev_priv->mm.interruptible = false;
  3104. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3105. dev_priv->mm.interruptible = true;
  3106. mutex_unlock(&dev->struct_mutex);
  3107. }
  3108. /* Let userspace switch the overlay on again. In most cases userspace
  3109. * has to recompute where to put it anyway.
  3110. */
  3111. }
  3112. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3117. struct intel_encoder *encoder;
  3118. int pipe = intel_crtc->pipe;
  3119. int plane = intel_crtc->plane;
  3120. WARN_ON(!crtc->enabled);
  3121. if (intel_crtc->active)
  3122. return;
  3123. intel_crtc->active = true;
  3124. intel_update_watermarks(dev);
  3125. intel_enable_pll(dev_priv, pipe);
  3126. for_each_encoder_on_crtc(dev, crtc, encoder)
  3127. if (encoder->pre_enable)
  3128. encoder->pre_enable(encoder);
  3129. intel_enable_pipe(dev_priv, pipe, false);
  3130. intel_enable_plane(dev_priv, plane, pipe);
  3131. intel_crtc_load_lut(crtc);
  3132. intel_update_fbc(dev);
  3133. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3134. intel_crtc_dpms_overlay(intel_crtc, true);
  3135. intel_crtc_update_cursor(crtc, true);
  3136. for_each_encoder_on_crtc(dev, crtc, encoder)
  3137. encoder->enable(encoder);
  3138. }
  3139. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3140. {
  3141. struct drm_device *dev = crtc->dev;
  3142. struct drm_i915_private *dev_priv = dev->dev_private;
  3143. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3144. struct intel_encoder *encoder;
  3145. int pipe = intel_crtc->pipe;
  3146. int plane = intel_crtc->plane;
  3147. u32 pctl;
  3148. if (!intel_crtc->active)
  3149. return;
  3150. for_each_encoder_on_crtc(dev, crtc, encoder)
  3151. encoder->disable(encoder);
  3152. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3153. intel_crtc_wait_for_pending_flips(crtc);
  3154. drm_vblank_off(dev, pipe);
  3155. intel_crtc_dpms_overlay(intel_crtc, false);
  3156. intel_crtc_update_cursor(crtc, false);
  3157. if (dev_priv->cfb_plane == plane)
  3158. intel_disable_fbc(dev);
  3159. intel_disable_plane(dev_priv, plane, pipe);
  3160. intel_disable_pipe(dev_priv, pipe);
  3161. /* Disable pannel fitter if it is on this pipe. */
  3162. pctl = I915_READ(PFIT_CONTROL);
  3163. if ((pctl & PFIT_ENABLE) &&
  3164. ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
  3165. I915_WRITE(PFIT_CONTROL, 0);
  3166. intel_disable_pll(dev_priv, pipe);
  3167. intel_crtc->active = false;
  3168. intel_update_fbc(dev);
  3169. intel_update_watermarks(dev);
  3170. }
  3171. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3172. {
  3173. }
  3174. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3175. bool enabled)
  3176. {
  3177. struct drm_device *dev = crtc->dev;
  3178. struct drm_i915_master_private *master_priv;
  3179. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3180. int pipe = intel_crtc->pipe;
  3181. if (!dev->primary->master)
  3182. return;
  3183. master_priv = dev->primary->master->driver_priv;
  3184. if (!master_priv->sarea_priv)
  3185. return;
  3186. switch (pipe) {
  3187. case 0:
  3188. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3189. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3190. break;
  3191. case 1:
  3192. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3193. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3194. break;
  3195. default:
  3196. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3197. break;
  3198. }
  3199. }
  3200. /**
  3201. * Sets the power management mode of the pipe and plane.
  3202. */
  3203. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3204. {
  3205. struct drm_device *dev = crtc->dev;
  3206. struct drm_i915_private *dev_priv = dev->dev_private;
  3207. struct intel_encoder *intel_encoder;
  3208. bool enable = false;
  3209. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3210. enable |= intel_encoder->connectors_active;
  3211. if (enable)
  3212. dev_priv->display.crtc_enable(crtc);
  3213. else
  3214. dev_priv->display.crtc_disable(crtc);
  3215. intel_crtc_update_sarea(crtc, enable);
  3216. }
  3217. static void intel_crtc_noop(struct drm_crtc *crtc)
  3218. {
  3219. }
  3220. static void intel_crtc_disable(struct drm_crtc *crtc)
  3221. {
  3222. struct drm_device *dev = crtc->dev;
  3223. struct drm_connector *connector;
  3224. struct drm_i915_private *dev_priv = dev->dev_private;
  3225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3226. /* crtc should still be enabled when we disable it. */
  3227. WARN_ON(!crtc->enabled);
  3228. intel_crtc->eld_vld = false;
  3229. dev_priv->display.crtc_disable(crtc);
  3230. intel_crtc_update_sarea(crtc, false);
  3231. dev_priv->display.off(crtc);
  3232. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3233. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3234. if (crtc->fb) {
  3235. mutex_lock(&dev->struct_mutex);
  3236. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3237. mutex_unlock(&dev->struct_mutex);
  3238. crtc->fb = NULL;
  3239. }
  3240. /* Update computed state. */
  3241. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3242. if (!connector->encoder || !connector->encoder->crtc)
  3243. continue;
  3244. if (connector->encoder->crtc != crtc)
  3245. continue;
  3246. connector->dpms = DRM_MODE_DPMS_OFF;
  3247. to_intel_encoder(connector->encoder)->connectors_active = false;
  3248. }
  3249. }
  3250. void intel_modeset_disable(struct drm_device *dev)
  3251. {
  3252. struct drm_crtc *crtc;
  3253. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3254. if (crtc->enabled)
  3255. intel_crtc_disable(crtc);
  3256. }
  3257. }
  3258. void intel_encoder_noop(struct drm_encoder *encoder)
  3259. {
  3260. }
  3261. void intel_encoder_destroy(struct drm_encoder *encoder)
  3262. {
  3263. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3264. drm_encoder_cleanup(encoder);
  3265. kfree(intel_encoder);
  3266. }
  3267. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3268. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3269. * state of the entire output pipe. */
  3270. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3271. {
  3272. if (mode == DRM_MODE_DPMS_ON) {
  3273. encoder->connectors_active = true;
  3274. intel_crtc_update_dpms(encoder->base.crtc);
  3275. } else {
  3276. encoder->connectors_active = false;
  3277. intel_crtc_update_dpms(encoder->base.crtc);
  3278. }
  3279. }
  3280. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3281. * internal consistency). */
  3282. static void intel_connector_check_state(struct intel_connector *connector)
  3283. {
  3284. if (connector->get_hw_state(connector)) {
  3285. struct intel_encoder *encoder = connector->encoder;
  3286. struct drm_crtc *crtc;
  3287. bool encoder_enabled;
  3288. enum pipe pipe;
  3289. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3290. connector->base.base.id,
  3291. drm_get_connector_name(&connector->base));
  3292. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3293. "wrong connector dpms state\n");
  3294. WARN(connector->base.encoder != &encoder->base,
  3295. "active connector not linked to encoder\n");
  3296. WARN(!encoder->connectors_active,
  3297. "encoder->connectors_active not set\n");
  3298. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3299. WARN(!encoder_enabled, "encoder not enabled\n");
  3300. if (WARN_ON(!encoder->base.crtc))
  3301. return;
  3302. crtc = encoder->base.crtc;
  3303. WARN(!crtc->enabled, "crtc not enabled\n");
  3304. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3305. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3306. "encoder active on the wrong pipe\n");
  3307. }
  3308. }
  3309. /* Even simpler default implementation, if there's really no special case to
  3310. * consider. */
  3311. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3312. {
  3313. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3314. /* All the simple cases only support two dpms states. */
  3315. if (mode != DRM_MODE_DPMS_ON)
  3316. mode = DRM_MODE_DPMS_OFF;
  3317. if (mode == connector->dpms)
  3318. return;
  3319. connector->dpms = mode;
  3320. /* Only need to change hw state when actually enabled */
  3321. if (encoder->base.crtc)
  3322. intel_encoder_dpms(encoder, mode);
  3323. else
  3324. WARN_ON(encoder->connectors_active != false);
  3325. intel_modeset_check_state(connector->dev);
  3326. }
  3327. /* Simple connector->get_hw_state implementation for encoders that support only
  3328. * one connector and no cloning and hence the encoder state determines the state
  3329. * of the connector. */
  3330. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3331. {
  3332. enum pipe pipe = 0;
  3333. struct intel_encoder *encoder = connector->encoder;
  3334. return encoder->get_hw_state(encoder, &pipe);
  3335. }
  3336. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3337. const struct drm_display_mode *mode,
  3338. struct drm_display_mode *adjusted_mode)
  3339. {
  3340. struct drm_device *dev = crtc->dev;
  3341. if (HAS_PCH_SPLIT(dev)) {
  3342. /* FDI link clock is fixed at 2.7G */
  3343. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3344. return false;
  3345. }
  3346. /* All interlaced capable intel hw wants timings in frames. Note though
  3347. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3348. * timings, so we need to be careful not to clobber these.*/
  3349. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3350. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3351. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3352. * with a hsync front porch of 0.
  3353. */
  3354. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3355. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3356. return false;
  3357. return true;
  3358. }
  3359. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3360. {
  3361. return 400000; /* FIXME */
  3362. }
  3363. static int i945_get_display_clock_speed(struct drm_device *dev)
  3364. {
  3365. return 400000;
  3366. }
  3367. static int i915_get_display_clock_speed(struct drm_device *dev)
  3368. {
  3369. return 333000;
  3370. }
  3371. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3372. {
  3373. return 200000;
  3374. }
  3375. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3376. {
  3377. u16 gcfgc = 0;
  3378. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3379. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3380. return 133000;
  3381. else {
  3382. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3383. case GC_DISPLAY_CLOCK_333_MHZ:
  3384. return 333000;
  3385. default:
  3386. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3387. return 190000;
  3388. }
  3389. }
  3390. }
  3391. static int i865_get_display_clock_speed(struct drm_device *dev)
  3392. {
  3393. return 266000;
  3394. }
  3395. static int i855_get_display_clock_speed(struct drm_device *dev)
  3396. {
  3397. u16 hpllcc = 0;
  3398. /* Assume that the hardware is in the high speed state. This
  3399. * should be the default.
  3400. */
  3401. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3402. case GC_CLOCK_133_200:
  3403. case GC_CLOCK_100_200:
  3404. return 200000;
  3405. case GC_CLOCK_166_250:
  3406. return 250000;
  3407. case GC_CLOCK_100_133:
  3408. return 133000;
  3409. }
  3410. /* Shouldn't happen */
  3411. return 0;
  3412. }
  3413. static int i830_get_display_clock_speed(struct drm_device *dev)
  3414. {
  3415. return 133000;
  3416. }
  3417. static void
  3418. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3419. {
  3420. while (*num > 0xffffff || *den > 0xffffff) {
  3421. *num >>= 1;
  3422. *den >>= 1;
  3423. }
  3424. }
  3425. void
  3426. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3427. int pixel_clock, int link_clock,
  3428. struct intel_link_m_n *m_n)
  3429. {
  3430. m_n->tu = 64;
  3431. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3432. m_n->gmch_n = link_clock * nlanes * 8;
  3433. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3434. m_n->link_m = pixel_clock;
  3435. m_n->link_n = link_clock;
  3436. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3437. }
  3438. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3439. {
  3440. if (i915_panel_use_ssc >= 0)
  3441. return i915_panel_use_ssc != 0;
  3442. return dev_priv->lvds_use_ssc
  3443. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3444. }
  3445. /**
  3446. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3447. * @crtc: CRTC structure
  3448. * @mode: requested mode
  3449. *
  3450. * A pipe may be connected to one or more outputs. Based on the depth of the
  3451. * attached framebuffer, choose a good color depth to use on the pipe.
  3452. *
  3453. * If possible, match the pipe depth to the fb depth. In some cases, this
  3454. * isn't ideal, because the connected output supports a lesser or restricted
  3455. * set of depths. Resolve that here:
  3456. * LVDS typically supports only 6bpc, so clamp down in that case
  3457. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3458. * Displays may support a restricted set as well, check EDID and clamp as
  3459. * appropriate.
  3460. * DP may want to dither down to 6bpc to fit larger modes
  3461. *
  3462. * RETURNS:
  3463. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3464. * true if they don't match).
  3465. */
  3466. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3467. struct drm_framebuffer *fb,
  3468. unsigned int *pipe_bpp,
  3469. struct drm_display_mode *mode)
  3470. {
  3471. struct drm_device *dev = crtc->dev;
  3472. struct drm_i915_private *dev_priv = dev->dev_private;
  3473. struct drm_connector *connector;
  3474. struct intel_encoder *intel_encoder;
  3475. unsigned int display_bpc = UINT_MAX, bpc;
  3476. /* Walk the encoders & connectors on this crtc, get min bpc */
  3477. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3478. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3479. unsigned int lvds_bpc;
  3480. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3481. LVDS_A3_POWER_UP)
  3482. lvds_bpc = 8;
  3483. else
  3484. lvds_bpc = 6;
  3485. if (lvds_bpc < display_bpc) {
  3486. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3487. display_bpc = lvds_bpc;
  3488. }
  3489. continue;
  3490. }
  3491. /* Not one of the known troublemakers, check the EDID */
  3492. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3493. head) {
  3494. if (connector->encoder != &intel_encoder->base)
  3495. continue;
  3496. /* Don't use an invalid EDID bpc value */
  3497. if (connector->display_info.bpc &&
  3498. connector->display_info.bpc < display_bpc) {
  3499. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3500. display_bpc = connector->display_info.bpc;
  3501. }
  3502. }
  3503. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  3504. /* Use VBT settings if we have an eDP panel */
  3505. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  3506. if (edp_bpc && edp_bpc < display_bpc) {
  3507. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  3508. display_bpc = edp_bpc;
  3509. }
  3510. continue;
  3511. }
  3512. /*
  3513. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3514. * through, clamp it down. (Note: >12bpc will be caught below.)
  3515. */
  3516. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3517. if (display_bpc > 8 && display_bpc < 12) {
  3518. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3519. display_bpc = 12;
  3520. } else {
  3521. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3522. display_bpc = 8;
  3523. }
  3524. }
  3525. }
  3526. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3527. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3528. display_bpc = 6;
  3529. }
  3530. /*
  3531. * We could just drive the pipe at the highest bpc all the time and
  3532. * enable dithering as needed, but that costs bandwidth. So choose
  3533. * the minimum value that expresses the full color range of the fb but
  3534. * also stays within the max display bpc discovered above.
  3535. */
  3536. switch (fb->depth) {
  3537. case 8:
  3538. bpc = 8; /* since we go through a colormap */
  3539. break;
  3540. case 15:
  3541. case 16:
  3542. bpc = 6; /* min is 18bpp */
  3543. break;
  3544. case 24:
  3545. bpc = 8;
  3546. break;
  3547. case 30:
  3548. bpc = 10;
  3549. break;
  3550. case 48:
  3551. bpc = 12;
  3552. break;
  3553. default:
  3554. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3555. bpc = min((unsigned int)8, display_bpc);
  3556. break;
  3557. }
  3558. display_bpc = min(display_bpc, bpc);
  3559. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3560. bpc, display_bpc);
  3561. *pipe_bpp = display_bpc * 3;
  3562. return display_bpc != bpc;
  3563. }
  3564. static int vlv_get_refclk(struct drm_crtc *crtc)
  3565. {
  3566. struct drm_device *dev = crtc->dev;
  3567. struct drm_i915_private *dev_priv = dev->dev_private;
  3568. int refclk = 27000; /* for DP & HDMI */
  3569. return 100000; /* only one validated so far */
  3570. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3571. refclk = 96000;
  3572. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3573. if (intel_panel_use_ssc(dev_priv))
  3574. refclk = 100000;
  3575. else
  3576. refclk = 96000;
  3577. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3578. refclk = 100000;
  3579. }
  3580. return refclk;
  3581. }
  3582. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3583. {
  3584. struct drm_device *dev = crtc->dev;
  3585. struct drm_i915_private *dev_priv = dev->dev_private;
  3586. int refclk;
  3587. if (IS_VALLEYVIEW(dev)) {
  3588. refclk = vlv_get_refclk(crtc);
  3589. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3590. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3591. refclk = dev_priv->lvds_ssc_freq * 1000;
  3592. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3593. refclk / 1000);
  3594. } else if (!IS_GEN2(dev)) {
  3595. refclk = 96000;
  3596. } else {
  3597. refclk = 48000;
  3598. }
  3599. return refclk;
  3600. }
  3601. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3602. intel_clock_t *clock)
  3603. {
  3604. /* SDVO TV has fixed PLL values depend on its clock range,
  3605. this mirrors vbios setting. */
  3606. if (adjusted_mode->clock >= 100000
  3607. && adjusted_mode->clock < 140500) {
  3608. clock->p1 = 2;
  3609. clock->p2 = 10;
  3610. clock->n = 3;
  3611. clock->m1 = 16;
  3612. clock->m2 = 8;
  3613. } else if (adjusted_mode->clock >= 140500
  3614. && adjusted_mode->clock <= 200000) {
  3615. clock->p1 = 1;
  3616. clock->p2 = 10;
  3617. clock->n = 6;
  3618. clock->m1 = 12;
  3619. clock->m2 = 8;
  3620. }
  3621. }
  3622. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3623. intel_clock_t *clock,
  3624. intel_clock_t *reduced_clock)
  3625. {
  3626. struct drm_device *dev = crtc->dev;
  3627. struct drm_i915_private *dev_priv = dev->dev_private;
  3628. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3629. int pipe = intel_crtc->pipe;
  3630. u32 fp, fp2 = 0;
  3631. if (IS_PINEVIEW(dev)) {
  3632. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3633. if (reduced_clock)
  3634. fp2 = (1 << reduced_clock->n) << 16 |
  3635. reduced_clock->m1 << 8 | reduced_clock->m2;
  3636. } else {
  3637. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3638. if (reduced_clock)
  3639. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3640. reduced_clock->m2;
  3641. }
  3642. I915_WRITE(FP0(pipe), fp);
  3643. intel_crtc->lowfreq_avail = false;
  3644. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3645. reduced_clock && i915_powersave) {
  3646. I915_WRITE(FP1(pipe), fp2);
  3647. intel_crtc->lowfreq_avail = true;
  3648. } else {
  3649. I915_WRITE(FP1(pipe), fp);
  3650. }
  3651. }
  3652. static void vlv_update_pll(struct drm_crtc *crtc,
  3653. struct drm_display_mode *mode,
  3654. struct drm_display_mode *adjusted_mode,
  3655. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3656. int num_connectors)
  3657. {
  3658. struct drm_device *dev = crtc->dev;
  3659. struct drm_i915_private *dev_priv = dev->dev_private;
  3660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3661. int pipe = intel_crtc->pipe;
  3662. u32 dpll, mdiv, pdiv;
  3663. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3664. bool is_sdvo;
  3665. u32 temp;
  3666. mutex_lock(&dev_priv->dpio_lock);
  3667. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3668. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3669. dpll = DPLL_VGA_MODE_DIS;
  3670. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3671. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3672. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3673. I915_WRITE(DPLL(pipe), dpll);
  3674. POSTING_READ(DPLL(pipe));
  3675. bestn = clock->n;
  3676. bestm1 = clock->m1;
  3677. bestm2 = clock->m2;
  3678. bestp1 = clock->p1;
  3679. bestp2 = clock->p2;
  3680. /*
  3681. * In Valleyview PLL and program lane counter registers are exposed
  3682. * through DPIO interface
  3683. */
  3684. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3685. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3686. mdiv |= ((bestn << DPIO_N_SHIFT));
  3687. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3688. mdiv |= (1 << DPIO_K_SHIFT);
  3689. mdiv |= DPIO_ENABLE_CALIBRATION;
  3690. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3691. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3692. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3693. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3694. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3695. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3696. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3697. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3698. dpll |= DPLL_VCO_ENABLE;
  3699. I915_WRITE(DPLL(pipe), dpll);
  3700. POSTING_READ(DPLL(pipe));
  3701. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3702. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3703. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3704. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3705. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3706. I915_WRITE(DPLL(pipe), dpll);
  3707. /* Wait for the clocks to stabilize. */
  3708. POSTING_READ(DPLL(pipe));
  3709. udelay(150);
  3710. temp = 0;
  3711. if (is_sdvo) {
  3712. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3713. if (temp > 1)
  3714. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3715. else
  3716. temp = 0;
  3717. }
  3718. I915_WRITE(DPLL_MD(pipe), temp);
  3719. POSTING_READ(DPLL_MD(pipe));
  3720. /* Now program lane control registers */
  3721. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3722. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3723. {
  3724. temp = 0x1000C4;
  3725. if(pipe == 1)
  3726. temp |= (1 << 21);
  3727. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3728. }
  3729. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3730. {
  3731. temp = 0x1000C4;
  3732. if(pipe == 1)
  3733. temp |= (1 << 21);
  3734. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3735. }
  3736. mutex_unlock(&dev_priv->dpio_lock);
  3737. }
  3738. static void i9xx_update_pll(struct drm_crtc *crtc,
  3739. struct drm_display_mode *mode,
  3740. struct drm_display_mode *adjusted_mode,
  3741. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3742. int num_connectors)
  3743. {
  3744. struct drm_device *dev = crtc->dev;
  3745. struct drm_i915_private *dev_priv = dev->dev_private;
  3746. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3747. struct intel_encoder *encoder;
  3748. int pipe = intel_crtc->pipe;
  3749. u32 dpll;
  3750. bool is_sdvo;
  3751. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3752. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3753. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3754. dpll = DPLL_VGA_MODE_DIS;
  3755. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3756. dpll |= DPLLB_MODE_LVDS;
  3757. else
  3758. dpll |= DPLLB_MODE_DAC_SERIAL;
  3759. if (is_sdvo) {
  3760. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3761. if (pixel_multiplier > 1) {
  3762. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3763. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3764. }
  3765. dpll |= DPLL_DVO_HIGH_SPEED;
  3766. }
  3767. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3768. dpll |= DPLL_DVO_HIGH_SPEED;
  3769. /* compute bitmask from p1 value */
  3770. if (IS_PINEVIEW(dev))
  3771. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3772. else {
  3773. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3774. if (IS_G4X(dev) && reduced_clock)
  3775. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3776. }
  3777. switch (clock->p2) {
  3778. case 5:
  3779. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3780. break;
  3781. case 7:
  3782. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3783. break;
  3784. case 10:
  3785. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3786. break;
  3787. case 14:
  3788. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3789. break;
  3790. }
  3791. if (INTEL_INFO(dev)->gen >= 4)
  3792. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3793. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3794. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3795. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3796. /* XXX: just matching BIOS for now */
  3797. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3798. dpll |= 3;
  3799. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3800. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3801. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3802. else
  3803. dpll |= PLL_REF_INPUT_DREFCLK;
  3804. dpll |= DPLL_VCO_ENABLE;
  3805. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3806. POSTING_READ(DPLL(pipe));
  3807. udelay(150);
  3808. for_each_encoder_on_crtc(dev, crtc, encoder)
  3809. if (encoder->pre_pll_enable)
  3810. encoder->pre_pll_enable(encoder);
  3811. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3812. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3813. I915_WRITE(DPLL(pipe), dpll);
  3814. /* Wait for the clocks to stabilize. */
  3815. POSTING_READ(DPLL(pipe));
  3816. udelay(150);
  3817. if (INTEL_INFO(dev)->gen >= 4) {
  3818. u32 temp = 0;
  3819. if (is_sdvo) {
  3820. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3821. if (temp > 1)
  3822. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3823. else
  3824. temp = 0;
  3825. }
  3826. I915_WRITE(DPLL_MD(pipe), temp);
  3827. } else {
  3828. /* The pixel multiplier can only be updated once the
  3829. * DPLL is enabled and the clocks are stable.
  3830. *
  3831. * So write it again.
  3832. */
  3833. I915_WRITE(DPLL(pipe), dpll);
  3834. }
  3835. }
  3836. static void i8xx_update_pll(struct drm_crtc *crtc,
  3837. struct drm_display_mode *adjusted_mode,
  3838. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3839. int num_connectors)
  3840. {
  3841. struct drm_device *dev = crtc->dev;
  3842. struct drm_i915_private *dev_priv = dev->dev_private;
  3843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3844. struct intel_encoder *encoder;
  3845. int pipe = intel_crtc->pipe;
  3846. u32 dpll;
  3847. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3848. dpll = DPLL_VGA_MODE_DIS;
  3849. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3850. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3851. } else {
  3852. if (clock->p1 == 2)
  3853. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3854. else
  3855. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3856. if (clock->p2 == 4)
  3857. dpll |= PLL_P2_DIVIDE_BY_4;
  3858. }
  3859. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3860. /* XXX: just matching BIOS for now */
  3861. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3862. dpll |= 3;
  3863. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3864. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3865. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3866. else
  3867. dpll |= PLL_REF_INPUT_DREFCLK;
  3868. dpll |= DPLL_VCO_ENABLE;
  3869. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3870. POSTING_READ(DPLL(pipe));
  3871. udelay(150);
  3872. for_each_encoder_on_crtc(dev, crtc, encoder)
  3873. if (encoder->pre_pll_enable)
  3874. encoder->pre_pll_enable(encoder);
  3875. I915_WRITE(DPLL(pipe), dpll);
  3876. /* Wait for the clocks to stabilize. */
  3877. POSTING_READ(DPLL(pipe));
  3878. udelay(150);
  3879. /* The pixel multiplier can only be updated once the
  3880. * DPLL is enabled and the clocks are stable.
  3881. *
  3882. * So write it again.
  3883. */
  3884. I915_WRITE(DPLL(pipe), dpll);
  3885. }
  3886. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3887. struct drm_display_mode *mode,
  3888. struct drm_display_mode *adjusted_mode)
  3889. {
  3890. struct drm_device *dev = intel_crtc->base.dev;
  3891. struct drm_i915_private *dev_priv = dev->dev_private;
  3892. enum pipe pipe = intel_crtc->pipe;
  3893. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3894. uint32_t vsyncshift;
  3895. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3896. /* the chip adds 2 halflines automatically */
  3897. adjusted_mode->crtc_vtotal -= 1;
  3898. adjusted_mode->crtc_vblank_end -= 1;
  3899. vsyncshift = adjusted_mode->crtc_hsync_start
  3900. - adjusted_mode->crtc_htotal / 2;
  3901. } else {
  3902. vsyncshift = 0;
  3903. }
  3904. if (INTEL_INFO(dev)->gen > 3)
  3905. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3906. I915_WRITE(HTOTAL(cpu_transcoder),
  3907. (adjusted_mode->crtc_hdisplay - 1) |
  3908. ((adjusted_mode->crtc_htotal - 1) << 16));
  3909. I915_WRITE(HBLANK(cpu_transcoder),
  3910. (adjusted_mode->crtc_hblank_start - 1) |
  3911. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3912. I915_WRITE(HSYNC(cpu_transcoder),
  3913. (adjusted_mode->crtc_hsync_start - 1) |
  3914. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3915. I915_WRITE(VTOTAL(cpu_transcoder),
  3916. (adjusted_mode->crtc_vdisplay - 1) |
  3917. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3918. I915_WRITE(VBLANK(cpu_transcoder),
  3919. (adjusted_mode->crtc_vblank_start - 1) |
  3920. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3921. I915_WRITE(VSYNC(cpu_transcoder),
  3922. (adjusted_mode->crtc_vsync_start - 1) |
  3923. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3924. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3925. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3926. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3927. * bits. */
  3928. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3929. (pipe == PIPE_B || pipe == PIPE_C))
  3930. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3931. /* pipesrc controls the size that is scaled from, which should
  3932. * always be the user's requested size.
  3933. */
  3934. I915_WRITE(PIPESRC(pipe),
  3935. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3936. }
  3937. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3938. struct drm_display_mode *mode,
  3939. struct drm_display_mode *adjusted_mode,
  3940. int x, int y,
  3941. struct drm_framebuffer *fb)
  3942. {
  3943. struct drm_device *dev = crtc->dev;
  3944. struct drm_i915_private *dev_priv = dev->dev_private;
  3945. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3946. int pipe = intel_crtc->pipe;
  3947. int plane = intel_crtc->plane;
  3948. int refclk, num_connectors = 0;
  3949. intel_clock_t clock, reduced_clock;
  3950. u32 dspcntr, pipeconf;
  3951. bool ok, has_reduced_clock = false, is_sdvo = false;
  3952. bool is_lvds = false, is_tv = false, is_dp = false;
  3953. struct intel_encoder *encoder;
  3954. const intel_limit_t *limit;
  3955. int ret;
  3956. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3957. switch (encoder->type) {
  3958. case INTEL_OUTPUT_LVDS:
  3959. is_lvds = true;
  3960. break;
  3961. case INTEL_OUTPUT_SDVO:
  3962. case INTEL_OUTPUT_HDMI:
  3963. is_sdvo = true;
  3964. if (encoder->needs_tv_clock)
  3965. is_tv = true;
  3966. break;
  3967. case INTEL_OUTPUT_TVOUT:
  3968. is_tv = true;
  3969. break;
  3970. case INTEL_OUTPUT_DISPLAYPORT:
  3971. is_dp = true;
  3972. break;
  3973. }
  3974. num_connectors++;
  3975. }
  3976. refclk = i9xx_get_refclk(crtc, num_connectors);
  3977. /*
  3978. * Returns a set of divisors for the desired target clock with the given
  3979. * refclk, or FALSE. The returned values represent the clock equation:
  3980. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3981. */
  3982. limit = intel_limit(crtc, refclk);
  3983. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3984. &clock);
  3985. if (!ok) {
  3986. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3987. return -EINVAL;
  3988. }
  3989. /* Ensure that the cursor is valid for the new mode before changing... */
  3990. intel_crtc_update_cursor(crtc, true);
  3991. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3992. /*
  3993. * Ensure we match the reduced clock's P to the target clock.
  3994. * If the clocks don't match, we can't switch the display clock
  3995. * by using the FP0/FP1. In such case we will disable the LVDS
  3996. * downclock feature.
  3997. */
  3998. has_reduced_clock = limit->find_pll(limit, crtc,
  3999. dev_priv->lvds_downclock,
  4000. refclk,
  4001. &clock,
  4002. &reduced_clock);
  4003. }
  4004. if (is_sdvo && is_tv)
  4005. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4006. if (IS_GEN2(dev))
  4007. i8xx_update_pll(crtc, adjusted_mode, &clock,
  4008. has_reduced_clock ? &reduced_clock : NULL,
  4009. num_connectors);
  4010. else if (IS_VALLEYVIEW(dev))
  4011. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  4012. has_reduced_clock ? &reduced_clock : NULL,
  4013. num_connectors);
  4014. else
  4015. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4016. has_reduced_clock ? &reduced_clock : NULL,
  4017. num_connectors);
  4018. /* setup pipeconf */
  4019. pipeconf = I915_READ(PIPECONF(pipe));
  4020. /* Set up the display plane register */
  4021. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4022. if (pipe == 0)
  4023. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4024. else
  4025. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4026. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4027. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4028. * core speed.
  4029. *
  4030. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4031. * pipe == 0 check?
  4032. */
  4033. if (mode->clock >
  4034. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4035. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4036. else
  4037. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4038. }
  4039. /* default to 8bpc */
  4040. pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
  4041. if (is_dp) {
  4042. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4043. pipeconf |= PIPECONF_6BPC |
  4044. PIPECONF_DITHER_EN |
  4045. PIPECONF_DITHER_TYPE_SP;
  4046. }
  4047. }
  4048. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4049. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4050. pipeconf |= PIPECONF_6BPC |
  4051. PIPECONF_ENABLE |
  4052. I965_PIPECONF_ACTIVE;
  4053. }
  4054. }
  4055. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4056. drm_mode_debug_printmodeline(mode);
  4057. if (HAS_PIPE_CXSR(dev)) {
  4058. if (intel_crtc->lowfreq_avail) {
  4059. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4060. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4061. } else {
  4062. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4063. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4064. }
  4065. }
  4066. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4067. if (!IS_GEN2(dev) &&
  4068. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4069. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4070. else
  4071. pipeconf |= PIPECONF_PROGRESSIVE;
  4072. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4073. /* pipesrc and dspsize control the size that is scaled from,
  4074. * which should always be the user's requested size.
  4075. */
  4076. I915_WRITE(DSPSIZE(plane),
  4077. ((mode->vdisplay - 1) << 16) |
  4078. (mode->hdisplay - 1));
  4079. I915_WRITE(DSPPOS(plane), 0);
  4080. I915_WRITE(PIPECONF(pipe), pipeconf);
  4081. POSTING_READ(PIPECONF(pipe));
  4082. intel_enable_pipe(dev_priv, pipe, false);
  4083. intel_wait_for_vblank(dev, pipe);
  4084. I915_WRITE(DSPCNTR(plane), dspcntr);
  4085. POSTING_READ(DSPCNTR(plane));
  4086. ret = intel_pipe_set_base(crtc, x, y, fb);
  4087. intel_update_watermarks(dev);
  4088. return ret;
  4089. }
  4090. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4091. {
  4092. struct drm_i915_private *dev_priv = dev->dev_private;
  4093. struct drm_mode_config *mode_config = &dev->mode_config;
  4094. struct intel_encoder *encoder;
  4095. u32 temp;
  4096. bool has_lvds = false;
  4097. bool has_cpu_edp = false;
  4098. bool has_pch_edp = false;
  4099. bool has_panel = false;
  4100. bool has_ck505 = false;
  4101. bool can_ssc = false;
  4102. /* We need to take the global config into account */
  4103. list_for_each_entry(encoder, &mode_config->encoder_list,
  4104. base.head) {
  4105. switch (encoder->type) {
  4106. case INTEL_OUTPUT_LVDS:
  4107. has_panel = true;
  4108. has_lvds = true;
  4109. break;
  4110. case INTEL_OUTPUT_EDP:
  4111. has_panel = true;
  4112. if (intel_encoder_is_pch_edp(&encoder->base))
  4113. has_pch_edp = true;
  4114. else
  4115. has_cpu_edp = true;
  4116. break;
  4117. }
  4118. }
  4119. if (HAS_PCH_IBX(dev)) {
  4120. has_ck505 = dev_priv->display_clock_mode;
  4121. can_ssc = has_ck505;
  4122. } else {
  4123. has_ck505 = false;
  4124. can_ssc = true;
  4125. }
  4126. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4127. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4128. has_ck505);
  4129. /* Ironlake: try to setup display ref clock before DPLL
  4130. * enabling. This is only under driver's control after
  4131. * PCH B stepping, previous chipset stepping should be
  4132. * ignoring this setting.
  4133. */
  4134. temp = I915_READ(PCH_DREF_CONTROL);
  4135. /* Always enable nonspread source */
  4136. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4137. if (has_ck505)
  4138. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4139. else
  4140. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4141. if (has_panel) {
  4142. temp &= ~DREF_SSC_SOURCE_MASK;
  4143. temp |= DREF_SSC_SOURCE_ENABLE;
  4144. /* SSC must be turned on before enabling the CPU output */
  4145. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4146. DRM_DEBUG_KMS("Using SSC on panel\n");
  4147. temp |= DREF_SSC1_ENABLE;
  4148. } else
  4149. temp &= ~DREF_SSC1_ENABLE;
  4150. /* Get SSC going before enabling the outputs */
  4151. I915_WRITE(PCH_DREF_CONTROL, temp);
  4152. POSTING_READ(PCH_DREF_CONTROL);
  4153. udelay(200);
  4154. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4155. /* Enable CPU source on CPU attached eDP */
  4156. if (has_cpu_edp) {
  4157. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4158. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4159. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4160. }
  4161. else
  4162. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4163. } else
  4164. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4165. I915_WRITE(PCH_DREF_CONTROL, temp);
  4166. POSTING_READ(PCH_DREF_CONTROL);
  4167. udelay(200);
  4168. } else {
  4169. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4170. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4171. /* Turn off CPU output */
  4172. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4173. I915_WRITE(PCH_DREF_CONTROL, temp);
  4174. POSTING_READ(PCH_DREF_CONTROL);
  4175. udelay(200);
  4176. /* Turn off the SSC source */
  4177. temp &= ~DREF_SSC_SOURCE_MASK;
  4178. temp |= DREF_SSC_SOURCE_DISABLE;
  4179. /* Turn off SSC1 */
  4180. temp &= ~ DREF_SSC1_ENABLE;
  4181. I915_WRITE(PCH_DREF_CONTROL, temp);
  4182. POSTING_READ(PCH_DREF_CONTROL);
  4183. udelay(200);
  4184. }
  4185. }
  4186. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4187. static void lpt_init_pch_refclk(struct drm_device *dev)
  4188. {
  4189. struct drm_i915_private *dev_priv = dev->dev_private;
  4190. struct drm_mode_config *mode_config = &dev->mode_config;
  4191. struct intel_encoder *encoder;
  4192. bool has_vga = false;
  4193. bool is_sdv = false;
  4194. u32 tmp;
  4195. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4196. switch (encoder->type) {
  4197. case INTEL_OUTPUT_ANALOG:
  4198. has_vga = true;
  4199. break;
  4200. }
  4201. }
  4202. if (!has_vga)
  4203. return;
  4204. mutex_lock(&dev_priv->dpio_lock);
  4205. /* XXX: Rip out SDV support once Haswell ships for real. */
  4206. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4207. is_sdv = true;
  4208. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4209. tmp &= ~SBI_SSCCTL_DISABLE;
  4210. tmp |= SBI_SSCCTL_PATHALT;
  4211. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4212. udelay(24);
  4213. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4214. tmp &= ~SBI_SSCCTL_PATHALT;
  4215. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4216. if (!is_sdv) {
  4217. tmp = I915_READ(SOUTH_CHICKEN2);
  4218. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4219. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4220. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4221. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4222. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4223. tmp = I915_READ(SOUTH_CHICKEN2);
  4224. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4225. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4226. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4227. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4228. 100))
  4229. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4230. }
  4231. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4232. tmp &= ~(0xFF << 24);
  4233. tmp |= (0x12 << 24);
  4234. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4235. if (!is_sdv) {
  4236. tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
  4237. tmp &= ~(0x3 << 6);
  4238. tmp |= (1 << 6) | (1 << 0);
  4239. intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
  4240. }
  4241. if (is_sdv) {
  4242. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4243. tmp |= 0x7FFF;
  4244. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4245. }
  4246. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4247. tmp |= (1 << 11);
  4248. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4249. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4250. tmp |= (1 << 11);
  4251. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4252. if (is_sdv) {
  4253. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4254. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4255. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4256. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4257. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4258. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4259. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4260. tmp |= (0x3F << 8);
  4261. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4262. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4263. tmp |= (0x3F << 8);
  4264. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4265. }
  4266. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4267. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4268. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4269. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4270. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4271. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4272. if (!is_sdv) {
  4273. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4274. tmp &= ~(7 << 13);
  4275. tmp |= (5 << 13);
  4276. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4277. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4278. tmp &= ~(7 << 13);
  4279. tmp |= (5 << 13);
  4280. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4281. }
  4282. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4283. tmp &= ~0xFF;
  4284. tmp |= 0x1C;
  4285. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4286. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4287. tmp &= ~0xFF;
  4288. tmp |= 0x1C;
  4289. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4290. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4291. tmp &= ~(0xFF << 16);
  4292. tmp |= (0x1C << 16);
  4293. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4294. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4295. tmp &= ~(0xFF << 16);
  4296. tmp |= (0x1C << 16);
  4297. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4298. if (!is_sdv) {
  4299. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4300. tmp |= (1 << 27);
  4301. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4302. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4303. tmp |= (1 << 27);
  4304. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4305. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4306. tmp &= ~(0xF << 28);
  4307. tmp |= (4 << 28);
  4308. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4309. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4310. tmp &= ~(0xF << 28);
  4311. tmp |= (4 << 28);
  4312. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4313. }
  4314. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4315. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4316. tmp |= SBI_DBUFF0_ENABLE;
  4317. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4318. mutex_unlock(&dev_priv->dpio_lock);
  4319. }
  4320. /*
  4321. * Initialize reference clocks when the driver loads
  4322. */
  4323. void intel_init_pch_refclk(struct drm_device *dev)
  4324. {
  4325. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4326. ironlake_init_pch_refclk(dev);
  4327. else if (HAS_PCH_LPT(dev))
  4328. lpt_init_pch_refclk(dev);
  4329. }
  4330. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4331. {
  4332. struct drm_device *dev = crtc->dev;
  4333. struct drm_i915_private *dev_priv = dev->dev_private;
  4334. struct intel_encoder *encoder;
  4335. struct intel_encoder *edp_encoder = NULL;
  4336. int num_connectors = 0;
  4337. bool is_lvds = false;
  4338. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4339. switch (encoder->type) {
  4340. case INTEL_OUTPUT_LVDS:
  4341. is_lvds = true;
  4342. break;
  4343. case INTEL_OUTPUT_EDP:
  4344. edp_encoder = encoder;
  4345. break;
  4346. }
  4347. num_connectors++;
  4348. }
  4349. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4350. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4351. dev_priv->lvds_ssc_freq);
  4352. return dev_priv->lvds_ssc_freq * 1000;
  4353. }
  4354. return 120000;
  4355. }
  4356. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4357. struct drm_display_mode *adjusted_mode,
  4358. bool dither)
  4359. {
  4360. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4361. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4362. int pipe = intel_crtc->pipe;
  4363. uint32_t val;
  4364. val = I915_READ(PIPECONF(pipe));
  4365. val &= ~PIPECONF_BPC_MASK;
  4366. switch (intel_crtc->bpp) {
  4367. case 18:
  4368. val |= PIPECONF_6BPC;
  4369. break;
  4370. case 24:
  4371. val |= PIPECONF_8BPC;
  4372. break;
  4373. case 30:
  4374. val |= PIPECONF_10BPC;
  4375. break;
  4376. case 36:
  4377. val |= PIPECONF_12BPC;
  4378. break;
  4379. default:
  4380. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4381. BUG();
  4382. }
  4383. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4384. if (dither)
  4385. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4386. val &= ~PIPECONF_INTERLACE_MASK;
  4387. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4388. val |= PIPECONF_INTERLACED_ILK;
  4389. else
  4390. val |= PIPECONF_PROGRESSIVE;
  4391. if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
  4392. val |= PIPECONF_COLOR_RANGE_SELECT;
  4393. else
  4394. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4395. I915_WRITE(PIPECONF(pipe), val);
  4396. POSTING_READ(PIPECONF(pipe));
  4397. }
  4398. /*
  4399. * Set up the pipe CSC unit.
  4400. *
  4401. * Currently only full range RGB to limited range RGB conversion
  4402. * is supported, but eventually this should handle various
  4403. * RGB<->YCbCr scenarios as well.
  4404. */
  4405. static void intel_set_pipe_csc(struct drm_crtc *crtc,
  4406. const struct drm_display_mode *adjusted_mode)
  4407. {
  4408. struct drm_device *dev = crtc->dev;
  4409. struct drm_i915_private *dev_priv = dev->dev_private;
  4410. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4411. int pipe = intel_crtc->pipe;
  4412. uint16_t coeff = 0x7800; /* 1.0 */
  4413. /*
  4414. * TODO: Check what kind of values actually come out of the pipe
  4415. * with these coeff/postoff values and adjust to get the best
  4416. * accuracy. Perhaps we even need to take the bpc value into
  4417. * consideration.
  4418. */
  4419. if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
  4420. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4421. /*
  4422. * GY/GU and RY/RU should be the other way around according
  4423. * to BSpec, but reality doesn't agree. Just set them up in
  4424. * a way that results in the correct picture.
  4425. */
  4426. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4427. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4428. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4429. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4430. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4431. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4432. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4433. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4434. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4435. if (INTEL_INFO(dev)->gen > 6) {
  4436. uint16_t postoff = 0;
  4437. if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
  4438. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4439. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4440. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4441. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4442. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4443. } else {
  4444. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4445. if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
  4446. mode |= CSC_BLACK_SCREEN_OFFSET;
  4447. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4448. }
  4449. }
  4450. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4451. struct drm_display_mode *adjusted_mode,
  4452. bool dither)
  4453. {
  4454. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4455. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4456. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4457. uint32_t val;
  4458. val = I915_READ(PIPECONF(cpu_transcoder));
  4459. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4460. if (dither)
  4461. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4462. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4463. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4464. val |= PIPECONF_INTERLACED_ILK;
  4465. else
  4466. val |= PIPECONF_PROGRESSIVE;
  4467. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4468. POSTING_READ(PIPECONF(cpu_transcoder));
  4469. }
  4470. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4471. struct drm_display_mode *adjusted_mode,
  4472. intel_clock_t *clock,
  4473. bool *has_reduced_clock,
  4474. intel_clock_t *reduced_clock)
  4475. {
  4476. struct drm_device *dev = crtc->dev;
  4477. struct drm_i915_private *dev_priv = dev->dev_private;
  4478. struct intel_encoder *intel_encoder;
  4479. int refclk;
  4480. const intel_limit_t *limit;
  4481. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4482. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4483. switch (intel_encoder->type) {
  4484. case INTEL_OUTPUT_LVDS:
  4485. is_lvds = true;
  4486. break;
  4487. case INTEL_OUTPUT_SDVO:
  4488. case INTEL_OUTPUT_HDMI:
  4489. is_sdvo = true;
  4490. if (intel_encoder->needs_tv_clock)
  4491. is_tv = true;
  4492. break;
  4493. case INTEL_OUTPUT_TVOUT:
  4494. is_tv = true;
  4495. break;
  4496. }
  4497. }
  4498. refclk = ironlake_get_refclk(crtc);
  4499. /*
  4500. * Returns a set of divisors for the desired target clock with the given
  4501. * refclk, or FALSE. The returned values represent the clock equation:
  4502. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4503. */
  4504. limit = intel_limit(crtc, refclk);
  4505. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4506. clock);
  4507. if (!ret)
  4508. return false;
  4509. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4510. /*
  4511. * Ensure we match the reduced clock's P to the target clock.
  4512. * If the clocks don't match, we can't switch the display clock
  4513. * by using the FP0/FP1. In such case we will disable the LVDS
  4514. * downclock feature.
  4515. */
  4516. *has_reduced_clock = limit->find_pll(limit, crtc,
  4517. dev_priv->lvds_downclock,
  4518. refclk,
  4519. clock,
  4520. reduced_clock);
  4521. }
  4522. if (is_sdvo && is_tv)
  4523. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4524. return true;
  4525. }
  4526. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4527. {
  4528. struct drm_i915_private *dev_priv = dev->dev_private;
  4529. uint32_t temp;
  4530. temp = I915_READ(SOUTH_CHICKEN1);
  4531. if (temp & FDI_BC_BIFURCATION_SELECT)
  4532. return;
  4533. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4534. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4535. temp |= FDI_BC_BIFURCATION_SELECT;
  4536. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4537. I915_WRITE(SOUTH_CHICKEN1, temp);
  4538. POSTING_READ(SOUTH_CHICKEN1);
  4539. }
  4540. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4541. {
  4542. struct drm_device *dev = intel_crtc->base.dev;
  4543. struct drm_i915_private *dev_priv = dev->dev_private;
  4544. struct intel_crtc *pipe_B_crtc =
  4545. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4546. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4547. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4548. if (intel_crtc->fdi_lanes > 4) {
  4549. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4550. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4551. /* Clamp lanes to avoid programming the hw with bogus values. */
  4552. intel_crtc->fdi_lanes = 4;
  4553. return false;
  4554. }
  4555. if (dev_priv->num_pipe == 2)
  4556. return true;
  4557. switch (intel_crtc->pipe) {
  4558. case PIPE_A:
  4559. return true;
  4560. case PIPE_B:
  4561. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4562. intel_crtc->fdi_lanes > 2) {
  4563. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4564. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4565. /* Clamp lanes to avoid programming the hw with bogus values. */
  4566. intel_crtc->fdi_lanes = 2;
  4567. return false;
  4568. }
  4569. if (intel_crtc->fdi_lanes > 2)
  4570. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4571. else
  4572. cpt_enable_fdi_bc_bifurcation(dev);
  4573. return true;
  4574. case PIPE_C:
  4575. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4576. if (intel_crtc->fdi_lanes > 2) {
  4577. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4578. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4579. /* Clamp lanes to avoid programming the hw with bogus values. */
  4580. intel_crtc->fdi_lanes = 2;
  4581. return false;
  4582. }
  4583. } else {
  4584. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4585. return false;
  4586. }
  4587. cpt_enable_fdi_bc_bifurcation(dev);
  4588. return true;
  4589. default:
  4590. BUG();
  4591. }
  4592. }
  4593. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4594. {
  4595. /*
  4596. * Account for spread spectrum to avoid
  4597. * oversubscribing the link. Max center spread
  4598. * is 2.5%; use 5% for safety's sake.
  4599. */
  4600. u32 bps = target_clock * bpp * 21 / 20;
  4601. return bps / (link_bw * 8) + 1;
  4602. }
  4603. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4604. struct drm_display_mode *mode,
  4605. struct drm_display_mode *adjusted_mode)
  4606. {
  4607. struct drm_device *dev = crtc->dev;
  4608. struct drm_i915_private *dev_priv = dev->dev_private;
  4609. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4610. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4611. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4612. struct intel_link_m_n m_n = {0};
  4613. int target_clock, pixel_multiplier, lane, link_bw;
  4614. bool is_dp = false, is_cpu_edp = false;
  4615. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4616. switch (intel_encoder->type) {
  4617. case INTEL_OUTPUT_DISPLAYPORT:
  4618. is_dp = true;
  4619. break;
  4620. case INTEL_OUTPUT_EDP:
  4621. is_dp = true;
  4622. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4623. is_cpu_edp = true;
  4624. edp_encoder = intel_encoder;
  4625. break;
  4626. }
  4627. }
  4628. /* FDI link */
  4629. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4630. lane = 0;
  4631. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4632. according to current link config */
  4633. if (is_cpu_edp) {
  4634. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4635. } else {
  4636. /* FDI is a binary signal running at ~2.7GHz, encoding
  4637. * each output octet as 10 bits. The actual frequency
  4638. * is stored as a divider into a 100MHz clock, and the
  4639. * mode pixel clock is stored in units of 1KHz.
  4640. * Hence the bw of each lane in terms of the mode signal
  4641. * is:
  4642. */
  4643. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4644. }
  4645. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4646. if (edp_encoder)
  4647. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4648. else if (is_dp)
  4649. target_clock = mode->clock;
  4650. else
  4651. target_clock = adjusted_mode->clock;
  4652. if (!lane)
  4653. lane = ironlake_get_lanes_required(target_clock, link_bw,
  4654. intel_crtc->bpp);
  4655. intel_crtc->fdi_lanes = lane;
  4656. if (pixel_multiplier > 1)
  4657. link_bw *= pixel_multiplier;
  4658. intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
  4659. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4660. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4661. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4662. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4663. }
  4664. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4665. struct drm_display_mode *adjusted_mode,
  4666. intel_clock_t *clock, u32 fp)
  4667. {
  4668. struct drm_crtc *crtc = &intel_crtc->base;
  4669. struct drm_device *dev = crtc->dev;
  4670. struct drm_i915_private *dev_priv = dev->dev_private;
  4671. struct intel_encoder *intel_encoder;
  4672. uint32_t dpll;
  4673. int factor, pixel_multiplier, num_connectors = 0;
  4674. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4675. bool is_dp = false, is_cpu_edp = false;
  4676. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4677. switch (intel_encoder->type) {
  4678. case INTEL_OUTPUT_LVDS:
  4679. is_lvds = true;
  4680. break;
  4681. case INTEL_OUTPUT_SDVO:
  4682. case INTEL_OUTPUT_HDMI:
  4683. is_sdvo = true;
  4684. if (intel_encoder->needs_tv_clock)
  4685. is_tv = true;
  4686. break;
  4687. case INTEL_OUTPUT_TVOUT:
  4688. is_tv = true;
  4689. break;
  4690. case INTEL_OUTPUT_DISPLAYPORT:
  4691. is_dp = true;
  4692. break;
  4693. case INTEL_OUTPUT_EDP:
  4694. is_dp = true;
  4695. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4696. is_cpu_edp = true;
  4697. break;
  4698. }
  4699. num_connectors++;
  4700. }
  4701. /* Enable autotuning of the PLL clock (if permissible) */
  4702. factor = 21;
  4703. if (is_lvds) {
  4704. if ((intel_panel_use_ssc(dev_priv) &&
  4705. dev_priv->lvds_ssc_freq == 100) ||
  4706. intel_is_dual_link_lvds(dev))
  4707. factor = 25;
  4708. } else if (is_sdvo && is_tv)
  4709. factor = 20;
  4710. if (clock->m < factor * clock->n)
  4711. fp |= FP_CB_TUNE;
  4712. dpll = 0;
  4713. if (is_lvds)
  4714. dpll |= DPLLB_MODE_LVDS;
  4715. else
  4716. dpll |= DPLLB_MODE_DAC_SERIAL;
  4717. if (is_sdvo) {
  4718. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4719. if (pixel_multiplier > 1) {
  4720. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4721. }
  4722. dpll |= DPLL_DVO_HIGH_SPEED;
  4723. }
  4724. if (is_dp && !is_cpu_edp)
  4725. dpll |= DPLL_DVO_HIGH_SPEED;
  4726. /* compute bitmask from p1 value */
  4727. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4728. /* also FPA1 */
  4729. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4730. switch (clock->p2) {
  4731. case 5:
  4732. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4733. break;
  4734. case 7:
  4735. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4736. break;
  4737. case 10:
  4738. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4739. break;
  4740. case 14:
  4741. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4742. break;
  4743. }
  4744. if (is_sdvo && is_tv)
  4745. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4746. else if (is_tv)
  4747. /* XXX: just matching BIOS for now */
  4748. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4749. dpll |= 3;
  4750. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4751. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4752. else
  4753. dpll |= PLL_REF_INPUT_DREFCLK;
  4754. return dpll;
  4755. }
  4756. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4757. struct drm_display_mode *mode,
  4758. struct drm_display_mode *adjusted_mode,
  4759. int x, int y,
  4760. struct drm_framebuffer *fb)
  4761. {
  4762. struct drm_device *dev = crtc->dev;
  4763. struct drm_i915_private *dev_priv = dev->dev_private;
  4764. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4765. int pipe = intel_crtc->pipe;
  4766. int plane = intel_crtc->plane;
  4767. int num_connectors = 0;
  4768. intel_clock_t clock, reduced_clock;
  4769. u32 dpll, fp = 0, fp2 = 0;
  4770. bool ok, has_reduced_clock = false;
  4771. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4772. struct intel_encoder *encoder;
  4773. int ret;
  4774. bool dither, fdi_config_ok;
  4775. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4776. switch (encoder->type) {
  4777. case INTEL_OUTPUT_LVDS:
  4778. is_lvds = true;
  4779. break;
  4780. case INTEL_OUTPUT_DISPLAYPORT:
  4781. is_dp = true;
  4782. break;
  4783. case INTEL_OUTPUT_EDP:
  4784. is_dp = true;
  4785. if (!intel_encoder_is_pch_edp(&encoder->base))
  4786. is_cpu_edp = true;
  4787. break;
  4788. }
  4789. num_connectors++;
  4790. }
  4791. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4792. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4793. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4794. &has_reduced_clock, &reduced_clock);
  4795. if (!ok) {
  4796. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4797. return -EINVAL;
  4798. }
  4799. /* Ensure that the cursor is valid for the new mode before changing... */
  4800. intel_crtc_update_cursor(crtc, true);
  4801. /* determine panel color depth */
  4802. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4803. adjusted_mode);
  4804. if (is_lvds && dev_priv->lvds_dither)
  4805. dither = true;
  4806. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4807. if (has_reduced_clock)
  4808. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4809. reduced_clock.m2;
  4810. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4811. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4812. drm_mode_debug_printmodeline(mode);
  4813. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4814. if (!is_cpu_edp) {
  4815. struct intel_pch_pll *pll;
  4816. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4817. if (pll == NULL) {
  4818. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4819. pipe);
  4820. return -EINVAL;
  4821. }
  4822. } else
  4823. intel_put_pch_pll(intel_crtc);
  4824. if (is_dp && !is_cpu_edp)
  4825. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4826. for_each_encoder_on_crtc(dev, crtc, encoder)
  4827. if (encoder->pre_pll_enable)
  4828. encoder->pre_pll_enable(encoder);
  4829. if (intel_crtc->pch_pll) {
  4830. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4831. /* Wait for the clocks to stabilize. */
  4832. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4833. udelay(150);
  4834. /* The pixel multiplier can only be updated once the
  4835. * DPLL is enabled and the clocks are stable.
  4836. *
  4837. * So write it again.
  4838. */
  4839. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4840. }
  4841. intel_crtc->lowfreq_avail = false;
  4842. if (intel_crtc->pch_pll) {
  4843. if (is_lvds && has_reduced_clock && i915_powersave) {
  4844. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4845. intel_crtc->lowfreq_avail = true;
  4846. } else {
  4847. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4848. }
  4849. }
  4850. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4851. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4852. * ironlake_check_fdi_lanes. */
  4853. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4854. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4855. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4856. intel_wait_for_vblank(dev, pipe);
  4857. /* Set up the display plane register */
  4858. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4859. POSTING_READ(DSPCNTR(plane));
  4860. ret = intel_pipe_set_base(crtc, x, y, fb);
  4861. intel_update_watermarks(dev);
  4862. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4863. return fdi_config_ok ? ret : -EINVAL;
  4864. }
  4865. static void haswell_modeset_global_resources(struct drm_device *dev)
  4866. {
  4867. struct drm_i915_private *dev_priv = dev->dev_private;
  4868. bool enable = false;
  4869. struct intel_crtc *crtc;
  4870. struct intel_encoder *encoder;
  4871. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4872. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  4873. enable = true;
  4874. /* XXX: Should check for edp transcoder here, but thanks to init
  4875. * sequence that's not yet available. Just in case desktop eDP
  4876. * on PORT D is possible on haswell, too. */
  4877. }
  4878. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  4879. base.head) {
  4880. if (encoder->type != INTEL_OUTPUT_EDP &&
  4881. encoder->connectors_active)
  4882. enable = true;
  4883. }
  4884. /* Even the eDP panel fitter is outside the always-on well. */
  4885. if (dev_priv->pch_pf_size)
  4886. enable = true;
  4887. intel_set_power_well(dev, enable);
  4888. }
  4889. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4890. struct drm_display_mode *mode,
  4891. struct drm_display_mode *adjusted_mode,
  4892. int x, int y,
  4893. struct drm_framebuffer *fb)
  4894. {
  4895. struct drm_device *dev = crtc->dev;
  4896. struct drm_i915_private *dev_priv = dev->dev_private;
  4897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4898. int pipe = intel_crtc->pipe;
  4899. int plane = intel_crtc->plane;
  4900. int num_connectors = 0;
  4901. bool is_dp = false, is_cpu_edp = false;
  4902. struct intel_encoder *encoder;
  4903. int ret;
  4904. bool dither;
  4905. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4906. switch (encoder->type) {
  4907. case INTEL_OUTPUT_DISPLAYPORT:
  4908. is_dp = true;
  4909. break;
  4910. case INTEL_OUTPUT_EDP:
  4911. is_dp = true;
  4912. if (!intel_encoder_is_pch_edp(&encoder->base))
  4913. is_cpu_edp = true;
  4914. break;
  4915. }
  4916. num_connectors++;
  4917. }
  4918. /* We are not sure yet this won't happen. */
  4919. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4920. INTEL_PCH_TYPE(dev));
  4921. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4922. num_connectors, pipe_name(pipe));
  4923. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4924. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4925. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4926. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4927. return -EINVAL;
  4928. /* Ensure that the cursor is valid for the new mode before changing... */
  4929. intel_crtc_update_cursor(crtc, true);
  4930. /* determine panel color depth */
  4931. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4932. adjusted_mode);
  4933. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4934. drm_mode_debug_printmodeline(mode);
  4935. if (is_dp && !is_cpu_edp)
  4936. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4937. intel_crtc->lowfreq_avail = false;
  4938. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4939. if (!is_dp || is_cpu_edp)
  4940. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4941. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4942. intel_set_pipe_csc(crtc, adjusted_mode);
  4943. /* Set up the display plane register */
  4944. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4945. POSTING_READ(DSPCNTR(plane));
  4946. ret = intel_pipe_set_base(crtc, x, y, fb);
  4947. intel_update_watermarks(dev);
  4948. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4949. return ret;
  4950. }
  4951. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4952. struct drm_display_mode *mode,
  4953. struct drm_display_mode *adjusted_mode,
  4954. int x, int y,
  4955. struct drm_framebuffer *fb)
  4956. {
  4957. struct drm_device *dev = crtc->dev;
  4958. struct drm_i915_private *dev_priv = dev->dev_private;
  4959. struct drm_encoder_helper_funcs *encoder_funcs;
  4960. struct intel_encoder *encoder;
  4961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4962. int pipe = intel_crtc->pipe;
  4963. int ret;
  4964. if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  4965. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4966. else
  4967. intel_crtc->cpu_transcoder = pipe;
  4968. drm_vblank_pre_modeset(dev, pipe);
  4969. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4970. x, y, fb);
  4971. drm_vblank_post_modeset(dev, pipe);
  4972. if (ret != 0)
  4973. return ret;
  4974. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4975. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4976. encoder->base.base.id,
  4977. drm_get_encoder_name(&encoder->base),
  4978. mode->base.id, mode->name);
  4979. encoder_funcs = encoder->base.helper_private;
  4980. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4981. }
  4982. return 0;
  4983. }
  4984. static bool intel_eld_uptodate(struct drm_connector *connector,
  4985. int reg_eldv, uint32_t bits_eldv,
  4986. int reg_elda, uint32_t bits_elda,
  4987. int reg_edid)
  4988. {
  4989. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4990. uint8_t *eld = connector->eld;
  4991. uint32_t i;
  4992. i = I915_READ(reg_eldv);
  4993. i &= bits_eldv;
  4994. if (!eld[0])
  4995. return !i;
  4996. if (!i)
  4997. return false;
  4998. i = I915_READ(reg_elda);
  4999. i &= ~bits_elda;
  5000. I915_WRITE(reg_elda, i);
  5001. for (i = 0; i < eld[2]; i++)
  5002. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5003. return false;
  5004. return true;
  5005. }
  5006. static void g4x_write_eld(struct drm_connector *connector,
  5007. struct drm_crtc *crtc)
  5008. {
  5009. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5010. uint8_t *eld = connector->eld;
  5011. uint32_t eldv;
  5012. uint32_t len;
  5013. uint32_t i;
  5014. i = I915_READ(G4X_AUD_VID_DID);
  5015. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5016. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5017. else
  5018. eldv = G4X_ELDV_DEVCTG;
  5019. if (intel_eld_uptodate(connector,
  5020. G4X_AUD_CNTL_ST, eldv,
  5021. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5022. G4X_HDMIW_HDMIEDID))
  5023. return;
  5024. i = I915_READ(G4X_AUD_CNTL_ST);
  5025. i &= ~(eldv | G4X_ELD_ADDR);
  5026. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5027. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5028. if (!eld[0])
  5029. return;
  5030. len = min_t(uint8_t, eld[2], len);
  5031. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5032. for (i = 0; i < len; i++)
  5033. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5034. i = I915_READ(G4X_AUD_CNTL_ST);
  5035. i |= eldv;
  5036. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5037. }
  5038. static void haswell_write_eld(struct drm_connector *connector,
  5039. struct drm_crtc *crtc)
  5040. {
  5041. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5042. uint8_t *eld = connector->eld;
  5043. struct drm_device *dev = crtc->dev;
  5044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5045. uint32_t eldv;
  5046. uint32_t i;
  5047. int len;
  5048. int pipe = to_intel_crtc(crtc)->pipe;
  5049. int tmp;
  5050. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5051. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5052. int aud_config = HSW_AUD_CFG(pipe);
  5053. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5054. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5055. /* Audio output enable */
  5056. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5057. tmp = I915_READ(aud_cntrl_st2);
  5058. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5059. I915_WRITE(aud_cntrl_st2, tmp);
  5060. /* Wait for 1 vertical blank */
  5061. intel_wait_for_vblank(dev, pipe);
  5062. /* Set ELD valid state */
  5063. tmp = I915_READ(aud_cntrl_st2);
  5064. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5065. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5066. I915_WRITE(aud_cntrl_st2, tmp);
  5067. tmp = I915_READ(aud_cntrl_st2);
  5068. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5069. /* Enable HDMI mode */
  5070. tmp = I915_READ(aud_config);
  5071. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5072. /* clear N_programing_enable and N_value_index */
  5073. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5074. I915_WRITE(aud_config, tmp);
  5075. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5076. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5077. intel_crtc->eld_vld = true;
  5078. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5079. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5080. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5081. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5082. } else
  5083. I915_WRITE(aud_config, 0);
  5084. if (intel_eld_uptodate(connector,
  5085. aud_cntrl_st2, eldv,
  5086. aud_cntl_st, IBX_ELD_ADDRESS,
  5087. hdmiw_hdmiedid))
  5088. return;
  5089. i = I915_READ(aud_cntrl_st2);
  5090. i &= ~eldv;
  5091. I915_WRITE(aud_cntrl_st2, i);
  5092. if (!eld[0])
  5093. return;
  5094. i = I915_READ(aud_cntl_st);
  5095. i &= ~IBX_ELD_ADDRESS;
  5096. I915_WRITE(aud_cntl_st, i);
  5097. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5098. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5099. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5100. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5101. for (i = 0; i < len; i++)
  5102. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5103. i = I915_READ(aud_cntrl_st2);
  5104. i |= eldv;
  5105. I915_WRITE(aud_cntrl_st2, i);
  5106. }
  5107. static void ironlake_write_eld(struct drm_connector *connector,
  5108. struct drm_crtc *crtc)
  5109. {
  5110. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5111. uint8_t *eld = connector->eld;
  5112. uint32_t eldv;
  5113. uint32_t i;
  5114. int len;
  5115. int hdmiw_hdmiedid;
  5116. int aud_config;
  5117. int aud_cntl_st;
  5118. int aud_cntrl_st2;
  5119. int pipe = to_intel_crtc(crtc)->pipe;
  5120. if (HAS_PCH_IBX(connector->dev)) {
  5121. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5122. aud_config = IBX_AUD_CFG(pipe);
  5123. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5124. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5125. } else {
  5126. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5127. aud_config = CPT_AUD_CFG(pipe);
  5128. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5129. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5130. }
  5131. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5132. i = I915_READ(aud_cntl_st);
  5133. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5134. if (!i) {
  5135. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5136. /* operate blindly on all ports */
  5137. eldv = IBX_ELD_VALIDB;
  5138. eldv |= IBX_ELD_VALIDB << 4;
  5139. eldv |= IBX_ELD_VALIDB << 8;
  5140. } else {
  5141. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5142. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5143. }
  5144. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5145. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5146. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5147. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5148. } else
  5149. I915_WRITE(aud_config, 0);
  5150. if (intel_eld_uptodate(connector,
  5151. aud_cntrl_st2, eldv,
  5152. aud_cntl_st, IBX_ELD_ADDRESS,
  5153. hdmiw_hdmiedid))
  5154. return;
  5155. i = I915_READ(aud_cntrl_st2);
  5156. i &= ~eldv;
  5157. I915_WRITE(aud_cntrl_st2, i);
  5158. if (!eld[0])
  5159. return;
  5160. i = I915_READ(aud_cntl_st);
  5161. i &= ~IBX_ELD_ADDRESS;
  5162. I915_WRITE(aud_cntl_st, i);
  5163. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5164. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5165. for (i = 0; i < len; i++)
  5166. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5167. i = I915_READ(aud_cntrl_st2);
  5168. i |= eldv;
  5169. I915_WRITE(aud_cntrl_st2, i);
  5170. }
  5171. void intel_write_eld(struct drm_encoder *encoder,
  5172. struct drm_display_mode *mode)
  5173. {
  5174. struct drm_crtc *crtc = encoder->crtc;
  5175. struct drm_connector *connector;
  5176. struct drm_device *dev = encoder->dev;
  5177. struct drm_i915_private *dev_priv = dev->dev_private;
  5178. connector = drm_select_eld(encoder, mode);
  5179. if (!connector)
  5180. return;
  5181. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5182. connector->base.id,
  5183. drm_get_connector_name(connector),
  5184. connector->encoder->base.id,
  5185. drm_get_encoder_name(connector->encoder));
  5186. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5187. if (dev_priv->display.write_eld)
  5188. dev_priv->display.write_eld(connector, crtc);
  5189. }
  5190. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5191. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5192. {
  5193. struct drm_device *dev = crtc->dev;
  5194. struct drm_i915_private *dev_priv = dev->dev_private;
  5195. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5196. int palreg = PALETTE(intel_crtc->pipe);
  5197. int i;
  5198. /* The clocks have to be on to load the palette. */
  5199. if (!crtc->enabled || !intel_crtc->active)
  5200. return;
  5201. /* use legacy palette for Ironlake */
  5202. if (HAS_PCH_SPLIT(dev))
  5203. palreg = LGC_PALETTE(intel_crtc->pipe);
  5204. for (i = 0; i < 256; i++) {
  5205. I915_WRITE(palreg + 4 * i,
  5206. (intel_crtc->lut_r[i] << 16) |
  5207. (intel_crtc->lut_g[i] << 8) |
  5208. intel_crtc->lut_b[i]);
  5209. }
  5210. }
  5211. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5212. {
  5213. struct drm_device *dev = crtc->dev;
  5214. struct drm_i915_private *dev_priv = dev->dev_private;
  5215. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5216. bool visible = base != 0;
  5217. u32 cntl;
  5218. if (intel_crtc->cursor_visible == visible)
  5219. return;
  5220. cntl = I915_READ(_CURACNTR);
  5221. if (visible) {
  5222. /* On these chipsets we can only modify the base whilst
  5223. * the cursor is disabled.
  5224. */
  5225. I915_WRITE(_CURABASE, base);
  5226. cntl &= ~(CURSOR_FORMAT_MASK);
  5227. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5228. cntl |= CURSOR_ENABLE |
  5229. CURSOR_GAMMA_ENABLE |
  5230. CURSOR_FORMAT_ARGB;
  5231. } else
  5232. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5233. I915_WRITE(_CURACNTR, cntl);
  5234. intel_crtc->cursor_visible = visible;
  5235. }
  5236. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5237. {
  5238. struct drm_device *dev = crtc->dev;
  5239. struct drm_i915_private *dev_priv = dev->dev_private;
  5240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5241. int pipe = intel_crtc->pipe;
  5242. bool visible = base != 0;
  5243. if (intel_crtc->cursor_visible != visible) {
  5244. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5245. if (base) {
  5246. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5247. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5248. cntl |= pipe << 28; /* Connect to correct pipe */
  5249. } else {
  5250. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5251. cntl |= CURSOR_MODE_DISABLE;
  5252. }
  5253. I915_WRITE(CURCNTR(pipe), cntl);
  5254. intel_crtc->cursor_visible = visible;
  5255. }
  5256. /* and commit changes on next vblank */
  5257. I915_WRITE(CURBASE(pipe), base);
  5258. }
  5259. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5260. {
  5261. struct drm_device *dev = crtc->dev;
  5262. struct drm_i915_private *dev_priv = dev->dev_private;
  5263. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5264. int pipe = intel_crtc->pipe;
  5265. bool visible = base != 0;
  5266. if (intel_crtc->cursor_visible != visible) {
  5267. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5268. if (base) {
  5269. cntl &= ~CURSOR_MODE;
  5270. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5271. } else {
  5272. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5273. cntl |= CURSOR_MODE_DISABLE;
  5274. }
  5275. if (IS_HASWELL(dev))
  5276. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5277. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5278. intel_crtc->cursor_visible = visible;
  5279. }
  5280. /* and commit changes on next vblank */
  5281. I915_WRITE(CURBASE_IVB(pipe), base);
  5282. }
  5283. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5284. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5285. bool on)
  5286. {
  5287. struct drm_device *dev = crtc->dev;
  5288. struct drm_i915_private *dev_priv = dev->dev_private;
  5289. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5290. int pipe = intel_crtc->pipe;
  5291. int x = intel_crtc->cursor_x;
  5292. int y = intel_crtc->cursor_y;
  5293. u32 base, pos;
  5294. bool visible;
  5295. pos = 0;
  5296. if (on && crtc->enabled && crtc->fb) {
  5297. base = intel_crtc->cursor_addr;
  5298. if (x > (int) crtc->fb->width)
  5299. base = 0;
  5300. if (y > (int) crtc->fb->height)
  5301. base = 0;
  5302. } else
  5303. base = 0;
  5304. if (x < 0) {
  5305. if (x + intel_crtc->cursor_width < 0)
  5306. base = 0;
  5307. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5308. x = -x;
  5309. }
  5310. pos |= x << CURSOR_X_SHIFT;
  5311. if (y < 0) {
  5312. if (y + intel_crtc->cursor_height < 0)
  5313. base = 0;
  5314. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5315. y = -y;
  5316. }
  5317. pos |= y << CURSOR_Y_SHIFT;
  5318. visible = base != 0;
  5319. if (!visible && !intel_crtc->cursor_visible)
  5320. return;
  5321. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5322. I915_WRITE(CURPOS_IVB(pipe), pos);
  5323. ivb_update_cursor(crtc, base);
  5324. } else {
  5325. I915_WRITE(CURPOS(pipe), pos);
  5326. if (IS_845G(dev) || IS_I865G(dev))
  5327. i845_update_cursor(crtc, base);
  5328. else
  5329. i9xx_update_cursor(crtc, base);
  5330. }
  5331. }
  5332. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5333. struct drm_file *file,
  5334. uint32_t handle,
  5335. uint32_t width, uint32_t height)
  5336. {
  5337. struct drm_device *dev = crtc->dev;
  5338. struct drm_i915_private *dev_priv = dev->dev_private;
  5339. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5340. struct drm_i915_gem_object *obj;
  5341. uint32_t addr;
  5342. int ret;
  5343. /* if we want to turn off the cursor ignore width and height */
  5344. if (!handle) {
  5345. DRM_DEBUG_KMS("cursor off\n");
  5346. addr = 0;
  5347. obj = NULL;
  5348. mutex_lock(&dev->struct_mutex);
  5349. goto finish;
  5350. }
  5351. /* Currently we only support 64x64 cursors */
  5352. if (width != 64 || height != 64) {
  5353. DRM_ERROR("we currently only support 64x64 cursors\n");
  5354. return -EINVAL;
  5355. }
  5356. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5357. if (&obj->base == NULL)
  5358. return -ENOENT;
  5359. if (obj->base.size < width * height * 4) {
  5360. DRM_ERROR("buffer is to small\n");
  5361. ret = -ENOMEM;
  5362. goto fail;
  5363. }
  5364. /* we only need to pin inside GTT if cursor is non-phy */
  5365. mutex_lock(&dev->struct_mutex);
  5366. if (!dev_priv->info->cursor_needs_physical) {
  5367. if (obj->tiling_mode) {
  5368. DRM_ERROR("cursor cannot be tiled\n");
  5369. ret = -EINVAL;
  5370. goto fail_locked;
  5371. }
  5372. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5373. if (ret) {
  5374. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5375. goto fail_locked;
  5376. }
  5377. ret = i915_gem_object_put_fence(obj);
  5378. if (ret) {
  5379. DRM_ERROR("failed to release fence for cursor");
  5380. goto fail_unpin;
  5381. }
  5382. addr = obj->gtt_offset;
  5383. } else {
  5384. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5385. ret = i915_gem_attach_phys_object(dev, obj,
  5386. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5387. align);
  5388. if (ret) {
  5389. DRM_ERROR("failed to attach phys object\n");
  5390. goto fail_locked;
  5391. }
  5392. addr = obj->phys_obj->handle->busaddr;
  5393. }
  5394. if (IS_GEN2(dev))
  5395. I915_WRITE(CURSIZE, (height << 12) | width);
  5396. finish:
  5397. if (intel_crtc->cursor_bo) {
  5398. if (dev_priv->info->cursor_needs_physical) {
  5399. if (intel_crtc->cursor_bo != obj)
  5400. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5401. } else
  5402. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5403. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5404. }
  5405. mutex_unlock(&dev->struct_mutex);
  5406. intel_crtc->cursor_addr = addr;
  5407. intel_crtc->cursor_bo = obj;
  5408. intel_crtc->cursor_width = width;
  5409. intel_crtc->cursor_height = height;
  5410. intel_crtc_update_cursor(crtc, true);
  5411. return 0;
  5412. fail_unpin:
  5413. i915_gem_object_unpin(obj);
  5414. fail_locked:
  5415. mutex_unlock(&dev->struct_mutex);
  5416. fail:
  5417. drm_gem_object_unreference_unlocked(&obj->base);
  5418. return ret;
  5419. }
  5420. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5421. {
  5422. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5423. intel_crtc->cursor_x = x;
  5424. intel_crtc->cursor_y = y;
  5425. intel_crtc_update_cursor(crtc, true);
  5426. return 0;
  5427. }
  5428. /** Sets the color ramps on behalf of RandR */
  5429. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5430. u16 blue, int regno)
  5431. {
  5432. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5433. intel_crtc->lut_r[regno] = red >> 8;
  5434. intel_crtc->lut_g[regno] = green >> 8;
  5435. intel_crtc->lut_b[regno] = blue >> 8;
  5436. }
  5437. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5438. u16 *blue, int regno)
  5439. {
  5440. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5441. *red = intel_crtc->lut_r[regno] << 8;
  5442. *green = intel_crtc->lut_g[regno] << 8;
  5443. *blue = intel_crtc->lut_b[regno] << 8;
  5444. }
  5445. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5446. u16 *blue, uint32_t start, uint32_t size)
  5447. {
  5448. int end = (start + size > 256) ? 256 : start + size, i;
  5449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5450. for (i = start; i < end; i++) {
  5451. intel_crtc->lut_r[i] = red[i] >> 8;
  5452. intel_crtc->lut_g[i] = green[i] >> 8;
  5453. intel_crtc->lut_b[i] = blue[i] >> 8;
  5454. }
  5455. intel_crtc_load_lut(crtc);
  5456. }
  5457. /**
  5458. * Get a pipe with a simple mode set on it for doing load-based monitor
  5459. * detection.
  5460. *
  5461. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5462. * its requirements. The pipe will be connected to no other encoders.
  5463. *
  5464. * Currently this code will only succeed if there is a pipe with no encoders
  5465. * configured for it. In the future, it could choose to temporarily disable
  5466. * some outputs to free up a pipe for its use.
  5467. *
  5468. * \return crtc, or NULL if no pipes are available.
  5469. */
  5470. /* VESA 640x480x72Hz mode to set on the pipe */
  5471. static struct drm_display_mode load_detect_mode = {
  5472. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5473. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5474. };
  5475. static struct drm_framebuffer *
  5476. intel_framebuffer_create(struct drm_device *dev,
  5477. struct drm_mode_fb_cmd2 *mode_cmd,
  5478. struct drm_i915_gem_object *obj)
  5479. {
  5480. struct intel_framebuffer *intel_fb;
  5481. int ret;
  5482. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5483. if (!intel_fb) {
  5484. drm_gem_object_unreference_unlocked(&obj->base);
  5485. return ERR_PTR(-ENOMEM);
  5486. }
  5487. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5488. if (ret) {
  5489. drm_gem_object_unreference_unlocked(&obj->base);
  5490. kfree(intel_fb);
  5491. return ERR_PTR(ret);
  5492. }
  5493. return &intel_fb->base;
  5494. }
  5495. static u32
  5496. intel_framebuffer_pitch_for_width(int width, int bpp)
  5497. {
  5498. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5499. return ALIGN(pitch, 64);
  5500. }
  5501. static u32
  5502. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5503. {
  5504. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5505. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5506. }
  5507. static struct drm_framebuffer *
  5508. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5509. struct drm_display_mode *mode,
  5510. int depth, int bpp)
  5511. {
  5512. struct drm_i915_gem_object *obj;
  5513. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5514. obj = i915_gem_alloc_object(dev,
  5515. intel_framebuffer_size_for_mode(mode, bpp));
  5516. if (obj == NULL)
  5517. return ERR_PTR(-ENOMEM);
  5518. mode_cmd.width = mode->hdisplay;
  5519. mode_cmd.height = mode->vdisplay;
  5520. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5521. bpp);
  5522. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5523. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5524. }
  5525. static struct drm_framebuffer *
  5526. mode_fits_in_fbdev(struct drm_device *dev,
  5527. struct drm_display_mode *mode)
  5528. {
  5529. struct drm_i915_private *dev_priv = dev->dev_private;
  5530. struct drm_i915_gem_object *obj;
  5531. struct drm_framebuffer *fb;
  5532. if (dev_priv->fbdev == NULL)
  5533. return NULL;
  5534. obj = dev_priv->fbdev->ifb.obj;
  5535. if (obj == NULL)
  5536. return NULL;
  5537. fb = &dev_priv->fbdev->ifb.base;
  5538. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5539. fb->bits_per_pixel))
  5540. return NULL;
  5541. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5542. return NULL;
  5543. return fb;
  5544. }
  5545. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5546. struct drm_display_mode *mode,
  5547. struct intel_load_detect_pipe *old)
  5548. {
  5549. struct intel_crtc *intel_crtc;
  5550. struct intel_encoder *intel_encoder =
  5551. intel_attached_encoder(connector);
  5552. struct drm_crtc *possible_crtc;
  5553. struct drm_encoder *encoder = &intel_encoder->base;
  5554. struct drm_crtc *crtc = NULL;
  5555. struct drm_device *dev = encoder->dev;
  5556. struct drm_framebuffer *fb;
  5557. int i = -1;
  5558. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5559. connector->base.id, drm_get_connector_name(connector),
  5560. encoder->base.id, drm_get_encoder_name(encoder));
  5561. /*
  5562. * Algorithm gets a little messy:
  5563. *
  5564. * - if the connector already has an assigned crtc, use it (but make
  5565. * sure it's on first)
  5566. *
  5567. * - try to find the first unused crtc that can drive this connector,
  5568. * and use that if we find one
  5569. */
  5570. /* See if we already have a CRTC for this connector */
  5571. if (encoder->crtc) {
  5572. crtc = encoder->crtc;
  5573. mutex_lock(&crtc->mutex);
  5574. old->dpms_mode = connector->dpms;
  5575. old->load_detect_temp = false;
  5576. /* Make sure the crtc and connector are running */
  5577. if (connector->dpms != DRM_MODE_DPMS_ON)
  5578. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5579. return true;
  5580. }
  5581. /* Find an unused one (if possible) */
  5582. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5583. i++;
  5584. if (!(encoder->possible_crtcs & (1 << i)))
  5585. continue;
  5586. if (!possible_crtc->enabled) {
  5587. crtc = possible_crtc;
  5588. break;
  5589. }
  5590. }
  5591. /*
  5592. * If we didn't find an unused CRTC, don't use any.
  5593. */
  5594. if (!crtc) {
  5595. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5596. return false;
  5597. }
  5598. mutex_lock(&crtc->mutex);
  5599. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5600. to_intel_connector(connector)->new_encoder = intel_encoder;
  5601. intel_crtc = to_intel_crtc(crtc);
  5602. old->dpms_mode = connector->dpms;
  5603. old->load_detect_temp = true;
  5604. old->release_fb = NULL;
  5605. if (!mode)
  5606. mode = &load_detect_mode;
  5607. /* We need a framebuffer large enough to accommodate all accesses
  5608. * that the plane may generate whilst we perform load detection.
  5609. * We can not rely on the fbcon either being present (we get called
  5610. * during its initialisation to detect all boot displays, or it may
  5611. * not even exist) or that it is large enough to satisfy the
  5612. * requested mode.
  5613. */
  5614. fb = mode_fits_in_fbdev(dev, mode);
  5615. if (fb == NULL) {
  5616. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5617. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5618. old->release_fb = fb;
  5619. } else
  5620. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5621. if (IS_ERR(fb)) {
  5622. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5623. mutex_unlock(&crtc->mutex);
  5624. return false;
  5625. }
  5626. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5627. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5628. if (old->release_fb)
  5629. old->release_fb->funcs->destroy(old->release_fb);
  5630. mutex_unlock(&crtc->mutex);
  5631. return false;
  5632. }
  5633. /* let the connector get through one full cycle before testing */
  5634. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5635. return true;
  5636. }
  5637. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5638. struct intel_load_detect_pipe *old)
  5639. {
  5640. struct intel_encoder *intel_encoder =
  5641. intel_attached_encoder(connector);
  5642. struct drm_encoder *encoder = &intel_encoder->base;
  5643. struct drm_crtc *crtc = encoder->crtc;
  5644. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5645. connector->base.id, drm_get_connector_name(connector),
  5646. encoder->base.id, drm_get_encoder_name(encoder));
  5647. if (old->load_detect_temp) {
  5648. to_intel_connector(connector)->new_encoder = NULL;
  5649. intel_encoder->new_crtc = NULL;
  5650. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5651. if (old->release_fb) {
  5652. drm_framebuffer_unregister_private(old->release_fb);
  5653. drm_framebuffer_unreference(old->release_fb);
  5654. }
  5655. mutex_unlock(&crtc->mutex);
  5656. return;
  5657. }
  5658. /* Switch crtc and encoder back off if necessary */
  5659. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5660. connector->funcs->dpms(connector, old->dpms_mode);
  5661. mutex_unlock(&crtc->mutex);
  5662. }
  5663. /* Returns the clock of the currently programmed mode of the given pipe. */
  5664. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5665. {
  5666. struct drm_i915_private *dev_priv = dev->dev_private;
  5667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5668. int pipe = intel_crtc->pipe;
  5669. u32 dpll = I915_READ(DPLL(pipe));
  5670. u32 fp;
  5671. intel_clock_t clock;
  5672. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5673. fp = I915_READ(FP0(pipe));
  5674. else
  5675. fp = I915_READ(FP1(pipe));
  5676. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5677. if (IS_PINEVIEW(dev)) {
  5678. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5679. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5680. } else {
  5681. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5682. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5683. }
  5684. if (!IS_GEN2(dev)) {
  5685. if (IS_PINEVIEW(dev))
  5686. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5687. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5688. else
  5689. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5690. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5691. switch (dpll & DPLL_MODE_MASK) {
  5692. case DPLLB_MODE_DAC_SERIAL:
  5693. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5694. 5 : 10;
  5695. break;
  5696. case DPLLB_MODE_LVDS:
  5697. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5698. 7 : 14;
  5699. break;
  5700. default:
  5701. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5702. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5703. return 0;
  5704. }
  5705. /* XXX: Handle the 100Mhz refclk */
  5706. intel_clock(dev, 96000, &clock);
  5707. } else {
  5708. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5709. if (is_lvds) {
  5710. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5711. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5712. clock.p2 = 14;
  5713. if ((dpll & PLL_REF_INPUT_MASK) ==
  5714. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5715. /* XXX: might not be 66MHz */
  5716. intel_clock(dev, 66000, &clock);
  5717. } else
  5718. intel_clock(dev, 48000, &clock);
  5719. } else {
  5720. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5721. clock.p1 = 2;
  5722. else {
  5723. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5724. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5725. }
  5726. if (dpll & PLL_P2_DIVIDE_BY_4)
  5727. clock.p2 = 4;
  5728. else
  5729. clock.p2 = 2;
  5730. intel_clock(dev, 48000, &clock);
  5731. }
  5732. }
  5733. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5734. * i830PllIsValid() because it relies on the xf86_config connector
  5735. * configuration being accurate, which it isn't necessarily.
  5736. */
  5737. return clock.dot;
  5738. }
  5739. /** Returns the currently programmed mode of the given pipe. */
  5740. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5741. struct drm_crtc *crtc)
  5742. {
  5743. struct drm_i915_private *dev_priv = dev->dev_private;
  5744. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5745. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5746. struct drm_display_mode *mode;
  5747. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5748. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5749. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5750. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5751. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5752. if (!mode)
  5753. return NULL;
  5754. mode->clock = intel_crtc_clock_get(dev, crtc);
  5755. mode->hdisplay = (htot & 0xffff) + 1;
  5756. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5757. mode->hsync_start = (hsync & 0xffff) + 1;
  5758. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5759. mode->vdisplay = (vtot & 0xffff) + 1;
  5760. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5761. mode->vsync_start = (vsync & 0xffff) + 1;
  5762. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5763. drm_mode_set_name(mode);
  5764. return mode;
  5765. }
  5766. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5767. {
  5768. struct drm_device *dev = crtc->dev;
  5769. drm_i915_private_t *dev_priv = dev->dev_private;
  5770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5771. int pipe = intel_crtc->pipe;
  5772. int dpll_reg = DPLL(pipe);
  5773. int dpll;
  5774. if (HAS_PCH_SPLIT(dev))
  5775. return;
  5776. if (!dev_priv->lvds_downclock_avail)
  5777. return;
  5778. dpll = I915_READ(dpll_reg);
  5779. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5780. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5781. assert_panel_unlocked(dev_priv, pipe);
  5782. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5783. I915_WRITE(dpll_reg, dpll);
  5784. intel_wait_for_vblank(dev, pipe);
  5785. dpll = I915_READ(dpll_reg);
  5786. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5787. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5788. }
  5789. }
  5790. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5791. {
  5792. struct drm_device *dev = crtc->dev;
  5793. drm_i915_private_t *dev_priv = dev->dev_private;
  5794. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5795. if (HAS_PCH_SPLIT(dev))
  5796. return;
  5797. if (!dev_priv->lvds_downclock_avail)
  5798. return;
  5799. /*
  5800. * Since this is called by a timer, we should never get here in
  5801. * the manual case.
  5802. */
  5803. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5804. int pipe = intel_crtc->pipe;
  5805. int dpll_reg = DPLL(pipe);
  5806. int dpll;
  5807. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5808. assert_panel_unlocked(dev_priv, pipe);
  5809. dpll = I915_READ(dpll_reg);
  5810. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5811. I915_WRITE(dpll_reg, dpll);
  5812. intel_wait_for_vblank(dev, pipe);
  5813. dpll = I915_READ(dpll_reg);
  5814. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5815. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5816. }
  5817. }
  5818. void intel_mark_busy(struct drm_device *dev)
  5819. {
  5820. i915_update_gfx_val(dev->dev_private);
  5821. }
  5822. void intel_mark_idle(struct drm_device *dev)
  5823. {
  5824. struct drm_crtc *crtc;
  5825. if (!i915_powersave)
  5826. return;
  5827. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5828. if (!crtc->fb)
  5829. continue;
  5830. intel_decrease_pllclock(crtc);
  5831. }
  5832. }
  5833. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5834. {
  5835. struct drm_device *dev = obj->base.dev;
  5836. struct drm_crtc *crtc;
  5837. if (!i915_powersave)
  5838. return;
  5839. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5840. if (!crtc->fb)
  5841. continue;
  5842. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5843. intel_increase_pllclock(crtc);
  5844. }
  5845. }
  5846. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5847. {
  5848. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5849. struct drm_device *dev = crtc->dev;
  5850. struct intel_unpin_work *work;
  5851. unsigned long flags;
  5852. spin_lock_irqsave(&dev->event_lock, flags);
  5853. work = intel_crtc->unpin_work;
  5854. intel_crtc->unpin_work = NULL;
  5855. spin_unlock_irqrestore(&dev->event_lock, flags);
  5856. if (work) {
  5857. cancel_work_sync(&work->work);
  5858. kfree(work);
  5859. }
  5860. drm_crtc_cleanup(crtc);
  5861. kfree(intel_crtc);
  5862. }
  5863. static void intel_unpin_work_fn(struct work_struct *__work)
  5864. {
  5865. struct intel_unpin_work *work =
  5866. container_of(__work, struct intel_unpin_work, work);
  5867. struct drm_device *dev = work->crtc->dev;
  5868. mutex_lock(&dev->struct_mutex);
  5869. intel_unpin_fb_obj(work->old_fb_obj);
  5870. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5871. drm_gem_object_unreference(&work->old_fb_obj->base);
  5872. intel_update_fbc(dev);
  5873. mutex_unlock(&dev->struct_mutex);
  5874. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5875. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5876. kfree(work);
  5877. }
  5878. static void do_intel_finish_page_flip(struct drm_device *dev,
  5879. struct drm_crtc *crtc)
  5880. {
  5881. drm_i915_private_t *dev_priv = dev->dev_private;
  5882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5883. struct intel_unpin_work *work;
  5884. unsigned long flags;
  5885. /* Ignore early vblank irqs */
  5886. if (intel_crtc == NULL)
  5887. return;
  5888. spin_lock_irqsave(&dev->event_lock, flags);
  5889. work = intel_crtc->unpin_work;
  5890. /* Ensure we don't miss a work->pending update ... */
  5891. smp_rmb();
  5892. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5893. spin_unlock_irqrestore(&dev->event_lock, flags);
  5894. return;
  5895. }
  5896. /* and that the unpin work is consistent wrt ->pending. */
  5897. smp_rmb();
  5898. intel_crtc->unpin_work = NULL;
  5899. if (work->event)
  5900. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5901. drm_vblank_put(dev, intel_crtc->pipe);
  5902. spin_unlock_irqrestore(&dev->event_lock, flags);
  5903. wake_up_all(&dev_priv->pending_flip_queue);
  5904. queue_work(dev_priv->wq, &work->work);
  5905. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5906. }
  5907. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5908. {
  5909. drm_i915_private_t *dev_priv = dev->dev_private;
  5910. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5911. do_intel_finish_page_flip(dev, crtc);
  5912. }
  5913. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5914. {
  5915. drm_i915_private_t *dev_priv = dev->dev_private;
  5916. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5917. do_intel_finish_page_flip(dev, crtc);
  5918. }
  5919. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5920. {
  5921. drm_i915_private_t *dev_priv = dev->dev_private;
  5922. struct intel_crtc *intel_crtc =
  5923. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5924. unsigned long flags;
  5925. /* NB: An MMIO update of the plane base pointer will also
  5926. * generate a page-flip completion irq, i.e. every modeset
  5927. * is also accompanied by a spurious intel_prepare_page_flip().
  5928. */
  5929. spin_lock_irqsave(&dev->event_lock, flags);
  5930. if (intel_crtc->unpin_work)
  5931. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  5932. spin_unlock_irqrestore(&dev->event_lock, flags);
  5933. }
  5934. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  5935. {
  5936. /* Ensure that the work item is consistent when activating it ... */
  5937. smp_wmb();
  5938. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  5939. /* and that it is marked active as soon as the irq could fire. */
  5940. smp_wmb();
  5941. }
  5942. static int intel_gen2_queue_flip(struct drm_device *dev,
  5943. struct drm_crtc *crtc,
  5944. struct drm_framebuffer *fb,
  5945. struct drm_i915_gem_object *obj)
  5946. {
  5947. struct drm_i915_private *dev_priv = dev->dev_private;
  5948. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5949. u32 flip_mask;
  5950. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5951. int ret;
  5952. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5953. if (ret)
  5954. goto err;
  5955. ret = intel_ring_begin(ring, 6);
  5956. if (ret)
  5957. goto err_unpin;
  5958. /* Can't queue multiple flips, so wait for the previous
  5959. * one to finish before executing the next.
  5960. */
  5961. if (intel_crtc->plane)
  5962. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5963. else
  5964. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5965. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5966. intel_ring_emit(ring, MI_NOOP);
  5967. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5968. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5969. intel_ring_emit(ring, fb->pitches[0]);
  5970. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5971. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5972. intel_mark_page_flip_active(intel_crtc);
  5973. intel_ring_advance(ring);
  5974. return 0;
  5975. err_unpin:
  5976. intel_unpin_fb_obj(obj);
  5977. err:
  5978. return ret;
  5979. }
  5980. static int intel_gen3_queue_flip(struct drm_device *dev,
  5981. struct drm_crtc *crtc,
  5982. struct drm_framebuffer *fb,
  5983. struct drm_i915_gem_object *obj)
  5984. {
  5985. struct drm_i915_private *dev_priv = dev->dev_private;
  5986. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5987. u32 flip_mask;
  5988. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5989. int ret;
  5990. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5991. if (ret)
  5992. goto err;
  5993. ret = intel_ring_begin(ring, 6);
  5994. if (ret)
  5995. goto err_unpin;
  5996. if (intel_crtc->plane)
  5997. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5998. else
  5999. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6000. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6001. intel_ring_emit(ring, MI_NOOP);
  6002. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6003. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6004. intel_ring_emit(ring, fb->pitches[0]);
  6005. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6006. intel_ring_emit(ring, MI_NOOP);
  6007. intel_mark_page_flip_active(intel_crtc);
  6008. intel_ring_advance(ring);
  6009. return 0;
  6010. err_unpin:
  6011. intel_unpin_fb_obj(obj);
  6012. err:
  6013. return ret;
  6014. }
  6015. static int intel_gen4_queue_flip(struct drm_device *dev,
  6016. struct drm_crtc *crtc,
  6017. struct drm_framebuffer *fb,
  6018. struct drm_i915_gem_object *obj)
  6019. {
  6020. struct drm_i915_private *dev_priv = dev->dev_private;
  6021. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6022. uint32_t pf, pipesrc;
  6023. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6024. int ret;
  6025. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6026. if (ret)
  6027. goto err;
  6028. ret = intel_ring_begin(ring, 4);
  6029. if (ret)
  6030. goto err_unpin;
  6031. /* i965+ uses the linear or tiled offsets from the
  6032. * Display Registers (which do not change across a page-flip)
  6033. * so we need only reprogram the base address.
  6034. */
  6035. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6036. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6037. intel_ring_emit(ring, fb->pitches[0]);
  6038. intel_ring_emit(ring,
  6039. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6040. obj->tiling_mode);
  6041. /* XXX Enabling the panel-fitter across page-flip is so far
  6042. * untested on non-native modes, so ignore it for now.
  6043. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6044. */
  6045. pf = 0;
  6046. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6047. intel_ring_emit(ring, pf | pipesrc);
  6048. intel_mark_page_flip_active(intel_crtc);
  6049. intel_ring_advance(ring);
  6050. return 0;
  6051. err_unpin:
  6052. intel_unpin_fb_obj(obj);
  6053. err:
  6054. return ret;
  6055. }
  6056. static int intel_gen6_queue_flip(struct drm_device *dev,
  6057. struct drm_crtc *crtc,
  6058. struct drm_framebuffer *fb,
  6059. struct drm_i915_gem_object *obj)
  6060. {
  6061. struct drm_i915_private *dev_priv = dev->dev_private;
  6062. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6063. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6064. uint32_t pf, pipesrc;
  6065. int ret;
  6066. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6067. if (ret)
  6068. goto err;
  6069. ret = intel_ring_begin(ring, 4);
  6070. if (ret)
  6071. goto err_unpin;
  6072. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6073. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6074. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6075. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6076. /* Contrary to the suggestions in the documentation,
  6077. * "Enable Panel Fitter" does not seem to be required when page
  6078. * flipping with a non-native mode, and worse causes a normal
  6079. * modeset to fail.
  6080. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6081. */
  6082. pf = 0;
  6083. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6084. intel_ring_emit(ring, pf | pipesrc);
  6085. intel_mark_page_flip_active(intel_crtc);
  6086. intel_ring_advance(ring);
  6087. return 0;
  6088. err_unpin:
  6089. intel_unpin_fb_obj(obj);
  6090. err:
  6091. return ret;
  6092. }
  6093. /*
  6094. * On gen7 we currently use the blit ring because (in early silicon at least)
  6095. * the render ring doesn't give us interrpts for page flip completion, which
  6096. * means clients will hang after the first flip is queued. Fortunately the
  6097. * blit ring generates interrupts properly, so use it instead.
  6098. */
  6099. static int intel_gen7_queue_flip(struct drm_device *dev,
  6100. struct drm_crtc *crtc,
  6101. struct drm_framebuffer *fb,
  6102. struct drm_i915_gem_object *obj)
  6103. {
  6104. struct drm_i915_private *dev_priv = dev->dev_private;
  6105. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6106. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6107. uint32_t plane_bit = 0;
  6108. int ret;
  6109. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6110. if (ret)
  6111. goto err;
  6112. switch(intel_crtc->plane) {
  6113. case PLANE_A:
  6114. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6115. break;
  6116. case PLANE_B:
  6117. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6118. break;
  6119. case PLANE_C:
  6120. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6121. break;
  6122. default:
  6123. WARN_ONCE(1, "unknown plane in flip command\n");
  6124. ret = -ENODEV;
  6125. goto err_unpin;
  6126. }
  6127. ret = intel_ring_begin(ring, 4);
  6128. if (ret)
  6129. goto err_unpin;
  6130. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6131. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6132. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6133. intel_ring_emit(ring, (MI_NOOP));
  6134. intel_mark_page_flip_active(intel_crtc);
  6135. intel_ring_advance(ring);
  6136. return 0;
  6137. err_unpin:
  6138. intel_unpin_fb_obj(obj);
  6139. err:
  6140. return ret;
  6141. }
  6142. static int intel_default_queue_flip(struct drm_device *dev,
  6143. struct drm_crtc *crtc,
  6144. struct drm_framebuffer *fb,
  6145. struct drm_i915_gem_object *obj)
  6146. {
  6147. return -ENODEV;
  6148. }
  6149. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6150. struct drm_framebuffer *fb,
  6151. struct drm_pending_vblank_event *event)
  6152. {
  6153. struct drm_device *dev = crtc->dev;
  6154. struct drm_i915_private *dev_priv = dev->dev_private;
  6155. struct intel_framebuffer *intel_fb;
  6156. struct drm_i915_gem_object *obj;
  6157. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6158. struct intel_unpin_work *work;
  6159. unsigned long flags;
  6160. int ret;
  6161. /* Can't change pixel format via MI display flips. */
  6162. if (fb->pixel_format != crtc->fb->pixel_format)
  6163. return -EINVAL;
  6164. /*
  6165. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6166. * Note that pitch changes could also affect these register.
  6167. */
  6168. if (INTEL_INFO(dev)->gen > 3 &&
  6169. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6170. fb->pitches[0] != crtc->fb->pitches[0]))
  6171. return -EINVAL;
  6172. work = kzalloc(sizeof *work, GFP_KERNEL);
  6173. if (work == NULL)
  6174. return -ENOMEM;
  6175. work->event = event;
  6176. work->crtc = crtc;
  6177. intel_fb = to_intel_framebuffer(crtc->fb);
  6178. work->old_fb_obj = intel_fb->obj;
  6179. INIT_WORK(&work->work, intel_unpin_work_fn);
  6180. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6181. if (ret)
  6182. goto free_work;
  6183. /* We borrow the event spin lock for protecting unpin_work */
  6184. spin_lock_irqsave(&dev->event_lock, flags);
  6185. if (intel_crtc->unpin_work) {
  6186. spin_unlock_irqrestore(&dev->event_lock, flags);
  6187. kfree(work);
  6188. drm_vblank_put(dev, intel_crtc->pipe);
  6189. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6190. return -EBUSY;
  6191. }
  6192. intel_crtc->unpin_work = work;
  6193. spin_unlock_irqrestore(&dev->event_lock, flags);
  6194. intel_fb = to_intel_framebuffer(fb);
  6195. obj = intel_fb->obj;
  6196. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6197. flush_workqueue(dev_priv->wq);
  6198. ret = i915_mutex_lock_interruptible(dev);
  6199. if (ret)
  6200. goto cleanup;
  6201. /* Reference the objects for the scheduled work. */
  6202. drm_gem_object_reference(&work->old_fb_obj->base);
  6203. drm_gem_object_reference(&obj->base);
  6204. crtc->fb = fb;
  6205. work->pending_flip_obj = obj;
  6206. work->enable_stall_check = true;
  6207. atomic_inc(&intel_crtc->unpin_work_count);
  6208. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6209. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6210. if (ret)
  6211. goto cleanup_pending;
  6212. intel_disable_fbc(dev);
  6213. intel_mark_fb_busy(obj);
  6214. mutex_unlock(&dev->struct_mutex);
  6215. trace_i915_flip_request(intel_crtc->plane, obj);
  6216. return 0;
  6217. cleanup_pending:
  6218. atomic_dec(&intel_crtc->unpin_work_count);
  6219. drm_gem_object_unreference(&work->old_fb_obj->base);
  6220. drm_gem_object_unreference(&obj->base);
  6221. mutex_unlock(&dev->struct_mutex);
  6222. cleanup:
  6223. spin_lock_irqsave(&dev->event_lock, flags);
  6224. intel_crtc->unpin_work = NULL;
  6225. spin_unlock_irqrestore(&dev->event_lock, flags);
  6226. drm_vblank_put(dev, intel_crtc->pipe);
  6227. free_work:
  6228. kfree(work);
  6229. return ret;
  6230. }
  6231. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6232. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6233. .load_lut = intel_crtc_load_lut,
  6234. .disable = intel_crtc_noop,
  6235. };
  6236. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6237. {
  6238. struct intel_encoder *other_encoder;
  6239. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6240. if (WARN_ON(!crtc))
  6241. return false;
  6242. list_for_each_entry(other_encoder,
  6243. &crtc->dev->mode_config.encoder_list,
  6244. base.head) {
  6245. if (&other_encoder->new_crtc->base != crtc ||
  6246. encoder == other_encoder)
  6247. continue;
  6248. else
  6249. return true;
  6250. }
  6251. return false;
  6252. }
  6253. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6254. struct drm_crtc *crtc)
  6255. {
  6256. struct drm_device *dev;
  6257. struct drm_crtc *tmp;
  6258. int crtc_mask = 1;
  6259. WARN(!crtc, "checking null crtc?\n");
  6260. dev = crtc->dev;
  6261. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6262. if (tmp == crtc)
  6263. break;
  6264. crtc_mask <<= 1;
  6265. }
  6266. if (encoder->possible_crtcs & crtc_mask)
  6267. return true;
  6268. return false;
  6269. }
  6270. /**
  6271. * intel_modeset_update_staged_output_state
  6272. *
  6273. * Updates the staged output configuration state, e.g. after we've read out the
  6274. * current hw state.
  6275. */
  6276. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6277. {
  6278. struct intel_encoder *encoder;
  6279. struct intel_connector *connector;
  6280. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6281. base.head) {
  6282. connector->new_encoder =
  6283. to_intel_encoder(connector->base.encoder);
  6284. }
  6285. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6286. base.head) {
  6287. encoder->new_crtc =
  6288. to_intel_crtc(encoder->base.crtc);
  6289. }
  6290. }
  6291. /**
  6292. * intel_modeset_commit_output_state
  6293. *
  6294. * This function copies the stage display pipe configuration to the real one.
  6295. */
  6296. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6297. {
  6298. struct intel_encoder *encoder;
  6299. struct intel_connector *connector;
  6300. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6301. base.head) {
  6302. connector->base.encoder = &connector->new_encoder->base;
  6303. }
  6304. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6305. base.head) {
  6306. encoder->base.crtc = &encoder->new_crtc->base;
  6307. }
  6308. }
  6309. static struct drm_display_mode *
  6310. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6311. struct drm_display_mode *mode)
  6312. {
  6313. struct drm_device *dev = crtc->dev;
  6314. struct drm_display_mode *adjusted_mode;
  6315. struct drm_encoder_helper_funcs *encoder_funcs;
  6316. struct intel_encoder *encoder;
  6317. adjusted_mode = drm_mode_duplicate(dev, mode);
  6318. if (!adjusted_mode)
  6319. return ERR_PTR(-ENOMEM);
  6320. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6321. * adjust it according to limitations or connector properties, and also
  6322. * a chance to reject the mode entirely.
  6323. */
  6324. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6325. base.head) {
  6326. if (&encoder->new_crtc->base != crtc)
  6327. continue;
  6328. encoder_funcs = encoder->base.helper_private;
  6329. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6330. adjusted_mode))) {
  6331. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6332. goto fail;
  6333. }
  6334. }
  6335. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6336. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6337. goto fail;
  6338. }
  6339. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6340. return adjusted_mode;
  6341. fail:
  6342. drm_mode_destroy(dev, adjusted_mode);
  6343. return ERR_PTR(-EINVAL);
  6344. }
  6345. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6346. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6347. static void
  6348. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6349. unsigned *prepare_pipes, unsigned *disable_pipes)
  6350. {
  6351. struct intel_crtc *intel_crtc;
  6352. struct drm_device *dev = crtc->dev;
  6353. struct intel_encoder *encoder;
  6354. struct intel_connector *connector;
  6355. struct drm_crtc *tmp_crtc;
  6356. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6357. /* Check which crtcs have changed outputs connected to them, these need
  6358. * to be part of the prepare_pipes mask. We don't (yet) support global
  6359. * modeset across multiple crtcs, so modeset_pipes will only have one
  6360. * bit set at most. */
  6361. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6362. base.head) {
  6363. if (connector->base.encoder == &connector->new_encoder->base)
  6364. continue;
  6365. if (connector->base.encoder) {
  6366. tmp_crtc = connector->base.encoder->crtc;
  6367. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6368. }
  6369. if (connector->new_encoder)
  6370. *prepare_pipes |=
  6371. 1 << connector->new_encoder->new_crtc->pipe;
  6372. }
  6373. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6374. base.head) {
  6375. if (encoder->base.crtc == &encoder->new_crtc->base)
  6376. continue;
  6377. if (encoder->base.crtc) {
  6378. tmp_crtc = encoder->base.crtc;
  6379. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6380. }
  6381. if (encoder->new_crtc)
  6382. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6383. }
  6384. /* Check for any pipes that will be fully disabled ... */
  6385. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6386. base.head) {
  6387. bool used = false;
  6388. /* Don't try to disable disabled crtcs. */
  6389. if (!intel_crtc->base.enabled)
  6390. continue;
  6391. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6392. base.head) {
  6393. if (encoder->new_crtc == intel_crtc)
  6394. used = true;
  6395. }
  6396. if (!used)
  6397. *disable_pipes |= 1 << intel_crtc->pipe;
  6398. }
  6399. /* set_mode is also used to update properties on life display pipes. */
  6400. intel_crtc = to_intel_crtc(crtc);
  6401. if (crtc->enabled)
  6402. *prepare_pipes |= 1 << intel_crtc->pipe;
  6403. /* We only support modeset on one single crtc, hence we need to do that
  6404. * only for the passed in crtc iff we change anything else than just
  6405. * disable crtcs.
  6406. *
  6407. * This is actually not true, to be fully compatible with the old crtc
  6408. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6409. * connected to the crtc we're modesetting on) if it's disconnected.
  6410. * Which is a rather nutty api (since changed the output configuration
  6411. * without userspace's explicit request can lead to confusion), but
  6412. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6413. if (*prepare_pipes)
  6414. *modeset_pipes = *prepare_pipes;
  6415. /* ... and mask these out. */
  6416. *modeset_pipes &= ~(*disable_pipes);
  6417. *prepare_pipes &= ~(*disable_pipes);
  6418. }
  6419. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6420. {
  6421. struct drm_encoder *encoder;
  6422. struct drm_device *dev = crtc->dev;
  6423. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6424. if (encoder->crtc == crtc)
  6425. return true;
  6426. return false;
  6427. }
  6428. static void
  6429. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6430. {
  6431. struct intel_encoder *intel_encoder;
  6432. struct intel_crtc *intel_crtc;
  6433. struct drm_connector *connector;
  6434. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6435. base.head) {
  6436. if (!intel_encoder->base.crtc)
  6437. continue;
  6438. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6439. if (prepare_pipes & (1 << intel_crtc->pipe))
  6440. intel_encoder->connectors_active = false;
  6441. }
  6442. intel_modeset_commit_output_state(dev);
  6443. /* Update computed state. */
  6444. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6445. base.head) {
  6446. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6447. }
  6448. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6449. if (!connector->encoder || !connector->encoder->crtc)
  6450. continue;
  6451. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6452. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6453. struct drm_property *dpms_property =
  6454. dev->mode_config.dpms_property;
  6455. connector->dpms = DRM_MODE_DPMS_ON;
  6456. drm_object_property_set_value(&connector->base,
  6457. dpms_property,
  6458. DRM_MODE_DPMS_ON);
  6459. intel_encoder = to_intel_encoder(connector->encoder);
  6460. intel_encoder->connectors_active = true;
  6461. }
  6462. }
  6463. }
  6464. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6465. list_for_each_entry((intel_crtc), \
  6466. &(dev)->mode_config.crtc_list, \
  6467. base.head) \
  6468. if (mask & (1 <<(intel_crtc)->pipe)) \
  6469. void
  6470. intel_modeset_check_state(struct drm_device *dev)
  6471. {
  6472. struct intel_crtc *crtc;
  6473. struct intel_encoder *encoder;
  6474. struct intel_connector *connector;
  6475. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6476. base.head) {
  6477. /* This also checks the encoder/connector hw state with the
  6478. * ->get_hw_state callbacks. */
  6479. intel_connector_check_state(connector);
  6480. WARN(&connector->new_encoder->base != connector->base.encoder,
  6481. "connector's staged encoder doesn't match current encoder\n");
  6482. }
  6483. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6484. base.head) {
  6485. bool enabled = false;
  6486. bool active = false;
  6487. enum pipe pipe, tracked_pipe;
  6488. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6489. encoder->base.base.id,
  6490. drm_get_encoder_name(&encoder->base));
  6491. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6492. "encoder's stage crtc doesn't match current crtc\n");
  6493. WARN(encoder->connectors_active && !encoder->base.crtc,
  6494. "encoder's active_connectors set, but no crtc\n");
  6495. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6496. base.head) {
  6497. if (connector->base.encoder != &encoder->base)
  6498. continue;
  6499. enabled = true;
  6500. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6501. active = true;
  6502. }
  6503. WARN(!!encoder->base.crtc != enabled,
  6504. "encoder's enabled state mismatch "
  6505. "(expected %i, found %i)\n",
  6506. !!encoder->base.crtc, enabled);
  6507. WARN(active && !encoder->base.crtc,
  6508. "active encoder with no crtc\n");
  6509. WARN(encoder->connectors_active != active,
  6510. "encoder's computed active state doesn't match tracked active state "
  6511. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6512. active = encoder->get_hw_state(encoder, &pipe);
  6513. WARN(active != encoder->connectors_active,
  6514. "encoder's hw state doesn't match sw tracking "
  6515. "(expected %i, found %i)\n",
  6516. encoder->connectors_active, active);
  6517. if (!encoder->base.crtc)
  6518. continue;
  6519. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6520. WARN(active && pipe != tracked_pipe,
  6521. "active encoder's pipe doesn't match"
  6522. "(expected %i, found %i)\n",
  6523. tracked_pipe, pipe);
  6524. }
  6525. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6526. base.head) {
  6527. bool enabled = false;
  6528. bool active = false;
  6529. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6530. crtc->base.base.id);
  6531. WARN(crtc->active && !crtc->base.enabled,
  6532. "active crtc, but not enabled in sw tracking\n");
  6533. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6534. base.head) {
  6535. if (encoder->base.crtc != &crtc->base)
  6536. continue;
  6537. enabled = true;
  6538. if (encoder->connectors_active)
  6539. active = true;
  6540. }
  6541. WARN(active != crtc->active,
  6542. "crtc's computed active state doesn't match tracked active state "
  6543. "(expected %i, found %i)\n", active, crtc->active);
  6544. WARN(enabled != crtc->base.enabled,
  6545. "crtc's computed enabled state doesn't match tracked enabled state "
  6546. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6547. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6548. }
  6549. }
  6550. int intel_set_mode(struct drm_crtc *crtc,
  6551. struct drm_display_mode *mode,
  6552. int x, int y, struct drm_framebuffer *fb)
  6553. {
  6554. struct drm_device *dev = crtc->dev;
  6555. drm_i915_private_t *dev_priv = dev->dev_private;
  6556. struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
  6557. struct intel_crtc *intel_crtc;
  6558. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6559. int ret = 0;
  6560. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6561. if (!saved_mode)
  6562. return -ENOMEM;
  6563. saved_hwmode = saved_mode + 1;
  6564. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6565. &prepare_pipes, &disable_pipes);
  6566. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6567. modeset_pipes, prepare_pipes, disable_pipes);
  6568. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6569. intel_crtc_disable(&intel_crtc->base);
  6570. *saved_hwmode = crtc->hwmode;
  6571. *saved_mode = crtc->mode;
  6572. /* Hack: Because we don't (yet) support global modeset on multiple
  6573. * crtcs, we don't keep track of the new mode for more than one crtc.
  6574. * Hence simply check whether any bit is set in modeset_pipes in all the
  6575. * pieces of code that are not yet converted to deal with mutliple crtcs
  6576. * changing their mode at the same time. */
  6577. adjusted_mode = NULL;
  6578. if (modeset_pipes) {
  6579. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6580. if (IS_ERR(adjusted_mode)) {
  6581. ret = PTR_ERR(adjusted_mode);
  6582. goto out;
  6583. }
  6584. }
  6585. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6586. if (intel_crtc->base.enabled)
  6587. dev_priv->display.crtc_disable(&intel_crtc->base);
  6588. }
  6589. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6590. * to set it here already despite that we pass it down the callchain.
  6591. */
  6592. if (modeset_pipes)
  6593. crtc->mode = *mode;
  6594. /* Only after disabling all output pipelines that will be changed can we
  6595. * update the the output configuration. */
  6596. intel_modeset_update_state(dev, prepare_pipes);
  6597. if (dev_priv->display.modeset_global_resources)
  6598. dev_priv->display.modeset_global_resources(dev);
  6599. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6600. * on the DPLL.
  6601. */
  6602. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6603. ret = intel_crtc_mode_set(&intel_crtc->base,
  6604. mode, adjusted_mode,
  6605. x, y, fb);
  6606. if (ret)
  6607. goto done;
  6608. }
  6609. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6610. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6611. dev_priv->display.crtc_enable(&intel_crtc->base);
  6612. if (modeset_pipes) {
  6613. /* Store real post-adjustment hardware mode. */
  6614. crtc->hwmode = *adjusted_mode;
  6615. /* Calculate and store various constants which
  6616. * are later needed by vblank and swap-completion
  6617. * timestamping. They are derived from true hwmode.
  6618. */
  6619. drm_calc_timestamping_constants(crtc);
  6620. }
  6621. /* FIXME: add subpixel order */
  6622. done:
  6623. drm_mode_destroy(dev, adjusted_mode);
  6624. if (ret && crtc->enabled) {
  6625. crtc->hwmode = *saved_hwmode;
  6626. crtc->mode = *saved_mode;
  6627. } else {
  6628. intel_modeset_check_state(dev);
  6629. }
  6630. out:
  6631. kfree(saved_mode);
  6632. return ret;
  6633. }
  6634. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6635. {
  6636. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6637. }
  6638. #undef for_each_intel_crtc_masked
  6639. static void intel_set_config_free(struct intel_set_config *config)
  6640. {
  6641. if (!config)
  6642. return;
  6643. kfree(config->save_connector_encoders);
  6644. kfree(config->save_encoder_crtcs);
  6645. kfree(config);
  6646. }
  6647. static int intel_set_config_save_state(struct drm_device *dev,
  6648. struct intel_set_config *config)
  6649. {
  6650. struct drm_encoder *encoder;
  6651. struct drm_connector *connector;
  6652. int count;
  6653. config->save_encoder_crtcs =
  6654. kcalloc(dev->mode_config.num_encoder,
  6655. sizeof(struct drm_crtc *), GFP_KERNEL);
  6656. if (!config->save_encoder_crtcs)
  6657. return -ENOMEM;
  6658. config->save_connector_encoders =
  6659. kcalloc(dev->mode_config.num_connector,
  6660. sizeof(struct drm_encoder *), GFP_KERNEL);
  6661. if (!config->save_connector_encoders)
  6662. return -ENOMEM;
  6663. /* Copy data. Note that driver private data is not affected.
  6664. * Should anything bad happen only the expected state is
  6665. * restored, not the drivers personal bookkeeping.
  6666. */
  6667. count = 0;
  6668. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6669. config->save_encoder_crtcs[count++] = encoder->crtc;
  6670. }
  6671. count = 0;
  6672. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6673. config->save_connector_encoders[count++] = connector->encoder;
  6674. }
  6675. return 0;
  6676. }
  6677. static void intel_set_config_restore_state(struct drm_device *dev,
  6678. struct intel_set_config *config)
  6679. {
  6680. struct intel_encoder *encoder;
  6681. struct intel_connector *connector;
  6682. int count;
  6683. count = 0;
  6684. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6685. encoder->new_crtc =
  6686. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6687. }
  6688. count = 0;
  6689. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6690. connector->new_encoder =
  6691. to_intel_encoder(config->save_connector_encoders[count++]);
  6692. }
  6693. }
  6694. static void
  6695. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6696. struct intel_set_config *config)
  6697. {
  6698. /* We should be able to check here if the fb has the same properties
  6699. * and then just flip_or_move it */
  6700. if (set->crtc->fb != set->fb) {
  6701. /* If we have no fb then treat it as a full mode set */
  6702. if (set->crtc->fb == NULL) {
  6703. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6704. config->mode_changed = true;
  6705. } else if (set->fb == NULL) {
  6706. config->mode_changed = true;
  6707. } else if (set->fb->depth != set->crtc->fb->depth) {
  6708. config->mode_changed = true;
  6709. } else if (set->fb->bits_per_pixel !=
  6710. set->crtc->fb->bits_per_pixel) {
  6711. config->mode_changed = true;
  6712. } else
  6713. config->fb_changed = true;
  6714. }
  6715. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6716. config->fb_changed = true;
  6717. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6718. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6719. drm_mode_debug_printmodeline(&set->crtc->mode);
  6720. drm_mode_debug_printmodeline(set->mode);
  6721. config->mode_changed = true;
  6722. }
  6723. }
  6724. static int
  6725. intel_modeset_stage_output_state(struct drm_device *dev,
  6726. struct drm_mode_set *set,
  6727. struct intel_set_config *config)
  6728. {
  6729. struct drm_crtc *new_crtc;
  6730. struct intel_connector *connector;
  6731. struct intel_encoder *encoder;
  6732. int count, ro;
  6733. /* The upper layers ensure that we either disable a crtc or have a list
  6734. * of connectors. For paranoia, double-check this. */
  6735. WARN_ON(!set->fb && (set->num_connectors != 0));
  6736. WARN_ON(set->fb && (set->num_connectors == 0));
  6737. count = 0;
  6738. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6739. base.head) {
  6740. /* Otherwise traverse passed in connector list and get encoders
  6741. * for them. */
  6742. for (ro = 0; ro < set->num_connectors; ro++) {
  6743. if (set->connectors[ro] == &connector->base) {
  6744. connector->new_encoder = connector->encoder;
  6745. break;
  6746. }
  6747. }
  6748. /* If we disable the crtc, disable all its connectors. Also, if
  6749. * the connector is on the changing crtc but not on the new
  6750. * connector list, disable it. */
  6751. if ((!set->fb || ro == set->num_connectors) &&
  6752. connector->base.encoder &&
  6753. connector->base.encoder->crtc == set->crtc) {
  6754. connector->new_encoder = NULL;
  6755. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6756. connector->base.base.id,
  6757. drm_get_connector_name(&connector->base));
  6758. }
  6759. if (&connector->new_encoder->base != connector->base.encoder) {
  6760. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6761. config->mode_changed = true;
  6762. }
  6763. }
  6764. /* connector->new_encoder is now updated for all connectors. */
  6765. /* Update crtc of enabled connectors. */
  6766. count = 0;
  6767. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6768. base.head) {
  6769. if (!connector->new_encoder)
  6770. continue;
  6771. new_crtc = connector->new_encoder->base.crtc;
  6772. for (ro = 0; ro < set->num_connectors; ro++) {
  6773. if (set->connectors[ro] == &connector->base)
  6774. new_crtc = set->crtc;
  6775. }
  6776. /* Make sure the new CRTC will work with the encoder */
  6777. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6778. new_crtc)) {
  6779. return -EINVAL;
  6780. }
  6781. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6782. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6783. connector->base.base.id,
  6784. drm_get_connector_name(&connector->base),
  6785. new_crtc->base.id);
  6786. }
  6787. /* Check for any encoders that needs to be disabled. */
  6788. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6789. base.head) {
  6790. list_for_each_entry(connector,
  6791. &dev->mode_config.connector_list,
  6792. base.head) {
  6793. if (connector->new_encoder == encoder) {
  6794. WARN_ON(!connector->new_encoder->new_crtc);
  6795. goto next_encoder;
  6796. }
  6797. }
  6798. encoder->new_crtc = NULL;
  6799. next_encoder:
  6800. /* Only now check for crtc changes so we don't miss encoders
  6801. * that will be disabled. */
  6802. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6803. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6804. config->mode_changed = true;
  6805. }
  6806. }
  6807. /* Now we've also updated encoder->new_crtc for all encoders. */
  6808. return 0;
  6809. }
  6810. static int intel_crtc_set_config(struct drm_mode_set *set)
  6811. {
  6812. struct drm_device *dev;
  6813. struct drm_mode_set save_set;
  6814. struct intel_set_config *config;
  6815. int ret;
  6816. BUG_ON(!set);
  6817. BUG_ON(!set->crtc);
  6818. BUG_ON(!set->crtc->helper_private);
  6819. if (!set->mode)
  6820. set->fb = NULL;
  6821. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6822. * Unfortunately the crtc helper doesn't do much at all for this case,
  6823. * so we have to cope with this madness until the fb helper is fixed up. */
  6824. if (set->fb && set->num_connectors == 0)
  6825. return 0;
  6826. if (set->fb) {
  6827. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6828. set->crtc->base.id, set->fb->base.id,
  6829. (int)set->num_connectors, set->x, set->y);
  6830. } else {
  6831. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6832. }
  6833. dev = set->crtc->dev;
  6834. ret = -ENOMEM;
  6835. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6836. if (!config)
  6837. goto out_config;
  6838. ret = intel_set_config_save_state(dev, config);
  6839. if (ret)
  6840. goto out_config;
  6841. save_set.crtc = set->crtc;
  6842. save_set.mode = &set->crtc->mode;
  6843. save_set.x = set->crtc->x;
  6844. save_set.y = set->crtc->y;
  6845. save_set.fb = set->crtc->fb;
  6846. /* Compute whether we need a full modeset, only an fb base update or no
  6847. * change at all. In the future we might also check whether only the
  6848. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6849. * such cases. */
  6850. intel_set_config_compute_mode_changes(set, config);
  6851. ret = intel_modeset_stage_output_state(dev, set, config);
  6852. if (ret)
  6853. goto fail;
  6854. if (config->mode_changed) {
  6855. if (set->mode) {
  6856. DRM_DEBUG_KMS("attempting to set mode from"
  6857. " userspace\n");
  6858. drm_mode_debug_printmodeline(set->mode);
  6859. }
  6860. ret = intel_set_mode(set->crtc, set->mode,
  6861. set->x, set->y, set->fb);
  6862. if (ret) {
  6863. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  6864. set->crtc->base.id, ret);
  6865. goto fail;
  6866. }
  6867. } else if (config->fb_changed) {
  6868. intel_crtc_wait_for_pending_flips(set->crtc);
  6869. ret = intel_pipe_set_base(set->crtc,
  6870. set->x, set->y, set->fb);
  6871. }
  6872. intel_set_config_free(config);
  6873. return 0;
  6874. fail:
  6875. intel_set_config_restore_state(dev, config);
  6876. /* Try to restore the config */
  6877. if (config->mode_changed &&
  6878. intel_set_mode(save_set.crtc, save_set.mode,
  6879. save_set.x, save_set.y, save_set.fb))
  6880. DRM_ERROR("failed to restore config after modeset failure\n");
  6881. out_config:
  6882. intel_set_config_free(config);
  6883. return ret;
  6884. }
  6885. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6886. .cursor_set = intel_crtc_cursor_set,
  6887. .cursor_move = intel_crtc_cursor_move,
  6888. .gamma_set = intel_crtc_gamma_set,
  6889. .set_config = intel_crtc_set_config,
  6890. .destroy = intel_crtc_destroy,
  6891. .page_flip = intel_crtc_page_flip,
  6892. };
  6893. static void intel_cpu_pll_init(struct drm_device *dev)
  6894. {
  6895. if (HAS_DDI(dev))
  6896. intel_ddi_pll_init(dev);
  6897. }
  6898. static void intel_pch_pll_init(struct drm_device *dev)
  6899. {
  6900. drm_i915_private_t *dev_priv = dev->dev_private;
  6901. int i;
  6902. if (dev_priv->num_pch_pll == 0) {
  6903. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6904. return;
  6905. }
  6906. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6907. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6908. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6909. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6910. }
  6911. }
  6912. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6913. {
  6914. drm_i915_private_t *dev_priv = dev->dev_private;
  6915. struct intel_crtc *intel_crtc;
  6916. int i;
  6917. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6918. if (intel_crtc == NULL)
  6919. return;
  6920. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6921. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6922. for (i = 0; i < 256; i++) {
  6923. intel_crtc->lut_r[i] = i;
  6924. intel_crtc->lut_g[i] = i;
  6925. intel_crtc->lut_b[i] = i;
  6926. }
  6927. /* Swap pipes & planes for FBC on pre-965 */
  6928. intel_crtc->pipe = pipe;
  6929. intel_crtc->plane = pipe;
  6930. intel_crtc->cpu_transcoder = pipe;
  6931. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6932. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6933. intel_crtc->plane = !pipe;
  6934. }
  6935. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6936. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6937. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6938. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6939. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6940. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6941. }
  6942. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6943. struct drm_file *file)
  6944. {
  6945. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6946. struct drm_mode_object *drmmode_obj;
  6947. struct intel_crtc *crtc;
  6948. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6949. return -ENODEV;
  6950. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6951. DRM_MODE_OBJECT_CRTC);
  6952. if (!drmmode_obj) {
  6953. DRM_ERROR("no such CRTC id\n");
  6954. return -EINVAL;
  6955. }
  6956. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6957. pipe_from_crtc_id->pipe = crtc->pipe;
  6958. return 0;
  6959. }
  6960. static int intel_encoder_clones(struct intel_encoder *encoder)
  6961. {
  6962. struct drm_device *dev = encoder->base.dev;
  6963. struct intel_encoder *source_encoder;
  6964. int index_mask = 0;
  6965. int entry = 0;
  6966. list_for_each_entry(source_encoder,
  6967. &dev->mode_config.encoder_list, base.head) {
  6968. if (encoder == source_encoder)
  6969. index_mask |= (1 << entry);
  6970. /* Intel hw has only one MUX where enocoders could be cloned. */
  6971. if (encoder->cloneable && source_encoder->cloneable)
  6972. index_mask |= (1 << entry);
  6973. entry++;
  6974. }
  6975. return index_mask;
  6976. }
  6977. static bool has_edp_a(struct drm_device *dev)
  6978. {
  6979. struct drm_i915_private *dev_priv = dev->dev_private;
  6980. if (!IS_MOBILE(dev))
  6981. return false;
  6982. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6983. return false;
  6984. if (IS_GEN5(dev) &&
  6985. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6986. return false;
  6987. return true;
  6988. }
  6989. static void intel_setup_outputs(struct drm_device *dev)
  6990. {
  6991. struct drm_i915_private *dev_priv = dev->dev_private;
  6992. struct intel_encoder *encoder;
  6993. bool dpd_is_edp = false;
  6994. bool has_lvds;
  6995. has_lvds = intel_lvds_init(dev);
  6996. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6997. /* disable the panel fitter on everything but LVDS */
  6998. I915_WRITE(PFIT_CONTROL, 0);
  6999. }
  7000. if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
  7001. intel_crt_init(dev);
  7002. if (HAS_DDI(dev)) {
  7003. int found;
  7004. /* Haswell uses DDI functions to detect digital outputs */
  7005. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7006. /* DDI A only supports eDP */
  7007. if (found)
  7008. intel_ddi_init(dev, PORT_A);
  7009. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7010. * register */
  7011. found = I915_READ(SFUSE_STRAP);
  7012. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7013. intel_ddi_init(dev, PORT_B);
  7014. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7015. intel_ddi_init(dev, PORT_C);
  7016. if (found & SFUSE_STRAP_DDID_DETECTED)
  7017. intel_ddi_init(dev, PORT_D);
  7018. } else if (HAS_PCH_SPLIT(dev)) {
  7019. int found;
  7020. dpd_is_edp = intel_dpd_is_edp(dev);
  7021. if (has_edp_a(dev))
  7022. intel_dp_init(dev, DP_A, PORT_A);
  7023. if (I915_READ(HDMIB) & PORT_DETECTED) {
  7024. /* PCH SDVOB multiplex with HDMIB */
  7025. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7026. if (!found)
  7027. intel_hdmi_init(dev, HDMIB, PORT_B);
  7028. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7029. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7030. }
  7031. if (I915_READ(HDMIC) & PORT_DETECTED)
  7032. intel_hdmi_init(dev, HDMIC, PORT_C);
  7033. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  7034. intel_hdmi_init(dev, HDMID, PORT_D);
  7035. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7036. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7037. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7038. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7039. } else if (IS_VALLEYVIEW(dev)) {
  7040. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7041. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7042. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7043. if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) {
  7044. intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B);
  7045. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7046. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7047. }
  7048. if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED)
  7049. intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C);
  7050. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7051. bool found = false;
  7052. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7053. DRM_DEBUG_KMS("probing SDVOB\n");
  7054. found = intel_sdvo_init(dev, SDVOB, true);
  7055. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7056. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7057. intel_hdmi_init(dev, SDVOB, PORT_B);
  7058. }
  7059. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7060. DRM_DEBUG_KMS("probing DP_B\n");
  7061. intel_dp_init(dev, DP_B, PORT_B);
  7062. }
  7063. }
  7064. /* Before G4X SDVOC doesn't have its own detect register */
  7065. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7066. DRM_DEBUG_KMS("probing SDVOC\n");
  7067. found = intel_sdvo_init(dev, SDVOC, false);
  7068. }
  7069. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  7070. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7071. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7072. intel_hdmi_init(dev, SDVOC, PORT_C);
  7073. }
  7074. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7075. DRM_DEBUG_KMS("probing DP_C\n");
  7076. intel_dp_init(dev, DP_C, PORT_C);
  7077. }
  7078. }
  7079. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7080. (I915_READ(DP_D) & DP_DETECTED)) {
  7081. DRM_DEBUG_KMS("probing DP_D\n");
  7082. intel_dp_init(dev, DP_D, PORT_D);
  7083. }
  7084. } else if (IS_GEN2(dev))
  7085. intel_dvo_init(dev);
  7086. if (SUPPORTS_TV(dev))
  7087. intel_tv_init(dev);
  7088. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7089. encoder->base.possible_crtcs = encoder->crtc_mask;
  7090. encoder->base.possible_clones =
  7091. intel_encoder_clones(encoder);
  7092. }
  7093. intel_init_pch_refclk(dev);
  7094. drm_helper_move_panel_connectors_to_head(dev);
  7095. }
  7096. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7097. {
  7098. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7099. drm_framebuffer_cleanup(fb);
  7100. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7101. kfree(intel_fb);
  7102. }
  7103. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7104. struct drm_file *file,
  7105. unsigned int *handle)
  7106. {
  7107. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7108. struct drm_i915_gem_object *obj = intel_fb->obj;
  7109. return drm_gem_handle_create(file, &obj->base, handle);
  7110. }
  7111. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7112. .destroy = intel_user_framebuffer_destroy,
  7113. .create_handle = intel_user_framebuffer_create_handle,
  7114. };
  7115. int intel_framebuffer_init(struct drm_device *dev,
  7116. struct intel_framebuffer *intel_fb,
  7117. struct drm_mode_fb_cmd2 *mode_cmd,
  7118. struct drm_i915_gem_object *obj)
  7119. {
  7120. int ret;
  7121. if (obj->tiling_mode == I915_TILING_Y) {
  7122. DRM_DEBUG("hardware does not support tiling Y\n");
  7123. return -EINVAL;
  7124. }
  7125. if (mode_cmd->pitches[0] & 63) {
  7126. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7127. mode_cmd->pitches[0]);
  7128. return -EINVAL;
  7129. }
  7130. /* FIXME <= Gen4 stride limits are bit unclear */
  7131. if (mode_cmd->pitches[0] > 32768) {
  7132. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7133. mode_cmd->pitches[0]);
  7134. return -EINVAL;
  7135. }
  7136. if (obj->tiling_mode != I915_TILING_NONE &&
  7137. mode_cmd->pitches[0] != obj->stride) {
  7138. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7139. mode_cmd->pitches[0], obj->stride);
  7140. return -EINVAL;
  7141. }
  7142. /* Reject formats not supported by any plane early. */
  7143. switch (mode_cmd->pixel_format) {
  7144. case DRM_FORMAT_C8:
  7145. case DRM_FORMAT_RGB565:
  7146. case DRM_FORMAT_XRGB8888:
  7147. case DRM_FORMAT_ARGB8888:
  7148. break;
  7149. case DRM_FORMAT_XRGB1555:
  7150. case DRM_FORMAT_ARGB1555:
  7151. if (INTEL_INFO(dev)->gen > 3) {
  7152. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7153. return -EINVAL;
  7154. }
  7155. break;
  7156. case DRM_FORMAT_XBGR8888:
  7157. case DRM_FORMAT_ABGR8888:
  7158. case DRM_FORMAT_XRGB2101010:
  7159. case DRM_FORMAT_ARGB2101010:
  7160. case DRM_FORMAT_XBGR2101010:
  7161. case DRM_FORMAT_ABGR2101010:
  7162. if (INTEL_INFO(dev)->gen < 4) {
  7163. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7164. return -EINVAL;
  7165. }
  7166. break;
  7167. case DRM_FORMAT_YUYV:
  7168. case DRM_FORMAT_UYVY:
  7169. case DRM_FORMAT_YVYU:
  7170. case DRM_FORMAT_VYUY:
  7171. if (INTEL_INFO(dev)->gen < 5) {
  7172. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7173. return -EINVAL;
  7174. }
  7175. break;
  7176. default:
  7177. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7178. return -EINVAL;
  7179. }
  7180. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7181. if (mode_cmd->offsets[0] != 0)
  7182. return -EINVAL;
  7183. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7184. intel_fb->obj = obj;
  7185. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7186. if (ret) {
  7187. DRM_ERROR("framebuffer init failed %d\n", ret);
  7188. return ret;
  7189. }
  7190. return 0;
  7191. }
  7192. static struct drm_framebuffer *
  7193. intel_user_framebuffer_create(struct drm_device *dev,
  7194. struct drm_file *filp,
  7195. struct drm_mode_fb_cmd2 *mode_cmd)
  7196. {
  7197. struct drm_i915_gem_object *obj;
  7198. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7199. mode_cmd->handles[0]));
  7200. if (&obj->base == NULL)
  7201. return ERR_PTR(-ENOENT);
  7202. return intel_framebuffer_create(dev, mode_cmd, obj);
  7203. }
  7204. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7205. .fb_create = intel_user_framebuffer_create,
  7206. .output_poll_changed = intel_fb_output_poll_changed,
  7207. };
  7208. /* Set up chip specific display functions */
  7209. static void intel_init_display(struct drm_device *dev)
  7210. {
  7211. struct drm_i915_private *dev_priv = dev->dev_private;
  7212. /* We always want a DPMS function */
  7213. if (HAS_DDI(dev)) {
  7214. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7215. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7216. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7217. dev_priv->display.off = haswell_crtc_off;
  7218. dev_priv->display.update_plane = ironlake_update_plane;
  7219. } else if (HAS_PCH_SPLIT(dev)) {
  7220. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7221. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7222. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7223. dev_priv->display.off = ironlake_crtc_off;
  7224. dev_priv->display.update_plane = ironlake_update_plane;
  7225. } else {
  7226. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7227. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7228. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7229. dev_priv->display.off = i9xx_crtc_off;
  7230. dev_priv->display.update_plane = i9xx_update_plane;
  7231. }
  7232. /* Returns the core display clock speed */
  7233. if (IS_VALLEYVIEW(dev))
  7234. dev_priv->display.get_display_clock_speed =
  7235. valleyview_get_display_clock_speed;
  7236. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7237. dev_priv->display.get_display_clock_speed =
  7238. i945_get_display_clock_speed;
  7239. else if (IS_I915G(dev))
  7240. dev_priv->display.get_display_clock_speed =
  7241. i915_get_display_clock_speed;
  7242. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7243. dev_priv->display.get_display_clock_speed =
  7244. i9xx_misc_get_display_clock_speed;
  7245. else if (IS_I915GM(dev))
  7246. dev_priv->display.get_display_clock_speed =
  7247. i915gm_get_display_clock_speed;
  7248. else if (IS_I865G(dev))
  7249. dev_priv->display.get_display_clock_speed =
  7250. i865_get_display_clock_speed;
  7251. else if (IS_I85X(dev))
  7252. dev_priv->display.get_display_clock_speed =
  7253. i855_get_display_clock_speed;
  7254. else /* 852, 830 */
  7255. dev_priv->display.get_display_clock_speed =
  7256. i830_get_display_clock_speed;
  7257. if (HAS_PCH_SPLIT(dev)) {
  7258. if (IS_GEN5(dev)) {
  7259. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7260. dev_priv->display.write_eld = ironlake_write_eld;
  7261. } else if (IS_GEN6(dev)) {
  7262. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7263. dev_priv->display.write_eld = ironlake_write_eld;
  7264. } else if (IS_IVYBRIDGE(dev)) {
  7265. /* FIXME: detect B0+ stepping and use auto training */
  7266. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7267. dev_priv->display.write_eld = ironlake_write_eld;
  7268. dev_priv->display.modeset_global_resources =
  7269. ivb_modeset_global_resources;
  7270. } else if (IS_HASWELL(dev)) {
  7271. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7272. dev_priv->display.write_eld = haswell_write_eld;
  7273. dev_priv->display.modeset_global_resources =
  7274. haswell_modeset_global_resources;
  7275. }
  7276. } else if (IS_G4X(dev)) {
  7277. dev_priv->display.write_eld = g4x_write_eld;
  7278. }
  7279. /* Default just returns -ENODEV to indicate unsupported */
  7280. dev_priv->display.queue_flip = intel_default_queue_flip;
  7281. switch (INTEL_INFO(dev)->gen) {
  7282. case 2:
  7283. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7284. break;
  7285. case 3:
  7286. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7287. break;
  7288. case 4:
  7289. case 5:
  7290. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7291. break;
  7292. case 6:
  7293. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7294. break;
  7295. case 7:
  7296. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7297. break;
  7298. }
  7299. }
  7300. /*
  7301. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7302. * resume, or other times. This quirk makes sure that's the case for
  7303. * affected systems.
  7304. */
  7305. static void quirk_pipea_force(struct drm_device *dev)
  7306. {
  7307. struct drm_i915_private *dev_priv = dev->dev_private;
  7308. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7309. DRM_INFO("applying pipe a force quirk\n");
  7310. }
  7311. /*
  7312. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7313. */
  7314. static void quirk_ssc_force_disable(struct drm_device *dev)
  7315. {
  7316. struct drm_i915_private *dev_priv = dev->dev_private;
  7317. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7318. DRM_INFO("applying lvds SSC disable quirk\n");
  7319. }
  7320. /*
  7321. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7322. * brightness value
  7323. */
  7324. static void quirk_invert_brightness(struct drm_device *dev)
  7325. {
  7326. struct drm_i915_private *dev_priv = dev->dev_private;
  7327. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7328. DRM_INFO("applying inverted panel brightness quirk\n");
  7329. }
  7330. struct intel_quirk {
  7331. int device;
  7332. int subsystem_vendor;
  7333. int subsystem_device;
  7334. void (*hook)(struct drm_device *dev);
  7335. };
  7336. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7337. struct intel_dmi_quirk {
  7338. void (*hook)(struct drm_device *dev);
  7339. const struct dmi_system_id (*dmi_id_list)[];
  7340. };
  7341. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7342. {
  7343. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7344. return 1;
  7345. }
  7346. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7347. {
  7348. .dmi_id_list = &(const struct dmi_system_id[]) {
  7349. {
  7350. .callback = intel_dmi_reverse_brightness,
  7351. .ident = "NCR Corporation",
  7352. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7353. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7354. },
  7355. },
  7356. { } /* terminating entry */
  7357. },
  7358. .hook = quirk_invert_brightness,
  7359. },
  7360. };
  7361. static struct intel_quirk intel_quirks[] = {
  7362. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7363. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7364. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7365. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7366. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7367. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7368. /* 830/845 need to leave pipe A & dpll A up */
  7369. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7370. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7371. /* Lenovo U160 cannot use SSC on LVDS */
  7372. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7373. /* Sony Vaio Y cannot use SSC on LVDS */
  7374. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7375. /* Acer Aspire 5734Z must invert backlight brightness */
  7376. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7377. /* Acer/eMachines G725 */
  7378. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7379. /* Acer/eMachines e725 */
  7380. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7381. /* Acer/Packard Bell NCL20 */
  7382. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7383. /* Acer Aspire 4736Z */
  7384. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7385. };
  7386. static void intel_init_quirks(struct drm_device *dev)
  7387. {
  7388. struct pci_dev *d = dev->pdev;
  7389. int i;
  7390. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7391. struct intel_quirk *q = &intel_quirks[i];
  7392. if (d->device == q->device &&
  7393. (d->subsystem_vendor == q->subsystem_vendor ||
  7394. q->subsystem_vendor == PCI_ANY_ID) &&
  7395. (d->subsystem_device == q->subsystem_device ||
  7396. q->subsystem_device == PCI_ANY_ID))
  7397. q->hook(dev);
  7398. }
  7399. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7400. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7401. intel_dmi_quirks[i].hook(dev);
  7402. }
  7403. }
  7404. /* Disable the VGA plane that we never use */
  7405. static void i915_disable_vga(struct drm_device *dev)
  7406. {
  7407. struct drm_i915_private *dev_priv = dev->dev_private;
  7408. u8 sr1;
  7409. u32 vga_reg = i915_vgacntrl_reg(dev);
  7410. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7411. outb(SR01, VGA_SR_INDEX);
  7412. sr1 = inb(VGA_SR_DATA);
  7413. outb(sr1 | 1<<5, VGA_SR_DATA);
  7414. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7415. udelay(300);
  7416. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7417. POSTING_READ(vga_reg);
  7418. }
  7419. void intel_modeset_init_hw(struct drm_device *dev)
  7420. {
  7421. intel_init_power_well(dev);
  7422. intel_prepare_ddi(dev);
  7423. intel_init_clock_gating(dev);
  7424. mutex_lock(&dev->struct_mutex);
  7425. intel_enable_gt_powersave(dev);
  7426. mutex_unlock(&dev->struct_mutex);
  7427. }
  7428. void intel_modeset_init(struct drm_device *dev)
  7429. {
  7430. struct drm_i915_private *dev_priv = dev->dev_private;
  7431. int i, ret;
  7432. drm_mode_config_init(dev);
  7433. dev->mode_config.min_width = 0;
  7434. dev->mode_config.min_height = 0;
  7435. dev->mode_config.preferred_depth = 24;
  7436. dev->mode_config.prefer_shadow = 1;
  7437. dev->mode_config.funcs = &intel_mode_funcs;
  7438. intel_init_quirks(dev);
  7439. intel_init_pm(dev);
  7440. intel_init_display(dev);
  7441. if (IS_GEN2(dev)) {
  7442. dev->mode_config.max_width = 2048;
  7443. dev->mode_config.max_height = 2048;
  7444. } else if (IS_GEN3(dev)) {
  7445. dev->mode_config.max_width = 4096;
  7446. dev->mode_config.max_height = 4096;
  7447. } else {
  7448. dev->mode_config.max_width = 8192;
  7449. dev->mode_config.max_height = 8192;
  7450. }
  7451. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7452. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7453. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7454. for (i = 0; i < dev_priv->num_pipe; i++) {
  7455. intel_crtc_init(dev, i);
  7456. ret = intel_plane_init(dev, i);
  7457. if (ret)
  7458. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7459. }
  7460. intel_cpu_pll_init(dev);
  7461. intel_pch_pll_init(dev);
  7462. /* Just disable it once at startup */
  7463. i915_disable_vga(dev);
  7464. intel_setup_outputs(dev);
  7465. /* Just in case the BIOS is doing something questionable. */
  7466. intel_disable_fbc(dev);
  7467. }
  7468. static void
  7469. intel_connector_break_all_links(struct intel_connector *connector)
  7470. {
  7471. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7472. connector->base.encoder = NULL;
  7473. connector->encoder->connectors_active = false;
  7474. connector->encoder->base.crtc = NULL;
  7475. }
  7476. static void intel_enable_pipe_a(struct drm_device *dev)
  7477. {
  7478. struct intel_connector *connector;
  7479. struct drm_connector *crt = NULL;
  7480. struct intel_load_detect_pipe load_detect_temp;
  7481. /* We can't just switch on the pipe A, we need to set things up with a
  7482. * proper mode and output configuration. As a gross hack, enable pipe A
  7483. * by enabling the load detect pipe once. */
  7484. list_for_each_entry(connector,
  7485. &dev->mode_config.connector_list,
  7486. base.head) {
  7487. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7488. crt = &connector->base;
  7489. break;
  7490. }
  7491. }
  7492. if (!crt)
  7493. return;
  7494. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7495. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7496. }
  7497. static bool
  7498. intel_check_plane_mapping(struct intel_crtc *crtc)
  7499. {
  7500. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7501. u32 reg, val;
  7502. if (dev_priv->num_pipe == 1)
  7503. return true;
  7504. reg = DSPCNTR(!crtc->plane);
  7505. val = I915_READ(reg);
  7506. if ((val & DISPLAY_PLANE_ENABLE) &&
  7507. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7508. return false;
  7509. return true;
  7510. }
  7511. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7512. {
  7513. struct drm_device *dev = crtc->base.dev;
  7514. struct drm_i915_private *dev_priv = dev->dev_private;
  7515. u32 reg;
  7516. /* Clear any frame start delays used for debugging left by the BIOS */
  7517. reg = PIPECONF(crtc->cpu_transcoder);
  7518. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7519. /* We need to sanitize the plane -> pipe mapping first because this will
  7520. * disable the crtc (and hence change the state) if it is wrong. Note
  7521. * that gen4+ has a fixed plane -> pipe mapping. */
  7522. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7523. struct intel_connector *connector;
  7524. bool plane;
  7525. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7526. crtc->base.base.id);
  7527. /* Pipe has the wrong plane attached and the plane is active.
  7528. * Temporarily change the plane mapping and disable everything
  7529. * ... */
  7530. plane = crtc->plane;
  7531. crtc->plane = !plane;
  7532. dev_priv->display.crtc_disable(&crtc->base);
  7533. crtc->plane = plane;
  7534. /* ... and break all links. */
  7535. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7536. base.head) {
  7537. if (connector->encoder->base.crtc != &crtc->base)
  7538. continue;
  7539. intel_connector_break_all_links(connector);
  7540. }
  7541. WARN_ON(crtc->active);
  7542. crtc->base.enabled = false;
  7543. }
  7544. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7545. crtc->pipe == PIPE_A && !crtc->active) {
  7546. /* BIOS forgot to enable pipe A, this mostly happens after
  7547. * resume. Force-enable the pipe to fix this, the update_dpms
  7548. * call below we restore the pipe to the right state, but leave
  7549. * the required bits on. */
  7550. intel_enable_pipe_a(dev);
  7551. }
  7552. /* Adjust the state of the output pipe according to whether we
  7553. * have active connectors/encoders. */
  7554. intel_crtc_update_dpms(&crtc->base);
  7555. if (crtc->active != crtc->base.enabled) {
  7556. struct intel_encoder *encoder;
  7557. /* This can happen either due to bugs in the get_hw_state
  7558. * functions or because the pipe is force-enabled due to the
  7559. * pipe A quirk. */
  7560. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7561. crtc->base.base.id,
  7562. crtc->base.enabled ? "enabled" : "disabled",
  7563. crtc->active ? "enabled" : "disabled");
  7564. crtc->base.enabled = crtc->active;
  7565. /* Because we only establish the connector -> encoder ->
  7566. * crtc links if something is active, this means the
  7567. * crtc is now deactivated. Break the links. connector
  7568. * -> encoder links are only establish when things are
  7569. * actually up, hence no need to break them. */
  7570. WARN_ON(crtc->active);
  7571. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7572. WARN_ON(encoder->connectors_active);
  7573. encoder->base.crtc = NULL;
  7574. }
  7575. }
  7576. }
  7577. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7578. {
  7579. struct intel_connector *connector;
  7580. struct drm_device *dev = encoder->base.dev;
  7581. /* We need to check both for a crtc link (meaning that the
  7582. * encoder is active and trying to read from a pipe) and the
  7583. * pipe itself being active. */
  7584. bool has_active_crtc = encoder->base.crtc &&
  7585. to_intel_crtc(encoder->base.crtc)->active;
  7586. if (encoder->connectors_active && !has_active_crtc) {
  7587. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7588. encoder->base.base.id,
  7589. drm_get_encoder_name(&encoder->base));
  7590. /* Connector is active, but has no active pipe. This is
  7591. * fallout from our resume register restoring. Disable
  7592. * the encoder manually again. */
  7593. if (encoder->base.crtc) {
  7594. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7595. encoder->base.base.id,
  7596. drm_get_encoder_name(&encoder->base));
  7597. encoder->disable(encoder);
  7598. }
  7599. /* Inconsistent output/port/pipe state happens presumably due to
  7600. * a bug in one of the get_hw_state functions. Or someplace else
  7601. * in our code, like the register restore mess on resume. Clamp
  7602. * things to off as a safer default. */
  7603. list_for_each_entry(connector,
  7604. &dev->mode_config.connector_list,
  7605. base.head) {
  7606. if (connector->encoder != encoder)
  7607. continue;
  7608. intel_connector_break_all_links(connector);
  7609. }
  7610. }
  7611. /* Enabled encoders without active connectors will be fixed in
  7612. * the crtc fixup. */
  7613. }
  7614. void i915_redisable_vga(struct drm_device *dev)
  7615. {
  7616. struct drm_i915_private *dev_priv = dev->dev_private;
  7617. u32 vga_reg = i915_vgacntrl_reg(dev);
  7618. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7619. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7620. i915_disable_vga(dev);
  7621. }
  7622. }
  7623. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7624. * and i915 state tracking structures. */
  7625. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7626. bool force_restore)
  7627. {
  7628. struct drm_i915_private *dev_priv = dev->dev_private;
  7629. enum pipe pipe;
  7630. u32 tmp;
  7631. struct intel_crtc *crtc;
  7632. struct intel_encoder *encoder;
  7633. struct intel_connector *connector;
  7634. if (HAS_DDI(dev)) {
  7635. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7636. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7637. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7638. case TRANS_DDI_EDP_INPUT_A_ON:
  7639. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7640. pipe = PIPE_A;
  7641. break;
  7642. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7643. pipe = PIPE_B;
  7644. break;
  7645. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7646. pipe = PIPE_C;
  7647. break;
  7648. }
  7649. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7650. crtc->cpu_transcoder = TRANSCODER_EDP;
  7651. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7652. pipe_name(pipe));
  7653. }
  7654. }
  7655. for_each_pipe(pipe) {
  7656. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7657. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7658. if (tmp & PIPECONF_ENABLE)
  7659. crtc->active = true;
  7660. else
  7661. crtc->active = false;
  7662. crtc->base.enabled = crtc->active;
  7663. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7664. crtc->base.base.id,
  7665. crtc->active ? "enabled" : "disabled");
  7666. }
  7667. if (HAS_DDI(dev))
  7668. intel_ddi_setup_hw_pll_state(dev);
  7669. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7670. base.head) {
  7671. pipe = 0;
  7672. if (encoder->get_hw_state(encoder, &pipe)) {
  7673. encoder->base.crtc =
  7674. dev_priv->pipe_to_crtc_mapping[pipe];
  7675. } else {
  7676. encoder->base.crtc = NULL;
  7677. }
  7678. encoder->connectors_active = false;
  7679. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7680. encoder->base.base.id,
  7681. drm_get_encoder_name(&encoder->base),
  7682. encoder->base.crtc ? "enabled" : "disabled",
  7683. pipe);
  7684. }
  7685. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7686. base.head) {
  7687. if (connector->get_hw_state(connector)) {
  7688. connector->base.dpms = DRM_MODE_DPMS_ON;
  7689. connector->encoder->connectors_active = true;
  7690. connector->base.encoder = &connector->encoder->base;
  7691. } else {
  7692. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7693. connector->base.encoder = NULL;
  7694. }
  7695. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7696. connector->base.base.id,
  7697. drm_get_connector_name(&connector->base),
  7698. connector->base.encoder ? "enabled" : "disabled");
  7699. }
  7700. /* HW state is read out, now we need to sanitize this mess. */
  7701. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7702. base.head) {
  7703. intel_sanitize_encoder(encoder);
  7704. }
  7705. for_each_pipe(pipe) {
  7706. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7707. intel_sanitize_crtc(crtc);
  7708. }
  7709. if (force_restore) {
  7710. for_each_pipe(pipe) {
  7711. intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]);
  7712. }
  7713. i915_redisable_vga(dev);
  7714. } else {
  7715. intel_modeset_update_staged_output_state(dev);
  7716. }
  7717. intel_modeset_check_state(dev);
  7718. drm_mode_config_reset(dev);
  7719. }
  7720. void intel_modeset_gem_init(struct drm_device *dev)
  7721. {
  7722. intel_modeset_init_hw(dev);
  7723. intel_setup_overlay(dev);
  7724. intel_modeset_setup_hw_state(dev, false);
  7725. }
  7726. void intel_modeset_cleanup(struct drm_device *dev)
  7727. {
  7728. struct drm_i915_private *dev_priv = dev->dev_private;
  7729. struct drm_crtc *crtc;
  7730. struct intel_crtc *intel_crtc;
  7731. drm_kms_helper_poll_fini(dev);
  7732. mutex_lock(&dev->struct_mutex);
  7733. intel_unregister_dsm_handler();
  7734. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7735. /* Skip inactive CRTCs */
  7736. if (!crtc->fb)
  7737. continue;
  7738. intel_crtc = to_intel_crtc(crtc);
  7739. intel_increase_pllclock(crtc);
  7740. }
  7741. intel_disable_fbc(dev);
  7742. intel_disable_gt_powersave(dev);
  7743. ironlake_teardown_rc6(dev);
  7744. if (IS_VALLEYVIEW(dev))
  7745. vlv_init_dpio(dev);
  7746. mutex_unlock(&dev->struct_mutex);
  7747. /* Disable the irq before mode object teardown, for the irq might
  7748. * enqueue unpin/hotplug work. */
  7749. drm_irq_uninstall(dev);
  7750. cancel_work_sync(&dev_priv->hotplug_work);
  7751. cancel_work_sync(&dev_priv->rps.work);
  7752. /* flush any delayed tasks or pending work */
  7753. flush_scheduled_work();
  7754. drm_mode_config_cleanup(dev);
  7755. intel_cleanup_overlay(dev);
  7756. }
  7757. /*
  7758. * Return which encoder is currently attached for connector.
  7759. */
  7760. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7761. {
  7762. return &intel_attached_encoder(connector)->base;
  7763. }
  7764. void intel_connector_attach_encoder(struct intel_connector *connector,
  7765. struct intel_encoder *encoder)
  7766. {
  7767. connector->encoder = encoder;
  7768. drm_mode_connector_attach_encoder(&connector->base,
  7769. &encoder->base);
  7770. }
  7771. /*
  7772. * set vga decode state - true == enable VGA decode
  7773. */
  7774. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7775. {
  7776. struct drm_i915_private *dev_priv = dev->dev_private;
  7777. u16 gmch_ctrl;
  7778. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7779. if (state)
  7780. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7781. else
  7782. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7783. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7784. return 0;
  7785. }
  7786. #ifdef CONFIG_DEBUG_FS
  7787. #include <linux/seq_file.h>
  7788. struct intel_display_error_state {
  7789. struct intel_cursor_error_state {
  7790. u32 control;
  7791. u32 position;
  7792. u32 base;
  7793. u32 size;
  7794. } cursor[I915_MAX_PIPES];
  7795. struct intel_pipe_error_state {
  7796. u32 conf;
  7797. u32 source;
  7798. u32 htotal;
  7799. u32 hblank;
  7800. u32 hsync;
  7801. u32 vtotal;
  7802. u32 vblank;
  7803. u32 vsync;
  7804. } pipe[I915_MAX_PIPES];
  7805. struct intel_plane_error_state {
  7806. u32 control;
  7807. u32 stride;
  7808. u32 size;
  7809. u32 pos;
  7810. u32 addr;
  7811. u32 surface;
  7812. u32 tile_offset;
  7813. } plane[I915_MAX_PIPES];
  7814. };
  7815. struct intel_display_error_state *
  7816. intel_display_capture_error_state(struct drm_device *dev)
  7817. {
  7818. drm_i915_private_t *dev_priv = dev->dev_private;
  7819. struct intel_display_error_state *error;
  7820. enum transcoder cpu_transcoder;
  7821. int i;
  7822. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7823. if (error == NULL)
  7824. return NULL;
  7825. for_each_pipe(i) {
  7826. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7827. error->cursor[i].control = I915_READ(CURCNTR(i));
  7828. error->cursor[i].position = I915_READ(CURPOS(i));
  7829. error->cursor[i].base = I915_READ(CURBASE(i));
  7830. error->plane[i].control = I915_READ(DSPCNTR(i));
  7831. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7832. error->plane[i].size = I915_READ(DSPSIZE(i));
  7833. error->plane[i].pos = I915_READ(DSPPOS(i));
  7834. error->plane[i].addr = I915_READ(DSPADDR(i));
  7835. if (INTEL_INFO(dev)->gen >= 4) {
  7836. error->plane[i].surface = I915_READ(DSPSURF(i));
  7837. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7838. }
  7839. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7840. error->pipe[i].source = I915_READ(PIPESRC(i));
  7841. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7842. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7843. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7844. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7845. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7846. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7847. }
  7848. return error;
  7849. }
  7850. void
  7851. intel_display_print_error_state(struct seq_file *m,
  7852. struct drm_device *dev,
  7853. struct intel_display_error_state *error)
  7854. {
  7855. drm_i915_private_t *dev_priv = dev->dev_private;
  7856. int i;
  7857. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7858. for_each_pipe(i) {
  7859. seq_printf(m, "Pipe [%d]:\n", i);
  7860. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7861. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7862. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7863. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7864. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7865. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7866. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7867. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7868. seq_printf(m, "Plane [%d]:\n", i);
  7869. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7870. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7871. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7872. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7873. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7874. if (INTEL_INFO(dev)->gen >= 4) {
  7875. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7876. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7877. }
  7878. seq_printf(m, "Cursor [%d]:\n", i);
  7879. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7880. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7881. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7882. }
  7883. }
  7884. #endif