i8259.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602
  1. /*
  2. * 8259 interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2007 Intel Corporation
  6. * Copyright 2009 Red Hat, Inc. and/or its affilates.
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. * Authors:
  26. * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
  27. * Port from Qemu.
  28. */
  29. #include <linux/mm.h>
  30. #include <linux/slab.h>
  31. #include <linux/bitops.h>
  32. #include "irq.h"
  33. #include <linux/kvm_host.h>
  34. #include "trace.h"
  35. static void pic_irq_request(struct kvm *kvm, int level);
  36. static void pic_lock(struct kvm_pic *s)
  37. __acquires(&s->lock)
  38. {
  39. raw_spin_lock(&s->lock);
  40. }
  41. static void pic_unlock(struct kvm_pic *s)
  42. __releases(&s->lock)
  43. {
  44. bool wakeup = s->wakeup_needed;
  45. struct kvm_vcpu *vcpu, *found = NULL;
  46. int i;
  47. s->wakeup_needed = false;
  48. raw_spin_unlock(&s->lock);
  49. if (wakeup) {
  50. kvm_for_each_vcpu(i, vcpu, s->kvm) {
  51. if (kvm_apic_accept_pic_intr(vcpu)) {
  52. found = vcpu;
  53. break;
  54. }
  55. }
  56. if (!found)
  57. found = s->kvm->bsp_vcpu;
  58. if (!found)
  59. return;
  60. kvm_vcpu_kick(found);
  61. }
  62. }
  63. static void pic_clear_isr(struct kvm_kpic_state *s, int irq)
  64. {
  65. s->isr &= ~(1 << irq);
  66. s->isr_ack |= (1 << irq);
  67. if (s != &s->pics_state->pics[0])
  68. irq += 8;
  69. /*
  70. * We are dropping lock while calling ack notifiers since ack
  71. * notifier callbacks for assigned devices call into PIC recursively.
  72. * Other interrupt may be delivered to PIC while lock is dropped but
  73. * it should be safe since PIC state is already updated at this stage.
  74. */
  75. pic_unlock(s->pics_state);
  76. kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq);
  77. pic_lock(s->pics_state);
  78. }
  79. void kvm_pic_clear_isr_ack(struct kvm *kvm)
  80. {
  81. struct kvm_pic *s = pic_irqchip(kvm);
  82. pic_lock(s);
  83. s->pics[0].isr_ack = 0xff;
  84. s->pics[1].isr_ack = 0xff;
  85. pic_unlock(s);
  86. }
  87. /*
  88. * set irq level. If an edge is detected, then the IRR is set to 1
  89. */
  90. static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level)
  91. {
  92. int mask, ret = 1;
  93. mask = 1 << irq;
  94. if (s->elcr & mask) /* level triggered */
  95. if (level) {
  96. ret = !(s->irr & mask);
  97. s->irr |= mask;
  98. s->last_irr |= mask;
  99. } else {
  100. s->irr &= ~mask;
  101. s->last_irr &= ~mask;
  102. }
  103. else /* edge triggered */
  104. if (level) {
  105. if ((s->last_irr & mask) == 0) {
  106. ret = !(s->irr & mask);
  107. s->irr |= mask;
  108. }
  109. s->last_irr |= mask;
  110. } else
  111. s->last_irr &= ~mask;
  112. return (s->imr & mask) ? -1 : ret;
  113. }
  114. /*
  115. * return the highest priority found in mask (highest = smallest
  116. * number). Return 8 if no irq
  117. */
  118. static inline int get_priority(struct kvm_kpic_state *s, int mask)
  119. {
  120. int priority;
  121. if (mask == 0)
  122. return 8;
  123. priority = 0;
  124. while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
  125. priority++;
  126. return priority;
  127. }
  128. /*
  129. * return the pic wanted interrupt. return -1 if none
  130. */
  131. static int pic_get_irq(struct kvm_kpic_state *s)
  132. {
  133. int mask, cur_priority, priority;
  134. mask = s->irr & ~s->imr;
  135. priority = get_priority(s, mask);
  136. if (priority == 8)
  137. return -1;
  138. /*
  139. * compute current priority. If special fully nested mode on the
  140. * master, the IRQ coming from the slave is not taken into account
  141. * for the priority computation.
  142. */
  143. mask = s->isr;
  144. if (s->special_fully_nested_mode && s == &s->pics_state->pics[0])
  145. mask &= ~(1 << 2);
  146. cur_priority = get_priority(s, mask);
  147. if (priority < cur_priority)
  148. /*
  149. * higher priority found: an irq should be generated
  150. */
  151. return (priority + s->priority_add) & 7;
  152. else
  153. return -1;
  154. }
  155. /*
  156. * raise irq to CPU if necessary. must be called every time the active
  157. * irq may change
  158. */
  159. static void pic_update_irq(struct kvm_pic *s)
  160. {
  161. int irq2, irq;
  162. irq2 = pic_get_irq(&s->pics[1]);
  163. if (irq2 >= 0) {
  164. /*
  165. * if irq request by slave pic, signal master PIC
  166. */
  167. pic_set_irq1(&s->pics[0], 2, 1);
  168. pic_set_irq1(&s->pics[0], 2, 0);
  169. }
  170. irq = pic_get_irq(&s->pics[0]);
  171. pic_irq_request(s->kvm, irq >= 0);
  172. }
  173. void kvm_pic_update_irq(struct kvm_pic *s)
  174. {
  175. pic_lock(s);
  176. pic_update_irq(s);
  177. pic_unlock(s);
  178. }
  179. int kvm_pic_set_irq(void *opaque, int irq, int level)
  180. {
  181. struct kvm_pic *s = opaque;
  182. int ret = -1;
  183. pic_lock(s);
  184. if (irq >= 0 && irq < PIC_NUM_PINS) {
  185. ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, level);
  186. pic_update_irq(s);
  187. trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
  188. s->pics[irq >> 3].imr, ret == 0);
  189. }
  190. pic_unlock(s);
  191. return ret;
  192. }
  193. /*
  194. * acknowledge interrupt 'irq'
  195. */
  196. static inline void pic_intack(struct kvm_kpic_state *s, int irq)
  197. {
  198. s->isr |= 1 << irq;
  199. /*
  200. * We don't clear a level sensitive interrupt here
  201. */
  202. if (!(s->elcr & (1 << irq)))
  203. s->irr &= ~(1 << irq);
  204. if (s->auto_eoi) {
  205. if (s->rotate_on_auto_eoi)
  206. s->priority_add = (irq + 1) & 7;
  207. pic_clear_isr(s, irq);
  208. }
  209. }
  210. int kvm_pic_read_irq(struct kvm *kvm)
  211. {
  212. int irq, irq2, intno;
  213. struct kvm_pic *s = pic_irqchip(kvm);
  214. pic_lock(s);
  215. irq = pic_get_irq(&s->pics[0]);
  216. if (irq >= 0) {
  217. pic_intack(&s->pics[0], irq);
  218. if (irq == 2) {
  219. irq2 = pic_get_irq(&s->pics[1]);
  220. if (irq2 >= 0)
  221. pic_intack(&s->pics[1], irq2);
  222. else
  223. /*
  224. * spurious IRQ on slave controller
  225. */
  226. irq2 = 7;
  227. intno = s->pics[1].irq_base + irq2;
  228. irq = irq2 + 8;
  229. } else
  230. intno = s->pics[0].irq_base + irq;
  231. } else {
  232. /*
  233. * spurious IRQ on host controller
  234. */
  235. irq = 7;
  236. intno = s->pics[0].irq_base + irq;
  237. }
  238. pic_update_irq(s);
  239. pic_unlock(s);
  240. return intno;
  241. }
  242. void kvm_pic_reset(struct kvm_kpic_state *s)
  243. {
  244. int irq;
  245. struct kvm_vcpu *vcpu0 = s->pics_state->kvm->bsp_vcpu;
  246. u8 irr = s->irr, isr = s->imr;
  247. s->last_irr = 0;
  248. s->irr = 0;
  249. s->imr = 0;
  250. s->isr = 0;
  251. s->isr_ack = 0xff;
  252. s->priority_add = 0;
  253. s->irq_base = 0;
  254. s->read_reg_select = 0;
  255. s->poll = 0;
  256. s->special_mask = 0;
  257. s->init_state = 0;
  258. s->auto_eoi = 0;
  259. s->rotate_on_auto_eoi = 0;
  260. s->special_fully_nested_mode = 0;
  261. s->init4 = 0;
  262. for (irq = 0; irq < PIC_NUM_PINS/2; irq++) {
  263. if (vcpu0 && kvm_apic_accept_pic_intr(vcpu0))
  264. if (irr & (1 << irq) || isr & (1 << irq)) {
  265. pic_clear_isr(s, irq);
  266. }
  267. }
  268. }
  269. static void pic_ioport_write(void *opaque, u32 addr, u32 val)
  270. {
  271. struct kvm_kpic_state *s = opaque;
  272. int priority, cmd, irq;
  273. addr &= 1;
  274. if (addr == 0) {
  275. if (val & 0x10) {
  276. s->init4 = val & 1;
  277. s->last_irr = 0;
  278. s->imr = 0;
  279. s->priority_add = 0;
  280. s->special_mask = 0;
  281. s->read_reg_select = 0;
  282. if (!s->init4) {
  283. s->special_fully_nested_mode = 0;
  284. s->auto_eoi = 0;
  285. }
  286. s->init_state = 1;
  287. if (val & 0x02)
  288. printk(KERN_ERR "single mode not supported");
  289. if (val & 0x08)
  290. printk(KERN_ERR
  291. "level sensitive irq not supported");
  292. } else if (val & 0x08) {
  293. if (val & 0x04)
  294. s->poll = 1;
  295. if (val & 0x02)
  296. s->read_reg_select = val & 1;
  297. if (val & 0x40)
  298. s->special_mask = (val >> 5) & 1;
  299. } else {
  300. cmd = val >> 5;
  301. switch (cmd) {
  302. case 0:
  303. case 4:
  304. s->rotate_on_auto_eoi = cmd >> 2;
  305. break;
  306. case 1: /* end of interrupt */
  307. case 5:
  308. priority = get_priority(s, s->isr);
  309. if (priority != 8) {
  310. irq = (priority + s->priority_add) & 7;
  311. if (cmd == 5)
  312. s->priority_add = (irq + 1) & 7;
  313. pic_clear_isr(s, irq);
  314. pic_update_irq(s->pics_state);
  315. }
  316. break;
  317. case 3:
  318. irq = val & 7;
  319. pic_clear_isr(s, irq);
  320. pic_update_irq(s->pics_state);
  321. break;
  322. case 6:
  323. s->priority_add = (val + 1) & 7;
  324. pic_update_irq(s->pics_state);
  325. break;
  326. case 7:
  327. irq = val & 7;
  328. s->priority_add = (irq + 1) & 7;
  329. pic_clear_isr(s, irq);
  330. pic_update_irq(s->pics_state);
  331. break;
  332. default:
  333. break; /* no operation */
  334. }
  335. }
  336. } else
  337. switch (s->init_state) {
  338. case 0: { /* normal mode */
  339. u8 imr_diff = s->imr ^ val,
  340. off = (s == &s->pics_state->pics[0]) ? 0 : 8;
  341. s->imr = val;
  342. for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
  343. if (imr_diff & (1 << irq))
  344. kvm_fire_mask_notifiers(
  345. s->pics_state->kvm,
  346. SELECT_PIC(irq + off),
  347. irq + off,
  348. !!(s->imr & (1 << irq)));
  349. pic_update_irq(s->pics_state);
  350. break;
  351. }
  352. case 1:
  353. s->irq_base = val & 0xf8;
  354. s->init_state = 2;
  355. break;
  356. case 2:
  357. if (s->init4)
  358. s->init_state = 3;
  359. else
  360. s->init_state = 0;
  361. break;
  362. case 3:
  363. s->special_fully_nested_mode = (val >> 4) & 1;
  364. s->auto_eoi = (val >> 1) & 1;
  365. s->init_state = 0;
  366. break;
  367. }
  368. }
  369. static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1)
  370. {
  371. int ret;
  372. ret = pic_get_irq(s);
  373. if (ret >= 0) {
  374. if (addr1 >> 7) {
  375. s->pics_state->pics[0].isr &= ~(1 << 2);
  376. s->pics_state->pics[0].irr &= ~(1 << 2);
  377. }
  378. s->irr &= ~(1 << ret);
  379. pic_clear_isr(s, ret);
  380. if (addr1 >> 7 || ret != 2)
  381. pic_update_irq(s->pics_state);
  382. } else {
  383. ret = 0x07;
  384. pic_update_irq(s->pics_state);
  385. }
  386. return ret;
  387. }
  388. static u32 pic_ioport_read(void *opaque, u32 addr1)
  389. {
  390. struct kvm_kpic_state *s = opaque;
  391. unsigned int addr;
  392. int ret;
  393. addr = addr1;
  394. addr &= 1;
  395. if (s->poll) {
  396. ret = pic_poll_read(s, addr1);
  397. s->poll = 0;
  398. } else
  399. if (addr == 0)
  400. if (s->read_reg_select)
  401. ret = s->isr;
  402. else
  403. ret = s->irr;
  404. else
  405. ret = s->imr;
  406. return ret;
  407. }
  408. static void elcr_ioport_write(void *opaque, u32 addr, u32 val)
  409. {
  410. struct kvm_kpic_state *s = opaque;
  411. s->elcr = val & s->elcr_mask;
  412. }
  413. static u32 elcr_ioport_read(void *opaque, u32 addr1)
  414. {
  415. struct kvm_kpic_state *s = opaque;
  416. return s->elcr;
  417. }
  418. static int picdev_in_range(gpa_t addr)
  419. {
  420. switch (addr) {
  421. case 0x20:
  422. case 0x21:
  423. case 0xa0:
  424. case 0xa1:
  425. case 0x4d0:
  426. case 0x4d1:
  427. return 1;
  428. default:
  429. return 0;
  430. }
  431. }
  432. static inline struct kvm_pic *to_pic(struct kvm_io_device *dev)
  433. {
  434. return container_of(dev, struct kvm_pic, dev);
  435. }
  436. static int picdev_write(struct kvm_io_device *this,
  437. gpa_t addr, int len, const void *val)
  438. {
  439. struct kvm_pic *s = to_pic(this);
  440. unsigned char data = *(unsigned char *)val;
  441. if (!picdev_in_range(addr))
  442. return -EOPNOTSUPP;
  443. if (len != 1) {
  444. if (printk_ratelimit())
  445. printk(KERN_ERR "PIC: non byte write\n");
  446. return 0;
  447. }
  448. pic_lock(s);
  449. switch (addr) {
  450. case 0x20:
  451. case 0x21:
  452. case 0xa0:
  453. case 0xa1:
  454. pic_ioport_write(&s->pics[addr >> 7], addr, data);
  455. break;
  456. case 0x4d0:
  457. case 0x4d1:
  458. elcr_ioport_write(&s->pics[addr & 1], addr, data);
  459. break;
  460. }
  461. pic_unlock(s);
  462. return 0;
  463. }
  464. static int picdev_read(struct kvm_io_device *this,
  465. gpa_t addr, int len, void *val)
  466. {
  467. struct kvm_pic *s = to_pic(this);
  468. unsigned char data = 0;
  469. if (!picdev_in_range(addr))
  470. return -EOPNOTSUPP;
  471. if (len != 1) {
  472. if (printk_ratelimit())
  473. printk(KERN_ERR "PIC: non byte read\n");
  474. return 0;
  475. }
  476. pic_lock(s);
  477. switch (addr) {
  478. case 0x20:
  479. case 0x21:
  480. case 0xa0:
  481. case 0xa1:
  482. data = pic_ioport_read(&s->pics[addr >> 7], addr);
  483. break;
  484. case 0x4d0:
  485. case 0x4d1:
  486. data = elcr_ioport_read(&s->pics[addr & 1], addr);
  487. break;
  488. }
  489. *(unsigned char *)val = data;
  490. pic_unlock(s);
  491. return 0;
  492. }
  493. /*
  494. * callback when PIC0 irq status changed
  495. */
  496. static void pic_irq_request(struct kvm *kvm, int level)
  497. {
  498. struct kvm_vcpu *vcpu = kvm->bsp_vcpu;
  499. struct kvm_pic *s = pic_irqchip(kvm);
  500. int irq = pic_get_irq(&s->pics[0]);
  501. s->output = level;
  502. if (vcpu && level && (s->pics[0].isr_ack & (1 << irq))) {
  503. s->pics[0].isr_ack &= ~(1 << irq);
  504. s->wakeup_needed = true;
  505. }
  506. }
  507. static const struct kvm_io_device_ops picdev_ops = {
  508. .read = picdev_read,
  509. .write = picdev_write,
  510. };
  511. struct kvm_pic *kvm_create_pic(struct kvm *kvm)
  512. {
  513. struct kvm_pic *s;
  514. int ret;
  515. s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
  516. if (!s)
  517. return NULL;
  518. raw_spin_lock_init(&s->lock);
  519. s->kvm = kvm;
  520. s->pics[0].elcr_mask = 0xf8;
  521. s->pics[1].elcr_mask = 0xde;
  522. s->pics[0].pics_state = s;
  523. s->pics[1].pics_state = s;
  524. /*
  525. * Initialize PIO device
  526. */
  527. kvm_iodevice_init(&s->dev, &picdev_ops);
  528. mutex_lock(&kvm->slots_lock);
  529. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &s->dev);
  530. mutex_unlock(&kvm->slots_lock);
  531. if (ret < 0) {
  532. kfree(s);
  533. return NULL;
  534. }
  535. return s;
  536. }
  537. void kvm_destroy_pic(struct kvm *kvm)
  538. {
  539. struct kvm_pic *vpic = kvm->arch.vpic;
  540. if (vpic) {
  541. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev);
  542. kvm->arch.vpic = NULL;
  543. kfree(vpic);
  544. }
  545. }