xfs_inode.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_btree_trace.h"
  44. #include "xfs_alloc.h"
  45. #include "xfs_ialloc.h"
  46. #include "xfs_bmap.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_error.h"
  49. #include "xfs_utils.h"
  50. #include "xfs_dir2_trace.h"
  51. #include "xfs_quota.h"
  52. #include "xfs_acl.h"
  53. #include "xfs_filestream.h"
  54. #include "xfs_vnodeops.h"
  55. kmem_zone_t *xfs_ifork_zone;
  56. kmem_zone_t *xfs_inode_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_host_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned(&ep->l0);
  83. rec.l1 = get_unaligned(&ep->l1);
  84. xfs_bmbt_get_all(&rec, &irec);
  85. if (fmt == XFS_EXTFMT_NOSTATE)
  86. ASSERT(irec.br_state == XFS_EXT_NORM);
  87. }
  88. }
  89. #else /* DEBUG */
  90. #define xfs_validate_extents(ifp, nrecs, fmt)
  91. #endif /* DEBUG */
  92. /*
  93. * Check that none of the inode's in the buffer have a next
  94. * unlinked field of 0.
  95. */
  96. #if defined(DEBUG)
  97. void
  98. xfs_inobp_check(
  99. xfs_mount_t *mp,
  100. xfs_buf_t *bp)
  101. {
  102. int i;
  103. int j;
  104. xfs_dinode_t *dip;
  105. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  106. for (i = 0; i < j; i++) {
  107. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  108. i * mp->m_sb.sb_inodesize);
  109. if (!dip->di_next_unlinked) {
  110. xfs_fs_cmn_err(CE_ALERT, mp,
  111. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  112. bp);
  113. ASSERT(dip->di_next_unlinked);
  114. }
  115. }
  116. }
  117. #endif
  118. /*
  119. * Find the buffer associated with the given inode map
  120. * We do basic validation checks on the buffer once it has been
  121. * retrieved from disk.
  122. */
  123. STATIC int
  124. xfs_imap_to_bp(
  125. xfs_mount_t *mp,
  126. xfs_trans_t *tp,
  127. xfs_imap_t *imap,
  128. xfs_buf_t **bpp,
  129. uint buf_flags,
  130. uint imap_flags)
  131. {
  132. int error;
  133. int i;
  134. int ni;
  135. xfs_buf_t *bp;
  136. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  137. (int)imap->im_len, buf_flags, &bp);
  138. if (error) {
  139. if (error != EAGAIN) {
  140. cmn_err(CE_WARN,
  141. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  142. "an error %d on %s. Returning error.",
  143. error, mp->m_fsname);
  144. } else {
  145. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  146. }
  147. return error;
  148. }
  149. /*
  150. * Validate the magic number and version of every inode in the buffer
  151. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  152. */
  153. #ifdef DEBUG
  154. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  155. #else /* usual case */
  156. ni = 1;
  157. #endif
  158. for (i = 0; i < ni; i++) {
  159. int di_ok;
  160. xfs_dinode_t *dip;
  161. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  162. (i << mp->m_sb.sb_inodelog));
  163. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  164. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  165. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  166. XFS_ERRTAG_ITOBP_INOTOBP,
  167. XFS_RANDOM_ITOBP_INOTOBP))) {
  168. if (imap_flags & XFS_IMAP_BULKSTAT) {
  169. xfs_trans_brelse(tp, bp);
  170. return XFS_ERROR(EINVAL);
  171. }
  172. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  173. XFS_ERRLEVEL_HIGH, mp, dip);
  174. #ifdef DEBUG
  175. cmn_err(CE_PANIC,
  176. "Device %s - bad inode magic/vsn "
  177. "daddr %lld #%d (magic=%x)",
  178. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  179. (unsigned long long)imap->im_blkno, i,
  180. be16_to_cpu(dip->di_core.di_magic));
  181. #endif
  182. xfs_trans_brelse(tp, bp);
  183. return XFS_ERROR(EFSCORRUPTED);
  184. }
  185. }
  186. xfs_inobp_check(mp, bp);
  187. /*
  188. * Mark the buffer as an inode buffer now that it looks good
  189. */
  190. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  191. *bpp = bp;
  192. return 0;
  193. }
  194. /*
  195. * This routine is called to map an inode number within a file
  196. * system to the buffer containing the on-disk version of the
  197. * inode. It returns a pointer to the buffer containing the
  198. * on-disk inode in the bpp parameter, and in the dip parameter
  199. * it returns a pointer to the on-disk inode within that buffer.
  200. *
  201. * If a non-zero error is returned, then the contents of bpp and
  202. * dipp are undefined.
  203. *
  204. * Use xfs_imap() to determine the size and location of the
  205. * buffer to read from disk.
  206. */
  207. int
  208. xfs_inotobp(
  209. xfs_mount_t *mp,
  210. xfs_trans_t *tp,
  211. xfs_ino_t ino,
  212. xfs_dinode_t **dipp,
  213. xfs_buf_t **bpp,
  214. int *offset,
  215. uint imap_flags)
  216. {
  217. xfs_imap_t imap;
  218. xfs_buf_t *bp;
  219. int error;
  220. imap.im_blkno = 0;
  221. error = xfs_imap(mp, tp, ino, &imap, imap_flags | XFS_IMAP_LOOKUP);
  222. if (error)
  223. return error;
  224. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
  225. if (error)
  226. return error;
  227. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  228. *bpp = bp;
  229. *offset = imap.im_boffset;
  230. return 0;
  231. }
  232. /*
  233. * This routine is called to map an inode to the buffer containing
  234. * the on-disk version of the inode. It returns a pointer to the
  235. * buffer containing the on-disk inode in the bpp parameter, and in
  236. * the dip parameter it returns a pointer to the on-disk inode within
  237. * that buffer.
  238. *
  239. * If a non-zero error is returned, then the contents of bpp and
  240. * dipp are undefined.
  241. *
  242. * If the inode is new and has not yet been initialized, use xfs_imap()
  243. * to determine the size and location of the buffer to read from disk.
  244. * If the inode has already been mapped to its buffer and read in once,
  245. * then use the mapping information stored in the inode rather than
  246. * calling xfs_imap(). This allows us to avoid the overhead of looking
  247. * at the inode btree for small block file systems (see xfs_dilocate()).
  248. * We can tell whether the inode has been mapped in before by comparing
  249. * its disk block address to 0. Only uninitialized inodes will have
  250. * 0 for the disk block address.
  251. */
  252. int
  253. xfs_itobp(
  254. xfs_mount_t *mp,
  255. xfs_trans_t *tp,
  256. xfs_inode_t *ip,
  257. xfs_dinode_t **dipp,
  258. xfs_buf_t **bpp,
  259. xfs_daddr_t bno,
  260. uint imap_flags,
  261. uint buf_flags)
  262. {
  263. xfs_imap_t imap;
  264. xfs_buf_t *bp;
  265. int error;
  266. if (ip->i_blkno == (xfs_daddr_t)0) {
  267. imap.im_blkno = bno;
  268. error = xfs_imap(mp, tp, ip->i_ino, &imap,
  269. XFS_IMAP_LOOKUP | imap_flags);
  270. if (error)
  271. return error;
  272. /*
  273. * Fill in the fields in the inode that will be used to
  274. * map the inode to its buffer from now on.
  275. */
  276. ip->i_blkno = imap.im_blkno;
  277. ip->i_len = imap.im_len;
  278. ip->i_boffset = imap.im_boffset;
  279. } else {
  280. /*
  281. * We've already mapped the inode once, so just use the
  282. * mapping that we saved the first time.
  283. */
  284. imap.im_blkno = ip->i_blkno;
  285. imap.im_len = ip->i_len;
  286. imap.im_boffset = ip->i_boffset;
  287. }
  288. ASSERT(bno == 0 || bno == imap.im_blkno);
  289. error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
  290. if (error)
  291. return error;
  292. if (!bp) {
  293. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  294. ASSERT(tp == NULL);
  295. *bpp = NULL;
  296. return EAGAIN;
  297. }
  298. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  299. *bpp = bp;
  300. return 0;
  301. }
  302. /*
  303. * Move inode type and inode format specific information from the
  304. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  305. * this means set if_rdev to the proper value. For files, directories,
  306. * and symlinks this means to bring in the in-line data or extent
  307. * pointers. For a file in B-tree format, only the root is immediately
  308. * brought in-core. The rest will be in-lined in if_extents when it
  309. * is first referenced (see xfs_iread_extents()).
  310. */
  311. STATIC int
  312. xfs_iformat(
  313. xfs_inode_t *ip,
  314. xfs_dinode_t *dip)
  315. {
  316. xfs_attr_shortform_t *atp;
  317. int size;
  318. int error;
  319. xfs_fsize_t di_size;
  320. ip->i_df.if_ext_max =
  321. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  322. error = 0;
  323. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  324. be16_to_cpu(dip->di_core.di_anextents) >
  325. be64_to_cpu(dip->di_core.di_nblocks))) {
  326. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  327. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  328. (unsigned long long)ip->i_ino,
  329. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  330. be16_to_cpu(dip->di_core.di_anextents)),
  331. (unsigned long long)
  332. be64_to_cpu(dip->di_core.di_nblocks));
  333. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  334. ip->i_mount, dip);
  335. return XFS_ERROR(EFSCORRUPTED);
  336. }
  337. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  338. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  339. "corrupt dinode %Lu, forkoff = 0x%x.",
  340. (unsigned long long)ip->i_ino,
  341. dip->di_core.di_forkoff);
  342. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  343. ip->i_mount, dip);
  344. return XFS_ERROR(EFSCORRUPTED);
  345. }
  346. switch (ip->i_d.di_mode & S_IFMT) {
  347. case S_IFIFO:
  348. case S_IFCHR:
  349. case S_IFBLK:
  350. case S_IFSOCK:
  351. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  352. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  353. ip->i_mount, dip);
  354. return XFS_ERROR(EFSCORRUPTED);
  355. }
  356. ip->i_d.di_size = 0;
  357. ip->i_size = 0;
  358. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  359. break;
  360. case S_IFREG:
  361. case S_IFLNK:
  362. case S_IFDIR:
  363. switch (dip->di_core.di_format) {
  364. case XFS_DINODE_FMT_LOCAL:
  365. /*
  366. * no local regular files yet
  367. */
  368. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  369. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  370. "corrupt inode %Lu "
  371. "(local format for regular file).",
  372. (unsigned long long) ip->i_ino);
  373. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  374. XFS_ERRLEVEL_LOW,
  375. ip->i_mount, dip);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. di_size = be64_to_cpu(dip->di_core.di_size);
  379. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  380. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  381. "corrupt inode %Lu "
  382. "(bad size %Ld for local inode).",
  383. (unsigned long long) ip->i_ino,
  384. (long long) di_size);
  385. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  386. XFS_ERRLEVEL_LOW,
  387. ip->i_mount, dip);
  388. return XFS_ERROR(EFSCORRUPTED);
  389. }
  390. size = (int)di_size;
  391. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  392. break;
  393. case XFS_DINODE_FMT_EXTENTS:
  394. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  395. break;
  396. case XFS_DINODE_FMT_BTREE:
  397. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  398. break;
  399. default:
  400. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  401. ip->i_mount);
  402. return XFS_ERROR(EFSCORRUPTED);
  403. }
  404. break;
  405. default:
  406. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  407. return XFS_ERROR(EFSCORRUPTED);
  408. }
  409. if (error) {
  410. return error;
  411. }
  412. if (!XFS_DFORK_Q(dip))
  413. return 0;
  414. ASSERT(ip->i_afp == NULL);
  415. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  416. ip->i_afp->if_ext_max =
  417. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  418. switch (dip->di_core.di_aformat) {
  419. case XFS_DINODE_FMT_LOCAL:
  420. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  421. size = be16_to_cpu(atp->hdr.totsize);
  422. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  423. break;
  424. case XFS_DINODE_FMT_EXTENTS:
  425. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  426. break;
  427. case XFS_DINODE_FMT_BTREE:
  428. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  429. break;
  430. default:
  431. error = XFS_ERROR(EFSCORRUPTED);
  432. break;
  433. }
  434. if (error) {
  435. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  436. ip->i_afp = NULL;
  437. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  438. }
  439. return error;
  440. }
  441. /*
  442. * The file is in-lined in the on-disk inode.
  443. * If it fits into if_inline_data, then copy
  444. * it there, otherwise allocate a buffer for it
  445. * and copy the data there. Either way, set
  446. * if_data to point at the data.
  447. * If we allocate a buffer for the data, make
  448. * sure that its size is a multiple of 4 and
  449. * record the real size in i_real_bytes.
  450. */
  451. STATIC int
  452. xfs_iformat_local(
  453. xfs_inode_t *ip,
  454. xfs_dinode_t *dip,
  455. int whichfork,
  456. int size)
  457. {
  458. xfs_ifork_t *ifp;
  459. int real_size;
  460. /*
  461. * If the size is unreasonable, then something
  462. * is wrong and we just bail out rather than crash in
  463. * kmem_alloc() or memcpy() below.
  464. */
  465. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  466. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  467. "corrupt inode %Lu "
  468. "(bad size %d for local fork, size = %d).",
  469. (unsigned long long) ip->i_ino, size,
  470. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  471. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  472. ip->i_mount, dip);
  473. return XFS_ERROR(EFSCORRUPTED);
  474. }
  475. ifp = XFS_IFORK_PTR(ip, whichfork);
  476. real_size = 0;
  477. if (size == 0)
  478. ifp->if_u1.if_data = NULL;
  479. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  480. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  481. else {
  482. real_size = roundup(size, 4);
  483. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  484. }
  485. ifp->if_bytes = size;
  486. ifp->if_real_bytes = real_size;
  487. if (size)
  488. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  489. ifp->if_flags &= ~XFS_IFEXTENTS;
  490. ifp->if_flags |= XFS_IFINLINE;
  491. return 0;
  492. }
  493. /*
  494. * The file consists of a set of extents all
  495. * of which fit into the on-disk inode.
  496. * If there are few enough extents to fit into
  497. * the if_inline_ext, then copy them there.
  498. * Otherwise allocate a buffer for them and copy
  499. * them into it. Either way, set if_extents
  500. * to point at the extents.
  501. */
  502. STATIC int
  503. xfs_iformat_extents(
  504. xfs_inode_t *ip,
  505. xfs_dinode_t *dip,
  506. int whichfork)
  507. {
  508. xfs_bmbt_rec_t *dp;
  509. xfs_ifork_t *ifp;
  510. int nex;
  511. int size;
  512. int i;
  513. ifp = XFS_IFORK_PTR(ip, whichfork);
  514. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  515. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  516. /*
  517. * If the number of extents is unreasonable, then something
  518. * is wrong and we just bail out rather than crash in
  519. * kmem_alloc() or memcpy() below.
  520. */
  521. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  522. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  523. "corrupt inode %Lu ((a)extents = %d).",
  524. (unsigned long long) ip->i_ino, nex);
  525. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  526. ip->i_mount, dip);
  527. return XFS_ERROR(EFSCORRUPTED);
  528. }
  529. ifp->if_real_bytes = 0;
  530. if (nex == 0)
  531. ifp->if_u1.if_extents = NULL;
  532. else if (nex <= XFS_INLINE_EXTS)
  533. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  534. else
  535. xfs_iext_add(ifp, 0, nex);
  536. ifp->if_bytes = size;
  537. if (size) {
  538. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  539. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  540. for (i = 0; i < nex; i++, dp++) {
  541. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  542. ep->l0 = get_unaligned_be64(&dp->l0);
  543. ep->l1 = get_unaligned_be64(&dp->l1);
  544. }
  545. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  546. if (whichfork != XFS_DATA_FORK ||
  547. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  548. if (unlikely(xfs_check_nostate_extents(
  549. ifp, 0, nex))) {
  550. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  551. XFS_ERRLEVEL_LOW,
  552. ip->i_mount);
  553. return XFS_ERROR(EFSCORRUPTED);
  554. }
  555. }
  556. ifp->if_flags |= XFS_IFEXTENTS;
  557. return 0;
  558. }
  559. /*
  560. * The file has too many extents to fit into
  561. * the inode, so they are in B-tree format.
  562. * Allocate a buffer for the root of the B-tree
  563. * and copy the root into it. The i_extents
  564. * field will remain NULL until all of the
  565. * extents are read in (when they are needed).
  566. */
  567. STATIC int
  568. xfs_iformat_btree(
  569. xfs_inode_t *ip,
  570. xfs_dinode_t *dip,
  571. int whichfork)
  572. {
  573. xfs_bmdr_block_t *dfp;
  574. xfs_ifork_t *ifp;
  575. /* REFERENCED */
  576. int nrecs;
  577. int size;
  578. ifp = XFS_IFORK_PTR(ip, whichfork);
  579. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  580. size = XFS_BMAP_BROOT_SPACE(dfp);
  581. nrecs = be16_to_cpu(dfp->bb_numrecs);
  582. /*
  583. * blow out if -- fork has less extents than can fit in
  584. * fork (fork shouldn't be a btree format), root btree
  585. * block has more records than can fit into the fork,
  586. * or the number of extents is greater than the number of
  587. * blocks.
  588. */
  589. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  590. || XFS_BMDR_SPACE_CALC(nrecs) >
  591. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  592. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  593. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  594. "corrupt inode %Lu (btree).",
  595. (unsigned long long) ip->i_ino);
  596. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  597. ip->i_mount);
  598. return XFS_ERROR(EFSCORRUPTED);
  599. }
  600. ifp->if_broot_bytes = size;
  601. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  602. ASSERT(ifp->if_broot != NULL);
  603. /*
  604. * Copy and convert from the on-disk structure
  605. * to the in-memory structure.
  606. */
  607. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  608. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  609. ifp->if_broot, size);
  610. ifp->if_flags &= ~XFS_IFEXTENTS;
  611. ifp->if_flags |= XFS_IFBROOT;
  612. return 0;
  613. }
  614. void
  615. xfs_dinode_from_disk(
  616. xfs_icdinode_t *to,
  617. xfs_dinode_core_t *from)
  618. {
  619. to->di_magic = be16_to_cpu(from->di_magic);
  620. to->di_mode = be16_to_cpu(from->di_mode);
  621. to->di_version = from ->di_version;
  622. to->di_format = from->di_format;
  623. to->di_onlink = be16_to_cpu(from->di_onlink);
  624. to->di_uid = be32_to_cpu(from->di_uid);
  625. to->di_gid = be32_to_cpu(from->di_gid);
  626. to->di_nlink = be32_to_cpu(from->di_nlink);
  627. to->di_projid = be16_to_cpu(from->di_projid);
  628. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  629. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  630. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  631. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  632. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  633. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  634. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  635. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  636. to->di_size = be64_to_cpu(from->di_size);
  637. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  638. to->di_extsize = be32_to_cpu(from->di_extsize);
  639. to->di_nextents = be32_to_cpu(from->di_nextents);
  640. to->di_anextents = be16_to_cpu(from->di_anextents);
  641. to->di_forkoff = from->di_forkoff;
  642. to->di_aformat = from->di_aformat;
  643. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  644. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  645. to->di_flags = be16_to_cpu(from->di_flags);
  646. to->di_gen = be32_to_cpu(from->di_gen);
  647. }
  648. void
  649. xfs_dinode_to_disk(
  650. xfs_dinode_core_t *to,
  651. xfs_icdinode_t *from)
  652. {
  653. to->di_magic = cpu_to_be16(from->di_magic);
  654. to->di_mode = cpu_to_be16(from->di_mode);
  655. to->di_version = from ->di_version;
  656. to->di_format = from->di_format;
  657. to->di_onlink = cpu_to_be16(from->di_onlink);
  658. to->di_uid = cpu_to_be32(from->di_uid);
  659. to->di_gid = cpu_to_be32(from->di_gid);
  660. to->di_nlink = cpu_to_be32(from->di_nlink);
  661. to->di_projid = cpu_to_be16(from->di_projid);
  662. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  663. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  664. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  665. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  666. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  667. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  668. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  669. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  670. to->di_size = cpu_to_be64(from->di_size);
  671. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  672. to->di_extsize = cpu_to_be32(from->di_extsize);
  673. to->di_nextents = cpu_to_be32(from->di_nextents);
  674. to->di_anextents = cpu_to_be16(from->di_anextents);
  675. to->di_forkoff = from->di_forkoff;
  676. to->di_aformat = from->di_aformat;
  677. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  678. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  679. to->di_flags = cpu_to_be16(from->di_flags);
  680. to->di_gen = cpu_to_be32(from->di_gen);
  681. }
  682. STATIC uint
  683. _xfs_dic2xflags(
  684. __uint16_t di_flags)
  685. {
  686. uint flags = 0;
  687. if (di_flags & XFS_DIFLAG_ANY) {
  688. if (di_flags & XFS_DIFLAG_REALTIME)
  689. flags |= XFS_XFLAG_REALTIME;
  690. if (di_flags & XFS_DIFLAG_PREALLOC)
  691. flags |= XFS_XFLAG_PREALLOC;
  692. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  693. flags |= XFS_XFLAG_IMMUTABLE;
  694. if (di_flags & XFS_DIFLAG_APPEND)
  695. flags |= XFS_XFLAG_APPEND;
  696. if (di_flags & XFS_DIFLAG_SYNC)
  697. flags |= XFS_XFLAG_SYNC;
  698. if (di_flags & XFS_DIFLAG_NOATIME)
  699. flags |= XFS_XFLAG_NOATIME;
  700. if (di_flags & XFS_DIFLAG_NODUMP)
  701. flags |= XFS_XFLAG_NODUMP;
  702. if (di_flags & XFS_DIFLAG_RTINHERIT)
  703. flags |= XFS_XFLAG_RTINHERIT;
  704. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  705. flags |= XFS_XFLAG_PROJINHERIT;
  706. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  707. flags |= XFS_XFLAG_NOSYMLINKS;
  708. if (di_flags & XFS_DIFLAG_EXTSIZE)
  709. flags |= XFS_XFLAG_EXTSIZE;
  710. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  711. flags |= XFS_XFLAG_EXTSZINHERIT;
  712. if (di_flags & XFS_DIFLAG_NODEFRAG)
  713. flags |= XFS_XFLAG_NODEFRAG;
  714. if (di_flags & XFS_DIFLAG_FILESTREAM)
  715. flags |= XFS_XFLAG_FILESTREAM;
  716. }
  717. return flags;
  718. }
  719. uint
  720. xfs_ip2xflags(
  721. xfs_inode_t *ip)
  722. {
  723. xfs_icdinode_t *dic = &ip->i_d;
  724. return _xfs_dic2xflags(dic->di_flags) |
  725. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  726. }
  727. uint
  728. xfs_dic2xflags(
  729. xfs_dinode_t *dip)
  730. {
  731. xfs_dinode_core_t *dic = &dip->di_core;
  732. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  733. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  734. }
  735. /*
  736. * Allocate and initialise an xfs_inode.
  737. */
  738. STATIC struct xfs_inode *
  739. xfs_inode_alloc(
  740. struct xfs_mount *mp,
  741. xfs_ino_t ino)
  742. {
  743. struct xfs_inode *ip;
  744. /*
  745. * if this didn't occur in transactions, we could use
  746. * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  747. * code up to do this anyway.
  748. */
  749. ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  750. if (!ip)
  751. return NULL;
  752. ASSERT(atomic_read(&ip->i_iocount) == 0);
  753. ASSERT(atomic_read(&ip->i_pincount) == 0);
  754. ASSERT(!spin_is_locked(&ip->i_flags_lock));
  755. ASSERT(completion_done(&ip->i_flush));
  756. /*
  757. * initialise the VFS inode here to get failures
  758. * out of the way early.
  759. */
  760. if (!inode_init_always(mp->m_super, VFS_I(ip))) {
  761. kmem_zone_free(xfs_inode_zone, ip);
  762. return NULL;
  763. }
  764. /* initialise the xfs inode */
  765. ip->i_ino = ino;
  766. ip->i_mount = mp;
  767. ip->i_blkno = 0;
  768. ip->i_len = 0;
  769. ip->i_boffset =0;
  770. ip->i_afp = NULL;
  771. memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
  772. ip->i_flags = 0;
  773. ip->i_update_core = 0;
  774. ip->i_update_size = 0;
  775. ip->i_delayed_blks = 0;
  776. memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
  777. ip->i_size = 0;
  778. ip->i_new_size = 0;
  779. /*
  780. * Initialize inode's trace buffers.
  781. */
  782. #ifdef XFS_INODE_TRACE
  783. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
  784. #endif
  785. #ifdef XFS_BMAP_TRACE
  786. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
  787. #endif
  788. #ifdef XFS_BTREE_TRACE
  789. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
  790. #endif
  791. #ifdef XFS_RW_TRACE
  792. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
  793. #endif
  794. #ifdef XFS_ILOCK_TRACE
  795. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
  796. #endif
  797. #ifdef XFS_DIR2_TRACE
  798. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
  799. #endif
  800. return ip;
  801. }
  802. /*
  803. * Given a mount structure and an inode number, return a pointer
  804. * to a newly allocated in-core inode corresponding to the given
  805. * inode number.
  806. *
  807. * Initialize the inode's attributes and extent pointers if it
  808. * already has them (it will not if the inode has no links).
  809. */
  810. int
  811. xfs_iread(
  812. xfs_mount_t *mp,
  813. xfs_trans_t *tp,
  814. xfs_ino_t ino,
  815. xfs_inode_t **ipp,
  816. xfs_daddr_t bno,
  817. uint imap_flags)
  818. {
  819. xfs_buf_t *bp;
  820. xfs_dinode_t *dip;
  821. xfs_inode_t *ip;
  822. int error;
  823. ip = xfs_inode_alloc(mp, ino);
  824. if (!ip)
  825. return ENOMEM;
  826. /*
  827. * Get pointer's to the on-disk inode and the buffer containing it.
  828. * If the inode number refers to a block outside the file system
  829. * then xfs_itobp() will return NULL. In this case we should
  830. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  831. * know that this is a new incore inode.
  832. */
  833. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
  834. if (error)
  835. goto out_destroy_inode;
  836. /*
  837. * If we got something that isn't an inode it means someone
  838. * (nfs or dmi) has a stale handle.
  839. */
  840. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  841. #ifdef DEBUG
  842. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  843. "dip->di_core.di_magic (0x%x) != "
  844. "XFS_DINODE_MAGIC (0x%x)",
  845. be16_to_cpu(dip->di_core.di_magic),
  846. XFS_DINODE_MAGIC);
  847. #endif /* DEBUG */
  848. error = XFS_ERROR(EINVAL);
  849. goto out_brelse;
  850. }
  851. /*
  852. * If the on-disk inode is already linked to a directory
  853. * entry, copy all of the inode into the in-core inode.
  854. * xfs_iformat() handles copying in the inode format
  855. * specific information.
  856. * Otherwise, just get the truly permanent information.
  857. */
  858. if (dip->di_core.di_mode) {
  859. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  860. error = xfs_iformat(ip, dip);
  861. if (error) {
  862. #ifdef DEBUG
  863. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  864. "xfs_iformat() returned error %d",
  865. error);
  866. #endif /* DEBUG */
  867. goto out_brelse;
  868. }
  869. } else {
  870. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  871. ip->i_d.di_version = dip->di_core.di_version;
  872. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  873. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  874. /*
  875. * Make sure to pull in the mode here as well in
  876. * case the inode is released without being used.
  877. * This ensures that xfs_inactive() will see that
  878. * the inode is already free and not try to mess
  879. * with the uninitialized part of it.
  880. */
  881. ip->i_d.di_mode = 0;
  882. /*
  883. * Initialize the per-fork minima and maxima for a new
  884. * inode here. xfs_iformat will do it for old inodes.
  885. */
  886. ip->i_df.if_ext_max =
  887. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  888. }
  889. /*
  890. * The inode format changed when we moved the link count and
  891. * made it 32 bits long. If this is an old format inode,
  892. * convert it in memory to look like a new one. If it gets
  893. * flushed to disk we will convert back before flushing or
  894. * logging it. We zero out the new projid field and the old link
  895. * count field. We'll handle clearing the pad field (the remains
  896. * of the old uuid field) when we actually convert the inode to
  897. * the new format. We don't change the version number so that we
  898. * can distinguish this from a real new format inode.
  899. */
  900. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  901. ip->i_d.di_nlink = ip->i_d.di_onlink;
  902. ip->i_d.di_onlink = 0;
  903. ip->i_d.di_projid = 0;
  904. }
  905. ip->i_delayed_blks = 0;
  906. ip->i_size = ip->i_d.di_size;
  907. /*
  908. * Mark the buffer containing the inode as something to keep
  909. * around for a while. This helps to keep recently accessed
  910. * meta-data in-core longer.
  911. */
  912. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  913. /*
  914. * Use xfs_trans_brelse() to release the buffer containing the
  915. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  916. * in xfs_itobp() above. If tp is NULL, this is just a normal
  917. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  918. * will only release the buffer if it is not dirty within the
  919. * transaction. It will be OK to release the buffer in this case,
  920. * because inodes on disk are never destroyed and we will be
  921. * locking the new in-core inode before putting it in the hash
  922. * table where other processes can find it. Thus we don't have
  923. * to worry about the inode being changed just because we released
  924. * the buffer.
  925. */
  926. xfs_trans_brelse(tp, bp);
  927. *ipp = ip;
  928. return 0;
  929. out_brelse:
  930. xfs_trans_brelse(tp, bp);
  931. out_destroy_inode:
  932. xfs_destroy_inode(ip);
  933. return error;
  934. }
  935. /*
  936. * Read in extents from a btree-format inode.
  937. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  938. */
  939. int
  940. xfs_iread_extents(
  941. xfs_trans_t *tp,
  942. xfs_inode_t *ip,
  943. int whichfork)
  944. {
  945. int error;
  946. xfs_ifork_t *ifp;
  947. xfs_extnum_t nextents;
  948. size_t size;
  949. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  950. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  951. ip->i_mount);
  952. return XFS_ERROR(EFSCORRUPTED);
  953. }
  954. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  955. size = nextents * sizeof(xfs_bmbt_rec_t);
  956. ifp = XFS_IFORK_PTR(ip, whichfork);
  957. /*
  958. * We know that the size is valid (it's checked in iformat_btree)
  959. */
  960. ifp->if_lastex = NULLEXTNUM;
  961. ifp->if_bytes = ifp->if_real_bytes = 0;
  962. ifp->if_flags |= XFS_IFEXTENTS;
  963. xfs_iext_add(ifp, 0, nextents);
  964. error = xfs_bmap_read_extents(tp, ip, whichfork);
  965. if (error) {
  966. xfs_iext_destroy(ifp);
  967. ifp->if_flags &= ~XFS_IFEXTENTS;
  968. return error;
  969. }
  970. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  971. return 0;
  972. }
  973. /*
  974. * Allocate an inode on disk and return a copy of its in-core version.
  975. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  976. * appropriately within the inode. The uid and gid for the inode are
  977. * set according to the contents of the given cred structure.
  978. *
  979. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  980. * has a free inode available, call xfs_iget()
  981. * to obtain the in-core version of the allocated inode. Finally,
  982. * fill in the inode and log its initial contents. In this case,
  983. * ialloc_context would be set to NULL and call_again set to false.
  984. *
  985. * If xfs_dialloc() does not have an available inode,
  986. * it will replenish its supply by doing an allocation. Since we can
  987. * only do one allocation within a transaction without deadlocks, we
  988. * must commit the current transaction before returning the inode itself.
  989. * In this case, therefore, we will set call_again to true and return.
  990. * The caller should then commit the current transaction, start a new
  991. * transaction, and call xfs_ialloc() again to actually get the inode.
  992. *
  993. * To ensure that some other process does not grab the inode that
  994. * was allocated during the first call to xfs_ialloc(), this routine
  995. * also returns the [locked] bp pointing to the head of the freelist
  996. * as ialloc_context. The caller should hold this buffer across
  997. * the commit and pass it back into this routine on the second call.
  998. *
  999. * If we are allocating quota inodes, we do not have a parent inode
  1000. * to attach to or associate with (i.e. pip == NULL) because they
  1001. * are not linked into the directory structure - they are attached
  1002. * directly to the superblock - and so have no parent.
  1003. */
  1004. int
  1005. xfs_ialloc(
  1006. xfs_trans_t *tp,
  1007. xfs_inode_t *pip,
  1008. mode_t mode,
  1009. xfs_nlink_t nlink,
  1010. xfs_dev_t rdev,
  1011. cred_t *cr,
  1012. xfs_prid_t prid,
  1013. int okalloc,
  1014. xfs_buf_t **ialloc_context,
  1015. boolean_t *call_again,
  1016. xfs_inode_t **ipp)
  1017. {
  1018. xfs_ino_t ino;
  1019. xfs_inode_t *ip;
  1020. uint flags;
  1021. int error;
  1022. timespec_t tv;
  1023. int filestreams = 0;
  1024. /*
  1025. * Call the space management code to pick
  1026. * the on-disk inode to be allocated.
  1027. */
  1028. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1029. ialloc_context, call_again, &ino);
  1030. if (error)
  1031. return error;
  1032. if (*call_again || ino == NULLFSINO) {
  1033. *ipp = NULL;
  1034. return 0;
  1035. }
  1036. ASSERT(*ialloc_context == NULL);
  1037. /*
  1038. * Get the in-core inode with the lock held exclusively.
  1039. * This is because we're setting fields here we need
  1040. * to prevent others from looking at until we're done.
  1041. */
  1042. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1043. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1044. if (error)
  1045. return error;
  1046. ASSERT(ip != NULL);
  1047. ip->i_d.di_mode = (__uint16_t)mode;
  1048. ip->i_d.di_onlink = 0;
  1049. ip->i_d.di_nlink = nlink;
  1050. ASSERT(ip->i_d.di_nlink == nlink);
  1051. ip->i_d.di_uid = current_fsuid();
  1052. ip->i_d.di_gid = current_fsgid();
  1053. ip->i_d.di_projid = prid;
  1054. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1055. /*
  1056. * If the superblock version is up to where we support new format
  1057. * inodes and this is currently an old format inode, then change
  1058. * the inode version number now. This way we only do the conversion
  1059. * here rather than here and in the flush/logging code.
  1060. */
  1061. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  1062. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1063. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1064. /*
  1065. * We've already zeroed the old link count, the projid field,
  1066. * and the pad field.
  1067. */
  1068. }
  1069. /*
  1070. * Project ids won't be stored on disk if we are using a version 1 inode.
  1071. */
  1072. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1073. xfs_bump_ino_vers2(tp, ip);
  1074. if (pip && XFS_INHERIT_GID(pip)) {
  1075. ip->i_d.di_gid = pip->i_d.di_gid;
  1076. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1077. ip->i_d.di_mode |= S_ISGID;
  1078. }
  1079. }
  1080. /*
  1081. * If the group ID of the new file does not match the effective group
  1082. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1083. * (and only if the irix_sgid_inherit compatibility variable is set).
  1084. */
  1085. if ((irix_sgid_inherit) &&
  1086. (ip->i_d.di_mode & S_ISGID) &&
  1087. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1088. ip->i_d.di_mode &= ~S_ISGID;
  1089. }
  1090. ip->i_d.di_size = 0;
  1091. ip->i_size = 0;
  1092. ip->i_d.di_nextents = 0;
  1093. ASSERT(ip->i_d.di_nblocks == 0);
  1094. nanotime(&tv);
  1095. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1096. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1097. ip->i_d.di_atime = ip->i_d.di_mtime;
  1098. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1099. /*
  1100. * di_gen will have been taken care of in xfs_iread.
  1101. */
  1102. ip->i_d.di_extsize = 0;
  1103. ip->i_d.di_dmevmask = 0;
  1104. ip->i_d.di_dmstate = 0;
  1105. ip->i_d.di_flags = 0;
  1106. flags = XFS_ILOG_CORE;
  1107. switch (mode & S_IFMT) {
  1108. case S_IFIFO:
  1109. case S_IFCHR:
  1110. case S_IFBLK:
  1111. case S_IFSOCK:
  1112. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1113. ip->i_df.if_u2.if_rdev = rdev;
  1114. ip->i_df.if_flags = 0;
  1115. flags |= XFS_ILOG_DEV;
  1116. break;
  1117. case S_IFREG:
  1118. /*
  1119. * we can't set up filestreams until after the VFS inode
  1120. * is set up properly.
  1121. */
  1122. if (pip && xfs_inode_is_filestream(pip))
  1123. filestreams = 1;
  1124. /* fall through */
  1125. case S_IFDIR:
  1126. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1127. uint di_flags = 0;
  1128. if ((mode & S_IFMT) == S_IFDIR) {
  1129. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1130. di_flags |= XFS_DIFLAG_RTINHERIT;
  1131. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1132. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1133. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1134. }
  1135. } else if ((mode & S_IFMT) == S_IFREG) {
  1136. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1137. di_flags |= XFS_DIFLAG_REALTIME;
  1138. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1139. di_flags |= XFS_DIFLAG_EXTSIZE;
  1140. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1141. }
  1142. }
  1143. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1144. xfs_inherit_noatime)
  1145. di_flags |= XFS_DIFLAG_NOATIME;
  1146. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1147. xfs_inherit_nodump)
  1148. di_flags |= XFS_DIFLAG_NODUMP;
  1149. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1150. xfs_inherit_sync)
  1151. di_flags |= XFS_DIFLAG_SYNC;
  1152. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1153. xfs_inherit_nosymlinks)
  1154. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1155. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1156. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1157. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1158. xfs_inherit_nodefrag)
  1159. di_flags |= XFS_DIFLAG_NODEFRAG;
  1160. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1161. di_flags |= XFS_DIFLAG_FILESTREAM;
  1162. ip->i_d.di_flags |= di_flags;
  1163. }
  1164. /* FALLTHROUGH */
  1165. case S_IFLNK:
  1166. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1167. ip->i_df.if_flags = XFS_IFEXTENTS;
  1168. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1169. ip->i_df.if_u1.if_extents = NULL;
  1170. break;
  1171. default:
  1172. ASSERT(0);
  1173. }
  1174. /*
  1175. * Attribute fork settings for new inode.
  1176. */
  1177. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1178. ip->i_d.di_anextents = 0;
  1179. /*
  1180. * Log the new values stuffed into the inode.
  1181. */
  1182. xfs_trans_log_inode(tp, ip, flags);
  1183. /* now that we have an i_mode we can setup inode ops and unlock */
  1184. xfs_setup_inode(ip);
  1185. /* now we have set up the vfs inode we can associate the filestream */
  1186. if (filestreams) {
  1187. error = xfs_filestream_associate(pip, ip);
  1188. if (error < 0)
  1189. return -error;
  1190. if (!error)
  1191. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1192. }
  1193. *ipp = ip;
  1194. return 0;
  1195. }
  1196. /*
  1197. * Check to make sure that there are no blocks allocated to the
  1198. * file beyond the size of the file. We don't check this for
  1199. * files with fixed size extents or real time extents, but we
  1200. * at least do it for regular files.
  1201. */
  1202. #ifdef DEBUG
  1203. void
  1204. xfs_isize_check(
  1205. xfs_mount_t *mp,
  1206. xfs_inode_t *ip,
  1207. xfs_fsize_t isize)
  1208. {
  1209. xfs_fileoff_t map_first;
  1210. int nimaps;
  1211. xfs_bmbt_irec_t imaps[2];
  1212. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1213. return;
  1214. if (XFS_IS_REALTIME_INODE(ip))
  1215. return;
  1216. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1217. return;
  1218. nimaps = 2;
  1219. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1220. /*
  1221. * The filesystem could be shutting down, so bmapi may return
  1222. * an error.
  1223. */
  1224. if (xfs_bmapi(NULL, ip, map_first,
  1225. (XFS_B_TO_FSB(mp,
  1226. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1227. map_first),
  1228. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1229. NULL, NULL))
  1230. return;
  1231. ASSERT(nimaps == 1);
  1232. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1233. }
  1234. #endif /* DEBUG */
  1235. /*
  1236. * Calculate the last possible buffered byte in a file. This must
  1237. * include data that was buffered beyond the EOF by the write code.
  1238. * This also needs to deal with overflowing the xfs_fsize_t type
  1239. * which can happen for sizes near the limit.
  1240. *
  1241. * We also need to take into account any blocks beyond the EOF. It
  1242. * may be the case that they were buffered by a write which failed.
  1243. * In that case the pages will still be in memory, but the inode size
  1244. * will never have been updated.
  1245. */
  1246. xfs_fsize_t
  1247. xfs_file_last_byte(
  1248. xfs_inode_t *ip)
  1249. {
  1250. xfs_mount_t *mp;
  1251. xfs_fsize_t last_byte;
  1252. xfs_fileoff_t last_block;
  1253. xfs_fileoff_t size_last_block;
  1254. int error;
  1255. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1256. mp = ip->i_mount;
  1257. /*
  1258. * Only check for blocks beyond the EOF if the extents have
  1259. * been read in. This eliminates the need for the inode lock,
  1260. * and it also saves us from looking when it really isn't
  1261. * necessary.
  1262. */
  1263. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1264. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1265. XFS_DATA_FORK);
  1266. if (error) {
  1267. last_block = 0;
  1268. }
  1269. } else {
  1270. last_block = 0;
  1271. }
  1272. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1273. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1274. last_byte = XFS_FSB_TO_B(mp, last_block);
  1275. if (last_byte < 0) {
  1276. return XFS_MAXIOFFSET(mp);
  1277. }
  1278. last_byte += (1 << mp->m_writeio_log);
  1279. if (last_byte < 0) {
  1280. return XFS_MAXIOFFSET(mp);
  1281. }
  1282. return last_byte;
  1283. }
  1284. #if defined(XFS_RW_TRACE)
  1285. STATIC void
  1286. xfs_itrunc_trace(
  1287. int tag,
  1288. xfs_inode_t *ip,
  1289. int flag,
  1290. xfs_fsize_t new_size,
  1291. xfs_off_t toss_start,
  1292. xfs_off_t toss_finish)
  1293. {
  1294. if (ip->i_rwtrace == NULL) {
  1295. return;
  1296. }
  1297. ktrace_enter(ip->i_rwtrace,
  1298. (void*)((long)tag),
  1299. (void*)ip,
  1300. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1301. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1302. (void*)((long)flag),
  1303. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1304. (void*)(unsigned long)(new_size & 0xffffffff),
  1305. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1306. (void*)(unsigned long)(toss_start & 0xffffffff),
  1307. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1308. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1309. (void*)(unsigned long)current_cpu(),
  1310. (void*)(unsigned long)current_pid(),
  1311. (void*)NULL,
  1312. (void*)NULL,
  1313. (void*)NULL);
  1314. }
  1315. #else
  1316. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1317. #endif
  1318. /*
  1319. * Start the truncation of the file to new_size. The new size
  1320. * must be smaller than the current size. This routine will
  1321. * clear the buffer and page caches of file data in the removed
  1322. * range, and xfs_itruncate_finish() will remove the underlying
  1323. * disk blocks.
  1324. *
  1325. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1326. * must NOT have the inode lock held at all. This is because we're
  1327. * calling into the buffer/page cache code and we can't hold the
  1328. * inode lock when we do so.
  1329. *
  1330. * We need to wait for any direct I/Os in flight to complete before we
  1331. * proceed with the truncate. This is needed to prevent the extents
  1332. * being read or written by the direct I/Os from being removed while the
  1333. * I/O is in flight as there is no other method of synchronising
  1334. * direct I/O with the truncate operation. Also, because we hold
  1335. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1336. * started until the truncate completes and drops the lock. Essentially,
  1337. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1338. * between direct I/Os and the truncate operation.
  1339. *
  1340. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1341. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1342. * in the case that the caller is locking things out of order and
  1343. * may not be able to call xfs_itruncate_finish() with the inode lock
  1344. * held without dropping the I/O lock. If the caller must drop the
  1345. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1346. * must be called again with all the same restrictions as the initial
  1347. * call.
  1348. */
  1349. int
  1350. xfs_itruncate_start(
  1351. xfs_inode_t *ip,
  1352. uint flags,
  1353. xfs_fsize_t new_size)
  1354. {
  1355. xfs_fsize_t last_byte;
  1356. xfs_off_t toss_start;
  1357. xfs_mount_t *mp;
  1358. int error = 0;
  1359. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1360. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1361. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1362. (flags == XFS_ITRUNC_MAYBE));
  1363. mp = ip->i_mount;
  1364. /* wait for the completion of any pending DIOs */
  1365. if (new_size == 0 || new_size < ip->i_size)
  1366. vn_iowait(ip);
  1367. /*
  1368. * Call toss_pages or flushinval_pages to get rid of pages
  1369. * overlapping the region being removed. We have to use
  1370. * the less efficient flushinval_pages in the case that the
  1371. * caller may not be able to finish the truncate without
  1372. * dropping the inode's I/O lock. Make sure
  1373. * to catch any pages brought in by buffers overlapping
  1374. * the EOF by searching out beyond the isize by our
  1375. * block size. We round new_size up to a block boundary
  1376. * so that we don't toss things on the same block as
  1377. * new_size but before it.
  1378. *
  1379. * Before calling toss_page or flushinval_pages, make sure to
  1380. * call remapf() over the same region if the file is mapped.
  1381. * This frees up mapped file references to the pages in the
  1382. * given range and for the flushinval_pages case it ensures
  1383. * that we get the latest mapped changes flushed out.
  1384. */
  1385. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1386. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1387. if (toss_start < 0) {
  1388. /*
  1389. * The place to start tossing is beyond our maximum
  1390. * file size, so there is no way that the data extended
  1391. * out there.
  1392. */
  1393. return 0;
  1394. }
  1395. last_byte = xfs_file_last_byte(ip);
  1396. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1397. last_byte);
  1398. if (last_byte > toss_start) {
  1399. if (flags & XFS_ITRUNC_DEFINITE) {
  1400. xfs_tosspages(ip, toss_start,
  1401. -1, FI_REMAPF_LOCKED);
  1402. } else {
  1403. error = xfs_flushinval_pages(ip, toss_start,
  1404. -1, FI_REMAPF_LOCKED);
  1405. }
  1406. }
  1407. #ifdef DEBUG
  1408. if (new_size == 0) {
  1409. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1410. }
  1411. #endif
  1412. return error;
  1413. }
  1414. /*
  1415. * Shrink the file to the given new_size. The new size must be smaller than
  1416. * the current size. This will free up the underlying blocks in the removed
  1417. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1418. *
  1419. * The transaction passed to this routine must have made a permanent log
  1420. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1421. * given transaction and start new ones, so make sure everything involved in
  1422. * the transaction is tidy before calling here. Some transaction will be
  1423. * returned to the caller to be committed. The incoming transaction must
  1424. * already include the inode, and both inode locks must be held exclusively.
  1425. * The inode must also be "held" within the transaction. On return the inode
  1426. * will be "held" within the returned transaction. This routine does NOT
  1427. * require any disk space to be reserved for it within the transaction.
  1428. *
  1429. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1430. * indicates the fork which is to be truncated. For the attribute fork we only
  1431. * support truncation to size 0.
  1432. *
  1433. * We use the sync parameter to indicate whether or not the first transaction
  1434. * we perform might have to be synchronous. For the attr fork, it needs to be
  1435. * so if the unlink of the inode is not yet known to be permanent in the log.
  1436. * This keeps us from freeing and reusing the blocks of the attribute fork
  1437. * before the unlink of the inode becomes permanent.
  1438. *
  1439. * For the data fork, we normally have to run synchronously if we're being
  1440. * called out of the inactive path or we're being called out of the create path
  1441. * where we're truncating an existing file. Either way, the truncate needs to
  1442. * be sync so blocks don't reappear in the file with altered data in case of a
  1443. * crash. wsync filesystems can run the first case async because anything that
  1444. * shrinks the inode has to run sync so by the time we're called here from
  1445. * inactive, the inode size is permanently set to 0.
  1446. *
  1447. * Calls from the truncate path always need to be sync unless we're in a wsync
  1448. * filesystem and the file has already been unlinked.
  1449. *
  1450. * The caller is responsible for correctly setting the sync parameter. It gets
  1451. * too hard for us to guess here which path we're being called out of just
  1452. * based on inode state.
  1453. *
  1454. * If we get an error, we must return with the inode locked and linked into the
  1455. * current transaction. This keeps things simple for the higher level code,
  1456. * because it always knows that the inode is locked and held in the transaction
  1457. * that returns to it whether errors occur or not. We don't mark the inode
  1458. * dirty on error so that transactions can be easily aborted if possible.
  1459. */
  1460. int
  1461. xfs_itruncate_finish(
  1462. xfs_trans_t **tp,
  1463. xfs_inode_t *ip,
  1464. xfs_fsize_t new_size,
  1465. int fork,
  1466. int sync)
  1467. {
  1468. xfs_fsblock_t first_block;
  1469. xfs_fileoff_t first_unmap_block;
  1470. xfs_fileoff_t last_block;
  1471. xfs_filblks_t unmap_len=0;
  1472. xfs_mount_t *mp;
  1473. xfs_trans_t *ntp;
  1474. int done;
  1475. int committed;
  1476. xfs_bmap_free_t free_list;
  1477. int error;
  1478. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1479. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1480. ASSERT(*tp != NULL);
  1481. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1482. ASSERT(ip->i_transp == *tp);
  1483. ASSERT(ip->i_itemp != NULL);
  1484. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1485. ntp = *tp;
  1486. mp = (ntp)->t_mountp;
  1487. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1488. /*
  1489. * We only support truncating the entire attribute fork.
  1490. */
  1491. if (fork == XFS_ATTR_FORK) {
  1492. new_size = 0LL;
  1493. }
  1494. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1495. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1496. /*
  1497. * The first thing we do is set the size to new_size permanently
  1498. * on disk. This way we don't have to worry about anyone ever
  1499. * being able to look at the data being freed even in the face
  1500. * of a crash. What we're getting around here is the case where
  1501. * we free a block, it is allocated to another file, it is written
  1502. * to, and then we crash. If the new data gets written to the
  1503. * file but the log buffers containing the free and reallocation
  1504. * don't, then we'd end up with garbage in the blocks being freed.
  1505. * As long as we make the new_size permanent before actually
  1506. * freeing any blocks it doesn't matter if they get writtten to.
  1507. *
  1508. * The callers must signal into us whether or not the size
  1509. * setting here must be synchronous. There are a few cases
  1510. * where it doesn't have to be synchronous. Those cases
  1511. * occur if the file is unlinked and we know the unlink is
  1512. * permanent or if the blocks being truncated are guaranteed
  1513. * to be beyond the inode eof (regardless of the link count)
  1514. * and the eof value is permanent. Both of these cases occur
  1515. * only on wsync-mounted filesystems. In those cases, we're
  1516. * guaranteed that no user will ever see the data in the blocks
  1517. * that are being truncated so the truncate can run async.
  1518. * In the free beyond eof case, the file may wind up with
  1519. * more blocks allocated to it than it needs if we crash
  1520. * and that won't get fixed until the next time the file
  1521. * is re-opened and closed but that's ok as that shouldn't
  1522. * be too many blocks.
  1523. *
  1524. * However, we can't just make all wsync xactions run async
  1525. * because there's one call out of the create path that needs
  1526. * to run sync where it's truncating an existing file to size
  1527. * 0 whose size is > 0.
  1528. *
  1529. * It's probably possible to come up with a test in this
  1530. * routine that would correctly distinguish all the above
  1531. * cases from the values of the function parameters and the
  1532. * inode state but for sanity's sake, I've decided to let the
  1533. * layers above just tell us. It's simpler to correctly figure
  1534. * out in the layer above exactly under what conditions we
  1535. * can run async and I think it's easier for others read and
  1536. * follow the logic in case something has to be changed.
  1537. * cscope is your friend -- rcc.
  1538. *
  1539. * The attribute fork is much simpler.
  1540. *
  1541. * For the attribute fork we allow the caller to tell us whether
  1542. * the unlink of the inode that led to this call is yet permanent
  1543. * in the on disk log. If it is not and we will be freeing extents
  1544. * in this inode then we make the first transaction synchronous
  1545. * to make sure that the unlink is permanent by the time we free
  1546. * the blocks.
  1547. */
  1548. if (fork == XFS_DATA_FORK) {
  1549. if (ip->i_d.di_nextents > 0) {
  1550. /*
  1551. * If we are not changing the file size then do
  1552. * not update the on-disk file size - we may be
  1553. * called from xfs_inactive_free_eofblocks(). If we
  1554. * update the on-disk file size and then the system
  1555. * crashes before the contents of the file are
  1556. * flushed to disk then the files may be full of
  1557. * holes (ie NULL files bug).
  1558. */
  1559. if (ip->i_size != new_size) {
  1560. ip->i_d.di_size = new_size;
  1561. ip->i_size = new_size;
  1562. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1563. }
  1564. }
  1565. } else if (sync) {
  1566. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1567. if (ip->i_d.di_anextents > 0)
  1568. xfs_trans_set_sync(ntp);
  1569. }
  1570. ASSERT(fork == XFS_DATA_FORK ||
  1571. (fork == XFS_ATTR_FORK &&
  1572. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1573. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1574. /*
  1575. * Since it is possible for space to become allocated beyond
  1576. * the end of the file (in a crash where the space is allocated
  1577. * but the inode size is not yet updated), simply remove any
  1578. * blocks which show up between the new EOF and the maximum
  1579. * possible file size. If the first block to be removed is
  1580. * beyond the maximum file size (ie it is the same as last_block),
  1581. * then there is nothing to do.
  1582. */
  1583. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1584. ASSERT(first_unmap_block <= last_block);
  1585. done = 0;
  1586. if (last_block == first_unmap_block) {
  1587. done = 1;
  1588. } else {
  1589. unmap_len = last_block - first_unmap_block + 1;
  1590. }
  1591. while (!done) {
  1592. /*
  1593. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1594. * will tell us whether it freed the entire range or
  1595. * not. If this is a synchronous mount (wsync),
  1596. * then we can tell bunmapi to keep all the
  1597. * transactions asynchronous since the unlink
  1598. * transaction that made this inode inactive has
  1599. * already hit the disk. There's no danger of
  1600. * the freed blocks being reused, there being a
  1601. * crash, and the reused blocks suddenly reappearing
  1602. * in this file with garbage in them once recovery
  1603. * runs.
  1604. */
  1605. XFS_BMAP_INIT(&free_list, &first_block);
  1606. error = xfs_bunmapi(ntp, ip,
  1607. first_unmap_block, unmap_len,
  1608. XFS_BMAPI_AFLAG(fork) |
  1609. (sync ? 0 : XFS_BMAPI_ASYNC),
  1610. XFS_ITRUNC_MAX_EXTENTS,
  1611. &first_block, &free_list,
  1612. NULL, &done);
  1613. if (error) {
  1614. /*
  1615. * If the bunmapi call encounters an error,
  1616. * return to the caller where the transaction
  1617. * can be properly aborted. We just need to
  1618. * make sure we're not holding any resources
  1619. * that we were not when we came in.
  1620. */
  1621. xfs_bmap_cancel(&free_list);
  1622. return error;
  1623. }
  1624. /*
  1625. * Duplicate the transaction that has the permanent
  1626. * reservation and commit the old transaction.
  1627. */
  1628. error = xfs_bmap_finish(tp, &free_list, &committed);
  1629. ntp = *tp;
  1630. if (committed) {
  1631. /* link the inode into the next xact in the chain */
  1632. xfs_trans_ijoin(ntp, ip,
  1633. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1634. xfs_trans_ihold(ntp, ip);
  1635. }
  1636. if (error) {
  1637. /*
  1638. * If the bmap finish call encounters an error, return
  1639. * to the caller where the transaction can be properly
  1640. * aborted. We just need to make sure we're not
  1641. * holding any resources that we were not when we came
  1642. * in.
  1643. *
  1644. * Aborting from this point might lose some blocks in
  1645. * the file system, but oh well.
  1646. */
  1647. xfs_bmap_cancel(&free_list);
  1648. return error;
  1649. }
  1650. if (committed) {
  1651. /*
  1652. * Mark the inode dirty so it will be logged and
  1653. * moved forward in the log as part of every commit.
  1654. */
  1655. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1656. }
  1657. ntp = xfs_trans_dup(ntp);
  1658. error = xfs_trans_commit(*tp, 0);
  1659. *tp = ntp;
  1660. /* link the inode into the next transaction in the chain */
  1661. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1662. xfs_trans_ihold(ntp, ip);
  1663. if (!error)
  1664. error = xfs_trans_reserve(ntp, 0,
  1665. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1666. XFS_TRANS_PERM_LOG_RES,
  1667. XFS_ITRUNCATE_LOG_COUNT);
  1668. if (error)
  1669. return error;
  1670. }
  1671. /*
  1672. * Only update the size in the case of the data fork, but
  1673. * always re-log the inode so that our permanent transaction
  1674. * can keep on rolling it forward in the log.
  1675. */
  1676. if (fork == XFS_DATA_FORK) {
  1677. xfs_isize_check(mp, ip, new_size);
  1678. /*
  1679. * If we are not changing the file size then do
  1680. * not update the on-disk file size - we may be
  1681. * called from xfs_inactive_free_eofblocks(). If we
  1682. * update the on-disk file size and then the system
  1683. * crashes before the contents of the file are
  1684. * flushed to disk then the files may be full of
  1685. * holes (ie NULL files bug).
  1686. */
  1687. if (ip->i_size != new_size) {
  1688. ip->i_d.di_size = new_size;
  1689. ip->i_size = new_size;
  1690. }
  1691. }
  1692. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1693. ASSERT((new_size != 0) ||
  1694. (fork == XFS_ATTR_FORK) ||
  1695. (ip->i_delayed_blks == 0));
  1696. ASSERT((new_size != 0) ||
  1697. (fork == XFS_ATTR_FORK) ||
  1698. (ip->i_d.di_nextents == 0));
  1699. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1700. return 0;
  1701. }
  1702. /*
  1703. * This is called when the inode's link count goes to 0.
  1704. * We place the on-disk inode on a list in the AGI. It
  1705. * will be pulled from this list when the inode is freed.
  1706. */
  1707. int
  1708. xfs_iunlink(
  1709. xfs_trans_t *tp,
  1710. xfs_inode_t *ip)
  1711. {
  1712. xfs_mount_t *mp;
  1713. xfs_agi_t *agi;
  1714. xfs_dinode_t *dip;
  1715. xfs_buf_t *agibp;
  1716. xfs_buf_t *ibp;
  1717. xfs_agnumber_t agno;
  1718. xfs_daddr_t agdaddr;
  1719. xfs_agino_t agino;
  1720. short bucket_index;
  1721. int offset;
  1722. int error;
  1723. int agi_ok;
  1724. ASSERT(ip->i_d.di_nlink == 0);
  1725. ASSERT(ip->i_d.di_mode != 0);
  1726. ASSERT(ip->i_transp == tp);
  1727. mp = tp->t_mountp;
  1728. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1729. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1730. /*
  1731. * Get the agi buffer first. It ensures lock ordering
  1732. * on the list.
  1733. */
  1734. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1735. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1736. if (error)
  1737. return error;
  1738. /*
  1739. * Validate the magic number of the agi block.
  1740. */
  1741. agi = XFS_BUF_TO_AGI(agibp);
  1742. agi_ok =
  1743. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1744. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1745. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1746. XFS_RANDOM_IUNLINK))) {
  1747. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1748. xfs_trans_brelse(tp, agibp);
  1749. return XFS_ERROR(EFSCORRUPTED);
  1750. }
  1751. /*
  1752. * Get the index into the agi hash table for the
  1753. * list this inode will go on.
  1754. */
  1755. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1756. ASSERT(agino != 0);
  1757. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1758. ASSERT(agi->agi_unlinked[bucket_index]);
  1759. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1760. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1761. /*
  1762. * There is already another inode in the bucket we need
  1763. * to add ourselves to. Add us at the front of the list.
  1764. * Here we put the head pointer into our next pointer,
  1765. * and then we fall through to point the head at us.
  1766. */
  1767. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1768. if (error)
  1769. return error;
  1770. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1771. /* both on-disk, don't endian flip twice */
  1772. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1773. offset = ip->i_boffset +
  1774. offsetof(xfs_dinode_t, di_next_unlinked);
  1775. xfs_trans_inode_buf(tp, ibp);
  1776. xfs_trans_log_buf(tp, ibp, offset,
  1777. (offset + sizeof(xfs_agino_t) - 1));
  1778. xfs_inobp_check(mp, ibp);
  1779. }
  1780. /*
  1781. * Point the bucket head pointer at the inode being inserted.
  1782. */
  1783. ASSERT(agino != 0);
  1784. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1785. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1786. (sizeof(xfs_agino_t) * bucket_index);
  1787. xfs_trans_log_buf(tp, agibp, offset,
  1788. (offset + sizeof(xfs_agino_t) - 1));
  1789. return 0;
  1790. }
  1791. /*
  1792. * Pull the on-disk inode from the AGI unlinked list.
  1793. */
  1794. STATIC int
  1795. xfs_iunlink_remove(
  1796. xfs_trans_t *tp,
  1797. xfs_inode_t *ip)
  1798. {
  1799. xfs_ino_t next_ino;
  1800. xfs_mount_t *mp;
  1801. xfs_agi_t *agi;
  1802. xfs_dinode_t *dip;
  1803. xfs_buf_t *agibp;
  1804. xfs_buf_t *ibp;
  1805. xfs_agnumber_t agno;
  1806. xfs_daddr_t agdaddr;
  1807. xfs_agino_t agino;
  1808. xfs_agino_t next_agino;
  1809. xfs_buf_t *last_ibp;
  1810. xfs_dinode_t *last_dip = NULL;
  1811. short bucket_index;
  1812. int offset, last_offset = 0;
  1813. int error;
  1814. int agi_ok;
  1815. /*
  1816. * First pull the on-disk inode from the AGI unlinked list.
  1817. */
  1818. mp = tp->t_mountp;
  1819. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1820. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1821. /*
  1822. * Get the agi buffer first. It ensures lock ordering
  1823. * on the list.
  1824. */
  1825. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1826. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1827. if (error) {
  1828. cmn_err(CE_WARN,
  1829. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1830. error, mp->m_fsname);
  1831. return error;
  1832. }
  1833. /*
  1834. * Validate the magic number of the agi block.
  1835. */
  1836. agi = XFS_BUF_TO_AGI(agibp);
  1837. agi_ok =
  1838. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1839. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1840. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1841. XFS_RANDOM_IUNLINK_REMOVE))) {
  1842. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1843. mp, agi);
  1844. xfs_trans_brelse(tp, agibp);
  1845. cmn_err(CE_WARN,
  1846. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1847. mp->m_fsname);
  1848. return XFS_ERROR(EFSCORRUPTED);
  1849. }
  1850. /*
  1851. * Get the index into the agi hash table for the
  1852. * list this inode will go on.
  1853. */
  1854. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1855. ASSERT(agino != 0);
  1856. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1857. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1858. ASSERT(agi->agi_unlinked[bucket_index]);
  1859. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1860. /*
  1861. * We're at the head of the list. Get the inode's
  1862. * on-disk buffer to see if there is anyone after us
  1863. * on the list. Only modify our next pointer if it
  1864. * is not already NULLAGINO. This saves us the overhead
  1865. * of dealing with the buffer when there is no need to
  1866. * change it.
  1867. */
  1868. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1869. if (error) {
  1870. cmn_err(CE_WARN,
  1871. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1872. error, mp->m_fsname);
  1873. return error;
  1874. }
  1875. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1876. ASSERT(next_agino != 0);
  1877. if (next_agino != NULLAGINO) {
  1878. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1879. offset = ip->i_boffset +
  1880. offsetof(xfs_dinode_t, di_next_unlinked);
  1881. xfs_trans_inode_buf(tp, ibp);
  1882. xfs_trans_log_buf(tp, ibp, offset,
  1883. (offset + sizeof(xfs_agino_t) - 1));
  1884. xfs_inobp_check(mp, ibp);
  1885. } else {
  1886. xfs_trans_brelse(tp, ibp);
  1887. }
  1888. /*
  1889. * Point the bucket head pointer at the next inode.
  1890. */
  1891. ASSERT(next_agino != 0);
  1892. ASSERT(next_agino != agino);
  1893. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1894. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1895. (sizeof(xfs_agino_t) * bucket_index);
  1896. xfs_trans_log_buf(tp, agibp, offset,
  1897. (offset + sizeof(xfs_agino_t) - 1));
  1898. } else {
  1899. /*
  1900. * We need to search the list for the inode being freed.
  1901. */
  1902. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1903. last_ibp = NULL;
  1904. while (next_agino != agino) {
  1905. /*
  1906. * If the last inode wasn't the one pointing to
  1907. * us, then release its buffer since we're not
  1908. * going to do anything with it.
  1909. */
  1910. if (last_ibp != NULL) {
  1911. xfs_trans_brelse(tp, last_ibp);
  1912. }
  1913. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1914. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1915. &last_ibp, &last_offset, 0);
  1916. if (error) {
  1917. cmn_err(CE_WARN,
  1918. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1919. error, mp->m_fsname);
  1920. return error;
  1921. }
  1922. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1923. ASSERT(next_agino != NULLAGINO);
  1924. ASSERT(next_agino != 0);
  1925. }
  1926. /*
  1927. * Now last_ibp points to the buffer previous to us on
  1928. * the unlinked list. Pull us from the list.
  1929. */
  1930. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1931. if (error) {
  1932. cmn_err(CE_WARN,
  1933. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1934. error, mp->m_fsname);
  1935. return error;
  1936. }
  1937. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1938. ASSERT(next_agino != 0);
  1939. ASSERT(next_agino != agino);
  1940. if (next_agino != NULLAGINO) {
  1941. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1942. offset = ip->i_boffset +
  1943. offsetof(xfs_dinode_t, di_next_unlinked);
  1944. xfs_trans_inode_buf(tp, ibp);
  1945. xfs_trans_log_buf(tp, ibp, offset,
  1946. (offset + sizeof(xfs_agino_t) - 1));
  1947. xfs_inobp_check(mp, ibp);
  1948. } else {
  1949. xfs_trans_brelse(tp, ibp);
  1950. }
  1951. /*
  1952. * Point the previous inode on the list to the next inode.
  1953. */
  1954. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1955. ASSERT(next_agino != 0);
  1956. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1957. xfs_trans_inode_buf(tp, last_ibp);
  1958. xfs_trans_log_buf(tp, last_ibp, offset,
  1959. (offset + sizeof(xfs_agino_t) - 1));
  1960. xfs_inobp_check(mp, last_ibp);
  1961. }
  1962. return 0;
  1963. }
  1964. STATIC void
  1965. xfs_ifree_cluster(
  1966. xfs_inode_t *free_ip,
  1967. xfs_trans_t *tp,
  1968. xfs_ino_t inum)
  1969. {
  1970. xfs_mount_t *mp = free_ip->i_mount;
  1971. int blks_per_cluster;
  1972. int nbufs;
  1973. int ninodes;
  1974. int i, j, found, pre_flushed;
  1975. xfs_daddr_t blkno;
  1976. xfs_buf_t *bp;
  1977. xfs_inode_t *ip, **ip_found;
  1978. xfs_inode_log_item_t *iip;
  1979. xfs_log_item_t *lip;
  1980. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1981. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1982. blks_per_cluster = 1;
  1983. ninodes = mp->m_sb.sb_inopblock;
  1984. nbufs = XFS_IALLOC_BLOCKS(mp);
  1985. } else {
  1986. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1987. mp->m_sb.sb_blocksize;
  1988. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1989. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1990. }
  1991. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1992. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1993. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1994. XFS_INO_TO_AGBNO(mp, inum));
  1995. /*
  1996. * Look for each inode in memory and attempt to lock it,
  1997. * we can be racing with flush and tail pushing here.
  1998. * any inode we get the locks on, add to an array of
  1999. * inode items to process later.
  2000. *
  2001. * The get the buffer lock, we could beat a flush
  2002. * or tail pushing thread to the lock here, in which
  2003. * case they will go looking for the inode buffer
  2004. * and fail, we need some other form of interlock
  2005. * here.
  2006. */
  2007. found = 0;
  2008. for (i = 0; i < ninodes; i++) {
  2009. read_lock(&pag->pag_ici_lock);
  2010. ip = radix_tree_lookup(&pag->pag_ici_root,
  2011. XFS_INO_TO_AGINO(mp, (inum + i)));
  2012. /* Inode not in memory or we found it already,
  2013. * nothing to do
  2014. */
  2015. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2016. read_unlock(&pag->pag_ici_lock);
  2017. continue;
  2018. }
  2019. if (xfs_inode_clean(ip)) {
  2020. read_unlock(&pag->pag_ici_lock);
  2021. continue;
  2022. }
  2023. /* If we can get the locks then add it to the
  2024. * list, otherwise by the time we get the bp lock
  2025. * below it will already be attached to the
  2026. * inode buffer.
  2027. */
  2028. /* This inode will already be locked - by us, lets
  2029. * keep it that way.
  2030. */
  2031. if (ip == free_ip) {
  2032. if (xfs_iflock_nowait(ip)) {
  2033. xfs_iflags_set(ip, XFS_ISTALE);
  2034. if (xfs_inode_clean(ip)) {
  2035. xfs_ifunlock(ip);
  2036. } else {
  2037. ip_found[found++] = ip;
  2038. }
  2039. }
  2040. read_unlock(&pag->pag_ici_lock);
  2041. continue;
  2042. }
  2043. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2044. if (xfs_iflock_nowait(ip)) {
  2045. xfs_iflags_set(ip, XFS_ISTALE);
  2046. if (xfs_inode_clean(ip)) {
  2047. xfs_ifunlock(ip);
  2048. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2049. } else {
  2050. ip_found[found++] = ip;
  2051. }
  2052. } else {
  2053. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2054. }
  2055. }
  2056. read_unlock(&pag->pag_ici_lock);
  2057. }
  2058. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2059. mp->m_bsize * blks_per_cluster,
  2060. XFS_BUF_LOCK);
  2061. pre_flushed = 0;
  2062. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2063. while (lip) {
  2064. if (lip->li_type == XFS_LI_INODE) {
  2065. iip = (xfs_inode_log_item_t *)lip;
  2066. ASSERT(iip->ili_logged == 1);
  2067. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2068. xfs_trans_ail_copy_lsn(mp->m_ail,
  2069. &iip->ili_flush_lsn,
  2070. &iip->ili_item.li_lsn);
  2071. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2072. pre_flushed++;
  2073. }
  2074. lip = lip->li_bio_list;
  2075. }
  2076. for (i = 0; i < found; i++) {
  2077. ip = ip_found[i];
  2078. iip = ip->i_itemp;
  2079. if (!iip) {
  2080. ip->i_update_core = 0;
  2081. xfs_ifunlock(ip);
  2082. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2083. continue;
  2084. }
  2085. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2086. iip->ili_format.ilf_fields = 0;
  2087. iip->ili_logged = 1;
  2088. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2089. &iip->ili_item.li_lsn);
  2090. xfs_buf_attach_iodone(bp,
  2091. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2092. xfs_istale_done, (xfs_log_item_t *)iip);
  2093. if (ip != free_ip) {
  2094. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2095. }
  2096. }
  2097. if (found || pre_flushed)
  2098. xfs_trans_stale_inode_buf(tp, bp);
  2099. xfs_trans_binval(tp, bp);
  2100. }
  2101. kmem_free(ip_found);
  2102. xfs_put_perag(mp, pag);
  2103. }
  2104. /*
  2105. * This is called to return an inode to the inode free list.
  2106. * The inode should already be truncated to 0 length and have
  2107. * no pages associated with it. This routine also assumes that
  2108. * the inode is already a part of the transaction.
  2109. *
  2110. * The on-disk copy of the inode will have been added to the list
  2111. * of unlinked inodes in the AGI. We need to remove the inode from
  2112. * that list atomically with respect to freeing it here.
  2113. */
  2114. int
  2115. xfs_ifree(
  2116. xfs_trans_t *tp,
  2117. xfs_inode_t *ip,
  2118. xfs_bmap_free_t *flist)
  2119. {
  2120. int error;
  2121. int delete;
  2122. xfs_ino_t first_ino;
  2123. xfs_dinode_t *dip;
  2124. xfs_buf_t *ibp;
  2125. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2126. ASSERT(ip->i_transp == tp);
  2127. ASSERT(ip->i_d.di_nlink == 0);
  2128. ASSERT(ip->i_d.di_nextents == 0);
  2129. ASSERT(ip->i_d.di_anextents == 0);
  2130. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2131. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2132. ASSERT(ip->i_d.di_nblocks == 0);
  2133. /*
  2134. * Pull the on-disk inode from the AGI unlinked list.
  2135. */
  2136. error = xfs_iunlink_remove(tp, ip);
  2137. if (error != 0) {
  2138. return error;
  2139. }
  2140. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2141. if (error != 0) {
  2142. return error;
  2143. }
  2144. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2145. ip->i_d.di_flags = 0;
  2146. ip->i_d.di_dmevmask = 0;
  2147. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2148. ip->i_df.if_ext_max =
  2149. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2150. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2151. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2152. /*
  2153. * Bump the generation count so no one will be confused
  2154. * by reincarnations of this inode.
  2155. */
  2156. ip->i_d.di_gen++;
  2157. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2158. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  2159. if (error)
  2160. return error;
  2161. /*
  2162. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2163. * from picking up this inode when it is reclaimed (its incore state
  2164. * initialzed but not flushed to disk yet). The in-core di_mode is
  2165. * already cleared and a corresponding transaction logged.
  2166. * The hack here just synchronizes the in-core to on-disk
  2167. * di_mode value in advance before the actual inode sync to disk.
  2168. * This is OK because the inode is already unlinked and would never
  2169. * change its di_mode again for this inode generation.
  2170. * This is a temporary hack that would require a proper fix
  2171. * in the future.
  2172. */
  2173. dip->di_core.di_mode = 0;
  2174. if (delete) {
  2175. xfs_ifree_cluster(ip, tp, first_ino);
  2176. }
  2177. return 0;
  2178. }
  2179. /*
  2180. * Reallocate the space for if_broot based on the number of records
  2181. * being added or deleted as indicated in rec_diff. Move the records
  2182. * and pointers in if_broot to fit the new size. When shrinking this
  2183. * will eliminate holes between the records and pointers created by
  2184. * the caller. When growing this will create holes to be filled in
  2185. * by the caller.
  2186. *
  2187. * The caller must not request to add more records than would fit in
  2188. * the on-disk inode root. If the if_broot is currently NULL, then
  2189. * if we adding records one will be allocated. The caller must also
  2190. * not request that the number of records go below zero, although
  2191. * it can go to zero.
  2192. *
  2193. * ip -- the inode whose if_broot area is changing
  2194. * ext_diff -- the change in the number of records, positive or negative,
  2195. * requested for the if_broot array.
  2196. */
  2197. void
  2198. xfs_iroot_realloc(
  2199. xfs_inode_t *ip,
  2200. int rec_diff,
  2201. int whichfork)
  2202. {
  2203. struct xfs_mount *mp = ip->i_mount;
  2204. int cur_max;
  2205. xfs_ifork_t *ifp;
  2206. struct xfs_btree_block *new_broot;
  2207. int new_max;
  2208. size_t new_size;
  2209. char *np;
  2210. char *op;
  2211. /*
  2212. * Handle the degenerate case quietly.
  2213. */
  2214. if (rec_diff == 0) {
  2215. return;
  2216. }
  2217. ifp = XFS_IFORK_PTR(ip, whichfork);
  2218. if (rec_diff > 0) {
  2219. /*
  2220. * If there wasn't any memory allocated before, just
  2221. * allocate it now and get out.
  2222. */
  2223. if (ifp->if_broot_bytes == 0) {
  2224. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2225. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2226. ifp->if_broot_bytes = (int)new_size;
  2227. return;
  2228. }
  2229. /*
  2230. * If there is already an existing if_broot, then we need
  2231. * to realloc() it and shift the pointers to their new
  2232. * location. The records don't change location because
  2233. * they are kept butted up against the btree block header.
  2234. */
  2235. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2236. new_max = cur_max + rec_diff;
  2237. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2238. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2239. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2240. KM_SLEEP);
  2241. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2242. ifp->if_broot_bytes);
  2243. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2244. (int)new_size);
  2245. ifp->if_broot_bytes = (int)new_size;
  2246. ASSERT(ifp->if_broot_bytes <=
  2247. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2248. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2249. return;
  2250. }
  2251. /*
  2252. * rec_diff is less than 0. In this case, we are shrinking the
  2253. * if_broot buffer. It must already exist. If we go to zero
  2254. * records, just get rid of the root and clear the status bit.
  2255. */
  2256. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2257. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2258. new_max = cur_max + rec_diff;
  2259. ASSERT(new_max >= 0);
  2260. if (new_max > 0)
  2261. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2262. else
  2263. new_size = 0;
  2264. if (new_size > 0) {
  2265. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2266. /*
  2267. * First copy over the btree block header.
  2268. */
  2269. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2270. } else {
  2271. new_broot = NULL;
  2272. ifp->if_flags &= ~XFS_IFBROOT;
  2273. }
  2274. /*
  2275. * Only copy the records and pointers if there are any.
  2276. */
  2277. if (new_max > 0) {
  2278. /*
  2279. * First copy the records.
  2280. */
  2281. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2282. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2283. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2284. /*
  2285. * Then copy the pointers.
  2286. */
  2287. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2288. ifp->if_broot_bytes);
  2289. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2290. (int)new_size);
  2291. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2292. }
  2293. kmem_free(ifp->if_broot);
  2294. ifp->if_broot = new_broot;
  2295. ifp->if_broot_bytes = (int)new_size;
  2296. ASSERT(ifp->if_broot_bytes <=
  2297. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2298. return;
  2299. }
  2300. /*
  2301. * This is called when the amount of space needed for if_data
  2302. * is increased or decreased. The change in size is indicated by
  2303. * the number of bytes that need to be added or deleted in the
  2304. * byte_diff parameter.
  2305. *
  2306. * If the amount of space needed has decreased below the size of the
  2307. * inline buffer, then switch to using the inline buffer. Otherwise,
  2308. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2309. * to what is needed.
  2310. *
  2311. * ip -- the inode whose if_data area is changing
  2312. * byte_diff -- the change in the number of bytes, positive or negative,
  2313. * requested for the if_data array.
  2314. */
  2315. void
  2316. xfs_idata_realloc(
  2317. xfs_inode_t *ip,
  2318. int byte_diff,
  2319. int whichfork)
  2320. {
  2321. xfs_ifork_t *ifp;
  2322. int new_size;
  2323. int real_size;
  2324. if (byte_diff == 0) {
  2325. return;
  2326. }
  2327. ifp = XFS_IFORK_PTR(ip, whichfork);
  2328. new_size = (int)ifp->if_bytes + byte_diff;
  2329. ASSERT(new_size >= 0);
  2330. if (new_size == 0) {
  2331. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2332. kmem_free(ifp->if_u1.if_data);
  2333. }
  2334. ifp->if_u1.if_data = NULL;
  2335. real_size = 0;
  2336. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2337. /*
  2338. * If the valid extents/data can fit in if_inline_ext/data,
  2339. * copy them from the malloc'd vector and free it.
  2340. */
  2341. if (ifp->if_u1.if_data == NULL) {
  2342. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2343. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2344. ASSERT(ifp->if_real_bytes != 0);
  2345. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2346. new_size);
  2347. kmem_free(ifp->if_u1.if_data);
  2348. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2349. }
  2350. real_size = 0;
  2351. } else {
  2352. /*
  2353. * Stuck with malloc/realloc.
  2354. * For inline data, the underlying buffer must be
  2355. * a multiple of 4 bytes in size so that it can be
  2356. * logged and stay on word boundaries. We enforce
  2357. * that here.
  2358. */
  2359. real_size = roundup(new_size, 4);
  2360. if (ifp->if_u1.if_data == NULL) {
  2361. ASSERT(ifp->if_real_bytes == 0);
  2362. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2363. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2364. /*
  2365. * Only do the realloc if the underlying size
  2366. * is really changing.
  2367. */
  2368. if (ifp->if_real_bytes != real_size) {
  2369. ifp->if_u1.if_data =
  2370. kmem_realloc(ifp->if_u1.if_data,
  2371. real_size,
  2372. ifp->if_real_bytes,
  2373. KM_SLEEP);
  2374. }
  2375. } else {
  2376. ASSERT(ifp->if_real_bytes == 0);
  2377. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2378. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2379. ifp->if_bytes);
  2380. }
  2381. }
  2382. ifp->if_real_bytes = real_size;
  2383. ifp->if_bytes = new_size;
  2384. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2385. }
  2386. /*
  2387. * Map inode to disk block and offset.
  2388. *
  2389. * mp -- the mount point structure for the current file system
  2390. * tp -- the current transaction
  2391. * ino -- the inode number of the inode to be located
  2392. * imap -- this structure is filled in with the information necessary
  2393. * to retrieve the given inode from disk
  2394. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2395. * lookups in the inode btree were OK or not
  2396. */
  2397. int
  2398. xfs_imap(
  2399. xfs_mount_t *mp,
  2400. xfs_trans_t *tp,
  2401. xfs_ino_t ino,
  2402. xfs_imap_t *imap,
  2403. uint flags)
  2404. {
  2405. xfs_fsblock_t fsbno;
  2406. int len;
  2407. int off;
  2408. int error;
  2409. fsbno = imap->im_blkno ?
  2410. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2411. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2412. if (error)
  2413. return error;
  2414. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2415. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2416. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2417. imap->im_ioffset = (ushort)off;
  2418. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2419. /*
  2420. * If the inode number maps to a block outside the bounds
  2421. * of the file system then return NULL rather than calling
  2422. * read_buf and panicing when we get an error from the
  2423. * driver.
  2424. */
  2425. if ((imap->im_blkno + imap->im_len) >
  2426. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2427. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
  2428. "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
  2429. " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
  2430. (unsigned long long) imap->im_blkno,
  2431. (unsigned long long) imap->im_len,
  2432. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2433. return EINVAL;
  2434. }
  2435. return 0;
  2436. }
  2437. void
  2438. xfs_idestroy_fork(
  2439. xfs_inode_t *ip,
  2440. int whichfork)
  2441. {
  2442. xfs_ifork_t *ifp;
  2443. ifp = XFS_IFORK_PTR(ip, whichfork);
  2444. if (ifp->if_broot != NULL) {
  2445. kmem_free(ifp->if_broot);
  2446. ifp->if_broot = NULL;
  2447. }
  2448. /*
  2449. * If the format is local, then we can't have an extents
  2450. * array so just look for an inline data array. If we're
  2451. * not local then we may or may not have an extents list,
  2452. * so check and free it up if we do.
  2453. */
  2454. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2455. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2456. (ifp->if_u1.if_data != NULL)) {
  2457. ASSERT(ifp->if_real_bytes != 0);
  2458. kmem_free(ifp->if_u1.if_data);
  2459. ifp->if_u1.if_data = NULL;
  2460. ifp->if_real_bytes = 0;
  2461. }
  2462. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2463. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2464. ((ifp->if_u1.if_extents != NULL) &&
  2465. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2466. ASSERT(ifp->if_real_bytes != 0);
  2467. xfs_iext_destroy(ifp);
  2468. }
  2469. ASSERT(ifp->if_u1.if_extents == NULL ||
  2470. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2471. ASSERT(ifp->if_real_bytes == 0);
  2472. if (whichfork == XFS_ATTR_FORK) {
  2473. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2474. ip->i_afp = NULL;
  2475. }
  2476. }
  2477. /*
  2478. * This is called free all the memory associated with an inode.
  2479. * It must free the inode itself and any buffers allocated for
  2480. * if_extents/if_data and if_broot. It must also free the lock
  2481. * associated with the inode.
  2482. *
  2483. * Note: because we don't initialise everything on reallocation out
  2484. * of the zone, we must ensure we nullify everything correctly before
  2485. * freeing the structure.
  2486. */
  2487. void
  2488. xfs_idestroy(
  2489. xfs_inode_t *ip)
  2490. {
  2491. switch (ip->i_d.di_mode & S_IFMT) {
  2492. case S_IFREG:
  2493. case S_IFDIR:
  2494. case S_IFLNK:
  2495. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2496. break;
  2497. }
  2498. if (ip->i_afp)
  2499. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2500. #ifdef XFS_INODE_TRACE
  2501. ktrace_free(ip->i_trace);
  2502. #endif
  2503. #ifdef XFS_BMAP_TRACE
  2504. ktrace_free(ip->i_xtrace);
  2505. #endif
  2506. #ifdef XFS_BTREE_TRACE
  2507. ktrace_free(ip->i_btrace);
  2508. #endif
  2509. #ifdef XFS_RW_TRACE
  2510. ktrace_free(ip->i_rwtrace);
  2511. #endif
  2512. #ifdef XFS_ILOCK_TRACE
  2513. ktrace_free(ip->i_lock_trace);
  2514. #endif
  2515. #ifdef XFS_DIR2_TRACE
  2516. ktrace_free(ip->i_dir_trace);
  2517. #endif
  2518. if (ip->i_itemp) {
  2519. /*
  2520. * Only if we are shutting down the fs will we see an
  2521. * inode still in the AIL. If it is there, we should remove
  2522. * it to prevent a use-after-free from occurring.
  2523. */
  2524. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2525. struct xfs_ail *ailp = lip->li_ailp;
  2526. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2527. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2528. if (lip->li_flags & XFS_LI_IN_AIL) {
  2529. spin_lock(&ailp->xa_lock);
  2530. if (lip->li_flags & XFS_LI_IN_AIL)
  2531. xfs_trans_ail_delete(ailp, lip);
  2532. else
  2533. spin_unlock(&ailp->xa_lock);
  2534. }
  2535. xfs_inode_item_destroy(ip);
  2536. ip->i_itemp = NULL;
  2537. }
  2538. /* asserts to verify all state is correct here */
  2539. ASSERT(atomic_read(&ip->i_iocount) == 0);
  2540. ASSERT(atomic_read(&ip->i_pincount) == 0);
  2541. ASSERT(!spin_is_locked(&ip->i_flags_lock));
  2542. ASSERT(completion_done(&ip->i_flush));
  2543. kmem_zone_free(xfs_inode_zone, ip);
  2544. }
  2545. /*
  2546. * Increment the pin count of the given buffer.
  2547. * This value is protected by ipinlock spinlock in the mount structure.
  2548. */
  2549. void
  2550. xfs_ipin(
  2551. xfs_inode_t *ip)
  2552. {
  2553. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2554. atomic_inc(&ip->i_pincount);
  2555. }
  2556. /*
  2557. * Decrement the pin count of the given inode, and wake up
  2558. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2559. * inode must have been previously pinned with a call to xfs_ipin().
  2560. */
  2561. void
  2562. xfs_iunpin(
  2563. xfs_inode_t *ip)
  2564. {
  2565. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2566. if (atomic_dec_and_test(&ip->i_pincount))
  2567. wake_up(&ip->i_ipin_wait);
  2568. }
  2569. /*
  2570. * This is called to unpin an inode. It can be directed to wait or to return
  2571. * immediately without waiting for the inode to be unpinned. The caller must
  2572. * have the inode locked in at least shared mode so that the buffer cannot be
  2573. * subsequently pinned once someone is waiting for it to be unpinned.
  2574. */
  2575. STATIC void
  2576. __xfs_iunpin_wait(
  2577. xfs_inode_t *ip,
  2578. int wait)
  2579. {
  2580. xfs_inode_log_item_t *iip = ip->i_itemp;
  2581. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2582. if (atomic_read(&ip->i_pincount) == 0)
  2583. return;
  2584. /* Give the log a push to start the unpinning I/O */
  2585. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2586. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2587. if (wait)
  2588. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2589. }
  2590. static inline void
  2591. xfs_iunpin_wait(
  2592. xfs_inode_t *ip)
  2593. {
  2594. __xfs_iunpin_wait(ip, 1);
  2595. }
  2596. static inline void
  2597. xfs_iunpin_nowait(
  2598. xfs_inode_t *ip)
  2599. {
  2600. __xfs_iunpin_wait(ip, 0);
  2601. }
  2602. /*
  2603. * xfs_iextents_copy()
  2604. *
  2605. * This is called to copy the REAL extents (as opposed to the delayed
  2606. * allocation extents) from the inode into the given buffer. It
  2607. * returns the number of bytes copied into the buffer.
  2608. *
  2609. * If there are no delayed allocation extents, then we can just
  2610. * memcpy() the extents into the buffer. Otherwise, we need to
  2611. * examine each extent in turn and skip those which are delayed.
  2612. */
  2613. int
  2614. xfs_iextents_copy(
  2615. xfs_inode_t *ip,
  2616. xfs_bmbt_rec_t *dp,
  2617. int whichfork)
  2618. {
  2619. int copied;
  2620. int i;
  2621. xfs_ifork_t *ifp;
  2622. int nrecs;
  2623. xfs_fsblock_t start_block;
  2624. ifp = XFS_IFORK_PTR(ip, whichfork);
  2625. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2626. ASSERT(ifp->if_bytes > 0);
  2627. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2628. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2629. ASSERT(nrecs > 0);
  2630. /*
  2631. * There are some delayed allocation extents in the
  2632. * inode, so copy the extents one at a time and skip
  2633. * the delayed ones. There must be at least one
  2634. * non-delayed extent.
  2635. */
  2636. copied = 0;
  2637. for (i = 0; i < nrecs; i++) {
  2638. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2639. start_block = xfs_bmbt_get_startblock(ep);
  2640. if (ISNULLSTARTBLOCK(start_block)) {
  2641. /*
  2642. * It's a delayed allocation extent, so skip it.
  2643. */
  2644. continue;
  2645. }
  2646. /* Translate to on disk format */
  2647. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2648. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2649. dp++;
  2650. copied++;
  2651. }
  2652. ASSERT(copied != 0);
  2653. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2654. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2655. }
  2656. /*
  2657. * Each of the following cases stores data into the same region
  2658. * of the on-disk inode, so only one of them can be valid at
  2659. * any given time. While it is possible to have conflicting formats
  2660. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2661. * in EXTENTS format, this can only happen when the fork has
  2662. * changed formats after being modified but before being flushed.
  2663. * In these cases, the format always takes precedence, because the
  2664. * format indicates the current state of the fork.
  2665. */
  2666. /*ARGSUSED*/
  2667. STATIC void
  2668. xfs_iflush_fork(
  2669. xfs_inode_t *ip,
  2670. xfs_dinode_t *dip,
  2671. xfs_inode_log_item_t *iip,
  2672. int whichfork,
  2673. xfs_buf_t *bp)
  2674. {
  2675. char *cp;
  2676. xfs_ifork_t *ifp;
  2677. xfs_mount_t *mp;
  2678. #ifdef XFS_TRANS_DEBUG
  2679. int first;
  2680. #endif
  2681. static const short brootflag[2] =
  2682. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2683. static const short dataflag[2] =
  2684. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2685. static const short extflag[2] =
  2686. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2687. if (!iip)
  2688. return;
  2689. ifp = XFS_IFORK_PTR(ip, whichfork);
  2690. /*
  2691. * This can happen if we gave up in iformat in an error path,
  2692. * for the attribute fork.
  2693. */
  2694. if (!ifp) {
  2695. ASSERT(whichfork == XFS_ATTR_FORK);
  2696. return;
  2697. }
  2698. cp = XFS_DFORK_PTR(dip, whichfork);
  2699. mp = ip->i_mount;
  2700. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2701. case XFS_DINODE_FMT_LOCAL:
  2702. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2703. (ifp->if_bytes > 0)) {
  2704. ASSERT(ifp->if_u1.if_data != NULL);
  2705. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2706. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2707. }
  2708. break;
  2709. case XFS_DINODE_FMT_EXTENTS:
  2710. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2711. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2712. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2713. (ifp->if_bytes == 0));
  2714. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2715. (ifp->if_bytes > 0));
  2716. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2717. (ifp->if_bytes > 0)) {
  2718. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2719. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2720. whichfork);
  2721. }
  2722. break;
  2723. case XFS_DINODE_FMT_BTREE:
  2724. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2725. (ifp->if_broot_bytes > 0)) {
  2726. ASSERT(ifp->if_broot != NULL);
  2727. ASSERT(ifp->if_broot_bytes <=
  2728. (XFS_IFORK_SIZE(ip, whichfork) +
  2729. XFS_BROOT_SIZE_ADJ));
  2730. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2731. (xfs_bmdr_block_t *)cp,
  2732. XFS_DFORK_SIZE(dip, mp, whichfork));
  2733. }
  2734. break;
  2735. case XFS_DINODE_FMT_DEV:
  2736. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2737. ASSERT(whichfork == XFS_DATA_FORK);
  2738. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2739. }
  2740. break;
  2741. case XFS_DINODE_FMT_UUID:
  2742. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2743. ASSERT(whichfork == XFS_DATA_FORK);
  2744. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2745. sizeof(uuid_t));
  2746. }
  2747. break;
  2748. default:
  2749. ASSERT(0);
  2750. break;
  2751. }
  2752. }
  2753. STATIC int
  2754. xfs_iflush_cluster(
  2755. xfs_inode_t *ip,
  2756. xfs_buf_t *bp)
  2757. {
  2758. xfs_mount_t *mp = ip->i_mount;
  2759. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2760. unsigned long first_index, mask;
  2761. unsigned long inodes_per_cluster;
  2762. int ilist_size;
  2763. xfs_inode_t **ilist;
  2764. xfs_inode_t *iq;
  2765. int nr_found;
  2766. int clcount = 0;
  2767. int bufwasdelwri;
  2768. int i;
  2769. ASSERT(pag->pagi_inodeok);
  2770. ASSERT(pag->pag_ici_init);
  2771. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2772. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2773. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2774. if (!ilist)
  2775. return 0;
  2776. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2777. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2778. read_lock(&pag->pag_ici_lock);
  2779. /* really need a gang lookup range call here */
  2780. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2781. first_index, inodes_per_cluster);
  2782. if (nr_found == 0)
  2783. goto out_free;
  2784. for (i = 0; i < nr_found; i++) {
  2785. iq = ilist[i];
  2786. if (iq == ip)
  2787. continue;
  2788. /* if the inode lies outside this cluster, we're done. */
  2789. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2790. break;
  2791. /*
  2792. * Do an un-protected check to see if the inode is dirty and
  2793. * is a candidate for flushing. These checks will be repeated
  2794. * later after the appropriate locks are acquired.
  2795. */
  2796. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2797. continue;
  2798. /*
  2799. * Try to get locks. If any are unavailable or it is pinned,
  2800. * then this inode cannot be flushed and is skipped.
  2801. */
  2802. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2803. continue;
  2804. if (!xfs_iflock_nowait(iq)) {
  2805. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2806. continue;
  2807. }
  2808. if (xfs_ipincount(iq)) {
  2809. xfs_ifunlock(iq);
  2810. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2811. continue;
  2812. }
  2813. /*
  2814. * arriving here means that this inode can be flushed. First
  2815. * re-check that it's dirty before flushing.
  2816. */
  2817. if (!xfs_inode_clean(iq)) {
  2818. int error;
  2819. error = xfs_iflush_int(iq, bp);
  2820. if (error) {
  2821. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2822. goto cluster_corrupt_out;
  2823. }
  2824. clcount++;
  2825. } else {
  2826. xfs_ifunlock(iq);
  2827. }
  2828. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2829. }
  2830. if (clcount) {
  2831. XFS_STATS_INC(xs_icluster_flushcnt);
  2832. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2833. }
  2834. out_free:
  2835. read_unlock(&pag->pag_ici_lock);
  2836. kmem_free(ilist);
  2837. return 0;
  2838. cluster_corrupt_out:
  2839. /*
  2840. * Corruption detected in the clustering loop. Invalidate the
  2841. * inode buffer and shut down the filesystem.
  2842. */
  2843. read_unlock(&pag->pag_ici_lock);
  2844. /*
  2845. * Clean up the buffer. If it was B_DELWRI, just release it --
  2846. * brelse can handle it with no problems. If not, shut down the
  2847. * filesystem before releasing the buffer.
  2848. */
  2849. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2850. if (bufwasdelwri)
  2851. xfs_buf_relse(bp);
  2852. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2853. if (!bufwasdelwri) {
  2854. /*
  2855. * Just like incore_relse: if we have b_iodone functions,
  2856. * mark the buffer as an error and call them. Otherwise
  2857. * mark it as stale and brelse.
  2858. */
  2859. if (XFS_BUF_IODONE_FUNC(bp)) {
  2860. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2861. XFS_BUF_UNDONE(bp);
  2862. XFS_BUF_STALE(bp);
  2863. XFS_BUF_SHUT(bp);
  2864. XFS_BUF_ERROR(bp,EIO);
  2865. xfs_biodone(bp);
  2866. } else {
  2867. XFS_BUF_STALE(bp);
  2868. xfs_buf_relse(bp);
  2869. }
  2870. }
  2871. /*
  2872. * Unlocks the flush lock
  2873. */
  2874. xfs_iflush_abort(iq);
  2875. kmem_free(ilist);
  2876. return XFS_ERROR(EFSCORRUPTED);
  2877. }
  2878. /*
  2879. * xfs_iflush() will write a modified inode's changes out to the
  2880. * inode's on disk home. The caller must have the inode lock held
  2881. * in at least shared mode and the inode flush completion must be
  2882. * active as well. The inode lock will still be held upon return from
  2883. * the call and the caller is free to unlock it.
  2884. * The inode flush will be completed when the inode reaches the disk.
  2885. * The flags indicate how the inode's buffer should be written out.
  2886. */
  2887. int
  2888. xfs_iflush(
  2889. xfs_inode_t *ip,
  2890. uint flags)
  2891. {
  2892. xfs_inode_log_item_t *iip;
  2893. xfs_buf_t *bp;
  2894. xfs_dinode_t *dip;
  2895. xfs_mount_t *mp;
  2896. int error;
  2897. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2898. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2899. XFS_STATS_INC(xs_iflush_count);
  2900. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2901. ASSERT(!completion_done(&ip->i_flush));
  2902. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2903. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2904. iip = ip->i_itemp;
  2905. mp = ip->i_mount;
  2906. /*
  2907. * If the inode isn't dirty, then just release the inode
  2908. * flush lock and do nothing.
  2909. */
  2910. if (xfs_inode_clean(ip)) {
  2911. xfs_ifunlock(ip);
  2912. return 0;
  2913. }
  2914. /*
  2915. * We can't flush the inode until it is unpinned, so wait for it if we
  2916. * are allowed to block. We know noone new can pin it, because we are
  2917. * holding the inode lock shared and you need to hold it exclusively to
  2918. * pin the inode.
  2919. *
  2920. * If we are not allowed to block, force the log out asynchronously so
  2921. * that when we come back the inode will be unpinned. If other inodes
  2922. * in the same cluster are dirty, they will probably write the inode
  2923. * out for us if they occur after the log force completes.
  2924. */
  2925. if (noblock && xfs_ipincount(ip)) {
  2926. xfs_iunpin_nowait(ip);
  2927. xfs_ifunlock(ip);
  2928. return EAGAIN;
  2929. }
  2930. xfs_iunpin_wait(ip);
  2931. /*
  2932. * This may have been unpinned because the filesystem is shutting
  2933. * down forcibly. If that's the case we must not write this inode
  2934. * to disk, because the log record didn't make it to disk!
  2935. */
  2936. if (XFS_FORCED_SHUTDOWN(mp)) {
  2937. ip->i_update_core = 0;
  2938. if (iip)
  2939. iip->ili_format.ilf_fields = 0;
  2940. xfs_ifunlock(ip);
  2941. return XFS_ERROR(EIO);
  2942. }
  2943. /*
  2944. * Decide how buffer will be flushed out. This is done before
  2945. * the call to xfs_iflush_int because this field is zeroed by it.
  2946. */
  2947. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2948. /*
  2949. * Flush out the inode buffer according to the directions
  2950. * of the caller. In the cases where the caller has given
  2951. * us a choice choose the non-delwri case. This is because
  2952. * the inode is in the AIL and we need to get it out soon.
  2953. */
  2954. switch (flags) {
  2955. case XFS_IFLUSH_SYNC:
  2956. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2957. flags = 0;
  2958. break;
  2959. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2960. case XFS_IFLUSH_ASYNC:
  2961. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2962. flags = INT_ASYNC;
  2963. break;
  2964. case XFS_IFLUSH_DELWRI:
  2965. flags = INT_DELWRI;
  2966. break;
  2967. default:
  2968. ASSERT(0);
  2969. flags = 0;
  2970. break;
  2971. }
  2972. } else {
  2973. switch (flags) {
  2974. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2975. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2976. case XFS_IFLUSH_DELWRI:
  2977. flags = INT_DELWRI;
  2978. break;
  2979. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2980. case XFS_IFLUSH_ASYNC:
  2981. flags = INT_ASYNC;
  2982. break;
  2983. case XFS_IFLUSH_SYNC:
  2984. flags = 0;
  2985. break;
  2986. default:
  2987. ASSERT(0);
  2988. flags = 0;
  2989. break;
  2990. }
  2991. }
  2992. /*
  2993. * Get the buffer containing the on-disk inode.
  2994. */
  2995. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
  2996. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2997. if (error || !bp) {
  2998. xfs_ifunlock(ip);
  2999. return error;
  3000. }
  3001. /*
  3002. * First flush out the inode that xfs_iflush was called with.
  3003. */
  3004. error = xfs_iflush_int(ip, bp);
  3005. if (error)
  3006. goto corrupt_out;
  3007. /*
  3008. * If the buffer is pinned then push on the log now so we won't
  3009. * get stuck waiting in the write for too long.
  3010. */
  3011. if (XFS_BUF_ISPINNED(bp))
  3012. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3013. /*
  3014. * inode clustering:
  3015. * see if other inodes can be gathered into this write
  3016. */
  3017. error = xfs_iflush_cluster(ip, bp);
  3018. if (error)
  3019. goto cluster_corrupt_out;
  3020. if (flags & INT_DELWRI) {
  3021. xfs_bdwrite(mp, bp);
  3022. } else if (flags & INT_ASYNC) {
  3023. error = xfs_bawrite(mp, bp);
  3024. } else {
  3025. error = xfs_bwrite(mp, bp);
  3026. }
  3027. return error;
  3028. corrupt_out:
  3029. xfs_buf_relse(bp);
  3030. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3031. cluster_corrupt_out:
  3032. /*
  3033. * Unlocks the flush lock
  3034. */
  3035. xfs_iflush_abort(ip);
  3036. return XFS_ERROR(EFSCORRUPTED);
  3037. }
  3038. STATIC int
  3039. xfs_iflush_int(
  3040. xfs_inode_t *ip,
  3041. xfs_buf_t *bp)
  3042. {
  3043. xfs_inode_log_item_t *iip;
  3044. xfs_dinode_t *dip;
  3045. xfs_mount_t *mp;
  3046. #ifdef XFS_TRANS_DEBUG
  3047. int first;
  3048. #endif
  3049. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  3050. ASSERT(!completion_done(&ip->i_flush));
  3051. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3052. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3053. iip = ip->i_itemp;
  3054. mp = ip->i_mount;
  3055. /*
  3056. * If the inode isn't dirty, then just release the inode
  3057. * flush lock and do nothing.
  3058. */
  3059. if (xfs_inode_clean(ip)) {
  3060. xfs_ifunlock(ip);
  3061. return 0;
  3062. }
  3063. /* set *dip = inode's place in the buffer */
  3064. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3065. /*
  3066. * Clear i_update_core before copying out the data.
  3067. * This is for coordination with our timestamp updates
  3068. * that don't hold the inode lock. They will always
  3069. * update the timestamps BEFORE setting i_update_core,
  3070. * so if we clear i_update_core after they set it we
  3071. * are guaranteed to see their updates to the timestamps.
  3072. * I believe that this depends on strongly ordered memory
  3073. * semantics, but we have that. We use the SYNCHRONIZE
  3074. * macro to make sure that the compiler does not reorder
  3075. * the i_update_core access below the data copy below.
  3076. */
  3077. ip->i_update_core = 0;
  3078. SYNCHRONIZE();
  3079. /*
  3080. * Make sure to get the latest atime from the Linux inode.
  3081. */
  3082. xfs_synchronize_atime(ip);
  3083. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3084. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3085. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3086. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3087. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3088. goto corrupt_out;
  3089. }
  3090. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3091. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3092. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3093. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3094. ip->i_ino, ip, ip->i_d.di_magic);
  3095. goto corrupt_out;
  3096. }
  3097. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3098. if (XFS_TEST_ERROR(
  3099. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3100. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3101. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3102. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3103. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3104. ip->i_ino, ip);
  3105. goto corrupt_out;
  3106. }
  3107. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3108. if (XFS_TEST_ERROR(
  3109. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3110. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3111. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3112. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3113. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3114. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3115. ip->i_ino, ip);
  3116. goto corrupt_out;
  3117. }
  3118. }
  3119. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3120. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3121. XFS_RANDOM_IFLUSH_5)) {
  3122. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3123. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3124. ip->i_ino,
  3125. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3126. ip->i_d.di_nblocks,
  3127. ip);
  3128. goto corrupt_out;
  3129. }
  3130. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3131. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3132. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3133. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3134. ip->i_ino, ip->i_d.di_forkoff, ip);
  3135. goto corrupt_out;
  3136. }
  3137. /*
  3138. * bump the flush iteration count, used to detect flushes which
  3139. * postdate a log record during recovery.
  3140. */
  3141. ip->i_d.di_flushiter++;
  3142. /*
  3143. * Copy the dirty parts of the inode into the on-disk
  3144. * inode. We always copy out the core of the inode,
  3145. * because if the inode is dirty at all the core must
  3146. * be.
  3147. */
  3148. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3149. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3150. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3151. ip->i_d.di_flushiter = 0;
  3152. /*
  3153. * If this is really an old format inode and the superblock version
  3154. * has not been updated to support only new format inodes, then
  3155. * convert back to the old inode format. If the superblock version
  3156. * has been updated, then make the conversion permanent.
  3157. */
  3158. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3159. xfs_sb_version_hasnlink(&mp->m_sb));
  3160. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3161. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  3162. /*
  3163. * Convert it back.
  3164. */
  3165. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3166. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3167. } else {
  3168. /*
  3169. * The superblock version has already been bumped,
  3170. * so just make the conversion to the new inode
  3171. * format permanent.
  3172. */
  3173. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3174. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3175. ip->i_d.di_onlink = 0;
  3176. dip->di_core.di_onlink = 0;
  3177. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3178. memset(&(dip->di_core.di_pad[0]), 0,
  3179. sizeof(dip->di_core.di_pad));
  3180. ASSERT(ip->i_d.di_projid == 0);
  3181. }
  3182. }
  3183. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  3184. if (XFS_IFORK_Q(ip))
  3185. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3186. xfs_inobp_check(mp, bp);
  3187. /*
  3188. * We've recorded everything logged in the inode, so we'd
  3189. * like to clear the ilf_fields bits so we don't log and
  3190. * flush things unnecessarily. However, we can't stop
  3191. * logging all this information until the data we've copied
  3192. * into the disk buffer is written to disk. If we did we might
  3193. * overwrite the copy of the inode in the log with all the
  3194. * data after re-logging only part of it, and in the face of
  3195. * a crash we wouldn't have all the data we need to recover.
  3196. *
  3197. * What we do is move the bits to the ili_last_fields field.
  3198. * When logging the inode, these bits are moved back to the
  3199. * ilf_fields field. In the xfs_iflush_done() routine we
  3200. * clear ili_last_fields, since we know that the information
  3201. * those bits represent is permanently on disk. As long as
  3202. * the flush completes before the inode is logged again, then
  3203. * both ilf_fields and ili_last_fields will be cleared.
  3204. *
  3205. * We can play with the ilf_fields bits here, because the inode
  3206. * lock must be held exclusively in order to set bits there
  3207. * and the flush lock protects the ili_last_fields bits.
  3208. * Set ili_logged so the flush done
  3209. * routine can tell whether or not to look in the AIL.
  3210. * Also, store the current LSN of the inode so that we can tell
  3211. * whether the item has moved in the AIL from xfs_iflush_done().
  3212. * In order to read the lsn we need the AIL lock, because
  3213. * it is a 64 bit value that cannot be read atomically.
  3214. */
  3215. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3216. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3217. iip->ili_format.ilf_fields = 0;
  3218. iip->ili_logged = 1;
  3219. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  3220. &iip->ili_item.li_lsn);
  3221. /*
  3222. * Attach the function xfs_iflush_done to the inode's
  3223. * buffer. This will remove the inode from the AIL
  3224. * and unlock the inode's flush lock when the inode is
  3225. * completely written to disk.
  3226. */
  3227. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3228. xfs_iflush_done, (xfs_log_item_t *)iip);
  3229. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3230. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3231. } else {
  3232. /*
  3233. * We're flushing an inode which is not in the AIL and has
  3234. * not been logged but has i_update_core set. For this
  3235. * case we can use a B_DELWRI flush and immediately drop
  3236. * the inode flush lock because we can avoid the whole
  3237. * AIL state thing. It's OK to drop the flush lock now,
  3238. * because we've already locked the buffer and to do anything
  3239. * you really need both.
  3240. */
  3241. if (iip != NULL) {
  3242. ASSERT(iip->ili_logged == 0);
  3243. ASSERT(iip->ili_last_fields == 0);
  3244. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3245. }
  3246. xfs_ifunlock(ip);
  3247. }
  3248. return 0;
  3249. corrupt_out:
  3250. return XFS_ERROR(EFSCORRUPTED);
  3251. }
  3252. #ifdef XFS_ILOCK_TRACE
  3253. ktrace_t *xfs_ilock_trace_buf;
  3254. void
  3255. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3256. {
  3257. ktrace_enter(ip->i_lock_trace,
  3258. (void *)ip,
  3259. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3260. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3261. (void *)ra, /* caller of ilock */
  3262. (void *)(unsigned long)current_cpu(),
  3263. (void *)(unsigned long)current_pid(),
  3264. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3265. }
  3266. #endif
  3267. /*
  3268. * Return a pointer to the extent record at file index idx.
  3269. */
  3270. xfs_bmbt_rec_host_t *
  3271. xfs_iext_get_ext(
  3272. xfs_ifork_t *ifp, /* inode fork pointer */
  3273. xfs_extnum_t idx) /* index of target extent */
  3274. {
  3275. ASSERT(idx >= 0);
  3276. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3277. return ifp->if_u1.if_ext_irec->er_extbuf;
  3278. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3279. xfs_ext_irec_t *erp; /* irec pointer */
  3280. int erp_idx = 0; /* irec index */
  3281. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3282. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3283. return &erp->er_extbuf[page_idx];
  3284. } else if (ifp->if_bytes) {
  3285. return &ifp->if_u1.if_extents[idx];
  3286. } else {
  3287. return NULL;
  3288. }
  3289. }
  3290. /*
  3291. * Insert new item(s) into the extent records for incore inode
  3292. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3293. */
  3294. void
  3295. xfs_iext_insert(
  3296. xfs_ifork_t *ifp, /* inode fork pointer */
  3297. xfs_extnum_t idx, /* starting index of new items */
  3298. xfs_extnum_t count, /* number of inserted items */
  3299. xfs_bmbt_irec_t *new) /* items to insert */
  3300. {
  3301. xfs_extnum_t i; /* extent record index */
  3302. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3303. xfs_iext_add(ifp, idx, count);
  3304. for (i = idx; i < idx + count; i++, new++)
  3305. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3306. }
  3307. /*
  3308. * This is called when the amount of space required for incore file
  3309. * extents needs to be increased. The ext_diff parameter stores the
  3310. * number of new extents being added and the idx parameter contains
  3311. * the extent index where the new extents will be added. If the new
  3312. * extents are being appended, then we just need to (re)allocate and
  3313. * initialize the space. Otherwise, if the new extents are being
  3314. * inserted into the middle of the existing entries, a bit more work
  3315. * is required to make room for the new extents to be inserted. The
  3316. * caller is responsible for filling in the new extent entries upon
  3317. * return.
  3318. */
  3319. void
  3320. xfs_iext_add(
  3321. xfs_ifork_t *ifp, /* inode fork pointer */
  3322. xfs_extnum_t idx, /* index to begin adding exts */
  3323. int ext_diff) /* number of extents to add */
  3324. {
  3325. int byte_diff; /* new bytes being added */
  3326. int new_size; /* size of extents after adding */
  3327. xfs_extnum_t nextents; /* number of extents in file */
  3328. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3329. ASSERT((idx >= 0) && (idx <= nextents));
  3330. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3331. new_size = ifp->if_bytes + byte_diff;
  3332. /*
  3333. * If the new number of extents (nextents + ext_diff)
  3334. * fits inside the inode, then continue to use the inline
  3335. * extent buffer.
  3336. */
  3337. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3338. if (idx < nextents) {
  3339. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3340. &ifp->if_u2.if_inline_ext[idx],
  3341. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3342. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3343. }
  3344. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3345. ifp->if_real_bytes = 0;
  3346. ifp->if_lastex = nextents + ext_diff;
  3347. }
  3348. /*
  3349. * Otherwise use a linear (direct) extent list.
  3350. * If the extents are currently inside the inode,
  3351. * xfs_iext_realloc_direct will switch us from
  3352. * inline to direct extent allocation mode.
  3353. */
  3354. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3355. xfs_iext_realloc_direct(ifp, new_size);
  3356. if (idx < nextents) {
  3357. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3358. &ifp->if_u1.if_extents[idx],
  3359. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3360. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3361. }
  3362. }
  3363. /* Indirection array */
  3364. else {
  3365. xfs_ext_irec_t *erp;
  3366. int erp_idx = 0;
  3367. int page_idx = idx;
  3368. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3369. if (ifp->if_flags & XFS_IFEXTIREC) {
  3370. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3371. } else {
  3372. xfs_iext_irec_init(ifp);
  3373. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3374. erp = ifp->if_u1.if_ext_irec;
  3375. }
  3376. /* Extents fit in target extent page */
  3377. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3378. if (page_idx < erp->er_extcount) {
  3379. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3380. &erp->er_extbuf[page_idx],
  3381. (erp->er_extcount - page_idx) *
  3382. sizeof(xfs_bmbt_rec_t));
  3383. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3384. }
  3385. erp->er_extcount += ext_diff;
  3386. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3387. }
  3388. /* Insert a new extent page */
  3389. else if (erp) {
  3390. xfs_iext_add_indirect_multi(ifp,
  3391. erp_idx, page_idx, ext_diff);
  3392. }
  3393. /*
  3394. * If extent(s) are being appended to the last page in
  3395. * the indirection array and the new extent(s) don't fit
  3396. * in the page, then erp is NULL and erp_idx is set to
  3397. * the next index needed in the indirection array.
  3398. */
  3399. else {
  3400. int count = ext_diff;
  3401. while (count) {
  3402. erp = xfs_iext_irec_new(ifp, erp_idx);
  3403. erp->er_extcount = count;
  3404. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3405. if (count) {
  3406. erp_idx++;
  3407. }
  3408. }
  3409. }
  3410. }
  3411. ifp->if_bytes = new_size;
  3412. }
  3413. /*
  3414. * This is called when incore extents are being added to the indirection
  3415. * array and the new extents do not fit in the target extent list. The
  3416. * erp_idx parameter contains the irec index for the target extent list
  3417. * in the indirection array, and the idx parameter contains the extent
  3418. * index within the list. The number of extents being added is stored
  3419. * in the count parameter.
  3420. *
  3421. * |-------| |-------|
  3422. * | | | | idx - number of extents before idx
  3423. * | idx | | count |
  3424. * | | | | count - number of extents being inserted at idx
  3425. * |-------| |-------|
  3426. * | count | | nex2 | nex2 - number of extents after idx + count
  3427. * |-------| |-------|
  3428. */
  3429. void
  3430. xfs_iext_add_indirect_multi(
  3431. xfs_ifork_t *ifp, /* inode fork pointer */
  3432. int erp_idx, /* target extent irec index */
  3433. xfs_extnum_t idx, /* index within target list */
  3434. int count) /* new extents being added */
  3435. {
  3436. int byte_diff; /* new bytes being added */
  3437. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3438. xfs_extnum_t ext_diff; /* number of extents to add */
  3439. xfs_extnum_t ext_cnt; /* new extents still needed */
  3440. xfs_extnum_t nex2; /* extents after idx + count */
  3441. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3442. int nlists; /* number of irec's (lists) */
  3443. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3444. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3445. nex2 = erp->er_extcount - idx;
  3446. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3447. /*
  3448. * Save second part of target extent list
  3449. * (all extents past */
  3450. if (nex2) {
  3451. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3452. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3453. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3454. erp->er_extcount -= nex2;
  3455. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3456. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3457. }
  3458. /*
  3459. * Add the new extents to the end of the target
  3460. * list, then allocate new irec record(s) and
  3461. * extent buffer(s) as needed to store the rest
  3462. * of the new extents.
  3463. */
  3464. ext_cnt = count;
  3465. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3466. if (ext_diff) {
  3467. erp->er_extcount += ext_diff;
  3468. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3469. ext_cnt -= ext_diff;
  3470. }
  3471. while (ext_cnt) {
  3472. erp_idx++;
  3473. erp = xfs_iext_irec_new(ifp, erp_idx);
  3474. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3475. erp->er_extcount = ext_diff;
  3476. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3477. ext_cnt -= ext_diff;
  3478. }
  3479. /* Add nex2 extents back to indirection array */
  3480. if (nex2) {
  3481. xfs_extnum_t ext_avail;
  3482. int i;
  3483. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3484. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3485. i = 0;
  3486. /*
  3487. * If nex2 extents fit in the current page, append
  3488. * nex2_ep after the new extents.
  3489. */
  3490. if (nex2 <= ext_avail) {
  3491. i = erp->er_extcount;
  3492. }
  3493. /*
  3494. * Otherwise, check if space is available in the
  3495. * next page.
  3496. */
  3497. else if ((erp_idx < nlists - 1) &&
  3498. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3499. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3500. erp_idx++;
  3501. erp++;
  3502. /* Create a hole for nex2 extents */
  3503. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3504. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3505. }
  3506. /*
  3507. * Final choice, create a new extent page for
  3508. * nex2 extents.
  3509. */
  3510. else {
  3511. erp_idx++;
  3512. erp = xfs_iext_irec_new(ifp, erp_idx);
  3513. }
  3514. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3515. kmem_free(nex2_ep);
  3516. erp->er_extcount += nex2;
  3517. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3518. }
  3519. }
  3520. /*
  3521. * This is called when the amount of space required for incore file
  3522. * extents needs to be decreased. The ext_diff parameter stores the
  3523. * number of extents to be removed and the idx parameter contains
  3524. * the extent index where the extents will be removed from.
  3525. *
  3526. * If the amount of space needed has decreased below the linear
  3527. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3528. * extent array. Otherwise, use kmem_realloc() to adjust the
  3529. * size to what is needed.
  3530. */
  3531. void
  3532. xfs_iext_remove(
  3533. xfs_ifork_t *ifp, /* inode fork pointer */
  3534. xfs_extnum_t idx, /* index to begin removing exts */
  3535. int ext_diff) /* number of extents to remove */
  3536. {
  3537. xfs_extnum_t nextents; /* number of extents in file */
  3538. int new_size; /* size of extents after removal */
  3539. ASSERT(ext_diff > 0);
  3540. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3541. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3542. if (new_size == 0) {
  3543. xfs_iext_destroy(ifp);
  3544. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3545. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3546. } else if (ifp->if_real_bytes) {
  3547. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3548. } else {
  3549. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3550. }
  3551. ifp->if_bytes = new_size;
  3552. }
  3553. /*
  3554. * This removes ext_diff extents from the inline buffer, beginning
  3555. * at extent index idx.
  3556. */
  3557. void
  3558. xfs_iext_remove_inline(
  3559. xfs_ifork_t *ifp, /* inode fork pointer */
  3560. xfs_extnum_t idx, /* index to begin removing exts */
  3561. int ext_diff) /* number of extents to remove */
  3562. {
  3563. int nextents; /* number of extents in file */
  3564. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3565. ASSERT(idx < XFS_INLINE_EXTS);
  3566. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3567. ASSERT(((nextents - ext_diff) > 0) &&
  3568. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3569. if (idx + ext_diff < nextents) {
  3570. memmove(&ifp->if_u2.if_inline_ext[idx],
  3571. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3572. (nextents - (idx + ext_diff)) *
  3573. sizeof(xfs_bmbt_rec_t));
  3574. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3575. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3576. } else {
  3577. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3578. ext_diff * sizeof(xfs_bmbt_rec_t));
  3579. }
  3580. }
  3581. /*
  3582. * This removes ext_diff extents from a linear (direct) extent list,
  3583. * beginning at extent index idx. If the extents are being removed
  3584. * from the end of the list (ie. truncate) then we just need to re-
  3585. * allocate the list to remove the extra space. Otherwise, if the
  3586. * extents are being removed from the middle of the existing extent
  3587. * entries, then we first need to move the extent records beginning
  3588. * at idx + ext_diff up in the list to overwrite the records being
  3589. * removed, then remove the extra space via kmem_realloc.
  3590. */
  3591. void
  3592. xfs_iext_remove_direct(
  3593. xfs_ifork_t *ifp, /* inode fork pointer */
  3594. xfs_extnum_t idx, /* index to begin removing exts */
  3595. int ext_diff) /* number of extents to remove */
  3596. {
  3597. xfs_extnum_t nextents; /* number of extents in file */
  3598. int new_size; /* size of extents after removal */
  3599. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3600. new_size = ifp->if_bytes -
  3601. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3602. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3603. if (new_size == 0) {
  3604. xfs_iext_destroy(ifp);
  3605. return;
  3606. }
  3607. /* Move extents up in the list (if needed) */
  3608. if (idx + ext_diff < nextents) {
  3609. memmove(&ifp->if_u1.if_extents[idx],
  3610. &ifp->if_u1.if_extents[idx + ext_diff],
  3611. (nextents - (idx + ext_diff)) *
  3612. sizeof(xfs_bmbt_rec_t));
  3613. }
  3614. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3615. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3616. /*
  3617. * Reallocate the direct extent list. If the extents
  3618. * will fit inside the inode then xfs_iext_realloc_direct
  3619. * will switch from direct to inline extent allocation
  3620. * mode for us.
  3621. */
  3622. xfs_iext_realloc_direct(ifp, new_size);
  3623. ifp->if_bytes = new_size;
  3624. }
  3625. /*
  3626. * This is called when incore extents are being removed from the
  3627. * indirection array and the extents being removed span multiple extent
  3628. * buffers. The idx parameter contains the file extent index where we
  3629. * want to begin removing extents, and the count parameter contains
  3630. * how many extents need to be removed.
  3631. *
  3632. * |-------| |-------|
  3633. * | nex1 | | | nex1 - number of extents before idx
  3634. * |-------| | count |
  3635. * | | | | count - number of extents being removed at idx
  3636. * | count | |-------|
  3637. * | | | nex2 | nex2 - number of extents after idx + count
  3638. * |-------| |-------|
  3639. */
  3640. void
  3641. xfs_iext_remove_indirect(
  3642. xfs_ifork_t *ifp, /* inode fork pointer */
  3643. xfs_extnum_t idx, /* index to begin removing extents */
  3644. int count) /* number of extents to remove */
  3645. {
  3646. xfs_ext_irec_t *erp; /* indirection array pointer */
  3647. int erp_idx = 0; /* indirection array index */
  3648. xfs_extnum_t ext_cnt; /* extents left to remove */
  3649. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3650. xfs_extnum_t nex1; /* number of extents before idx */
  3651. xfs_extnum_t nex2; /* extents after idx + count */
  3652. int nlists; /* entries in indirection array */
  3653. int page_idx = idx; /* index in target extent list */
  3654. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3655. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3656. ASSERT(erp != NULL);
  3657. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3658. nex1 = page_idx;
  3659. ext_cnt = count;
  3660. while (ext_cnt) {
  3661. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3662. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3663. /*
  3664. * Check for deletion of entire list;
  3665. * xfs_iext_irec_remove() updates extent offsets.
  3666. */
  3667. if (ext_diff == erp->er_extcount) {
  3668. xfs_iext_irec_remove(ifp, erp_idx);
  3669. ext_cnt -= ext_diff;
  3670. nex1 = 0;
  3671. if (ext_cnt) {
  3672. ASSERT(erp_idx < ifp->if_real_bytes /
  3673. XFS_IEXT_BUFSZ);
  3674. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3675. nex1 = 0;
  3676. continue;
  3677. } else {
  3678. break;
  3679. }
  3680. }
  3681. /* Move extents up (if needed) */
  3682. if (nex2) {
  3683. memmove(&erp->er_extbuf[nex1],
  3684. &erp->er_extbuf[nex1 + ext_diff],
  3685. nex2 * sizeof(xfs_bmbt_rec_t));
  3686. }
  3687. /* Zero out rest of page */
  3688. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3689. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3690. /* Update remaining counters */
  3691. erp->er_extcount -= ext_diff;
  3692. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3693. ext_cnt -= ext_diff;
  3694. nex1 = 0;
  3695. erp_idx++;
  3696. erp++;
  3697. }
  3698. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3699. xfs_iext_irec_compact(ifp);
  3700. }
  3701. /*
  3702. * Create, destroy, or resize a linear (direct) block of extents.
  3703. */
  3704. void
  3705. xfs_iext_realloc_direct(
  3706. xfs_ifork_t *ifp, /* inode fork pointer */
  3707. int new_size) /* new size of extents */
  3708. {
  3709. int rnew_size; /* real new size of extents */
  3710. rnew_size = new_size;
  3711. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3712. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3713. (new_size != ifp->if_real_bytes)));
  3714. /* Free extent records */
  3715. if (new_size == 0) {
  3716. xfs_iext_destroy(ifp);
  3717. }
  3718. /* Resize direct extent list and zero any new bytes */
  3719. else if (ifp->if_real_bytes) {
  3720. /* Check if extents will fit inside the inode */
  3721. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3722. xfs_iext_direct_to_inline(ifp, new_size /
  3723. (uint)sizeof(xfs_bmbt_rec_t));
  3724. ifp->if_bytes = new_size;
  3725. return;
  3726. }
  3727. if (!is_power_of_2(new_size)){
  3728. rnew_size = roundup_pow_of_two(new_size);
  3729. }
  3730. if (rnew_size != ifp->if_real_bytes) {
  3731. ifp->if_u1.if_extents =
  3732. kmem_realloc(ifp->if_u1.if_extents,
  3733. rnew_size,
  3734. ifp->if_real_bytes, KM_NOFS);
  3735. }
  3736. if (rnew_size > ifp->if_real_bytes) {
  3737. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3738. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3739. rnew_size - ifp->if_real_bytes);
  3740. }
  3741. }
  3742. /*
  3743. * Switch from the inline extent buffer to a direct
  3744. * extent list. Be sure to include the inline extent
  3745. * bytes in new_size.
  3746. */
  3747. else {
  3748. new_size += ifp->if_bytes;
  3749. if (!is_power_of_2(new_size)) {
  3750. rnew_size = roundup_pow_of_two(new_size);
  3751. }
  3752. xfs_iext_inline_to_direct(ifp, rnew_size);
  3753. }
  3754. ifp->if_real_bytes = rnew_size;
  3755. ifp->if_bytes = new_size;
  3756. }
  3757. /*
  3758. * Switch from linear (direct) extent records to inline buffer.
  3759. */
  3760. void
  3761. xfs_iext_direct_to_inline(
  3762. xfs_ifork_t *ifp, /* inode fork pointer */
  3763. xfs_extnum_t nextents) /* number of extents in file */
  3764. {
  3765. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3766. ASSERT(nextents <= XFS_INLINE_EXTS);
  3767. /*
  3768. * The inline buffer was zeroed when we switched
  3769. * from inline to direct extent allocation mode,
  3770. * so we don't need to clear it here.
  3771. */
  3772. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3773. nextents * sizeof(xfs_bmbt_rec_t));
  3774. kmem_free(ifp->if_u1.if_extents);
  3775. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3776. ifp->if_real_bytes = 0;
  3777. }
  3778. /*
  3779. * Switch from inline buffer to linear (direct) extent records.
  3780. * new_size should already be rounded up to the next power of 2
  3781. * by the caller (when appropriate), so use new_size as it is.
  3782. * However, since new_size may be rounded up, we can't update
  3783. * if_bytes here. It is the caller's responsibility to update
  3784. * if_bytes upon return.
  3785. */
  3786. void
  3787. xfs_iext_inline_to_direct(
  3788. xfs_ifork_t *ifp, /* inode fork pointer */
  3789. int new_size) /* number of extents in file */
  3790. {
  3791. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3792. memset(ifp->if_u1.if_extents, 0, new_size);
  3793. if (ifp->if_bytes) {
  3794. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3795. ifp->if_bytes);
  3796. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3797. sizeof(xfs_bmbt_rec_t));
  3798. }
  3799. ifp->if_real_bytes = new_size;
  3800. }
  3801. /*
  3802. * Resize an extent indirection array to new_size bytes.
  3803. */
  3804. void
  3805. xfs_iext_realloc_indirect(
  3806. xfs_ifork_t *ifp, /* inode fork pointer */
  3807. int new_size) /* new indirection array size */
  3808. {
  3809. int nlists; /* number of irec's (ex lists) */
  3810. int size; /* current indirection array size */
  3811. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3812. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3813. size = nlists * sizeof(xfs_ext_irec_t);
  3814. ASSERT(ifp->if_real_bytes);
  3815. ASSERT((new_size >= 0) && (new_size != size));
  3816. if (new_size == 0) {
  3817. xfs_iext_destroy(ifp);
  3818. } else {
  3819. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3820. kmem_realloc(ifp->if_u1.if_ext_irec,
  3821. new_size, size, KM_NOFS);
  3822. }
  3823. }
  3824. /*
  3825. * Switch from indirection array to linear (direct) extent allocations.
  3826. */
  3827. void
  3828. xfs_iext_indirect_to_direct(
  3829. xfs_ifork_t *ifp) /* inode fork pointer */
  3830. {
  3831. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3832. xfs_extnum_t nextents; /* number of extents in file */
  3833. int size; /* size of file extents */
  3834. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3835. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3836. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3837. size = nextents * sizeof(xfs_bmbt_rec_t);
  3838. xfs_iext_irec_compact_pages(ifp);
  3839. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3840. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3841. kmem_free(ifp->if_u1.if_ext_irec);
  3842. ifp->if_flags &= ~XFS_IFEXTIREC;
  3843. ifp->if_u1.if_extents = ep;
  3844. ifp->if_bytes = size;
  3845. if (nextents < XFS_LINEAR_EXTS) {
  3846. xfs_iext_realloc_direct(ifp, size);
  3847. }
  3848. }
  3849. /*
  3850. * Free incore file extents.
  3851. */
  3852. void
  3853. xfs_iext_destroy(
  3854. xfs_ifork_t *ifp) /* inode fork pointer */
  3855. {
  3856. if (ifp->if_flags & XFS_IFEXTIREC) {
  3857. int erp_idx;
  3858. int nlists;
  3859. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3860. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3861. xfs_iext_irec_remove(ifp, erp_idx);
  3862. }
  3863. ifp->if_flags &= ~XFS_IFEXTIREC;
  3864. } else if (ifp->if_real_bytes) {
  3865. kmem_free(ifp->if_u1.if_extents);
  3866. } else if (ifp->if_bytes) {
  3867. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3868. sizeof(xfs_bmbt_rec_t));
  3869. }
  3870. ifp->if_u1.if_extents = NULL;
  3871. ifp->if_real_bytes = 0;
  3872. ifp->if_bytes = 0;
  3873. }
  3874. /*
  3875. * Return a pointer to the extent record for file system block bno.
  3876. */
  3877. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3878. xfs_iext_bno_to_ext(
  3879. xfs_ifork_t *ifp, /* inode fork pointer */
  3880. xfs_fileoff_t bno, /* block number to search for */
  3881. xfs_extnum_t *idxp) /* index of target extent */
  3882. {
  3883. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3884. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3885. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3886. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3887. int high; /* upper boundary in search */
  3888. xfs_extnum_t idx = 0; /* index of target extent */
  3889. int low; /* lower boundary in search */
  3890. xfs_extnum_t nextents; /* number of file extents */
  3891. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3892. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3893. if (nextents == 0) {
  3894. *idxp = 0;
  3895. return NULL;
  3896. }
  3897. low = 0;
  3898. if (ifp->if_flags & XFS_IFEXTIREC) {
  3899. /* Find target extent list */
  3900. int erp_idx = 0;
  3901. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3902. base = erp->er_extbuf;
  3903. high = erp->er_extcount - 1;
  3904. } else {
  3905. base = ifp->if_u1.if_extents;
  3906. high = nextents - 1;
  3907. }
  3908. /* Binary search extent records */
  3909. while (low <= high) {
  3910. idx = (low + high) >> 1;
  3911. ep = base + idx;
  3912. startoff = xfs_bmbt_get_startoff(ep);
  3913. blockcount = xfs_bmbt_get_blockcount(ep);
  3914. if (bno < startoff) {
  3915. high = idx - 1;
  3916. } else if (bno >= startoff + blockcount) {
  3917. low = idx + 1;
  3918. } else {
  3919. /* Convert back to file-based extent index */
  3920. if (ifp->if_flags & XFS_IFEXTIREC) {
  3921. idx += erp->er_extoff;
  3922. }
  3923. *idxp = idx;
  3924. return ep;
  3925. }
  3926. }
  3927. /* Convert back to file-based extent index */
  3928. if (ifp->if_flags & XFS_IFEXTIREC) {
  3929. idx += erp->er_extoff;
  3930. }
  3931. if (bno >= startoff + blockcount) {
  3932. if (++idx == nextents) {
  3933. ep = NULL;
  3934. } else {
  3935. ep = xfs_iext_get_ext(ifp, idx);
  3936. }
  3937. }
  3938. *idxp = idx;
  3939. return ep;
  3940. }
  3941. /*
  3942. * Return a pointer to the indirection array entry containing the
  3943. * extent record for filesystem block bno. Store the index of the
  3944. * target irec in *erp_idxp.
  3945. */
  3946. xfs_ext_irec_t * /* pointer to found extent record */
  3947. xfs_iext_bno_to_irec(
  3948. xfs_ifork_t *ifp, /* inode fork pointer */
  3949. xfs_fileoff_t bno, /* block number to search for */
  3950. int *erp_idxp) /* irec index of target ext list */
  3951. {
  3952. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3953. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3954. int erp_idx; /* indirection array index */
  3955. int nlists; /* number of extent irec's (lists) */
  3956. int high; /* binary search upper limit */
  3957. int low; /* binary search lower limit */
  3958. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3959. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3960. erp_idx = 0;
  3961. low = 0;
  3962. high = nlists - 1;
  3963. while (low <= high) {
  3964. erp_idx = (low + high) >> 1;
  3965. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3966. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3967. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3968. high = erp_idx - 1;
  3969. } else if (erp_next && bno >=
  3970. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3971. low = erp_idx + 1;
  3972. } else {
  3973. break;
  3974. }
  3975. }
  3976. *erp_idxp = erp_idx;
  3977. return erp;
  3978. }
  3979. /*
  3980. * Return a pointer to the indirection array entry containing the
  3981. * extent record at file extent index *idxp. Store the index of the
  3982. * target irec in *erp_idxp and store the page index of the target
  3983. * extent record in *idxp.
  3984. */
  3985. xfs_ext_irec_t *
  3986. xfs_iext_idx_to_irec(
  3987. xfs_ifork_t *ifp, /* inode fork pointer */
  3988. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3989. int *erp_idxp, /* pointer to target irec */
  3990. int realloc) /* new bytes were just added */
  3991. {
  3992. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3993. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3994. int erp_idx; /* indirection array index */
  3995. int nlists; /* number of irec's (ex lists) */
  3996. int high; /* binary search upper limit */
  3997. int low; /* binary search lower limit */
  3998. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3999. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4000. ASSERT(page_idx >= 0 && page_idx <=
  4001. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4002. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4003. erp_idx = 0;
  4004. low = 0;
  4005. high = nlists - 1;
  4006. /* Binary search extent irec's */
  4007. while (low <= high) {
  4008. erp_idx = (low + high) >> 1;
  4009. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4010. prev = erp_idx > 0 ? erp - 1 : NULL;
  4011. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4012. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4013. high = erp_idx - 1;
  4014. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4015. (page_idx == erp->er_extoff + erp->er_extcount &&
  4016. !realloc)) {
  4017. low = erp_idx + 1;
  4018. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4019. erp->er_extcount == XFS_LINEAR_EXTS) {
  4020. ASSERT(realloc);
  4021. page_idx = 0;
  4022. erp_idx++;
  4023. erp = erp_idx < nlists ? erp + 1 : NULL;
  4024. break;
  4025. } else {
  4026. page_idx -= erp->er_extoff;
  4027. break;
  4028. }
  4029. }
  4030. *idxp = page_idx;
  4031. *erp_idxp = erp_idx;
  4032. return(erp);
  4033. }
  4034. /*
  4035. * Allocate and initialize an indirection array once the space needed
  4036. * for incore extents increases above XFS_IEXT_BUFSZ.
  4037. */
  4038. void
  4039. xfs_iext_irec_init(
  4040. xfs_ifork_t *ifp) /* inode fork pointer */
  4041. {
  4042. xfs_ext_irec_t *erp; /* indirection array pointer */
  4043. xfs_extnum_t nextents; /* number of extents in file */
  4044. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4045. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4046. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4047. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  4048. if (nextents == 0) {
  4049. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4050. } else if (!ifp->if_real_bytes) {
  4051. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4052. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4053. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4054. }
  4055. erp->er_extbuf = ifp->if_u1.if_extents;
  4056. erp->er_extcount = nextents;
  4057. erp->er_extoff = 0;
  4058. ifp->if_flags |= XFS_IFEXTIREC;
  4059. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4060. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4061. ifp->if_u1.if_ext_irec = erp;
  4062. return;
  4063. }
  4064. /*
  4065. * Allocate and initialize a new entry in the indirection array.
  4066. */
  4067. xfs_ext_irec_t *
  4068. xfs_iext_irec_new(
  4069. xfs_ifork_t *ifp, /* inode fork pointer */
  4070. int erp_idx) /* index for new irec */
  4071. {
  4072. xfs_ext_irec_t *erp; /* indirection array pointer */
  4073. int i; /* loop counter */
  4074. int nlists; /* number of irec's (ex lists) */
  4075. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4076. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4077. /* Resize indirection array */
  4078. xfs_iext_realloc_indirect(ifp, ++nlists *
  4079. sizeof(xfs_ext_irec_t));
  4080. /*
  4081. * Move records down in the array so the
  4082. * new page can use erp_idx.
  4083. */
  4084. erp = ifp->if_u1.if_ext_irec;
  4085. for (i = nlists - 1; i > erp_idx; i--) {
  4086. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4087. }
  4088. ASSERT(i == erp_idx);
  4089. /* Initialize new extent record */
  4090. erp = ifp->if_u1.if_ext_irec;
  4091. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4092. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4093. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4094. erp[erp_idx].er_extcount = 0;
  4095. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4096. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4097. return (&erp[erp_idx]);
  4098. }
  4099. /*
  4100. * Remove a record from the indirection array.
  4101. */
  4102. void
  4103. xfs_iext_irec_remove(
  4104. xfs_ifork_t *ifp, /* inode fork pointer */
  4105. int erp_idx) /* irec index to remove */
  4106. {
  4107. xfs_ext_irec_t *erp; /* indirection array pointer */
  4108. int i; /* loop counter */
  4109. int nlists; /* number of irec's (ex lists) */
  4110. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4111. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4112. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4113. if (erp->er_extbuf) {
  4114. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4115. -erp->er_extcount);
  4116. kmem_free(erp->er_extbuf);
  4117. }
  4118. /* Compact extent records */
  4119. erp = ifp->if_u1.if_ext_irec;
  4120. for (i = erp_idx; i < nlists - 1; i++) {
  4121. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4122. }
  4123. /*
  4124. * Manually free the last extent record from the indirection
  4125. * array. A call to xfs_iext_realloc_indirect() with a size
  4126. * of zero would result in a call to xfs_iext_destroy() which
  4127. * would in turn call this function again, creating a nasty
  4128. * infinite loop.
  4129. */
  4130. if (--nlists) {
  4131. xfs_iext_realloc_indirect(ifp,
  4132. nlists * sizeof(xfs_ext_irec_t));
  4133. } else {
  4134. kmem_free(ifp->if_u1.if_ext_irec);
  4135. }
  4136. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4137. }
  4138. /*
  4139. * This is called to clean up large amounts of unused memory allocated
  4140. * by the indirection array. Before compacting anything though, verify
  4141. * that the indirection array is still needed and switch back to the
  4142. * linear extent list (or even the inline buffer) if possible. The
  4143. * compaction policy is as follows:
  4144. *
  4145. * Full Compaction: Extents fit into a single page (or inline buffer)
  4146. * Partial Compaction: Extents occupy less than 50% of allocated space
  4147. * No Compaction: Extents occupy at least 50% of allocated space
  4148. */
  4149. void
  4150. xfs_iext_irec_compact(
  4151. xfs_ifork_t *ifp) /* inode fork pointer */
  4152. {
  4153. xfs_extnum_t nextents; /* number of extents in file */
  4154. int nlists; /* number of irec's (ex lists) */
  4155. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4156. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4157. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4158. if (nextents == 0) {
  4159. xfs_iext_destroy(ifp);
  4160. } else if (nextents <= XFS_INLINE_EXTS) {
  4161. xfs_iext_indirect_to_direct(ifp);
  4162. xfs_iext_direct_to_inline(ifp, nextents);
  4163. } else if (nextents <= XFS_LINEAR_EXTS) {
  4164. xfs_iext_indirect_to_direct(ifp);
  4165. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4166. xfs_iext_irec_compact_pages(ifp);
  4167. }
  4168. }
  4169. /*
  4170. * Combine extents from neighboring extent pages.
  4171. */
  4172. void
  4173. xfs_iext_irec_compact_pages(
  4174. xfs_ifork_t *ifp) /* inode fork pointer */
  4175. {
  4176. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4177. int erp_idx = 0; /* indirection array index */
  4178. int nlists; /* number of irec's (ex lists) */
  4179. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4180. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4181. while (erp_idx < nlists - 1) {
  4182. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4183. erp_next = erp + 1;
  4184. if (erp_next->er_extcount <=
  4185. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4186. memcpy(&erp->er_extbuf[erp->er_extcount],
  4187. erp_next->er_extbuf, erp_next->er_extcount *
  4188. sizeof(xfs_bmbt_rec_t));
  4189. erp->er_extcount += erp_next->er_extcount;
  4190. /*
  4191. * Free page before removing extent record
  4192. * so er_extoffs don't get modified in
  4193. * xfs_iext_irec_remove.
  4194. */
  4195. kmem_free(erp_next->er_extbuf);
  4196. erp_next->er_extbuf = NULL;
  4197. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4198. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4199. } else {
  4200. erp_idx++;
  4201. }
  4202. }
  4203. }
  4204. /*
  4205. * This is called to update the er_extoff field in the indirection
  4206. * array when extents have been added or removed from one of the
  4207. * extent lists. erp_idx contains the irec index to begin updating
  4208. * at and ext_diff contains the number of extents that were added
  4209. * or removed.
  4210. */
  4211. void
  4212. xfs_iext_irec_update_extoffs(
  4213. xfs_ifork_t *ifp, /* inode fork pointer */
  4214. int erp_idx, /* irec index to update */
  4215. int ext_diff) /* number of new extents */
  4216. {
  4217. int i; /* loop counter */
  4218. int nlists; /* number of irec's (ex lists */
  4219. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4220. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4221. for (i = erp_idx; i < nlists; i++) {
  4222. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4223. }
  4224. }