fsl_elbc_nand.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058
  1. /* Freescale Enhanced Local Bus Controller NAND driver
  2. *
  3. * Copyright (c) 2006-2007 Freescale Semiconductor
  4. *
  5. * Authors: Nick Spence <nick.spence@freescale.com>,
  6. * Scott Wood <scottwood@freescale.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/string.h>
  27. #include <linux/ioport.h>
  28. #include <linux/of_platform.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/mtd/mtd.h>
  32. #include <linux/mtd/nand.h>
  33. #include <linux/mtd/nand_ecc.h>
  34. #include <linux/mtd/partitions.h>
  35. #include <asm/io.h>
  36. #include <asm/fsl_lbc.h>
  37. #define MAX_BANKS 8
  38. #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  39. #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  40. struct fsl_elbc_ctrl;
  41. /* mtd information per set */
  42. struct fsl_elbc_mtd {
  43. struct mtd_info mtd;
  44. struct nand_chip chip;
  45. struct fsl_elbc_ctrl *ctrl;
  46. struct device *dev;
  47. int bank; /* Chip select bank number */
  48. u8 __iomem *vbase; /* Chip select base virtual address */
  49. int page_size; /* NAND page size (0=512, 1=2048) */
  50. unsigned int fmr; /* FCM Flash Mode Register value */
  51. };
  52. /* overview of the fsl elbc controller */
  53. struct fsl_elbc_ctrl {
  54. struct nand_hw_control controller;
  55. struct fsl_elbc_mtd *chips[MAX_BANKS];
  56. /* device info */
  57. struct device *dev;
  58. struct fsl_lbc_regs __iomem *regs;
  59. int irq;
  60. wait_queue_head_t irq_wait;
  61. unsigned int irq_status; /* status read from LTESR by irq handler */
  62. u8 __iomem *addr; /* Address of assigned FCM buffer */
  63. unsigned int page; /* Last page written to / read from */
  64. unsigned int read_bytes; /* Number of bytes read during command */
  65. unsigned int column; /* Saved column from SEQIN */
  66. unsigned int index; /* Pointer to next byte to 'read' */
  67. unsigned int status; /* status read from LTESR after last op */
  68. unsigned int mdr; /* UPM/FCM Data Register value */
  69. unsigned int use_mdr; /* Non zero if the MDR is to be set */
  70. unsigned int oob; /* Non zero if operating on OOB data */
  71. char *oob_poi; /* Place to write ECC after read back */
  72. };
  73. /* These map to the positions used by the FCM hardware ECC generator */
  74. /* Small Page FLASH with FMR[ECCM] = 0 */
  75. static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  76. .eccbytes = 3,
  77. .eccpos = {6, 7, 8},
  78. .oobfree = { {0, 5}, {9, 7} },
  79. .oobavail = 12,
  80. };
  81. /* Small Page FLASH with FMR[ECCM] = 1 */
  82. static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  83. .eccbytes = 3,
  84. .eccpos = {8, 9, 10},
  85. .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  86. .oobavail = 12,
  87. };
  88. /* Large Page FLASH with FMR[ECCM] = 0 */
  89. static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  90. .eccbytes = 12,
  91. .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
  92. .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
  93. .oobavail = 48,
  94. };
  95. /* Large Page FLASH with FMR[ECCM] = 1 */
  96. static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
  97. .eccbytes = 12,
  98. .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
  99. .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
  100. .oobavail = 48,
  101. };
  102. /*=================================*/
  103. /*
  104. * Set up the FCM hardware block and page address fields, and the fcm
  105. * structure addr field to point to the correct FCM buffer in memory
  106. */
  107. static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
  108. {
  109. struct nand_chip *chip = mtd->priv;
  110. struct fsl_elbc_mtd *priv = chip->priv;
  111. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  112. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  113. int buf_num;
  114. ctrl->page = page_addr;
  115. out_be32(&lbc->fbar,
  116. page_addr >> (chip->phys_erase_shift - chip->page_shift));
  117. if (priv->page_size) {
  118. out_be32(&lbc->fpar,
  119. ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
  120. (oob ? FPAR_LP_MS : 0) | column);
  121. buf_num = (page_addr & 1) << 2;
  122. } else {
  123. out_be32(&lbc->fpar,
  124. ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
  125. (oob ? FPAR_SP_MS : 0) | column);
  126. buf_num = page_addr & 7;
  127. }
  128. ctrl->addr = priv->vbase + buf_num * 1024;
  129. ctrl->index = column;
  130. /* for OOB data point to the second half of the buffer */
  131. if (oob)
  132. ctrl->index += priv->page_size ? 2048 : 512;
  133. dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
  134. "index %x, pes %d ps %d\n",
  135. buf_num, ctrl->addr, priv->vbase, ctrl->index,
  136. chip->phys_erase_shift, chip->page_shift);
  137. }
  138. /*
  139. * execute FCM command and wait for it to complete
  140. */
  141. static int fsl_elbc_run_command(struct mtd_info *mtd)
  142. {
  143. struct nand_chip *chip = mtd->priv;
  144. struct fsl_elbc_mtd *priv = chip->priv;
  145. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  146. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  147. /* Setup the FMR[OP] to execute without write protection */
  148. out_be32(&lbc->fmr, priv->fmr | 3);
  149. if (ctrl->use_mdr)
  150. out_be32(&lbc->mdr, ctrl->mdr);
  151. dev_vdbg(ctrl->dev,
  152. "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
  153. in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
  154. dev_vdbg(ctrl->dev,
  155. "fsl_elbc_run_command: fbar=%08x fpar=%08x "
  156. "fbcr=%08x bank=%d\n",
  157. in_be32(&lbc->fbar), in_be32(&lbc->fpar),
  158. in_be32(&lbc->fbcr), priv->bank);
  159. /* execute special operation */
  160. out_be32(&lbc->lsor, priv->bank);
  161. /* wait for FCM complete flag or timeout */
  162. ctrl->irq_status = 0;
  163. wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
  164. FCM_TIMEOUT_MSECS * HZ/1000);
  165. ctrl->status = ctrl->irq_status;
  166. /* store mdr value in case it was needed */
  167. if (ctrl->use_mdr)
  168. ctrl->mdr = in_be32(&lbc->mdr);
  169. ctrl->use_mdr = 0;
  170. dev_vdbg(ctrl->dev,
  171. "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
  172. ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
  173. /* returns 0 on success otherwise non-zero) */
  174. return ctrl->status == LTESR_CC ? 0 : -EIO;
  175. }
  176. static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
  177. {
  178. struct fsl_elbc_mtd *priv = chip->priv;
  179. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  180. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  181. if (priv->page_size) {
  182. out_be32(&lbc->fir,
  183. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  184. (FIR_OP_CA << FIR_OP1_SHIFT) |
  185. (FIR_OP_PA << FIR_OP2_SHIFT) |
  186. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  187. (FIR_OP_RBW << FIR_OP4_SHIFT));
  188. out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  189. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  190. } else {
  191. out_be32(&lbc->fir,
  192. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  193. (FIR_OP_CA << FIR_OP1_SHIFT) |
  194. (FIR_OP_PA << FIR_OP2_SHIFT) |
  195. (FIR_OP_RBW << FIR_OP3_SHIFT));
  196. if (oob)
  197. out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
  198. else
  199. out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  200. }
  201. }
  202. /* cmdfunc send commands to the FCM */
  203. static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
  204. int column, int page_addr)
  205. {
  206. struct nand_chip *chip = mtd->priv;
  207. struct fsl_elbc_mtd *priv = chip->priv;
  208. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  209. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  210. ctrl->use_mdr = 0;
  211. /* clear the read buffer */
  212. ctrl->read_bytes = 0;
  213. if (command != NAND_CMD_PAGEPROG)
  214. ctrl->index = 0;
  215. switch (command) {
  216. /* READ0 and READ1 read the entire buffer to use hardware ECC. */
  217. case NAND_CMD_READ1:
  218. column += 256;
  219. /* fall-through */
  220. case NAND_CMD_READ0:
  221. dev_dbg(ctrl->dev,
  222. "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
  223. " 0x%x, column: 0x%x.\n", page_addr, column);
  224. out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
  225. set_addr(mtd, 0, page_addr, 0);
  226. ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  227. ctrl->index += column;
  228. fsl_elbc_do_read(chip, 0);
  229. fsl_elbc_run_command(mtd);
  230. return;
  231. /* READOOB reads only the OOB because no ECC is performed. */
  232. case NAND_CMD_READOOB:
  233. dev_vdbg(ctrl->dev,
  234. "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
  235. " 0x%x, column: 0x%x.\n", page_addr, column);
  236. out_be32(&lbc->fbcr, mtd->oobsize - column);
  237. set_addr(mtd, column, page_addr, 1);
  238. ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  239. fsl_elbc_do_read(chip, 1);
  240. fsl_elbc_run_command(mtd);
  241. return;
  242. /* READID must read all 5 possible bytes while CEB is active */
  243. case NAND_CMD_READID:
  244. dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
  245. out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  246. (FIR_OP_UA << FIR_OP1_SHIFT) |
  247. (FIR_OP_RBW << FIR_OP2_SHIFT));
  248. out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
  249. /* 5 bytes for manuf, device and exts */
  250. out_be32(&lbc->fbcr, 5);
  251. ctrl->read_bytes = 5;
  252. ctrl->use_mdr = 1;
  253. ctrl->mdr = 0;
  254. set_addr(mtd, 0, 0, 0);
  255. fsl_elbc_run_command(mtd);
  256. return;
  257. /* ERASE1 stores the block and page address */
  258. case NAND_CMD_ERASE1:
  259. dev_vdbg(ctrl->dev,
  260. "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
  261. "page_addr: 0x%x.\n", page_addr);
  262. set_addr(mtd, 0, page_addr, 0);
  263. return;
  264. /* ERASE2 uses the block and page address from ERASE1 */
  265. case NAND_CMD_ERASE2:
  266. dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
  267. out_be32(&lbc->fir,
  268. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  269. (FIR_OP_PA << FIR_OP1_SHIFT) |
  270. (FIR_OP_CM1 << FIR_OP2_SHIFT));
  271. out_be32(&lbc->fcr,
  272. (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
  273. (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
  274. out_be32(&lbc->fbcr, 0);
  275. ctrl->read_bytes = 0;
  276. fsl_elbc_run_command(mtd);
  277. return;
  278. /* SEQIN sets up the addr buffer and all registers except the length */
  279. case NAND_CMD_SEQIN: {
  280. __be32 fcr;
  281. dev_vdbg(ctrl->dev,
  282. "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
  283. "page_addr: 0x%x, column: 0x%x.\n",
  284. page_addr, column);
  285. ctrl->column = column;
  286. ctrl->oob = 0;
  287. if (priv->page_size) {
  288. fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
  289. (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
  290. out_be32(&lbc->fir,
  291. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  292. (FIR_OP_CA << FIR_OP1_SHIFT) |
  293. (FIR_OP_PA << FIR_OP2_SHIFT) |
  294. (FIR_OP_WB << FIR_OP3_SHIFT) |
  295. (FIR_OP_CW1 << FIR_OP4_SHIFT));
  296. } else {
  297. fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
  298. (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
  299. out_be32(&lbc->fir,
  300. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  301. (FIR_OP_CM2 << FIR_OP1_SHIFT) |
  302. (FIR_OP_CA << FIR_OP2_SHIFT) |
  303. (FIR_OP_PA << FIR_OP3_SHIFT) |
  304. (FIR_OP_WB << FIR_OP4_SHIFT) |
  305. (FIR_OP_CW1 << FIR_OP5_SHIFT));
  306. if (column >= mtd->writesize) {
  307. /* OOB area --> READOOB */
  308. column -= mtd->writesize;
  309. fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
  310. ctrl->oob = 1;
  311. } else if (column < 256) {
  312. /* First 256 bytes --> READ0 */
  313. fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
  314. } else {
  315. /* Second 256 bytes --> READ1 */
  316. fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
  317. }
  318. }
  319. out_be32(&lbc->fcr, fcr);
  320. set_addr(mtd, column, page_addr, ctrl->oob);
  321. return;
  322. }
  323. /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
  324. case NAND_CMD_PAGEPROG: {
  325. int full_page;
  326. dev_vdbg(ctrl->dev,
  327. "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
  328. "writing %d bytes.\n", ctrl->index);
  329. /* if the write did not start at 0 or is not a full page
  330. * then set the exact length, otherwise use a full page
  331. * write so the HW generates the ECC.
  332. */
  333. if (ctrl->oob || ctrl->column != 0 ||
  334. ctrl->index != mtd->writesize + mtd->oobsize) {
  335. out_be32(&lbc->fbcr, ctrl->index);
  336. full_page = 0;
  337. } else {
  338. out_be32(&lbc->fbcr, 0);
  339. full_page = 1;
  340. }
  341. fsl_elbc_run_command(mtd);
  342. /* Read back the page in order to fill in the ECC for the
  343. * caller. Is this really needed?
  344. */
  345. if (full_page && ctrl->oob_poi) {
  346. out_be32(&lbc->fbcr, 3);
  347. set_addr(mtd, 6, page_addr, 1);
  348. ctrl->read_bytes = mtd->writesize + 9;
  349. fsl_elbc_do_read(chip, 1);
  350. fsl_elbc_run_command(mtd);
  351. memcpy_fromio(ctrl->oob_poi + 6,
  352. &ctrl->addr[ctrl->index], 3);
  353. ctrl->index += 3;
  354. }
  355. ctrl->oob_poi = NULL;
  356. return;
  357. }
  358. /* CMD_STATUS must read the status byte while CEB is active */
  359. /* Note - it does not wait for the ready line */
  360. case NAND_CMD_STATUS:
  361. out_be32(&lbc->fir,
  362. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  363. (FIR_OP_RBW << FIR_OP1_SHIFT));
  364. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  365. out_be32(&lbc->fbcr, 1);
  366. set_addr(mtd, 0, 0, 0);
  367. ctrl->read_bytes = 1;
  368. fsl_elbc_run_command(mtd);
  369. /* The chip always seems to report that it is
  370. * write-protected, even when it is not.
  371. */
  372. setbits8(ctrl->addr, NAND_STATUS_WP);
  373. return;
  374. /* RESET without waiting for the ready line */
  375. case NAND_CMD_RESET:
  376. dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
  377. out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
  378. out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
  379. fsl_elbc_run_command(mtd);
  380. return;
  381. default:
  382. dev_err(ctrl->dev,
  383. "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
  384. command);
  385. }
  386. }
  387. static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
  388. {
  389. /* The hardware does not seem to support multiple
  390. * chips per bank.
  391. */
  392. }
  393. /*
  394. * Write buf to the FCM Controller Data Buffer
  395. */
  396. static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  397. {
  398. struct nand_chip *chip = mtd->priv;
  399. struct fsl_elbc_mtd *priv = chip->priv;
  400. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  401. unsigned int bufsize = mtd->writesize + mtd->oobsize;
  402. if (len < 0) {
  403. dev_err(ctrl->dev, "write_buf of %d bytes", len);
  404. ctrl->status = 0;
  405. return;
  406. }
  407. if ((unsigned int)len > bufsize - ctrl->index) {
  408. dev_err(ctrl->dev,
  409. "write_buf beyond end of buffer "
  410. "(%d requested, %u available)\n",
  411. len, bufsize - ctrl->index);
  412. len = bufsize - ctrl->index;
  413. }
  414. memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
  415. ctrl->index += len;
  416. }
  417. /*
  418. * read a byte from either the FCM hardware buffer if it has any data left
  419. * otherwise issue a command to read a single byte.
  420. */
  421. static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
  422. {
  423. struct nand_chip *chip = mtd->priv;
  424. struct fsl_elbc_mtd *priv = chip->priv;
  425. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  426. /* If there are still bytes in the FCM, then use the next byte. */
  427. if (ctrl->index < ctrl->read_bytes)
  428. return in_8(&ctrl->addr[ctrl->index++]);
  429. dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
  430. return ERR_BYTE;
  431. }
  432. /*
  433. * Read from the FCM Controller Data Buffer
  434. */
  435. static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  436. {
  437. struct nand_chip *chip = mtd->priv;
  438. struct fsl_elbc_mtd *priv = chip->priv;
  439. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  440. int avail;
  441. if (len < 0)
  442. return;
  443. avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
  444. memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
  445. ctrl->index += avail;
  446. if (len > avail)
  447. dev_err(ctrl->dev,
  448. "read_buf beyond end of buffer "
  449. "(%d requested, %d available)\n",
  450. len, avail);
  451. }
  452. /*
  453. * Verify buffer against the FCM Controller Data Buffer
  454. */
  455. static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
  456. {
  457. struct nand_chip *chip = mtd->priv;
  458. struct fsl_elbc_mtd *priv = chip->priv;
  459. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  460. int i;
  461. if (len < 0) {
  462. dev_err(ctrl->dev, "write_buf of %d bytes", len);
  463. return -EINVAL;
  464. }
  465. if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
  466. dev_err(ctrl->dev,
  467. "verify_buf beyond end of buffer "
  468. "(%d requested, %u available)\n",
  469. len, ctrl->read_bytes - ctrl->index);
  470. ctrl->index = ctrl->read_bytes;
  471. return -EINVAL;
  472. }
  473. for (i = 0; i < len; i++)
  474. if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
  475. break;
  476. ctrl->index += len;
  477. return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
  478. }
  479. /* This function is called after Program and Erase Operations to
  480. * check for success or failure.
  481. */
  482. static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
  483. {
  484. struct fsl_elbc_mtd *priv = chip->priv;
  485. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  486. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  487. if (ctrl->status != LTESR_CC)
  488. return NAND_STATUS_FAIL;
  489. /* Use READ_STATUS command, but wait for the device to be ready */
  490. ctrl->use_mdr = 0;
  491. out_be32(&lbc->fir,
  492. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  493. (FIR_OP_RBW << FIR_OP1_SHIFT));
  494. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  495. out_be32(&lbc->fbcr, 1);
  496. set_addr(mtd, 0, 0, 0);
  497. ctrl->read_bytes = 1;
  498. fsl_elbc_run_command(mtd);
  499. if (ctrl->status != LTESR_CC)
  500. return NAND_STATUS_FAIL;
  501. /* The chip always seems to report that it is
  502. * write-protected, even when it is not.
  503. */
  504. setbits8(ctrl->addr, NAND_STATUS_WP);
  505. return fsl_elbc_read_byte(mtd);
  506. }
  507. static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
  508. {
  509. struct nand_chip *chip = mtd->priv;
  510. struct fsl_elbc_mtd *priv = chip->priv;
  511. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  512. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  513. unsigned int al;
  514. /* calculate FMR Address Length field */
  515. al = 0;
  516. if (chip->pagemask & 0xffff0000)
  517. al++;
  518. if (chip->pagemask & 0xff000000)
  519. al++;
  520. /* add to ECCM mode set in fsl_elbc_init */
  521. priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
  522. (al << FMR_AL_SHIFT);
  523. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
  524. chip->numchips);
  525. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
  526. chip->chipsize);
  527. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
  528. chip->pagemask);
  529. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
  530. chip->chip_delay);
  531. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
  532. chip->badblockpos);
  533. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
  534. chip->chip_shift);
  535. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
  536. chip->page_shift);
  537. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
  538. chip->phys_erase_shift);
  539. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
  540. chip->ecclayout);
  541. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
  542. chip->ecc.mode);
  543. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
  544. chip->ecc.steps);
  545. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
  546. chip->ecc.bytes);
  547. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
  548. chip->ecc.total);
  549. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
  550. chip->ecc.layout);
  551. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
  552. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
  553. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
  554. mtd->erasesize);
  555. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
  556. mtd->writesize);
  557. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
  558. mtd->oobsize);
  559. /* adjust Option Register and ECC to match Flash page size */
  560. if (mtd->writesize == 512) {
  561. priv->page_size = 0;
  562. clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
  563. } else if (mtd->writesize == 2048) {
  564. priv->page_size = 1;
  565. setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  566. /* adjust ecc setup if needed */
  567. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  568. BR_DECC_CHK_GEN) {
  569. chip->ecc.size = 512;
  570. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  571. &fsl_elbc_oob_lp_eccm1 :
  572. &fsl_elbc_oob_lp_eccm0;
  573. mtd->ecclayout = chip->ecc.layout;
  574. mtd->oobavail = chip->ecc.layout->oobavail;
  575. }
  576. } else {
  577. dev_err(ctrl->dev,
  578. "fsl_elbc_init: page size %d is not supported\n",
  579. mtd->writesize);
  580. return -1;
  581. }
  582. /* The default u-boot configuration on MPC8313ERDB causes errors;
  583. * more delay is needed. This should be safe for other boards
  584. * as well.
  585. */
  586. setbits32(&lbc->bank[priv->bank].or, 0x70);
  587. return 0;
  588. }
  589. static int fsl_elbc_read_page(struct mtd_info *mtd,
  590. struct nand_chip *chip,
  591. uint8_t *buf)
  592. {
  593. fsl_elbc_read_buf(mtd, buf, mtd->writesize);
  594. fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  595. if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
  596. mtd->ecc_stats.failed++;
  597. return 0;
  598. }
  599. /* ECC will be calculated automatically, and errors will be detected in
  600. * waitfunc.
  601. */
  602. static void fsl_elbc_write_page(struct mtd_info *mtd,
  603. struct nand_chip *chip,
  604. const uint8_t *buf)
  605. {
  606. struct fsl_elbc_mtd *priv = chip->priv;
  607. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  608. fsl_elbc_write_buf(mtd, buf, mtd->writesize);
  609. fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  610. ctrl->oob_poi = chip->oob_poi;
  611. }
  612. static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
  613. {
  614. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  615. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  616. struct nand_chip *chip = &priv->chip;
  617. dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
  618. /* Fill in fsl_elbc_mtd structure */
  619. priv->mtd.priv = chip;
  620. priv->mtd.owner = THIS_MODULE;
  621. priv->fmr = 0; /* rest filled in later */
  622. /* fill in nand_chip structure */
  623. /* set up function call table */
  624. chip->read_byte = fsl_elbc_read_byte;
  625. chip->write_buf = fsl_elbc_write_buf;
  626. chip->read_buf = fsl_elbc_read_buf;
  627. chip->verify_buf = fsl_elbc_verify_buf;
  628. chip->select_chip = fsl_elbc_select_chip;
  629. chip->cmdfunc = fsl_elbc_cmdfunc;
  630. chip->waitfunc = fsl_elbc_wait;
  631. /* set up nand options */
  632. chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
  633. chip->controller = &ctrl->controller;
  634. chip->priv = priv;
  635. chip->ecc.read_page = fsl_elbc_read_page;
  636. chip->ecc.write_page = fsl_elbc_write_page;
  637. /* If CS Base Register selects full hardware ECC then use it */
  638. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  639. BR_DECC_CHK_GEN) {
  640. chip->ecc.mode = NAND_ECC_HW;
  641. /* put in small page settings and adjust later if needed */
  642. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  643. &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
  644. chip->ecc.size = 512;
  645. chip->ecc.bytes = 3;
  646. } else {
  647. /* otherwise fall back to default software ECC */
  648. chip->ecc.mode = NAND_ECC_SOFT;
  649. }
  650. return 0;
  651. }
  652. static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
  653. {
  654. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  655. nand_release(&priv->mtd);
  656. kfree(priv->mtd.name);
  657. if (priv->vbase)
  658. iounmap(priv->vbase);
  659. ctrl->chips[priv->bank] = NULL;
  660. kfree(priv);
  661. return 0;
  662. }
  663. static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
  664. struct device_node *node)
  665. {
  666. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  667. struct fsl_elbc_mtd *priv;
  668. struct resource res;
  669. #ifdef CONFIG_MTD_PARTITIONS
  670. static const char *part_probe_types[]
  671. = { "cmdlinepart", "RedBoot", NULL };
  672. struct mtd_partition *parts;
  673. #endif
  674. int ret;
  675. int bank;
  676. /* get, allocate and map the memory resource */
  677. ret = of_address_to_resource(node, 0, &res);
  678. if (ret) {
  679. dev_err(ctrl->dev, "failed to get resource\n");
  680. return ret;
  681. }
  682. /* find which chip select it is connected to */
  683. for (bank = 0; bank < MAX_BANKS; bank++)
  684. if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
  685. (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
  686. (in_be32(&lbc->bank[bank].br) &
  687. in_be32(&lbc->bank[bank].or) & BR_BA)
  688. == res.start)
  689. break;
  690. if (bank >= MAX_BANKS) {
  691. dev_err(ctrl->dev, "address did not match any chip selects\n");
  692. return -ENODEV;
  693. }
  694. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  695. if (!priv)
  696. return -ENOMEM;
  697. ctrl->chips[bank] = priv;
  698. priv->bank = bank;
  699. priv->ctrl = ctrl;
  700. priv->dev = ctrl->dev;
  701. priv->vbase = ioremap(res.start, res.end - res.start + 1);
  702. if (!priv->vbase) {
  703. dev_err(ctrl->dev, "failed to map chip region\n");
  704. ret = -ENOMEM;
  705. goto err;
  706. }
  707. priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", res.start);
  708. if (!priv->mtd.name) {
  709. ret = -ENOMEM;
  710. goto err;
  711. }
  712. ret = fsl_elbc_chip_init(priv);
  713. if (ret)
  714. goto err;
  715. ret = nand_scan_ident(&priv->mtd, 1);
  716. if (ret)
  717. goto err;
  718. ret = fsl_elbc_chip_init_tail(&priv->mtd);
  719. if (ret)
  720. goto err;
  721. ret = nand_scan_tail(&priv->mtd);
  722. if (ret)
  723. goto err;
  724. #ifdef CONFIG_MTD_PARTITIONS
  725. /* First look for RedBoot table or partitions on the command
  726. * line, these take precedence over device tree information */
  727. ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
  728. if (ret < 0)
  729. goto err;
  730. #ifdef CONFIG_MTD_OF_PARTS
  731. if (ret == 0) {
  732. ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
  733. node, &parts);
  734. if (ret < 0)
  735. goto err;
  736. }
  737. #endif
  738. if (ret > 0)
  739. add_mtd_partitions(&priv->mtd, parts, ret);
  740. else
  741. #endif
  742. add_mtd_device(&priv->mtd);
  743. printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
  744. res.start, priv->bank);
  745. return 0;
  746. err:
  747. fsl_elbc_chip_remove(priv);
  748. return ret;
  749. }
  750. static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
  751. {
  752. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  753. /* clear event registers */
  754. setbits32(&lbc->ltesr, LTESR_NAND_MASK);
  755. out_be32(&lbc->lteatr, 0);
  756. /* Enable interrupts for any detected events */
  757. out_be32(&lbc->lteir, LTESR_NAND_MASK);
  758. ctrl->read_bytes = 0;
  759. ctrl->index = 0;
  760. ctrl->addr = NULL;
  761. return 0;
  762. }
  763. static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
  764. {
  765. struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
  766. int i;
  767. for (i = 0; i < MAX_BANKS; i++)
  768. if (ctrl->chips[i])
  769. fsl_elbc_chip_remove(ctrl->chips[i]);
  770. if (ctrl->irq)
  771. free_irq(ctrl->irq, ctrl);
  772. if (ctrl->regs)
  773. iounmap(ctrl->regs);
  774. dev_set_drvdata(&ofdev->dev, NULL);
  775. kfree(ctrl);
  776. return 0;
  777. }
  778. /* NOTE: This interrupt is also used to report other localbus events,
  779. * such as transaction errors on other chipselects. If we want to
  780. * capture those, we'll need to move the IRQ code into a shared
  781. * LBC driver.
  782. */
  783. static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
  784. {
  785. struct fsl_elbc_ctrl *ctrl = data;
  786. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  787. __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
  788. if (status) {
  789. out_be32(&lbc->ltesr, status);
  790. out_be32(&lbc->lteatr, 0);
  791. ctrl->irq_status = status;
  792. smp_wmb();
  793. wake_up(&ctrl->irq_wait);
  794. return IRQ_HANDLED;
  795. }
  796. return IRQ_NONE;
  797. }
  798. /* fsl_elbc_ctrl_probe
  799. *
  800. * called by device layer when it finds a device matching
  801. * one our driver can handled. This code allocates all of
  802. * the resources needed for the controller only. The
  803. * resources for the NAND banks themselves are allocated
  804. * in the chip probe function.
  805. */
  806. static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
  807. const struct of_device_id *match)
  808. {
  809. struct device_node *child;
  810. struct fsl_elbc_ctrl *ctrl;
  811. int ret;
  812. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  813. if (!ctrl)
  814. return -ENOMEM;
  815. dev_set_drvdata(&ofdev->dev, ctrl);
  816. spin_lock_init(&ctrl->controller.lock);
  817. init_waitqueue_head(&ctrl->controller.wq);
  818. init_waitqueue_head(&ctrl->irq_wait);
  819. ctrl->regs = of_iomap(ofdev->node, 0);
  820. if (!ctrl->regs) {
  821. dev_err(&ofdev->dev, "failed to get memory region\n");
  822. ret = -ENODEV;
  823. goto err;
  824. }
  825. ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
  826. if (ctrl->irq == NO_IRQ) {
  827. dev_err(&ofdev->dev, "failed to get irq resource\n");
  828. ret = -ENODEV;
  829. goto err;
  830. }
  831. ctrl->dev = &ofdev->dev;
  832. ret = fsl_elbc_ctrl_init(ctrl);
  833. if (ret < 0)
  834. goto err;
  835. ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
  836. if (ret != 0) {
  837. dev_err(&ofdev->dev, "failed to install irq (%d)\n",
  838. ctrl->irq);
  839. ret = ctrl->irq;
  840. goto err;
  841. }
  842. for_each_child_of_node(ofdev->node, child)
  843. if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
  844. fsl_elbc_chip_probe(ctrl, child);
  845. return 0;
  846. err:
  847. fsl_elbc_ctrl_remove(ofdev);
  848. return ret;
  849. }
  850. static const struct of_device_id fsl_elbc_match[] = {
  851. {
  852. .compatible = "fsl,elbc",
  853. },
  854. {}
  855. };
  856. static struct of_platform_driver fsl_elbc_ctrl_driver = {
  857. .driver = {
  858. .name = "fsl-elbc",
  859. },
  860. .match_table = fsl_elbc_match,
  861. .probe = fsl_elbc_ctrl_probe,
  862. .remove = __devexit_p(fsl_elbc_ctrl_remove),
  863. };
  864. static int __init fsl_elbc_init(void)
  865. {
  866. return of_register_platform_driver(&fsl_elbc_ctrl_driver);
  867. }
  868. static void __exit fsl_elbc_exit(void)
  869. {
  870. of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
  871. }
  872. module_init(fsl_elbc_init);
  873. module_exit(fsl_elbc_exit);
  874. MODULE_LICENSE("GPL");
  875. MODULE_AUTHOR("Freescale");
  876. MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");