tlb_64.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. #include <linux/init.h>
  2. #include <linux/mm.h>
  3. #include <linux/delay.h>
  4. #include <linux/spinlock.h>
  5. #include <linux/smp.h>
  6. #include <linux/kernel_stat.h>
  7. #include <linux/mc146818rtc.h>
  8. #include <linux/interrupt.h>
  9. #include <asm/mtrr.h>
  10. #include <asm/pgalloc.h>
  11. #include <asm/tlbflush.h>
  12. #include <asm/mmu_context.h>
  13. #include <asm/proto.h>
  14. #include <asm/apicdef.h>
  15. #include <asm/idle.h>
  16. #include <asm/uv/uv_hub.h>
  17. #include <asm/uv/uv_bau.h>
  18. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  19. = { &init_mm, 0, };
  20. #include <mach_ipi.h>
  21. /*
  22. * Smarter SMP flushing macros.
  23. * c/o Linus Torvalds.
  24. *
  25. * These mean you can really definitely utterly forget about
  26. * writing to user space from interrupts. (Its not allowed anyway).
  27. *
  28. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  29. *
  30. * More scalable flush, from Andi Kleen
  31. *
  32. * To avoid global state use 8 different call vectors.
  33. * Each CPU uses a specific vector to trigger flushes on other
  34. * CPUs. Depending on the received vector the target CPUs look into
  35. * the right per cpu variable for the flush data.
  36. *
  37. * With more than 8 CPUs they are hashed to the 8 available
  38. * vectors. The limited global vector space forces us to this right now.
  39. * In future when interrupts are split into per CPU domains this could be
  40. * fixed, at the cost of triggering multiple IPIs in some cases.
  41. */
  42. union smp_flush_state {
  43. struct {
  44. struct mm_struct *flush_mm;
  45. unsigned long flush_va;
  46. spinlock_t tlbstate_lock;
  47. DECLARE_BITMAP(flush_cpumask, NR_CPUS);
  48. };
  49. char pad[SMP_CACHE_BYTES];
  50. } ____cacheline_aligned;
  51. /* State is put into the per CPU data section, but padded
  52. to a full cache line because other CPUs can access it and we don't
  53. want false sharing in the per cpu data segment. */
  54. static DEFINE_PER_CPU(union smp_flush_state, flush_state);
  55. /*
  56. * We cannot call mmdrop() because we are in interrupt context,
  57. * instead update mm->cpu_vm_mask.
  58. */
  59. void leave_mm(int cpu)
  60. {
  61. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  62. BUG();
  63. cpu_clear(cpu, percpu_read(cpu_tlbstate.active_mm)->cpu_vm_mask);
  64. load_cr3(swapper_pg_dir);
  65. }
  66. EXPORT_SYMBOL_GPL(leave_mm);
  67. /*
  68. *
  69. * The flush IPI assumes that a thread switch happens in this order:
  70. * [cpu0: the cpu that switches]
  71. * 1) switch_mm() either 1a) or 1b)
  72. * 1a) thread switch to a different mm
  73. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  74. * Stop ipi delivery for the old mm. This is not synchronized with
  75. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  76. * for the wrong mm, and in the worst case we perform a superfluous
  77. * tlb flush.
  78. * 1a2) set cpu mmu_state to TLBSTATE_OK
  79. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  80. * was in lazy tlb mode.
  81. * 1a3) update cpu active_mm
  82. * Now cpu0 accepts tlb flushes for the new mm.
  83. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  84. * Now the other cpus will send tlb flush ipis.
  85. * 1a4) change cr3.
  86. * 1b) thread switch without mm change
  87. * cpu active_mm is correct, cpu0 already handles
  88. * flush ipis.
  89. * 1b1) set cpu mmu_state to TLBSTATE_OK
  90. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  91. * Atomically set the bit [other cpus will start sending flush ipis],
  92. * and test the bit.
  93. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  94. * 2) switch %%esp, ie current
  95. *
  96. * The interrupt must handle 2 special cases:
  97. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  98. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  99. * runs in kernel space, the cpu could load tlb entries for user space
  100. * pages.
  101. *
  102. * The good news is that cpu mmu_state is local to each cpu, no
  103. * write/read ordering problems.
  104. */
  105. /*
  106. * TLB flush IPI:
  107. *
  108. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  109. * 2) Leave the mm if we are in the lazy tlb mode.
  110. *
  111. * Interrupts are disabled.
  112. */
  113. asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
  114. {
  115. int cpu;
  116. int sender;
  117. union smp_flush_state *f;
  118. cpu = smp_processor_id();
  119. /*
  120. * orig_rax contains the negated interrupt vector.
  121. * Use that to determine where the sender put the data.
  122. */
  123. sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
  124. f = &per_cpu(flush_state, sender);
  125. if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
  126. goto out;
  127. /*
  128. * This was a BUG() but until someone can quote me the
  129. * line from the intel manual that guarantees an IPI to
  130. * multiple CPUs is retried _only_ on the erroring CPUs
  131. * its staying as a return
  132. *
  133. * BUG();
  134. */
  135. if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
  136. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
  137. if (f->flush_va == TLB_FLUSH_ALL)
  138. local_flush_tlb();
  139. else
  140. __flush_tlb_one(f->flush_va);
  141. } else
  142. leave_mm(cpu);
  143. }
  144. out:
  145. ack_APIC_irq();
  146. cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
  147. inc_irq_stat(irq_tlb_count);
  148. }
  149. static void flush_tlb_others_ipi(const struct cpumask *cpumask,
  150. struct mm_struct *mm, unsigned long va)
  151. {
  152. int sender;
  153. union smp_flush_state *f;
  154. /* Caller has disabled preemption */
  155. sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
  156. f = &per_cpu(flush_state, sender);
  157. /*
  158. * Could avoid this lock when
  159. * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
  160. * probably not worth checking this for a cache-hot lock.
  161. */
  162. spin_lock(&f->tlbstate_lock);
  163. f->flush_mm = mm;
  164. f->flush_va = va;
  165. cpumask_andnot(to_cpumask(f->flush_cpumask),
  166. cpumask, cpumask_of(smp_processor_id()));
  167. /*
  168. * Make the above memory operations globally visible before
  169. * sending the IPI.
  170. */
  171. smp_mb();
  172. /*
  173. * We have to send the IPI only to
  174. * CPUs affected.
  175. */
  176. send_IPI_mask(to_cpumask(f->flush_cpumask),
  177. INVALIDATE_TLB_VECTOR_START + sender);
  178. while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
  179. cpu_relax();
  180. f->flush_mm = NULL;
  181. f->flush_va = 0;
  182. spin_unlock(&f->tlbstate_lock);
  183. }
  184. void native_flush_tlb_others(const struct cpumask *cpumask,
  185. struct mm_struct *mm, unsigned long va)
  186. {
  187. if (is_uv_system()) {
  188. /* FIXME: could be an percpu_alloc'd thing */
  189. static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
  190. struct cpumask *after_uv_flush = &get_cpu_var(flush_tlb_mask);
  191. cpumask_andnot(after_uv_flush, cpumask,
  192. cpumask_of(smp_processor_id()));
  193. if (!uv_flush_tlb_others(after_uv_flush, mm, va))
  194. flush_tlb_others_ipi(after_uv_flush, mm, va);
  195. put_cpu_var(flush_tlb_uv_cpumask);
  196. return;
  197. }
  198. flush_tlb_others_ipi(cpumask, mm, va);
  199. }
  200. static int __cpuinit init_smp_flush(void)
  201. {
  202. int i;
  203. for_each_possible_cpu(i)
  204. spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
  205. return 0;
  206. }
  207. core_initcall(init_smp_flush);
  208. void flush_tlb_current_task(void)
  209. {
  210. struct mm_struct *mm = current->mm;
  211. preempt_disable();
  212. local_flush_tlb();
  213. if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
  214. flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
  215. preempt_enable();
  216. }
  217. void flush_tlb_mm(struct mm_struct *mm)
  218. {
  219. preempt_disable();
  220. if (current->active_mm == mm) {
  221. if (current->mm)
  222. local_flush_tlb();
  223. else
  224. leave_mm(smp_processor_id());
  225. }
  226. if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
  227. flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
  228. preempt_enable();
  229. }
  230. void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
  231. {
  232. struct mm_struct *mm = vma->vm_mm;
  233. preempt_disable();
  234. if (current->active_mm == mm) {
  235. if (current->mm)
  236. __flush_tlb_one(va);
  237. else
  238. leave_mm(smp_processor_id());
  239. }
  240. if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
  241. flush_tlb_others(&mm->cpu_vm_mask, mm, va);
  242. preempt_enable();
  243. }
  244. static void do_flush_tlb_all(void *info)
  245. {
  246. unsigned long cpu = smp_processor_id();
  247. __flush_tlb_all();
  248. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
  249. leave_mm(cpu);
  250. }
  251. void flush_tlb_all(void)
  252. {
  253. on_each_cpu(do_flush_tlb_all, NULL, 1);
  254. }