kvm_main.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. int offset;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  56. { "pf_guest", STAT_OFFSET(pf_guest) },
  57. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  58. { "invlpg", STAT_OFFSET(invlpg) },
  59. { "exits", STAT_OFFSET(exits) },
  60. { "io_exits", STAT_OFFSET(io_exits) },
  61. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  62. { "signal_exits", STAT_OFFSET(signal_exits) },
  63. { "irq_window", STAT_OFFSET(irq_window_exits) },
  64. { "halt_exits", STAT_OFFSET(halt_exits) },
  65. { "request_irq", STAT_OFFSET(request_irq_exits) },
  66. { "irq_exits", STAT_OFFSET(irq_exits) },
  67. { "light_exits", STAT_OFFSET(light_exits) },
  68. { "efer_reload", STAT_OFFSET(efer_reload) },
  69. { NULL }
  70. };
  71. static struct dentry *debugfs_dir;
  72. #define MAX_IO_MSRS 256
  73. #define CR0_RESERVED_BITS \
  74. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  75. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  76. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  77. #define CR4_RESERVED_BITS \
  78. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  79. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  80. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  81. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  82. #define CR8_RESEVED_BITS (~0x0fULL)
  83. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  84. #ifdef CONFIG_X86_64
  85. // LDT or TSS descriptor in the GDT. 16 bytes.
  86. struct segment_descriptor_64 {
  87. struct segment_descriptor s;
  88. u32 base_higher;
  89. u32 pad_zero;
  90. };
  91. #endif
  92. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  93. unsigned long arg);
  94. unsigned long segment_base(u16 selector)
  95. {
  96. struct descriptor_table gdt;
  97. struct segment_descriptor *d;
  98. unsigned long table_base;
  99. typedef unsigned long ul;
  100. unsigned long v;
  101. if (selector == 0)
  102. return 0;
  103. asm ("sgdt %0" : "=m"(gdt));
  104. table_base = gdt.base;
  105. if (selector & 4) { /* from ldt */
  106. u16 ldt_selector;
  107. asm ("sldt %0" : "=g"(ldt_selector));
  108. table_base = segment_base(ldt_selector);
  109. }
  110. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  111. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  112. #ifdef CONFIG_X86_64
  113. if (d->system == 0
  114. && (d->type == 2 || d->type == 9 || d->type == 11))
  115. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  116. #endif
  117. return v;
  118. }
  119. EXPORT_SYMBOL_GPL(segment_base);
  120. static inline int valid_vcpu(int n)
  121. {
  122. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  123. }
  124. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  125. void *dest)
  126. {
  127. unsigned char *host_buf = dest;
  128. unsigned long req_size = size;
  129. while (size) {
  130. hpa_t paddr;
  131. unsigned now;
  132. unsigned offset;
  133. hva_t guest_buf;
  134. paddr = gva_to_hpa(vcpu, addr);
  135. if (is_error_hpa(paddr))
  136. break;
  137. guest_buf = (hva_t)kmap_atomic(
  138. pfn_to_page(paddr >> PAGE_SHIFT),
  139. KM_USER0);
  140. offset = addr & ~PAGE_MASK;
  141. guest_buf |= offset;
  142. now = min(size, PAGE_SIZE - offset);
  143. memcpy(host_buf, (void*)guest_buf, now);
  144. host_buf += now;
  145. addr += now;
  146. size -= now;
  147. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  148. }
  149. return req_size - size;
  150. }
  151. EXPORT_SYMBOL_GPL(kvm_read_guest);
  152. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  153. void *data)
  154. {
  155. unsigned char *host_buf = data;
  156. unsigned long req_size = size;
  157. while (size) {
  158. hpa_t paddr;
  159. unsigned now;
  160. unsigned offset;
  161. hva_t guest_buf;
  162. gfn_t gfn;
  163. paddr = gva_to_hpa(vcpu, addr);
  164. if (is_error_hpa(paddr))
  165. break;
  166. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  167. mark_page_dirty(vcpu->kvm, gfn);
  168. guest_buf = (hva_t)kmap_atomic(
  169. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  170. offset = addr & ~PAGE_MASK;
  171. guest_buf |= offset;
  172. now = min(size, PAGE_SIZE - offset);
  173. memcpy((void*)guest_buf, host_buf, now);
  174. host_buf += now;
  175. addr += now;
  176. size -= now;
  177. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  178. }
  179. return req_size - size;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_write_guest);
  182. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  183. {
  184. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  185. return;
  186. vcpu->guest_fpu_loaded = 1;
  187. fx_save(vcpu->host_fx_image);
  188. fx_restore(vcpu->guest_fx_image);
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  191. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  192. {
  193. if (!vcpu->guest_fpu_loaded)
  194. return;
  195. vcpu->guest_fpu_loaded = 0;
  196. fx_save(vcpu->guest_fx_image);
  197. fx_restore(vcpu->host_fx_image);
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  200. /*
  201. * Switches to specified vcpu, until a matching vcpu_put()
  202. */
  203. static void vcpu_load(struct kvm_vcpu *vcpu)
  204. {
  205. mutex_lock(&vcpu->mutex);
  206. kvm_arch_ops->vcpu_load(vcpu);
  207. }
  208. static void vcpu_put(struct kvm_vcpu *vcpu)
  209. {
  210. kvm_arch_ops->vcpu_put(vcpu);
  211. mutex_unlock(&vcpu->mutex);
  212. }
  213. static void ack_flush(void *_completed)
  214. {
  215. atomic_t *completed = _completed;
  216. atomic_inc(completed);
  217. }
  218. void kvm_flush_remote_tlbs(struct kvm *kvm)
  219. {
  220. int i, cpu, needed;
  221. cpumask_t cpus;
  222. struct kvm_vcpu *vcpu;
  223. atomic_t completed;
  224. atomic_set(&completed, 0);
  225. cpus_clear(cpus);
  226. needed = 0;
  227. for (i = 0; i < kvm->nvcpus; ++i) {
  228. vcpu = &kvm->vcpus[i];
  229. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  230. continue;
  231. cpu = vcpu->cpu;
  232. if (cpu != -1 && cpu != raw_smp_processor_id())
  233. if (!cpu_isset(cpu, cpus)) {
  234. cpu_set(cpu, cpus);
  235. ++needed;
  236. }
  237. }
  238. /*
  239. * We really want smp_call_function_mask() here. But that's not
  240. * available, so ipi all cpus in parallel and wait for them
  241. * to complete.
  242. */
  243. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  244. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  245. while (atomic_read(&completed) != needed) {
  246. cpu_relax();
  247. barrier();
  248. }
  249. }
  250. static struct kvm *kvm_create_vm(void)
  251. {
  252. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  253. int i;
  254. if (!kvm)
  255. return ERR_PTR(-ENOMEM);
  256. kvm_io_bus_init(&kvm->pio_bus);
  257. spin_lock_init(&kvm->lock);
  258. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  259. kvm_io_bus_init(&kvm->mmio_bus);
  260. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  261. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  262. mutex_init(&vcpu->mutex);
  263. vcpu->cpu = -1;
  264. vcpu->kvm = kvm;
  265. vcpu->mmu.root_hpa = INVALID_PAGE;
  266. }
  267. spin_lock(&kvm_lock);
  268. list_add(&kvm->vm_list, &vm_list);
  269. spin_unlock(&kvm_lock);
  270. return kvm;
  271. }
  272. static int kvm_dev_open(struct inode *inode, struct file *filp)
  273. {
  274. return 0;
  275. }
  276. /*
  277. * Free any memory in @free but not in @dont.
  278. */
  279. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  280. struct kvm_memory_slot *dont)
  281. {
  282. int i;
  283. if (!dont || free->phys_mem != dont->phys_mem)
  284. if (free->phys_mem) {
  285. for (i = 0; i < free->npages; ++i)
  286. if (free->phys_mem[i])
  287. __free_page(free->phys_mem[i]);
  288. vfree(free->phys_mem);
  289. }
  290. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  291. vfree(free->dirty_bitmap);
  292. free->phys_mem = NULL;
  293. free->npages = 0;
  294. free->dirty_bitmap = NULL;
  295. }
  296. static void kvm_free_physmem(struct kvm *kvm)
  297. {
  298. int i;
  299. for (i = 0; i < kvm->nmemslots; ++i)
  300. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  301. }
  302. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  303. {
  304. int i;
  305. for (i = 0; i < 2; ++i)
  306. if (vcpu->pio.guest_pages[i]) {
  307. __free_page(vcpu->pio.guest_pages[i]);
  308. vcpu->pio.guest_pages[i] = NULL;
  309. }
  310. }
  311. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  312. {
  313. if (!vcpu->vmcs)
  314. return;
  315. vcpu_load(vcpu);
  316. kvm_mmu_unload(vcpu);
  317. vcpu_put(vcpu);
  318. }
  319. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  320. {
  321. if (!vcpu->vmcs)
  322. return;
  323. vcpu_load(vcpu);
  324. kvm_mmu_destroy(vcpu);
  325. vcpu_put(vcpu);
  326. kvm_arch_ops->vcpu_free(vcpu);
  327. free_page((unsigned long)vcpu->run);
  328. vcpu->run = NULL;
  329. free_page((unsigned long)vcpu->pio_data);
  330. vcpu->pio_data = NULL;
  331. free_pio_guest_pages(vcpu);
  332. }
  333. static void kvm_free_vcpus(struct kvm *kvm)
  334. {
  335. unsigned int i;
  336. /*
  337. * Unpin any mmu pages first.
  338. */
  339. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  340. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  341. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  342. kvm_free_vcpu(&kvm->vcpus[i]);
  343. }
  344. static int kvm_dev_release(struct inode *inode, struct file *filp)
  345. {
  346. return 0;
  347. }
  348. static void kvm_destroy_vm(struct kvm *kvm)
  349. {
  350. spin_lock(&kvm_lock);
  351. list_del(&kvm->vm_list);
  352. spin_unlock(&kvm_lock);
  353. kvm_io_bus_destroy(&kvm->pio_bus);
  354. kvm_io_bus_destroy(&kvm->mmio_bus);
  355. kvm_free_vcpus(kvm);
  356. kvm_free_physmem(kvm);
  357. kfree(kvm);
  358. }
  359. static int kvm_vm_release(struct inode *inode, struct file *filp)
  360. {
  361. struct kvm *kvm = filp->private_data;
  362. kvm_destroy_vm(kvm);
  363. return 0;
  364. }
  365. static void inject_gp(struct kvm_vcpu *vcpu)
  366. {
  367. kvm_arch_ops->inject_gp(vcpu, 0);
  368. }
  369. /*
  370. * Load the pae pdptrs. Return true is they are all valid.
  371. */
  372. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  373. {
  374. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  375. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  376. int i;
  377. u64 pdpte;
  378. u64 *pdpt;
  379. int ret;
  380. struct page *page;
  381. spin_lock(&vcpu->kvm->lock);
  382. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  383. /* FIXME: !page - emulate? 0xff? */
  384. pdpt = kmap_atomic(page, KM_USER0);
  385. ret = 1;
  386. for (i = 0; i < 4; ++i) {
  387. pdpte = pdpt[offset + i];
  388. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  389. ret = 0;
  390. goto out;
  391. }
  392. }
  393. for (i = 0; i < 4; ++i)
  394. vcpu->pdptrs[i] = pdpt[offset + i];
  395. out:
  396. kunmap_atomic(pdpt, KM_USER0);
  397. spin_unlock(&vcpu->kvm->lock);
  398. return ret;
  399. }
  400. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  401. {
  402. if (cr0 & CR0_RESERVED_BITS) {
  403. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  404. cr0, vcpu->cr0);
  405. inject_gp(vcpu);
  406. return;
  407. }
  408. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  409. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  414. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  415. "and a clear PE flag\n");
  416. inject_gp(vcpu);
  417. return;
  418. }
  419. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  420. #ifdef CONFIG_X86_64
  421. if ((vcpu->shadow_efer & EFER_LME)) {
  422. int cs_db, cs_l;
  423. if (!is_pae(vcpu)) {
  424. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  425. "in long mode while PAE is disabled\n");
  426. inject_gp(vcpu);
  427. return;
  428. }
  429. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  430. if (cs_l) {
  431. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  432. "in long mode while CS.L == 1\n");
  433. inject_gp(vcpu);
  434. return;
  435. }
  436. } else
  437. #endif
  438. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  439. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  440. "reserved bits\n");
  441. inject_gp(vcpu);
  442. return;
  443. }
  444. }
  445. kvm_arch_ops->set_cr0(vcpu, cr0);
  446. vcpu->cr0 = cr0;
  447. spin_lock(&vcpu->kvm->lock);
  448. kvm_mmu_reset_context(vcpu);
  449. spin_unlock(&vcpu->kvm->lock);
  450. return;
  451. }
  452. EXPORT_SYMBOL_GPL(set_cr0);
  453. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  454. {
  455. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  456. }
  457. EXPORT_SYMBOL_GPL(lmsw);
  458. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  459. {
  460. if (cr4 & CR4_RESERVED_BITS) {
  461. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  462. inject_gp(vcpu);
  463. return;
  464. }
  465. if (is_long_mode(vcpu)) {
  466. if (!(cr4 & X86_CR4_PAE)) {
  467. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  468. "in long mode\n");
  469. inject_gp(vcpu);
  470. return;
  471. }
  472. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  473. && !load_pdptrs(vcpu, vcpu->cr3)) {
  474. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  475. inject_gp(vcpu);
  476. }
  477. if (cr4 & X86_CR4_VMXE) {
  478. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. kvm_arch_ops->set_cr4(vcpu, cr4);
  483. spin_lock(&vcpu->kvm->lock);
  484. kvm_mmu_reset_context(vcpu);
  485. spin_unlock(&vcpu->kvm->lock);
  486. }
  487. EXPORT_SYMBOL_GPL(set_cr4);
  488. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  489. {
  490. if (is_long_mode(vcpu)) {
  491. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  492. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  493. inject_gp(vcpu);
  494. return;
  495. }
  496. } else {
  497. if (is_pae(vcpu)) {
  498. if (cr3 & CR3_PAE_RESERVED_BITS) {
  499. printk(KERN_DEBUG
  500. "set_cr3: #GP, reserved bits\n");
  501. inject_gp(vcpu);
  502. return;
  503. }
  504. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  505. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  506. "reserved bits\n");
  507. inject_gp(vcpu);
  508. return;
  509. }
  510. } else {
  511. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  512. printk(KERN_DEBUG
  513. "set_cr3: #GP, reserved bits\n");
  514. inject_gp(vcpu);
  515. return;
  516. }
  517. }
  518. }
  519. vcpu->cr3 = cr3;
  520. spin_lock(&vcpu->kvm->lock);
  521. /*
  522. * Does the new cr3 value map to physical memory? (Note, we
  523. * catch an invalid cr3 even in real-mode, because it would
  524. * cause trouble later on when we turn on paging anyway.)
  525. *
  526. * A real CPU would silently accept an invalid cr3 and would
  527. * attempt to use it - with largely undefined (and often hard
  528. * to debug) behavior on the guest side.
  529. */
  530. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  531. inject_gp(vcpu);
  532. else
  533. vcpu->mmu.new_cr3(vcpu);
  534. spin_unlock(&vcpu->kvm->lock);
  535. }
  536. EXPORT_SYMBOL_GPL(set_cr3);
  537. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  538. {
  539. if ( cr8 & CR8_RESEVED_BITS) {
  540. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  541. inject_gp(vcpu);
  542. return;
  543. }
  544. vcpu->cr8 = cr8;
  545. }
  546. EXPORT_SYMBOL_GPL(set_cr8);
  547. void fx_init(struct kvm_vcpu *vcpu)
  548. {
  549. struct __attribute__ ((__packed__)) fx_image_s {
  550. u16 control; //fcw
  551. u16 status; //fsw
  552. u16 tag; // ftw
  553. u16 opcode; //fop
  554. u64 ip; // fpu ip
  555. u64 operand;// fpu dp
  556. u32 mxcsr;
  557. u32 mxcsr_mask;
  558. } *fx_image;
  559. fx_save(vcpu->host_fx_image);
  560. fpu_init();
  561. fx_save(vcpu->guest_fx_image);
  562. fx_restore(vcpu->host_fx_image);
  563. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  564. fx_image->mxcsr = 0x1f80;
  565. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  566. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  567. }
  568. EXPORT_SYMBOL_GPL(fx_init);
  569. /*
  570. * Allocate some memory and give it an address in the guest physical address
  571. * space.
  572. *
  573. * Discontiguous memory is allowed, mostly for framebuffers.
  574. */
  575. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  576. struct kvm_memory_region *mem)
  577. {
  578. int r;
  579. gfn_t base_gfn;
  580. unsigned long npages;
  581. unsigned long i;
  582. struct kvm_memory_slot *memslot;
  583. struct kvm_memory_slot old, new;
  584. int memory_config_version;
  585. r = -EINVAL;
  586. /* General sanity checks */
  587. if (mem->memory_size & (PAGE_SIZE - 1))
  588. goto out;
  589. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  590. goto out;
  591. if (mem->slot >= KVM_MEMORY_SLOTS)
  592. goto out;
  593. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  594. goto out;
  595. memslot = &kvm->memslots[mem->slot];
  596. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  597. npages = mem->memory_size >> PAGE_SHIFT;
  598. if (!npages)
  599. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  600. raced:
  601. spin_lock(&kvm->lock);
  602. memory_config_version = kvm->memory_config_version;
  603. new = old = *memslot;
  604. new.base_gfn = base_gfn;
  605. new.npages = npages;
  606. new.flags = mem->flags;
  607. /* Disallow changing a memory slot's size. */
  608. r = -EINVAL;
  609. if (npages && old.npages && npages != old.npages)
  610. goto out_unlock;
  611. /* Check for overlaps */
  612. r = -EEXIST;
  613. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  614. struct kvm_memory_slot *s = &kvm->memslots[i];
  615. if (s == memslot)
  616. continue;
  617. if (!((base_gfn + npages <= s->base_gfn) ||
  618. (base_gfn >= s->base_gfn + s->npages)))
  619. goto out_unlock;
  620. }
  621. /*
  622. * Do memory allocations outside lock. memory_config_version will
  623. * detect any races.
  624. */
  625. spin_unlock(&kvm->lock);
  626. /* Deallocate if slot is being removed */
  627. if (!npages)
  628. new.phys_mem = NULL;
  629. /* Free page dirty bitmap if unneeded */
  630. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  631. new.dirty_bitmap = NULL;
  632. r = -ENOMEM;
  633. /* Allocate if a slot is being created */
  634. if (npages && !new.phys_mem) {
  635. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  636. if (!new.phys_mem)
  637. goto out_free;
  638. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  639. for (i = 0; i < npages; ++i) {
  640. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  641. | __GFP_ZERO);
  642. if (!new.phys_mem[i])
  643. goto out_free;
  644. set_page_private(new.phys_mem[i],0);
  645. }
  646. }
  647. /* Allocate page dirty bitmap if needed */
  648. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  649. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  650. new.dirty_bitmap = vmalloc(dirty_bytes);
  651. if (!new.dirty_bitmap)
  652. goto out_free;
  653. memset(new.dirty_bitmap, 0, dirty_bytes);
  654. }
  655. spin_lock(&kvm->lock);
  656. if (memory_config_version != kvm->memory_config_version) {
  657. spin_unlock(&kvm->lock);
  658. kvm_free_physmem_slot(&new, &old);
  659. goto raced;
  660. }
  661. r = -EAGAIN;
  662. if (kvm->busy)
  663. goto out_unlock;
  664. if (mem->slot >= kvm->nmemslots)
  665. kvm->nmemslots = mem->slot + 1;
  666. *memslot = new;
  667. ++kvm->memory_config_version;
  668. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  669. kvm_flush_remote_tlbs(kvm);
  670. spin_unlock(&kvm->lock);
  671. kvm_free_physmem_slot(&old, &new);
  672. return 0;
  673. out_unlock:
  674. spin_unlock(&kvm->lock);
  675. out_free:
  676. kvm_free_physmem_slot(&new, &old);
  677. out:
  678. return r;
  679. }
  680. /*
  681. * Get (and clear) the dirty memory log for a memory slot.
  682. */
  683. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  684. struct kvm_dirty_log *log)
  685. {
  686. struct kvm_memory_slot *memslot;
  687. int r, i;
  688. int n;
  689. unsigned long any = 0;
  690. spin_lock(&kvm->lock);
  691. /*
  692. * Prevent changes to guest memory configuration even while the lock
  693. * is not taken.
  694. */
  695. ++kvm->busy;
  696. spin_unlock(&kvm->lock);
  697. r = -EINVAL;
  698. if (log->slot >= KVM_MEMORY_SLOTS)
  699. goto out;
  700. memslot = &kvm->memslots[log->slot];
  701. r = -ENOENT;
  702. if (!memslot->dirty_bitmap)
  703. goto out;
  704. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  705. for (i = 0; !any && i < n/sizeof(long); ++i)
  706. any = memslot->dirty_bitmap[i];
  707. r = -EFAULT;
  708. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  709. goto out;
  710. spin_lock(&kvm->lock);
  711. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  712. kvm_flush_remote_tlbs(kvm);
  713. memset(memslot->dirty_bitmap, 0, n);
  714. spin_unlock(&kvm->lock);
  715. r = 0;
  716. out:
  717. spin_lock(&kvm->lock);
  718. --kvm->busy;
  719. spin_unlock(&kvm->lock);
  720. return r;
  721. }
  722. /*
  723. * Set a new alias region. Aliases map a portion of physical memory into
  724. * another portion. This is useful for memory windows, for example the PC
  725. * VGA region.
  726. */
  727. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  728. struct kvm_memory_alias *alias)
  729. {
  730. int r, n;
  731. struct kvm_mem_alias *p;
  732. r = -EINVAL;
  733. /* General sanity checks */
  734. if (alias->memory_size & (PAGE_SIZE - 1))
  735. goto out;
  736. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  737. goto out;
  738. if (alias->slot >= KVM_ALIAS_SLOTS)
  739. goto out;
  740. if (alias->guest_phys_addr + alias->memory_size
  741. < alias->guest_phys_addr)
  742. goto out;
  743. if (alias->target_phys_addr + alias->memory_size
  744. < alias->target_phys_addr)
  745. goto out;
  746. spin_lock(&kvm->lock);
  747. p = &kvm->aliases[alias->slot];
  748. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  749. p->npages = alias->memory_size >> PAGE_SHIFT;
  750. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  751. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  752. if (kvm->aliases[n - 1].npages)
  753. break;
  754. kvm->naliases = n;
  755. kvm_mmu_zap_all(kvm);
  756. spin_unlock(&kvm->lock);
  757. return 0;
  758. out:
  759. return r;
  760. }
  761. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  762. {
  763. int i;
  764. struct kvm_mem_alias *alias;
  765. for (i = 0; i < kvm->naliases; ++i) {
  766. alias = &kvm->aliases[i];
  767. if (gfn >= alias->base_gfn
  768. && gfn < alias->base_gfn + alias->npages)
  769. return alias->target_gfn + gfn - alias->base_gfn;
  770. }
  771. return gfn;
  772. }
  773. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  774. {
  775. int i;
  776. for (i = 0; i < kvm->nmemslots; ++i) {
  777. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  778. if (gfn >= memslot->base_gfn
  779. && gfn < memslot->base_gfn + memslot->npages)
  780. return memslot;
  781. }
  782. return NULL;
  783. }
  784. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  785. {
  786. gfn = unalias_gfn(kvm, gfn);
  787. return __gfn_to_memslot(kvm, gfn);
  788. }
  789. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  790. {
  791. struct kvm_memory_slot *slot;
  792. gfn = unalias_gfn(kvm, gfn);
  793. slot = __gfn_to_memslot(kvm, gfn);
  794. if (!slot)
  795. return NULL;
  796. return slot->phys_mem[gfn - slot->base_gfn];
  797. }
  798. EXPORT_SYMBOL_GPL(gfn_to_page);
  799. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  800. {
  801. int i;
  802. struct kvm_memory_slot *memslot;
  803. unsigned long rel_gfn;
  804. for (i = 0; i < kvm->nmemslots; ++i) {
  805. memslot = &kvm->memslots[i];
  806. if (gfn >= memslot->base_gfn
  807. && gfn < memslot->base_gfn + memslot->npages) {
  808. if (!memslot->dirty_bitmap)
  809. return;
  810. rel_gfn = gfn - memslot->base_gfn;
  811. /* avoid RMW */
  812. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  813. set_bit(rel_gfn, memslot->dirty_bitmap);
  814. return;
  815. }
  816. }
  817. }
  818. static int emulator_read_std(unsigned long addr,
  819. void *val,
  820. unsigned int bytes,
  821. struct x86_emulate_ctxt *ctxt)
  822. {
  823. struct kvm_vcpu *vcpu = ctxt->vcpu;
  824. void *data = val;
  825. while (bytes) {
  826. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  827. unsigned offset = addr & (PAGE_SIZE-1);
  828. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  829. unsigned long pfn;
  830. struct page *page;
  831. void *page_virt;
  832. if (gpa == UNMAPPED_GVA)
  833. return X86EMUL_PROPAGATE_FAULT;
  834. pfn = gpa >> PAGE_SHIFT;
  835. page = gfn_to_page(vcpu->kvm, pfn);
  836. if (!page)
  837. return X86EMUL_UNHANDLEABLE;
  838. page_virt = kmap_atomic(page, KM_USER0);
  839. memcpy(data, page_virt + offset, tocopy);
  840. kunmap_atomic(page_virt, KM_USER0);
  841. bytes -= tocopy;
  842. data += tocopy;
  843. addr += tocopy;
  844. }
  845. return X86EMUL_CONTINUE;
  846. }
  847. static int emulator_write_std(unsigned long addr,
  848. const void *val,
  849. unsigned int bytes,
  850. struct x86_emulate_ctxt *ctxt)
  851. {
  852. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  853. addr, bytes);
  854. return X86EMUL_UNHANDLEABLE;
  855. }
  856. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  857. gpa_t addr)
  858. {
  859. /*
  860. * Note that its important to have this wrapper function because
  861. * in the very near future we will be checking for MMIOs against
  862. * the LAPIC as well as the general MMIO bus
  863. */
  864. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  865. }
  866. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  867. gpa_t addr)
  868. {
  869. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  870. }
  871. static int emulator_read_emulated(unsigned long addr,
  872. void *val,
  873. unsigned int bytes,
  874. struct x86_emulate_ctxt *ctxt)
  875. {
  876. struct kvm_vcpu *vcpu = ctxt->vcpu;
  877. struct kvm_io_device *mmio_dev;
  878. gpa_t gpa;
  879. if (vcpu->mmio_read_completed) {
  880. memcpy(val, vcpu->mmio_data, bytes);
  881. vcpu->mmio_read_completed = 0;
  882. return X86EMUL_CONTINUE;
  883. } else if (emulator_read_std(addr, val, bytes, ctxt)
  884. == X86EMUL_CONTINUE)
  885. return X86EMUL_CONTINUE;
  886. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  887. if (gpa == UNMAPPED_GVA)
  888. return X86EMUL_PROPAGATE_FAULT;
  889. /*
  890. * Is this MMIO handled locally?
  891. */
  892. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  893. if (mmio_dev) {
  894. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  895. return X86EMUL_CONTINUE;
  896. }
  897. vcpu->mmio_needed = 1;
  898. vcpu->mmio_phys_addr = gpa;
  899. vcpu->mmio_size = bytes;
  900. vcpu->mmio_is_write = 0;
  901. return X86EMUL_UNHANDLEABLE;
  902. }
  903. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  904. const void *val, int bytes)
  905. {
  906. struct page *page;
  907. void *virt;
  908. unsigned offset = offset_in_page(gpa);
  909. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  910. return 0;
  911. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  912. if (!page)
  913. return 0;
  914. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  915. virt = kmap_atomic(page, KM_USER0);
  916. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  917. memcpy(virt + offset_in_page(gpa), val, bytes);
  918. kunmap_atomic(virt, KM_USER0);
  919. return 1;
  920. }
  921. static int emulator_write_emulated_onepage(unsigned long addr,
  922. const void *val,
  923. unsigned int bytes,
  924. struct x86_emulate_ctxt *ctxt)
  925. {
  926. struct kvm_vcpu *vcpu = ctxt->vcpu;
  927. struct kvm_io_device *mmio_dev;
  928. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  929. if (gpa == UNMAPPED_GVA) {
  930. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  931. return X86EMUL_PROPAGATE_FAULT;
  932. }
  933. if (emulator_write_phys(vcpu, gpa, val, bytes))
  934. return X86EMUL_CONTINUE;
  935. /*
  936. * Is this MMIO handled locally?
  937. */
  938. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  939. if (mmio_dev) {
  940. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  941. return X86EMUL_CONTINUE;
  942. }
  943. vcpu->mmio_needed = 1;
  944. vcpu->mmio_phys_addr = gpa;
  945. vcpu->mmio_size = bytes;
  946. vcpu->mmio_is_write = 1;
  947. memcpy(vcpu->mmio_data, val, bytes);
  948. return X86EMUL_CONTINUE;
  949. }
  950. static int emulator_write_emulated(unsigned long addr,
  951. const void *val,
  952. unsigned int bytes,
  953. struct x86_emulate_ctxt *ctxt)
  954. {
  955. /* Crossing a page boundary? */
  956. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  957. int rc, now;
  958. now = -addr & ~PAGE_MASK;
  959. rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
  960. if (rc != X86EMUL_CONTINUE)
  961. return rc;
  962. addr += now;
  963. val += now;
  964. bytes -= now;
  965. }
  966. return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
  967. }
  968. static int emulator_cmpxchg_emulated(unsigned long addr,
  969. const void *old,
  970. const void *new,
  971. unsigned int bytes,
  972. struct x86_emulate_ctxt *ctxt)
  973. {
  974. static int reported;
  975. if (!reported) {
  976. reported = 1;
  977. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  978. }
  979. return emulator_write_emulated(addr, new, bytes, ctxt);
  980. }
  981. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  982. {
  983. return kvm_arch_ops->get_segment_base(vcpu, seg);
  984. }
  985. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  986. {
  987. return X86EMUL_CONTINUE;
  988. }
  989. int emulate_clts(struct kvm_vcpu *vcpu)
  990. {
  991. unsigned long cr0;
  992. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  993. kvm_arch_ops->set_cr0(vcpu, cr0);
  994. return X86EMUL_CONTINUE;
  995. }
  996. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  997. {
  998. struct kvm_vcpu *vcpu = ctxt->vcpu;
  999. switch (dr) {
  1000. case 0 ... 3:
  1001. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1002. return X86EMUL_CONTINUE;
  1003. default:
  1004. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  1005. __FUNCTION__, dr);
  1006. return X86EMUL_UNHANDLEABLE;
  1007. }
  1008. }
  1009. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1010. {
  1011. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1012. int exception;
  1013. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1014. if (exception) {
  1015. /* FIXME: better handling */
  1016. return X86EMUL_UNHANDLEABLE;
  1017. }
  1018. return X86EMUL_CONTINUE;
  1019. }
  1020. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1021. {
  1022. static int reported;
  1023. u8 opcodes[4];
  1024. unsigned long rip = ctxt->vcpu->rip;
  1025. unsigned long rip_linear;
  1026. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1027. if (reported)
  1028. return;
  1029. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1030. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1031. " rip %lx %02x %02x %02x %02x\n",
  1032. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1033. reported = 1;
  1034. }
  1035. struct x86_emulate_ops emulate_ops = {
  1036. .read_std = emulator_read_std,
  1037. .write_std = emulator_write_std,
  1038. .read_emulated = emulator_read_emulated,
  1039. .write_emulated = emulator_write_emulated,
  1040. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1041. };
  1042. int emulate_instruction(struct kvm_vcpu *vcpu,
  1043. struct kvm_run *run,
  1044. unsigned long cr2,
  1045. u16 error_code)
  1046. {
  1047. struct x86_emulate_ctxt emulate_ctxt;
  1048. int r;
  1049. int cs_db, cs_l;
  1050. vcpu->mmio_fault_cr2 = cr2;
  1051. kvm_arch_ops->cache_regs(vcpu);
  1052. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1053. emulate_ctxt.vcpu = vcpu;
  1054. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1055. emulate_ctxt.cr2 = cr2;
  1056. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1057. ? X86EMUL_MODE_REAL : cs_l
  1058. ? X86EMUL_MODE_PROT64 : cs_db
  1059. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1060. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1061. emulate_ctxt.cs_base = 0;
  1062. emulate_ctxt.ds_base = 0;
  1063. emulate_ctxt.es_base = 0;
  1064. emulate_ctxt.ss_base = 0;
  1065. } else {
  1066. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1067. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1068. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1069. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1070. }
  1071. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1072. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1073. vcpu->mmio_is_write = 0;
  1074. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1075. if ((r || vcpu->mmio_is_write) && run) {
  1076. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1077. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1078. run->mmio.len = vcpu->mmio_size;
  1079. run->mmio.is_write = vcpu->mmio_is_write;
  1080. }
  1081. if (r) {
  1082. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1083. return EMULATE_DONE;
  1084. if (!vcpu->mmio_needed) {
  1085. report_emulation_failure(&emulate_ctxt);
  1086. return EMULATE_FAIL;
  1087. }
  1088. return EMULATE_DO_MMIO;
  1089. }
  1090. kvm_arch_ops->decache_regs(vcpu);
  1091. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1092. if (vcpu->mmio_is_write) {
  1093. vcpu->mmio_needed = 0;
  1094. return EMULATE_DO_MMIO;
  1095. }
  1096. return EMULATE_DONE;
  1097. }
  1098. EXPORT_SYMBOL_GPL(emulate_instruction);
  1099. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1100. {
  1101. if (vcpu->irq_summary)
  1102. return 1;
  1103. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1104. ++vcpu->stat.halt_exits;
  1105. return 0;
  1106. }
  1107. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1108. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1109. {
  1110. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1111. kvm_arch_ops->cache_regs(vcpu);
  1112. ret = -KVM_EINVAL;
  1113. #ifdef CONFIG_X86_64
  1114. if (is_long_mode(vcpu)) {
  1115. nr = vcpu->regs[VCPU_REGS_RAX];
  1116. a0 = vcpu->regs[VCPU_REGS_RDI];
  1117. a1 = vcpu->regs[VCPU_REGS_RSI];
  1118. a2 = vcpu->regs[VCPU_REGS_RDX];
  1119. a3 = vcpu->regs[VCPU_REGS_RCX];
  1120. a4 = vcpu->regs[VCPU_REGS_R8];
  1121. a5 = vcpu->regs[VCPU_REGS_R9];
  1122. } else
  1123. #endif
  1124. {
  1125. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1126. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1127. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1128. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1129. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1130. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1131. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1132. }
  1133. switch (nr) {
  1134. default:
  1135. run->hypercall.args[0] = a0;
  1136. run->hypercall.args[1] = a1;
  1137. run->hypercall.args[2] = a2;
  1138. run->hypercall.args[3] = a3;
  1139. run->hypercall.args[4] = a4;
  1140. run->hypercall.args[5] = a5;
  1141. run->hypercall.ret = ret;
  1142. run->hypercall.longmode = is_long_mode(vcpu);
  1143. kvm_arch_ops->decache_regs(vcpu);
  1144. return 0;
  1145. }
  1146. vcpu->regs[VCPU_REGS_RAX] = ret;
  1147. kvm_arch_ops->decache_regs(vcpu);
  1148. return 1;
  1149. }
  1150. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1151. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1152. {
  1153. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1154. }
  1155. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1156. {
  1157. struct descriptor_table dt = { limit, base };
  1158. kvm_arch_ops->set_gdt(vcpu, &dt);
  1159. }
  1160. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1161. {
  1162. struct descriptor_table dt = { limit, base };
  1163. kvm_arch_ops->set_idt(vcpu, &dt);
  1164. }
  1165. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1166. unsigned long *rflags)
  1167. {
  1168. lmsw(vcpu, msw);
  1169. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1170. }
  1171. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1172. {
  1173. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1174. switch (cr) {
  1175. case 0:
  1176. return vcpu->cr0;
  1177. case 2:
  1178. return vcpu->cr2;
  1179. case 3:
  1180. return vcpu->cr3;
  1181. case 4:
  1182. return vcpu->cr4;
  1183. default:
  1184. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1185. return 0;
  1186. }
  1187. }
  1188. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1189. unsigned long *rflags)
  1190. {
  1191. switch (cr) {
  1192. case 0:
  1193. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1194. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1195. break;
  1196. case 2:
  1197. vcpu->cr2 = val;
  1198. break;
  1199. case 3:
  1200. set_cr3(vcpu, val);
  1201. break;
  1202. case 4:
  1203. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1204. break;
  1205. default:
  1206. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1207. }
  1208. }
  1209. /*
  1210. * Register the para guest with the host:
  1211. */
  1212. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1213. {
  1214. struct kvm_vcpu_para_state *para_state;
  1215. hpa_t para_state_hpa, hypercall_hpa;
  1216. struct page *para_state_page;
  1217. unsigned char *hypercall;
  1218. gpa_t hypercall_gpa;
  1219. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1220. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1221. /*
  1222. * Needs to be page aligned:
  1223. */
  1224. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1225. goto err_gp;
  1226. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1227. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1228. if (is_error_hpa(para_state_hpa))
  1229. goto err_gp;
  1230. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1231. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1232. para_state = kmap_atomic(para_state_page, KM_USER0);
  1233. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1234. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1235. para_state->host_version = KVM_PARA_API_VERSION;
  1236. /*
  1237. * We cannot support guests that try to register themselves
  1238. * with a newer API version than the host supports:
  1239. */
  1240. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1241. para_state->ret = -KVM_EINVAL;
  1242. goto err_kunmap_skip;
  1243. }
  1244. hypercall_gpa = para_state->hypercall_gpa;
  1245. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1246. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1247. if (is_error_hpa(hypercall_hpa)) {
  1248. para_state->ret = -KVM_EINVAL;
  1249. goto err_kunmap_skip;
  1250. }
  1251. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1252. vcpu->para_state_page = para_state_page;
  1253. vcpu->para_state_gpa = para_state_gpa;
  1254. vcpu->hypercall_gpa = hypercall_gpa;
  1255. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1256. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1257. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1258. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1259. kunmap_atomic(hypercall, KM_USER1);
  1260. para_state->ret = 0;
  1261. err_kunmap_skip:
  1262. kunmap_atomic(para_state, KM_USER0);
  1263. return 0;
  1264. err_gp:
  1265. return 1;
  1266. }
  1267. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1268. {
  1269. u64 data;
  1270. switch (msr) {
  1271. case 0xc0010010: /* SYSCFG */
  1272. case 0xc0010015: /* HWCR */
  1273. case MSR_IA32_PLATFORM_ID:
  1274. case MSR_IA32_P5_MC_ADDR:
  1275. case MSR_IA32_P5_MC_TYPE:
  1276. case MSR_IA32_MC0_CTL:
  1277. case MSR_IA32_MCG_STATUS:
  1278. case MSR_IA32_MCG_CAP:
  1279. case MSR_IA32_MC0_MISC:
  1280. case MSR_IA32_MC0_MISC+4:
  1281. case MSR_IA32_MC0_MISC+8:
  1282. case MSR_IA32_MC0_MISC+12:
  1283. case MSR_IA32_MC0_MISC+16:
  1284. case MSR_IA32_UCODE_REV:
  1285. case MSR_IA32_PERF_STATUS:
  1286. case MSR_IA32_EBL_CR_POWERON:
  1287. /* MTRR registers */
  1288. case 0xfe:
  1289. case 0x200 ... 0x2ff:
  1290. data = 0;
  1291. break;
  1292. case 0xcd: /* fsb frequency */
  1293. data = 3;
  1294. break;
  1295. case MSR_IA32_APICBASE:
  1296. data = vcpu->apic_base;
  1297. break;
  1298. case MSR_IA32_MISC_ENABLE:
  1299. data = vcpu->ia32_misc_enable_msr;
  1300. break;
  1301. #ifdef CONFIG_X86_64
  1302. case MSR_EFER:
  1303. data = vcpu->shadow_efer;
  1304. break;
  1305. #endif
  1306. default:
  1307. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1308. return 1;
  1309. }
  1310. *pdata = data;
  1311. return 0;
  1312. }
  1313. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1314. /*
  1315. * Reads an msr value (of 'msr_index') into 'pdata'.
  1316. * Returns 0 on success, non-0 otherwise.
  1317. * Assumes vcpu_load() was already called.
  1318. */
  1319. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1320. {
  1321. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1322. }
  1323. #ifdef CONFIG_X86_64
  1324. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1325. {
  1326. if (efer & EFER_RESERVED_BITS) {
  1327. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1328. efer);
  1329. inject_gp(vcpu);
  1330. return;
  1331. }
  1332. if (is_paging(vcpu)
  1333. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1334. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1335. inject_gp(vcpu);
  1336. return;
  1337. }
  1338. kvm_arch_ops->set_efer(vcpu, efer);
  1339. efer &= ~EFER_LMA;
  1340. efer |= vcpu->shadow_efer & EFER_LMA;
  1341. vcpu->shadow_efer = efer;
  1342. }
  1343. #endif
  1344. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1345. {
  1346. switch (msr) {
  1347. #ifdef CONFIG_X86_64
  1348. case MSR_EFER:
  1349. set_efer(vcpu, data);
  1350. break;
  1351. #endif
  1352. case MSR_IA32_MC0_STATUS:
  1353. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1354. __FUNCTION__, data);
  1355. break;
  1356. case MSR_IA32_MCG_STATUS:
  1357. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1358. __FUNCTION__, data);
  1359. break;
  1360. case MSR_IA32_UCODE_REV:
  1361. case MSR_IA32_UCODE_WRITE:
  1362. case 0x200 ... 0x2ff: /* MTRRs */
  1363. break;
  1364. case MSR_IA32_APICBASE:
  1365. vcpu->apic_base = data;
  1366. break;
  1367. case MSR_IA32_MISC_ENABLE:
  1368. vcpu->ia32_misc_enable_msr = data;
  1369. break;
  1370. /*
  1371. * This is the 'probe whether the host is KVM' logic:
  1372. */
  1373. case MSR_KVM_API_MAGIC:
  1374. return vcpu_register_para(vcpu, data);
  1375. default:
  1376. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1377. return 1;
  1378. }
  1379. return 0;
  1380. }
  1381. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1382. /*
  1383. * Writes msr value into into the appropriate "register".
  1384. * Returns 0 on success, non-0 otherwise.
  1385. * Assumes vcpu_load() was already called.
  1386. */
  1387. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1388. {
  1389. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1390. }
  1391. void kvm_resched(struct kvm_vcpu *vcpu)
  1392. {
  1393. if (!need_resched())
  1394. return;
  1395. vcpu_put(vcpu);
  1396. cond_resched();
  1397. vcpu_load(vcpu);
  1398. }
  1399. EXPORT_SYMBOL_GPL(kvm_resched);
  1400. void load_msrs(struct vmx_msr_entry *e, int n)
  1401. {
  1402. int i;
  1403. for (i = 0; i < n; ++i)
  1404. wrmsrl(e[i].index, e[i].data);
  1405. }
  1406. EXPORT_SYMBOL_GPL(load_msrs);
  1407. void save_msrs(struct vmx_msr_entry *e, int n)
  1408. {
  1409. int i;
  1410. for (i = 0; i < n; ++i)
  1411. rdmsrl(e[i].index, e[i].data);
  1412. }
  1413. EXPORT_SYMBOL_GPL(save_msrs);
  1414. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1415. {
  1416. int i;
  1417. u32 function;
  1418. struct kvm_cpuid_entry *e, *best;
  1419. kvm_arch_ops->cache_regs(vcpu);
  1420. function = vcpu->regs[VCPU_REGS_RAX];
  1421. vcpu->regs[VCPU_REGS_RAX] = 0;
  1422. vcpu->regs[VCPU_REGS_RBX] = 0;
  1423. vcpu->regs[VCPU_REGS_RCX] = 0;
  1424. vcpu->regs[VCPU_REGS_RDX] = 0;
  1425. best = NULL;
  1426. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1427. e = &vcpu->cpuid_entries[i];
  1428. if (e->function == function) {
  1429. best = e;
  1430. break;
  1431. }
  1432. /*
  1433. * Both basic or both extended?
  1434. */
  1435. if (((e->function ^ function) & 0x80000000) == 0)
  1436. if (!best || e->function > best->function)
  1437. best = e;
  1438. }
  1439. if (best) {
  1440. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1441. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1442. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1443. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1444. }
  1445. kvm_arch_ops->decache_regs(vcpu);
  1446. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1447. }
  1448. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1449. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1450. {
  1451. void *p = vcpu->pio_data;
  1452. void *q;
  1453. unsigned bytes;
  1454. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1455. kvm_arch_ops->vcpu_put(vcpu);
  1456. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1457. PAGE_KERNEL);
  1458. if (!q) {
  1459. kvm_arch_ops->vcpu_load(vcpu);
  1460. free_pio_guest_pages(vcpu);
  1461. return -ENOMEM;
  1462. }
  1463. q += vcpu->pio.guest_page_offset;
  1464. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1465. if (vcpu->pio.in)
  1466. memcpy(q, p, bytes);
  1467. else
  1468. memcpy(p, q, bytes);
  1469. q -= vcpu->pio.guest_page_offset;
  1470. vunmap(q);
  1471. kvm_arch_ops->vcpu_load(vcpu);
  1472. free_pio_guest_pages(vcpu);
  1473. return 0;
  1474. }
  1475. static int complete_pio(struct kvm_vcpu *vcpu)
  1476. {
  1477. struct kvm_pio_request *io = &vcpu->pio;
  1478. long delta;
  1479. int r;
  1480. kvm_arch_ops->cache_regs(vcpu);
  1481. if (!io->string) {
  1482. if (io->in)
  1483. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1484. io->size);
  1485. } else {
  1486. if (io->in) {
  1487. r = pio_copy_data(vcpu);
  1488. if (r) {
  1489. kvm_arch_ops->cache_regs(vcpu);
  1490. return r;
  1491. }
  1492. }
  1493. delta = 1;
  1494. if (io->rep) {
  1495. delta *= io->cur_count;
  1496. /*
  1497. * The size of the register should really depend on
  1498. * current address size.
  1499. */
  1500. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1501. }
  1502. if (io->down)
  1503. delta = -delta;
  1504. delta *= io->size;
  1505. if (io->in)
  1506. vcpu->regs[VCPU_REGS_RDI] += delta;
  1507. else
  1508. vcpu->regs[VCPU_REGS_RSI] += delta;
  1509. }
  1510. kvm_arch_ops->decache_regs(vcpu);
  1511. io->count -= io->cur_count;
  1512. io->cur_count = 0;
  1513. if (!io->count)
  1514. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1515. return 0;
  1516. }
  1517. static void kernel_pio(struct kvm_io_device *pio_dev,
  1518. struct kvm_vcpu *vcpu,
  1519. void *pd)
  1520. {
  1521. /* TODO: String I/O for in kernel device */
  1522. if (vcpu->pio.in)
  1523. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1524. vcpu->pio.size,
  1525. pd);
  1526. else
  1527. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1528. vcpu->pio.size,
  1529. pd);
  1530. }
  1531. static void pio_string_write(struct kvm_io_device *pio_dev,
  1532. struct kvm_vcpu *vcpu)
  1533. {
  1534. struct kvm_pio_request *io = &vcpu->pio;
  1535. void *pd = vcpu->pio_data;
  1536. int i;
  1537. for (i = 0; i < io->cur_count; i++) {
  1538. kvm_iodevice_write(pio_dev, io->port,
  1539. io->size,
  1540. pd);
  1541. pd += io->size;
  1542. }
  1543. }
  1544. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1545. int size, unsigned long count, int string, int down,
  1546. gva_t address, int rep, unsigned port)
  1547. {
  1548. unsigned now, in_page;
  1549. int i, ret = 0;
  1550. int nr_pages = 1;
  1551. struct page *page;
  1552. struct kvm_io_device *pio_dev;
  1553. vcpu->run->exit_reason = KVM_EXIT_IO;
  1554. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1555. vcpu->run->io.size = size;
  1556. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1557. vcpu->run->io.count = count;
  1558. vcpu->run->io.port = port;
  1559. vcpu->pio.count = count;
  1560. vcpu->pio.cur_count = count;
  1561. vcpu->pio.size = size;
  1562. vcpu->pio.in = in;
  1563. vcpu->pio.port = port;
  1564. vcpu->pio.string = string;
  1565. vcpu->pio.down = down;
  1566. vcpu->pio.guest_page_offset = offset_in_page(address);
  1567. vcpu->pio.rep = rep;
  1568. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1569. if (!string) {
  1570. kvm_arch_ops->cache_regs(vcpu);
  1571. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1572. kvm_arch_ops->decache_regs(vcpu);
  1573. if (pio_dev) {
  1574. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1575. complete_pio(vcpu);
  1576. return 1;
  1577. }
  1578. return 0;
  1579. }
  1580. if (!count) {
  1581. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1582. return 1;
  1583. }
  1584. now = min(count, PAGE_SIZE / size);
  1585. if (!down)
  1586. in_page = PAGE_SIZE - offset_in_page(address);
  1587. else
  1588. in_page = offset_in_page(address) + size;
  1589. now = min(count, (unsigned long)in_page / size);
  1590. if (!now) {
  1591. /*
  1592. * String I/O straddles page boundary. Pin two guest pages
  1593. * so that we satisfy atomicity constraints. Do just one
  1594. * transaction to avoid complexity.
  1595. */
  1596. nr_pages = 2;
  1597. now = 1;
  1598. }
  1599. if (down) {
  1600. /*
  1601. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1602. */
  1603. printk(KERN_ERR "kvm: guest string pio down\n");
  1604. inject_gp(vcpu);
  1605. return 1;
  1606. }
  1607. vcpu->run->io.count = now;
  1608. vcpu->pio.cur_count = now;
  1609. for (i = 0; i < nr_pages; ++i) {
  1610. spin_lock(&vcpu->kvm->lock);
  1611. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1612. if (page)
  1613. get_page(page);
  1614. vcpu->pio.guest_pages[i] = page;
  1615. spin_unlock(&vcpu->kvm->lock);
  1616. if (!page) {
  1617. inject_gp(vcpu);
  1618. free_pio_guest_pages(vcpu);
  1619. return 1;
  1620. }
  1621. }
  1622. if (!vcpu->pio.in) {
  1623. /* string PIO write */
  1624. ret = pio_copy_data(vcpu);
  1625. if (ret >= 0 && pio_dev) {
  1626. pio_string_write(pio_dev, vcpu);
  1627. complete_pio(vcpu);
  1628. if (vcpu->pio.count == 0)
  1629. ret = 1;
  1630. }
  1631. } else if (pio_dev)
  1632. printk(KERN_ERR "no string pio read support yet, "
  1633. "port %x size %d count %ld\n",
  1634. port, size, count);
  1635. return ret;
  1636. }
  1637. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1638. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1639. {
  1640. int r;
  1641. sigset_t sigsaved;
  1642. vcpu_load(vcpu);
  1643. if (vcpu->sigset_active)
  1644. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1645. /* re-sync apic's tpr */
  1646. vcpu->cr8 = kvm_run->cr8;
  1647. if (vcpu->pio.cur_count) {
  1648. r = complete_pio(vcpu);
  1649. if (r)
  1650. goto out;
  1651. }
  1652. if (vcpu->mmio_needed) {
  1653. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1654. vcpu->mmio_read_completed = 1;
  1655. vcpu->mmio_needed = 0;
  1656. r = emulate_instruction(vcpu, kvm_run,
  1657. vcpu->mmio_fault_cr2, 0);
  1658. if (r == EMULATE_DO_MMIO) {
  1659. /*
  1660. * Read-modify-write. Back to userspace.
  1661. */
  1662. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1663. r = 0;
  1664. goto out;
  1665. }
  1666. }
  1667. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1668. kvm_arch_ops->cache_regs(vcpu);
  1669. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1670. kvm_arch_ops->decache_regs(vcpu);
  1671. }
  1672. r = kvm_arch_ops->run(vcpu, kvm_run);
  1673. out:
  1674. if (vcpu->sigset_active)
  1675. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1676. vcpu_put(vcpu);
  1677. return r;
  1678. }
  1679. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1680. struct kvm_regs *regs)
  1681. {
  1682. vcpu_load(vcpu);
  1683. kvm_arch_ops->cache_regs(vcpu);
  1684. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1685. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1686. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1687. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1688. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1689. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1690. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1691. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1692. #ifdef CONFIG_X86_64
  1693. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1694. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1695. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1696. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1697. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1698. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1699. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1700. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1701. #endif
  1702. regs->rip = vcpu->rip;
  1703. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1704. /*
  1705. * Don't leak debug flags in case they were set for guest debugging
  1706. */
  1707. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1708. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1709. vcpu_put(vcpu);
  1710. return 0;
  1711. }
  1712. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1713. struct kvm_regs *regs)
  1714. {
  1715. vcpu_load(vcpu);
  1716. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1717. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1718. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1719. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1720. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1721. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1722. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1723. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1724. #ifdef CONFIG_X86_64
  1725. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1726. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1727. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1728. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1729. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1730. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1731. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1732. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1733. #endif
  1734. vcpu->rip = regs->rip;
  1735. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1736. kvm_arch_ops->decache_regs(vcpu);
  1737. vcpu_put(vcpu);
  1738. return 0;
  1739. }
  1740. static void get_segment(struct kvm_vcpu *vcpu,
  1741. struct kvm_segment *var, int seg)
  1742. {
  1743. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1744. }
  1745. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1746. struct kvm_sregs *sregs)
  1747. {
  1748. struct descriptor_table dt;
  1749. vcpu_load(vcpu);
  1750. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1751. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1752. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1753. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1754. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1755. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1756. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1757. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1758. kvm_arch_ops->get_idt(vcpu, &dt);
  1759. sregs->idt.limit = dt.limit;
  1760. sregs->idt.base = dt.base;
  1761. kvm_arch_ops->get_gdt(vcpu, &dt);
  1762. sregs->gdt.limit = dt.limit;
  1763. sregs->gdt.base = dt.base;
  1764. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1765. sregs->cr0 = vcpu->cr0;
  1766. sregs->cr2 = vcpu->cr2;
  1767. sregs->cr3 = vcpu->cr3;
  1768. sregs->cr4 = vcpu->cr4;
  1769. sregs->cr8 = vcpu->cr8;
  1770. sregs->efer = vcpu->shadow_efer;
  1771. sregs->apic_base = vcpu->apic_base;
  1772. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1773. sizeof sregs->interrupt_bitmap);
  1774. vcpu_put(vcpu);
  1775. return 0;
  1776. }
  1777. static void set_segment(struct kvm_vcpu *vcpu,
  1778. struct kvm_segment *var, int seg)
  1779. {
  1780. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1781. }
  1782. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1783. struct kvm_sregs *sregs)
  1784. {
  1785. int mmu_reset_needed = 0;
  1786. int i;
  1787. struct descriptor_table dt;
  1788. vcpu_load(vcpu);
  1789. dt.limit = sregs->idt.limit;
  1790. dt.base = sregs->idt.base;
  1791. kvm_arch_ops->set_idt(vcpu, &dt);
  1792. dt.limit = sregs->gdt.limit;
  1793. dt.base = sregs->gdt.base;
  1794. kvm_arch_ops->set_gdt(vcpu, &dt);
  1795. vcpu->cr2 = sregs->cr2;
  1796. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1797. vcpu->cr3 = sregs->cr3;
  1798. vcpu->cr8 = sregs->cr8;
  1799. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1800. #ifdef CONFIG_X86_64
  1801. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1802. #endif
  1803. vcpu->apic_base = sregs->apic_base;
  1804. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1805. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1806. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1807. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1808. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1809. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1810. load_pdptrs(vcpu, vcpu->cr3);
  1811. if (mmu_reset_needed)
  1812. kvm_mmu_reset_context(vcpu);
  1813. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1814. sizeof vcpu->irq_pending);
  1815. vcpu->irq_summary = 0;
  1816. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1817. if (vcpu->irq_pending[i])
  1818. __set_bit(i, &vcpu->irq_summary);
  1819. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1820. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1821. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1822. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1823. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1824. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1825. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1826. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1827. vcpu_put(vcpu);
  1828. return 0;
  1829. }
  1830. /*
  1831. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1832. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1833. *
  1834. * This list is modified at module load time to reflect the
  1835. * capabilities of the host cpu.
  1836. */
  1837. static u32 msrs_to_save[] = {
  1838. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1839. MSR_K6_STAR,
  1840. #ifdef CONFIG_X86_64
  1841. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1842. #endif
  1843. MSR_IA32_TIME_STAMP_COUNTER,
  1844. };
  1845. static unsigned num_msrs_to_save;
  1846. static u32 emulated_msrs[] = {
  1847. MSR_IA32_MISC_ENABLE,
  1848. };
  1849. static __init void kvm_init_msr_list(void)
  1850. {
  1851. u32 dummy[2];
  1852. unsigned i, j;
  1853. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1854. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1855. continue;
  1856. if (j < i)
  1857. msrs_to_save[j] = msrs_to_save[i];
  1858. j++;
  1859. }
  1860. num_msrs_to_save = j;
  1861. }
  1862. /*
  1863. * Adapt set_msr() to msr_io()'s calling convention
  1864. */
  1865. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1866. {
  1867. return kvm_set_msr(vcpu, index, *data);
  1868. }
  1869. /*
  1870. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1871. *
  1872. * @return number of msrs set successfully.
  1873. */
  1874. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1875. struct kvm_msr_entry *entries,
  1876. int (*do_msr)(struct kvm_vcpu *vcpu,
  1877. unsigned index, u64 *data))
  1878. {
  1879. int i;
  1880. vcpu_load(vcpu);
  1881. for (i = 0; i < msrs->nmsrs; ++i)
  1882. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1883. break;
  1884. vcpu_put(vcpu);
  1885. return i;
  1886. }
  1887. /*
  1888. * Read or write a bunch of msrs. Parameters are user addresses.
  1889. *
  1890. * @return number of msrs set successfully.
  1891. */
  1892. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1893. int (*do_msr)(struct kvm_vcpu *vcpu,
  1894. unsigned index, u64 *data),
  1895. int writeback)
  1896. {
  1897. struct kvm_msrs msrs;
  1898. struct kvm_msr_entry *entries;
  1899. int r, n;
  1900. unsigned size;
  1901. r = -EFAULT;
  1902. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1903. goto out;
  1904. r = -E2BIG;
  1905. if (msrs.nmsrs >= MAX_IO_MSRS)
  1906. goto out;
  1907. r = -ENOMEM;
  1908. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1909. entries = vmalloc(size);
  1910. if (!entries)
  1911. goto out;
  1912. r = -EFAULT;
  1913. if (copy_from_user(entries, user_msrs->entries, size))
  1914. goto out_free;
  1915. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1916. if (r < 0)
  1917. goto out_free;
  1918. r = -EFAULT;
  1919. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1920. goto out_free;
  1921. r = n;
  1922. out_free:
  1923. vfree(entries);
  1924. out:
  1925. return r;
  1926. }
  1927. /*
  1928. * Translate a guest virtual address to a guest physical address.
  1929. */
  1930. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1931. struct kvm_translation *tr)
  1932. {
  1933. unsigned long vaddr = tr->linear_address;
  1934. gpa_t gpa;
  1935. vcpu_load(vcpu);
  1936. spin_lock(&vcpu->kvm->lock);
  1937. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1938. tr->physical_address = gpa;
  1939. tr->valid = gpa != UNMAPPED_GVA;
  1940. tr->writeable = 1;
  1941. tr->usermode = 0;
  1942. spin_unlock(&vcpu->kvm->lock);
  1943. vcpu_put(vcpu);
  1944. return 0;
  1945. }
  1946. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1947. struct kvm_interrupt *irq)
  1948. {
  1949. if (irq->irq < 0 || irq->irq >= 256)
  1950. return -EINVAL;
  1951. vcpu_load(vcpu);
  1952. set_bit(irq->irq, vcpu->irq_pending);
  1953. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1954. vcpu_put(vcpu);
  1955. return 0;
  1956. }
  1957. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1958. struct kvm_debug_guest *dbg)
  1959. {
  1960. int r;
  1961. vcpu_load(vcpu);
  1962. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1963. vcpu_put(vcpu);
  1964. return r;
  1965. }
  1966. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1967. unsigned long address,
  1968. int *type)
  1969. {
  1970. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1971. unsigned long pgoff;
  1972. struct page *page;
  1973. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1974. if (pgoff == 0)
  1975. page = virt_to_page(vcpu->run);
  1976. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1977. page = virt_to_page(vcpu->pio_data);
  1978. else
  1979. return NOPAGE_SIGBUS;
  1980. get_page(page);
  1981. if (type != NULL)
  1982. *type = VM_FAULT_MINOR;
  1983. return page;
  1984. }
  1985. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1986. .nopage = kvm_vcpu_nopage,
  1987. };
  1988. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1989. {
  1990. vma->vm_ops = &kvm_vcpu_vm_ops;
  1991. return 0;
  1992. }
  1993. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1994. {
  1995. struct kvm_vcpu *vcpu = filp->private_data;
  1996. fput(vcpu->kvm->filp);
  1997. return 0;
  1998. }
  1999. static struct file_operations kvm_vcpu_fops = {
  2000. .release = kvm_vcpu_release,
  2001. .unlocked_ioctl = kvm_vcpu_ioctl,
  2002. .compat_ioctl = kvm_vcpu_ioctl,
  2003. .mmap = kvm_vcpu_mmap,
  2004. };
  2005. /*
  2006. * Allocates an inode for the vcpu.
  2007. */
  2008. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2009. {
  2010. int fd, r;
  2011. struct inode *inode;
  2012. struct file *file;
  2013. r = anon_inode_getfd(&fd, &inode, &file,
  2014. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2015. if (r)
  2016. return r;
  2017. atomic_inc(&vcpu->kvm->filp->f_count);
  2018. return fd;
  2019. }
  2020. /*
  2021. * Creates some virtual cpus. Good luck creating more than one.
  2022. */
  2023. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2024. {
  2025. int r;
  2026. struct kvm_vcpu *vcpu;
  2027. struct page *page;
  2028. r = -EINVAL;
  2029. if (!valid_vcpu(n))
  2030. goto out;
  2031. vcpu = &kvm->vcpus[n];
  2032. vcpu->vcpu_id = n;
  2033. mutex_lock(&vcpu->mutex);
  2034. if (vcpu->vmcs) {
  2035. mutex_unlock(&vcpu->mutex);
  2036. return -EEXIST;
  2037. }
  2038. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2039. r = -ENOMEM;
  2040. if (!page)
  2041. goto out_unlock;
  2042. vcpu->run = page_address(page);
  2043. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2044. r = -ENOMEM;
  2045. if (!page)
  2046. goto out_free_run;
  2047. vcpu->pio_data = page_address(page);
  2048. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2049. FX_IMAGE_ALIGN);
  2050. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2051. vcpu->cr0 = 0x10;
  2052. r = kvm_arch_ops->vcpu_create(vcpu);
  2053. if (r < 0)
  2054. goto out_free_vcpus;
  2055. r = kvm_mmu_create(vcpu);
  2056. if (r < 0)
  2057. goto out_free_vcpus;
  2058. kvm_arch_ops->vcpu_load(vcpu);
  2059. r = kvm_mmu_setup(vcpu);
  2060. if (r >= 0)
  2061. r = kvm_arch_ops->vcpu_setup(vcpu);
  2062. vcpu_put(vcpu);
  2063. if (r < 0)
  2064. goto out_free_vcpus;
  2065. r = create_vcpu_fd(vcpu);
  2066. if (r < 0)
  2067. goto out_free_vcpus;
  2068. spin_lock(&kvm_lock);
  2069. if (n >= kvm->nvcpus)
  2070. kvm->nvcpus = n + 1;
  2071. spin_unlock(&kvm_lock);
  2072. return r;
  2073. out_free_vcpus:
  2074. kvm_free_vcpu(vcpu);
  2075. out_free_run:
  2076. free_page((unsigned long)vcpu->run);
  2077. vcpu->run = NULL;
  2078. out_unlock:
  2079. mutex_unlock(&vcpu->mutex);
  2080. out:
  2081. return r;
  2082. }
  2083. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2084. {
  2085. u64 efer;
  2086. int i;
  2087. struct kvm_cpuid_entry *e, *entry;
  2088. rdmsrl(MSR_EFER, efer);
  2089. entry = NULL;
  2090. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2091. e = &vcpu->cpuid_entries[i];
  2092. if (e->function == 0x80000001) {
  2093. entry = e;
  2094. break;
  2095. }
  2096. }
  2097. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2098. entry->edx &= ~(1 << 20);
  2099. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2100. }
  2101. }
  2102. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2103. struct kvm_cpuid *cpuid,
  2104. struct kvm_cpuid_entry __user *entries)
  2105. {
  2106. int r;
  2107. r = -E2BIG;
  2108. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2109. goto out;
  2110. r = -EFAULT;
  2111. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2112. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2113. goto out;
  2114. vcpu->cpuid_nent = cpuid->nent;
  2115. cpuid_fix_nx_cap(vcpu);
  2116. return 0;
  2117. out:
  2118. return r;
  2119. }
  2120. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2121. {
  2122. if (sigset) {
  2123. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2124. vcpu->sigset_active = 1;
  2125. vcpu->sigset = *sigset;
  2126. } else
  2127. vcpu->sigset_active = 0;
  2128. return 0;
  2129. }
  2130. /*
  2131. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2132. * we have asm/x86/processor.h
  2133. */
  2134. struct fxsave {
  2135. u16 cwd;
  2136. u16 swd;
  2137. u16 twd;
  2138. u16 fop;
  2139. u64 rip;
  2140. u64 rdp;
  2141. u32 mxcsr;
  2142. u32 mxcsr_mask;
  2143. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2144. #ifdef CONFIG_X86_64
  2145. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2146. #else
  2147. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2148. #endif
  2149. };
  2150. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2151. {
  2152. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2153. vcpu_load(vcpu);
  2154. memcpy(fpu->fpr, fxsave->st_space, 128);
  2155. fpu->fcw = fxsave->cwd;
  2156. fpu->fsw = fxsave->swd;
  2157. fpu->ftwx = fxsave->twd;
  2158. fpu->last_opcode = fxsave->fop;
  2159. fpu->last_ip = fxsave->rip;
  2160. fpu->last_dp = fxsave->rdp;
  2161. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2162. vcpu_put(vcpu);
  2163. return 0;
  2164. }
  2165. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2166. {
  2167. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2168. vcpu_load(vcpu);
  2169. memcpy(fxsave->st_space, fpu->fpr, 128);
  2170. fxsave->cwd = fpu->fcw;
  2171. fxsave->swd = fpu->fsw;
  2172. fxsave->twd = fpu->ftwx;
  2173. fxsave->fop = fpu->last_opcode;
  2174. fxsave->rip = fpu->last_ip;
  2175. fxsave->rdp = fpu->last_dp;
  2176. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2177. vcpu_put(vcpu);
  2178. return 0;
  2179. }
  2180. static long kvm_vcpu_ioctl(struct file *filp,
  2181. unsigned int ioctl, unsigned long arg)
  2182. {
  2183. struct kvm_vcpu *vcpu = filp->private_data;
  2184. void __user *argp = (void __user *)arg;
  2185. int r = -EINVAL;
  2186. switch (ioctl) {
  2187. case KVM_RUN:
  2188. r = -EINVAL;
  2189. if (arg)
  2190. goto out;
  2191. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2192. break;
  2193. case KVM_GET_REGS: {
  2194. struct kvm_regs kvm_regs;
  2195. memset(&kvm_regs, 0, sizeof kvm_regs);
  2196. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2197. if (r)
  2198. goto out;
  2199. r = -EFAULT;
  2200. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2201. goto out;
  2202. r = 0;
  2203. break;
  2204. }
  2205. case KVM_SET_REGS: {
  2206. struct kvm_regs kvm_regs;
  2207. r = -EFAULT;
  2208. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2209. goto out;
  2210. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2211. if (r)
  2212. goto out;
  2213. r = 0;
  2214. break;
  2215. }
  2216. case KVM_GET_SREGS: {
  2217. struct kvm_sregs kvm_sregs;
  2218. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2219. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2220. if (r)
  2221. goto out;
  2222. r = -EFAULT;
  2223. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2224. goto out;
  2225. r = 0;
  2226. break;
  2227. }
  2228. case KVM_SET_SREGS: {
  2229. struct kvm_sregs kvm_sregs;
  2230. r = -EFAULT;
  2231. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2232. goto out;
  2233. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2234. if (r)
  2235. goto out;
  2236. r = 0;
  2237. break;
  2238. }
  2239. case KVM_TRANSLATE: {
  2240. struct kvm_translation tr;
  2241. r = -EFAULT;
  2242. if (copy_from_user(&tr, argp, sizeof tr))
  2243. goto out;
  2244. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2245. if (r)
  2246. goto out;
  2247. r = -EFAULT;
  2248. if (copy_to_user(argp, &tr, sizeof tr))
  2249. goto out;
  2250. r = 0;
  2251. break;
  2252. }
  2253. case KVM_INTERRUPT: {
  2254. struct kvm_interrupt irq;
  2255. r = -EFAULT;
  2256. if (copy_from_user(&irq, argp, sizeof irq))
  2257. goto out;
  2258. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2259. if (r)
  2260. goto out;
  2261. r = 0;
  2262. break;
  2263. }
  2264. case KVM_DEBUG_GUEST: {
  2265. struct kvm_debug_guest dbg;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&dbg, argp, sizeof dbg))
  2268. goto out;
  2269. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2270. if (r)
  2271. goto out;
  2272. r = 0;
  2273. break;
  2274. }
  2275. case KVM_GET_MSRS:
  2276. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2277. break;
  2278. case KVM_SET_MSRS:
  2279. r = msr_io(vcpu, argp, do_set_msr, 0);
  2280. break;
  2281. case KVM_SET_CPUID: {
  2282. struct kvm_cpuid __user *cpuid_arg = argp;
  2283. struct kvm_cpuid cpuid;
  2284. r = -EFAULT;
  2285. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2286. goto out;
  2287. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2288. if (r)
  2289. goto out;
  2290. break;
  2291. }
  2292. case KVM_SET_SIGNAL_MASK: {
  2293. struct kvm_signal_mask __user *sigmask_arg = argp;
  2294. struct kvm_signal_mask kvm_sigmask;
  2295. sigset_t sigset, *p;
  2296. p = NULL;
  2297. if (argp) {
  2298. r = -EFAULT;
  2299. if (copy_from_user(&kvm_sigmask, argp,
  2300. sizeof kvm_sigmask))
  2301. goto out;
  2302. r = -EINVAL;
  2303. if (kvm_sigmask.len != sizeof sigset)
  2304. goto out;
  2305. r = -EFAULT;
  2306. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2307. sizeof sigset))
  2308. goto out;
  2309. p = &sigset;
  2310. }
  2311. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2312. break;
  2313. }
  2314. case KVM_GET_FPU: {
  2315. struct kvm_fpu fpu;
  2316. memset(&fpu, 0, sizeof fpu);
  2317. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2318. if (r)
  2319. goto out;
  2320. r = -EFAULT;
  2321. if (copy_to_user(argp, &fpu, sizeof fpu))
  2322. goto out;
  2323. r = 0;
  2324. break;
  2325. }
  2326. case KVM_SET_FPU: {
  2327. struct kvm_fpu fpu;
  2328. r = -EFAULT;
  2329. if (copy_from_user(&fpu, argp, sizeof fpu))
  2330. goto out;
  2331. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2332. if (r)
  2333. goto out;
  2334. r = 0;
  2335. break;
  2336. }
  2337. default:
  2338. ;
  2339. }
  2340. out:
  2341. return r;
  2342. }
  2343. static long kvm_vm_ioctl(struct file *filp,
  2344. unsigned int ioctl, unsigned long arg)
  2345. {
  2346. struct kvm *kvm = filp->private_data;
  2347. void __user *argp = (void __user *)arg;
  2348. int r = -EINVAL;
  2349. switch (ioctl) {
  2350. case KVM_CREATE_VCPU:
  2351. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2352. if (r < 0)
  2353. goto out;
  2354. break;
  2355. case KVM_SET_MEMORY_REGION: {
  2356. struct kvm_memory_region kvm_mem;
  2357. r = -EFAULT;
  2358. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2359. goto out;
  2360. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2361. if (r)
  2362. goto out;
  2363. break;
  2364. }
  2365. case KVM_GET_DIRTY_LOG: {
  2366. struct kvm_dirty_log log;
  2367. r = -EFAULT;
  2368. if (copy_from_user(&log, argp, sizeof log))
  2369. goto out;
  2370. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2371. if (r)
  2372. goto out;
  2373. break;
  2374. }
  2375. case KVM_SET_MEMORY_ALIAS: {
  2376. struct kvm_memory_alias alias;
  2377. r = -EFAULT;
  2378. if (copy_from_user(&alias, argp, sizeof alias))
  2379. goto out;
  2380. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2381. if (r)
  2382. goto out;
  2383. break;
  2384. }
  2385. default:
  2386. ;
  2387. }
  2388. out:
  2389. return r;
  2390. }
  2391. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2392. unsigned long address,
  2393. int *type)
  2394. {
  2395. struct kvm *kvm = vma->vm_file->private_data;
  2396. unsigned long pgoff;
  2397. struct page *page;
  2398. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2399. page = gfn_to_page(kvm, pgoff);
  2400. if (!page)
  2401. return NOPAGE_SIGBUS;
  2402. get_page(page);
  2403. if (type != NULL)
  2404. *type = VM_FAULT_MINOR;
  2405. return page;
  2406. }
  2407. static struct vm_operations_struct kvm_vm_vm_ops = {
  2408. .nopage = kvm_vm_nopage,
  2409. };
  2410. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2411. {
  2412. vma->vm_ops = &kvm_vm_vm_ops;
  2413. return 0;
  2414. }
  2415. static struct file_operations kvm_vm_fops = {
  2416. .release = kvm_vm_release,
  2417. .unlocked_ioctl = kvm_vm_ioctl,
  2418. .compat_ioctl = kvm_vm_ioctl,
  2419. .mmap = kvm_vm_mmap,
  2420. };
  2421. static int kvm_dev_ioctl_create_vm(void)
  2422. {
  2423. int fd, r;
  2424. struct inode *inode;
  2425. struct file *file;
  2426. struct kvm *kvm;
  2427. kvm = kvm_create_vm();
  2428. if (IS_ERR(kvm))
  2429. return PTR_ERR(kvm);
  2430. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2431. if (r) {
  2432. kvm_destroy_vm(kvm);
  2433. return r;
  2434. }
  2435. kvm->filp = file;
  2436. return fd;
  2437. }
  2438. static long kvm_dev_ioctl(struct file *filp,
  2439. unsigned int ioctl, unsigned long arg)
  2440. {
  2441. void __user *argp = (void __user *)arg;
  2442. long r = -EINVAL;
  2443. switch (ioctl) {
  2444. case KVM_GET_API_VERSION:
  2445. r = -EINVAL;
  2446. if (arg)
  2447. goto out;
  2448. r = KVM_API_VERSION;
  2449. break;
  2450. case KVM_CREATE_VM:
  2451. r = -EINVAL;
  2452. if (arg)
  2453. goto out;
  2454. r = kvm_dev_ioctl_create_vm();
  2455. break;
  2456. case KVM_GET_MSR_INDEX_LIST: {
  2457. struct kvm_msr_list __user *user_msr_list = argp;
  2458. struct kvm_msr_list msr_list;
  2459. unsigned n;
  2460. r = -EFAULT;
  2461. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2462. goto out;
  2463. n = msr_list.nmsrs;
  2464. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2465. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2466. goto out;
  2467. r = -E2BIG;
  2468. if (n < num_msrs_to_save)
  2469. goto out;
  2470. r = -EFAULT;
  2471. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2472. num_msrs_to_save * sizeof(u32)))
  2473. goto out;
  2474. if (copy_to_user(user_msr_list->indices
  2475. + num_msrs_to_save * sizeof(u32),
  2476. &emulated_msrs,
  2477. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2478. goto out;
  2479. r = 0;
  2480. break;
  2481. }
  2482. case KVM_CHECK_EXTENSION:
  2483. /*
  2484. * No extensions defined at present.
  2485. */
  2486. r = 0;
  2487. break;
  2488. case KVM_GET_VCPU_MMAP_SIZE:
  2489. r = -EINVAL;
  2490. if (arg)
  2491. goto out;
  2492. r = 2 * PAGE_SIZE;
  2493. break;
  2494. default:
  2495. ;
  2496. }
  2497. out:
  2498. return r;
  2499. }
  2500. static struct file_operations kvm_chardev_ops = {
  2501. .open = kvm_dev_open,
  2502. .release = kvm_dev_release,
  2503. .unlocked_ioctl = kvm_dev_ioctl,
  2504. .compat_ioctl = kvm_dev_ioctl,
  2505. };
  2506. static struct miscdevice kvm_dev = {
  2507. KVM_MINOR,
  2508. "kvm",
  2509. &kvm_chardev_ops,
  2510. };
  2511. /*
  2512. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2513. * cached on it.
  2514. */
  2515. static void decache_vcpus_on_cpu(int cpu)
  2516. {
  2517. struct kvm *vm;
  2518. struct kvm_vcpu *vcpu;
  2519. int i;
  2520. spin_lock(&kvm_lock);
  2521. list_for_each_entry(vm, &vm_list, vm_list)
  2522. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2523. vcpu = &vm->vcpus[i];
  2524. /*
  2525. * If the vcpu is locked, then it is running on some
  2526. * other cpu and therefore it is not cached on the
  2527. * cpu in question.
  2528. *
  2529. * If it's not locked, check the last cpu it executed
  2530. * on.
  2531. */
  2532. if (mutex_trylock(&vcpu->mutex)) {
  2533. if (vcpu->cpu == cpu) {
  2534. kvm_arch_ops->vcpu_decache(vcpu);
  2535. vcpu->cpu = -1;
  2536. }
  2537. mutex_unlock(&vcpu->mutex);
  2538. }
  2539. }
  2540. spin_unlock(&kvm_lock);
  2541. }
  2542. static void hardware_enable(void *junk)
  2543. {
  2544. int cpu = raw_smp_processor_id();
  2545. if (cpu_isset(cpu, cpus_hardware_enabled))
  2546. return;
  2547. cpu_set(cpu, cpus_hardware_enabled);
  2548. kvm_arch_ops->hardware_enable(NULL);
  2549. }
  2550. static void hardware_disable(void *junk)
  2551. {
  2552. int cpu = raw_smp_processor_id();
  2553. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2554. return;
  2555. cpu_clear(cpu, cpus_hardware_enabled);
  2556. decache_vcpus_on_cpu(cpu);
  2557. kvm_arch_ops->hardware_disable(NULL);
  2558. }
  2559. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2560. void *v)
  2561. {
  2562. int cpu = (long)v;
  2563. switch (val) {
  2564. case CPU_DYING:
  2565. case CPU_DYING_FROZEN:
  2566. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2567. cpu);
  2568. hardware_disable(NULL);
  2569. break;
  2570. case CPU_UP_CANCELED:
  2571. case CPU_UP_CANCELED_FROZEN:
  2572. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2573. cpu);
  2574. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2575. break;
  2576. case CPU_ONLINE:
  2577. case CPU_ONLINE_FROZEN:
  2578. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2579. cpu);
  2580. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2581. break;
  2582. }
  2583. return NOTIFY_OK;
  2584. }
  2585. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2586. void *v)
  2587. {
  2588. if (val == SYS_RESTART) {
  2589. /*
  2590. * Some (well, at least mine) BIOSes hang on reboot if
  2591. * in vmx root mode.
  2592. */
  2593. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2594. on_each_cpu(hardware_disable, NULL, 0, 1);
  2595. }
  2596. return NOTIFY_OK;
  2597. }
  2598. static struct notifier_block kvm_reboot_notifier = {
  2599. .notifier_call = kvm_reboot,
  2600. .priority = 0,
  2601. };
  2602. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2603. {
  2604. memset(bus, 0, sizeof(*bus));
  2605. }
  2606. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2607. {
  2608. int i;
  2609. for (i = 0; i < bus->dev_count; i++) {
  2610. struct kvm_io_device *pos = bus->devs[i];
  2611. kvm_iodevice_destructor(pos);
  2612. }
  2613. }
  2614. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2615. {
  2616. int i;
  2617. for (i = 0; i < bus->dev_count; i++) {
  2618. struct kvm_io_device *pos = bus->devs[i];
  2619. if (pos->in_range(pos, addr))
  2620. return pos;
  2621. }
  2622. return NULL;
  2623. }
  2624. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2625. {
  2626. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2627. bus->devs[bus->dev_count++] = dev;
  2628. }
  2629. static struct notifier_block kvm_cpu_notifier = {
  2630. .notifier_call = kvm_cpu_hotplug,
  2631. .priority = 20, /* must be > scheduler priority */
  2632. };
  2633. static u64 stat_get(void *_offset)
  2634. {
  2635. unsigned offset = (long)_offset;
  2636. u64 total = 0;
  2637. struct kvm *kvm;
  2638. struct kvm_vcpu *vcpu;
  2639. int i;
  2640. spin_lock(&kvm_lock);
  2641. list_for_each_entry(kvm, &vm_list, vm_list)
  2642. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2643. vcpu = &kvm->vcpus[i];
  2644. total += *(u32 *)((void *)vcpu + offset);
  2645. }
  2646. spin_unlock(&kvm_lock);
  2647. return total;
  2648. }
  2649. static void stat_set(void *offset, u64 val)
  2650. {
  2651. }
  2652. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2653. static __init void kvm_init_debug(void)
  2654. {
  2655. struct kvm_stats_debugfs_item *p;
  2656. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2657. for (p = debugfs_entries; p->name; ++p)
  2658. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2659. (void *)(long)p->offset,
  2660. &stat_fops);
  2661. }
  2662. static void kvm_exit_debug(void)
  2663. {
  2664. struct kvm_stats_debugfs_item *p;
  2665. for (p = debugfs_entries; p->name; ++p)
  2666. debugfs_remove(p->dentry);
  2667. debugfs_remove(debugfs_dir);
  2668. }
  2669. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2670. {
  2671. hardware_disable(NULL);
  2672. return 0;
  2673. }
  2674. static int kvm_resume(struct sys_device *dev)
  2675. {
  2676. hardware_enable(NULL);
  2677. return 0;
  2678. }
  2679. static struct sysdev_class kvm_sysdev_class = {
  2680. set_kset_name("kvm"),
  2681. .suspend = kvm_suspend,
  2682. .resume = kvm_resume,
  2683. };
  2684. static struct sys_device kvm_sysdev = {
  2685. .id = 0,
  2686. .cls = &kvm_sysdev_class,
  2687. };
  2688. hpa_t bad_page_address;
  2689. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2690. {
  2691. int r;
  2692. if (kvm_arch_ops) {
  2693. printk(KERN_ERR "kvm: already loaded the other module\n");
  2694. return -EEXIST;
  2695. }
  2696. if (!ops->cpu_has_kvm_support()) {
  2697. printk(KERN_ERR "kvm: no hardware support\n");
  2698. return -EOPNOTSUPP;
  2699. }
  2700. if (ops->disabled_by_bios()) {
  2701. printk(KERN_ERR "kvm: disabled by bios\n");
  2702. return -EOPNOTSUPP;
  2703. }
  2704. kvm_arch_ops = ops;
  2705. r = kvm_arch_ops->hardware_setup();
  2706. if (r < 0)
  2707. goto out;
  2708. on_each_cpu(hardware_enable, NULL, 0, 1);
  2709. r = register_cpu_notifier(&kvm_cpu_notifier);
  2710. if (r)
  2711. goto out_free_1;
  2712. register_reboot_notifier(&kvm_reboot_notifier);
  2713. r = sysdev_class_register(&kvm_sysdev_class);
  2714. if (r)
  2715. goto out_free_2;
  2716. r = sysdev_register(&kvm_sysdev);
  2717. if (r)
  2718. goto out_free_3;
  2719. kvm_chardev_ops.owner = module;
  2720. r = misc_register(&kvm_dev);
  2721. if (r) {
  2722. printk (KERN_ERR "kvm: misc device register failed\n");
  2723. goto out_free;
  2724. }
  2725. return r;
  2726. out_free:
  2727. sysdev_unregister(&kvm_sysdev);
  2728. out_free_3:
  2729. sysdev_class_unregister(&kvm_sysdev_class);
  2730. out_free_2:
  2731. unregister_reboot_notifier(&kvm_reboot_notifier);
  2732. unregister_cpu_notifier(&kvm_cpu_notifier);
  2733. out_free_1:
  2734. on_each_cpu(hardware_disable, NULL, 0, 1);
  2735. kvm_arch_ops->hardware_unsetup();
  2736. out:
  2737. kvm_arch_ops = NULL;
  2738. return r;
  2739. }
  2740. void kvm_exit_arch(void)
  2741. {
  2742. misc_deregister(&kvm_dev);
  2743. sysdev_unregister(&kvm_sysdev);
  2744. sysdev_class_unregister(&kvm_sysdev_class);
  2745. unregister_reboot_notifier(&kvm_reboot_notifier);
  2746. unregister_cpu_notifier(&kvm_cpu_notifier);
  2747. on_each_cpu(hardware_disable, NULL, 0, 1);
  2748. kvm_arch_ops->hardware_unsetup();
  2749. kvm_arch_ops = NULL;
  2750. }
  2751. static __init int kvm_init(void)
  2752. {
  2753. static struct page *bad_page;
  2754. int r;
  2755. r = kvm_mmu_module_init();
  2756. if (r)
  2757. goto out4;
  2758. kvm_init_debug();
  2759. kvm_init_msr_list();
  2760. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2761. r = -ENOMEM;
  2762. goto out;
  2763. }
  2764. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2765. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2766. return 0;
  2767. out:
  2768. kvm_exit_debug();
  2769. kvm_mmu_module_exit();
  2770. out4:
  2771. return r;
  2772. }
  2773. static __exit void kvm_exit(void)
  2774. {
  2775. kvm_exit_debug();
  2776. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2777. kvm_mmu_module_exit();
  2778. }
  2779. module_init(kvm_init)
  2780. module_exit(kvm_exit)
  2781. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2782. EXPORT_SYMBOL_GPL(kvm_exit_arch);