af_iucv.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  80. struct packet_type *pt, struct net_device *orig_dev);
  81. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  82. struct sk_buff *skb, u8 flags);
  83. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  84. /* Call Back functions */
  85. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  86. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  88. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  89. u8 ipuser[16]);
  90. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  91. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  92. static struct iucv_sock_list iucv_sk_list = {
  93. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  94. .autobind_name = ATOMIC_INIT(0)
  95. };
  96. static struct iucv_handler af_iucv_handler = {
  97. .path_pending = iucv_callback_connreq,
  98. .path_complete = iucv_callback_connack,
  99. .path_severed = iucv_callback_connrej,
  100. .message_pending = iucv_callback_rx,
  101. .message_complete = iucv_callback_txdone,
  102. .path_quiesced = iucv_callback_shutdown,
  103. };
  104. static inline void high_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(dst, src, 8);
  107. }
  108. static inline void low_nmcpy(unsigned char *dst, char *src)
  109. {
  110. memcpy(&dst[8], src, 8);
  111. }
  112. static void iucv_skb_queue_purge(struct sk_buff_head *list)
  113. {
  114. struct sk_buff *skb;
  115. while ((skb = skb_dequeue(list)) != NULL) {
  116. if (skb->dev)
  117. dev_put(skb->dev);
  118. kfree_skb(skb);
  119. }
  120. }
  121. static int afiucv_pm_prepare(struct device *dev)
  122. {
  123. #ifdef CONFIG_PM_DEBUG
  124. printk(KERN_WARNING "afiucv_pm_prepare\n");
  125. #endif
  126. return 0;
  127. }
  128. static void afiucv_pm_complete(struct device *dev)
  129. {
  130. #ifdef CONFIG_PM_DEBUG
  131. printk(KERN_WARNING "afiucv_pm_complete\n");
  132. #endif
  133. }
  134. /**
  135. * afiucv_pm_freeze() - Freeze PM callback
  136. * @dev: AFIUCV dummy device
  137. *
  138. * Sever all established IUCV communication pathes
  139. */
  140. static int afiucv_pm_freeze(struct device *dev)
  141. {
  142. struct iucv_sock *iucv;
  143. struct sock *sk;
  144. struct hlist_node *node;
  145. int err = 0;
  146. #ifdef CONFIG_PM_DEBUG
  147. printk(KERN_WARNING "afiucv_pm_freeze\n");
  148. #endif
  149. read_lock(&iucv_sk_list.lock);
  150. sk_for_each(sk, node, &iucv_sk_list.head) {
  151. iucv = iucv_sk(sk);
  152. iucv_skb_queue_purge(&iucv->send_skb_q);
  153. skb_queue_purge(&iucv->backlog_skb_q);
  154. switch (sk->sk_state) {
  155. case IUCV_SEVERED:
  156. case IUCV_DISCONN:
  157. case IUCV_CLOSING:
  158. case IUCV_CONNECTED:
  159. if (iucv->path) {
  160. err = pr_iucv->path_sever(iucv->path, NULL);
  161. iucv_path_free(iucv->path);
  162. iucv->path = NULL;
  163. }
  164. break;
  165. case IUCV_OPEN:
  166. case IUCV_BOUND:
  167. case IUCV_LISTEN:
  168. case IUCV_CLOSED:
  169. default:
  170. break;
  171. }
  172. }
  173. read_unlock(&iucv_sk_list.lock);
  174. return err;
  175. }
  176. /**
  177. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  178. * @dev: AFIUCV dummy device
  179. *
  180. * socket clean up after freeze
  181. */
  182. static int afiucv_pm_restore_thaw(struct device *dev)
  183. {
  184. struct sock *sk;
  185. struct hlist_node *node;
  186. #ifdef CONFIG_PM_DEBUG
  187. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  188. #endif
  189. read_lock(&iucv_sk_list.lock);
  190. sk_for_each(sk, node, &iucv_sk_list.head) {
  191. switch (sk->sk_state) {
  192. case IUCV_CONNECTED:
  193. sk->sk_err = EPIPE;
  194. sk->sk_state = IUCV_DISCONN;
  195. sk->sk_state_change(sk);
  196. break;
  197. case IUCV_DISCONN:
  198. case IUCV_SEVERED:
  199. case IUCV_CLOSING:
  200. case IUCV_LISTEN:
  201. case IUCV_BOUND:
  202. case IUCV_OPEN:
  203. default:
  204. break;
  205. }
  206. }
  207. read_unlock(&iucv_sk_list.lock);
  208. return 0;
  209. }
  210. static const struct dev_pm_ops afiucv_pm_ops = {
  211. .prepare = afiucv_pm_prepare,
  212. .complete = afiucv_pm_complete,
  213. .freeze = afiucv_pm_freeze,
  214. .thaw = afiucv_pm_restore_thaw,
  215. .restore = afiucv_pm_restore_thaw,
  216. };
  217. static struct device_driver af_iucv_driver = {
  218. .owner = THIS_MODULE,
  219. .name = "afiucv",
  220. .bus = NULL,
  221. .pm = &afiucv_pm_ops,
  222. };
  223. /* dummy device used as trigger for PM functions */
  224. static struct device *af_iucv_dev;
  225. /**
  226. * iucv_msg_length() - Returns the length of an iucv message.
  227. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  228. *
  229. * The function returns the length of the specified iucv message @msg of data
  230. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  231. *
  232. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  233. * data:
  234. * PRMDATA[0..6] socket data (max 7 bytes);
  235. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  236. *
  237. * The socket data length is computed by subtracting the socket data length
  238. * value from 0xFF.
  239. * If the socket data len is greater 7, then PRMDATA can be used for special
  240. * notifications (see iucv_sock_shutdown); and further,
  241. * if the socket data len is > 7, the function returns 8.
  242. *
  243. * Use this function to allocate socket buffers to store iucv message data.
  244. */
  245. static inline size_t iucv_msg_length(struct iucv_message *msg)
  246. {
  247. size_t datalen;
  248. if (msg->flags & IUCV_IPRMDATA) {
  249. datalen = 0xff - msg->rmmsg[7];
  250. return (datalen < 8) ? datalen : 8;
  251. }
  252. return msg->length;
  253. }
  254. /**
  255. * iucv_sock_in_state() - check for specific states
  256. * @sk: sock structure
  257. * @state: first iucv sk state
  258. * @state: second iucv sk state
  259. *
  260. * Returns true if the socket in either in the first or second state.
  261. */
  262. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  263. {
  264. return (sk->sk_state == state || sk->sk_state == state2);
  265. }
  266. /**
  267. * iucv_below_msglim() - function to check if messages can be sent
  268. * @sk: sock structure
  269. *
  270. * Returns true if the send queue length is lower than the message limit.
  271. * Always returns true if the socket is not connected (no iucv path for
  272. * checking the message limit).
  273. */
  274. static inline int iucv_below_msglim(struct sock *sk)
  275. {
  276. struct iucv_sock *iucv = iucv_sk(sk);
  277. if (sk->sk_state != IUCV_CONNECTED)
  278. return 1;
  279. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  280. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  281. else
  282. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  283. (atomic_read(&iucv->pendings) <= 0));
  284. }
  285. /**
  286. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  287. */
  288. static void iucv_sock_wake_msglim(struct sock *sk)
  289. {
  290. struct socket_wq *wq;
  291. rcu_read_lock();
  292. wq = rcu_dereference(sk->sk_wq);
  293. if (wq_has_sleeper(wq))
  294. wake_up_interruptible_all(&wq->wait);
  295. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  296. rcu_read_unlock();
  297. }
  298. /**
  299. * afiucv_hs_send() - send a message through HiperSockets transport
  300. */
  301. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  302. struct sk_buff *skb, u8 flags)
  303. {
  304. struct net *net = sock_net(sock);
  305. struct iucv_sock *iucv = iucv_sk(sock);
  306. struct af_iucv_trans_hdr *phs_hdr;
  307. struct sk_buff *nskb;
  308. int err, confirm_recv = 0;
  309. memset(skb->head, 0, ETH_HLEN);
  310. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  311. sizeof(struct af_iucv_trans_hdr));
  312. skb_reset_mac_header(skb);
  313. skb_reset_network_header(skb);
  314. skb_push(skb, ETH_HLEN);
  315. skb_reset_mac_header(skb);
  316. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  317. phs_hdr->magic = ETH_P_AF_IUCV;
  318. phs_hdr->version = 1;
  319. phs_hdr->flags = flags;
  320. if (flags == AF_IUCV_FLAG_SYN)
  321. phs_hdr->window = iucv->msglimit;
  322. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  323. confirm_recv = atomic_read(&iucv->msg_recv);
  324. phs_hdr->window = confirm_recv;
  325. if (confirm_recv)
  326. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  327. }
  328. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  329. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  330. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  331. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  332. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  333. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  334. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  335. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  336. if (imsg)
  337. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  338. skb->dev = dev_get_by_index(net, sock->sk_bound_dev_if);
  339. if (!skb->dev)
  340. return -ENODEV;
  341. if (!(skb->dev->flags & IFF_UP))
  342. return -ENETDOWN;
  343. if (skb->len > skb->dev->mtu) {
  344. if (sock->sk_type == SOCK_SEQPACKET)
  345. return -EMSGSIZE;
  346. else
  347. skb_trim(skb, skb->dev->mtu);
  348. }
  349. skb->protocol = ETH_P_AF_IUCV;
  350. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  351. nskb = skb_clone(skb, GFP_ATOMIC);
  352. if (!nskb)
  353. return -ENOMEM;
  354. skb_queue_tail(&iucv->send_skb_q, nskb);
  355. err = dev_queue_xmit(skb);
  356. if (err) {
  357. skb_unlink(nskb, &iucv->send_skb_q);
  358. dev_put(nskb->dev);
  359. kfree_skb(nskb);
  360. } else {
  361. atomic_sub(confirm_recv, &iucv->msg_recv);
  362. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  363. }
  364. return err;
  365. }
  366. static struct sock *__iucv_get_sock_by_name(char *nm)
  367. {
  368. struct sock *sk;
  369. struct hlist_node *node;
  370. sk_for_each(sk, node, &iucv_sk_list.head)
  371. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  372. return sk;
  373. return NULL;
  374. }
  375. static void iucv_sock_destruct(struct sock *sk)
  376. {
  377. skb_queue_purge(&sk->sk_receive_queue);
  378. skb_queue_purge(&sk->sk_write_queue);
  379. }
  380. /* Cleanup Listen */
  381. static void iucv_sock_cleanup_listen(struct sock *parent)
  382. {
  383. struct sock *sk;
  384. /* Close non-accepted connections */
  385. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  386. iucv_sock_close(sk);
  387. iucv_sock_kill(sk);
  388. }
  389. parent->sk_state = IUCV_CLOSED;
  390. }
  391. /* Kill socket (only if zapped and orphaned) */
  392. static void iucv_sock_kill(struct sock *sk)
  393. {
  394. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  395. return;
  396. iucv_sock_unlink(&iucv_sk_list, sk);
  397. sock_set_flag(sk, SOCK_DEAD);
  398. sock_put(sk);
  399. }
  400. /* Close an IUCV socket */
  401. static void iucv_sock_close(struct sock *sk)
  402. {
  403. unsigned char user_data[16];
  404. struct iucv_sock *iucv = iucv_sk(sk);
  405. unsigned long timeo;
  406. int err, blen;
  407. struct sk_buff *skb;
  408. lock_sock(sk);
  409. switch (sk->sk_state) {
  410. case IUCV_LISTEN:
  411. iucv_sock_cleanup_listen(sk);
  412. break;
  413. case IUCV_CONNECTED:
  414. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  415. /* send fin */
  416. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  417. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  418. if (skb) {
  419. skb_reserve(skb, blen);
  420. err = afiucv_hs_send(NULL, sk, skb,
  421. AF_IUCV_FLAG_FIN);
  422. }
  423. sk->sk_state = IUCV_DISCONN;
  424. sk->sk_state_change(sk);
  425. }
  426. case IUCV_DISCONN: /* fall through */
  427. sk->sk_state = IUCV_CLOSING;
  428. sk->sk_state_change(sk);
  429. if (!skb_queue_empty(&iucv->send_skb_q)) {
  430. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  431. timeo = sk->sk_lingertime;
  432. else
  433. timeo = IUCV_DISCONN_TIMEOUT;
  434. iucv_sock_wait(sk,
  435. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  436. timeo);
  437. }
  438. case IUCV_CLOSING: /* fall through */
  439. sk->sk_state = IUCV_CLOSED;
  440. sk->sk_state_change(sk);
  441. if (iucv->path) {
  442. low_nmcpy(user_data, iucv->src_name);
  443. high_nmcpy(user_data, iucv->dst_name);
  444. ASCEBC(user_data, sizeof(user_data));
  445. pr_iucv->path_sever(iucv->path, user_data);
  446. iucv_path_free(iucv->path);
  447. iucv->path = NULL;
  448. }
  449. sk->sk_err = ECONNRESET;
  450. sk->sk_state_change(sk);
  451. iucv_skb_queue_purge(&iucv->send_skb_q);
  452. skb_queue_purge(&iucv->backlog_skb_q);
  453. break;
  454. default:
  455. /* nothing to do here */
  456. break;
  457. }
  458. /* mark socket for deletion by iucv_sock_kill() */
  459. sock_set_flag(sk, SOCK_ZAPPED);
  460. release_sock(sk);
  461. }
  462. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  463. {
  464. if (parent)
  465. sk->sk_type = parent->sk_type;
  466. }
  467. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  468. {
  469. struct sock *sk;
  470. struct iucv_sock *iucv;
  471. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  472. if (!sk)
  473. return NULL;
  474. iucv = iucv_sk(sk);
  475. sock_init_data(sock, sk);
  476. INIT_LIST_HEAD(&iucv->accept_q);
  477. spin_lock_init(&iucv->accept_q_lock);
  478. skb_queue_head_init(&iucv->send_skb_q);
  479. INIT_LIST_HEAD(&iucv->message_q.list);
  480. spin_lock_init(&iucv->message_q.lock);
  481. skb_queue_head_init(&iucv->backlog_skb_q);
  482. iucv->send_tag = 0;
  483. atomic_set(&iucv->pendings, 0);
  484. iucv->flags = 0;
  485. iucv->msglimit = 0;
  486. atomic_set(&iucv->msg_sent, 0);
  487. atomic_set(&iucv->msg_recv, 0);
  488. iucv->path = NULL;
  489. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  490. memset(&iucv->src_user_id , 0, 32);
  491. if (pr_iucv)
  492. iucv->transport = AF_IUCV_TRANS_IUCV;
  493. else
  494. iucv->transport = AF_IUCV_TRANS_HIPER;
  495. sk->sk_destruct = iucv_sock_destruct;
  496. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  497. sk->sk_allocation = GFP_DMA;
  498. sock_reset_flag(sk, SOCK_ZAPPED);
  499. sk->sk_protocol = proto;
  500. sk->sk_state = IUCV_OPEN;
  501. iucv_sock_link(&iucv_sk_list, sk);
  502. return sk;
  503. }
  504. /* Create an IUCV socket */
  505. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  506. int kern)
  507. {
  508. struct sock *sk;
  509. if (protocol && protocol != PF_IUCV)
  510. return -EPROTONOSUPPORT;
  511. sock->state = SS_UNCONNECTED;
  512. switch (sock->type) {
  513. case SOCK_STREAM:
  514. sock->ops = &iucv_sock_ops;
  515. break;
  516. case SOCK_SEQPACKET:
  517. /* currently, proto ops can handle both sk types */
  518. sock->ops = &iucv_sock_ops;
  519. break;
  520. default:
  521. return -ESOCKTNOSUPPORT;
  522. }
  523. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  524. if (!sk)
  525. return -ENOMEM;
  526. iucv_sock_init(sk, NULL);
  527. return 0;
  528. }
  529. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  530. {
  531. write_lock_bh(&l->lock);
  532. sk_add_node(sk, &l->head);
  533. write_unlock_bh(&l->lock);
  534. }
  535. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  536. {
  537. write_lock_bh(&l->lock);
  538. sk_del_node_init(sk);
  539. write_unlock_bh(&l->lock);
  540. }
  541. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  542. {
  543. unsigned long flags;
  544. struct iucv_sock *par = iucv_sk(parent);
  545. sock_hold(sk);
  546. spin_lock_irqsave(&par->accept_q_lock, flags);
  547. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  548. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  549. iucv_sk(sk)->parent = parent;
  550. sk_acceptq_added(parent);
  551. }
  552. void iucv_accept_unlink(struct sock *sk)
  553. {
  554. unsigned long flags;
  555. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  556. spin_lock_irqsave(&par->accept_q_lock, flags);
  557. list_del_init(&iucv_sk(sk)->accept_q);
  558. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  559. sk_acceptq_removed(iucv_sk(sk)->parent);
  560. iucv_sk(sk)->parent = NULL;
  561. sock_put(sk);
  562. }
  563. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  564. {
  565. struct iucv_sock *isk, *n;
  566. struct sock *sk;
  567. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  568. sk = (struct sock *) isk;
  569. lock_sock(sk);
  570. if (sk->sk_state == IUCV_CLOSED) {
  571. iucv_accept_unlink(sk);
  572. release_sock(sk);
  573. continue;
  574. }
  575. if (sk->sk_state == IUCV_CONNECTED ||
  576. sk->sk_state == IUCV_SEVERED ||
  577. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  578. !newsock) {
  579. iucv_accept_unlink(sk);
  580. if (newsock)
  581. sock_graft(sk, newsock);
  582. if (sk->sk_state == IUCV_SEVERED)
  583. sk->sk_state = IUCV_DISCONN;
  584. release_sock(sk);
  585. return sk;
  586. }
  587. release_sock(sk);
  588. }
  589. return NULL;
  590. }
  591. /* Bind an unbound socket */
  592. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  593. int addr_len)
  594. {
  595. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  596. struct sock *sk = sock->sk;
  597. struct iucv_sock *iucv;
  598. int err = 0;
  599. struct net_device *dev;
  600. char uid[9];
  601. /* Verify the input sockaddr */
  602. if (!addr || addr->sa_family != AF_IUCV)
  603. return -EINVAL;
  604. lock_sock(sk);
  605. if (sk->sk_state != IUCV_OPEN) {
  606. err = -EBADFD;
  607. goto done;
  608. }
  609. write_lock_bh(&iucv_sk_list.lock);
  610. iucv = iucv_sk(sk);
  611. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  612. err = -EADDRINUSE;
  613. goto done_unlock;
  614. }
  615. if (iucv->path)
  616. goto done_unlock;
  617. /* Bind the socket */
  618. if (pr_iucv)
  619. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  620. goto vm_bind; /* VM IUCV transport */
  621. /* try hiper transport */
  622. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  623. ASCEBC(uid, 8);
  624. rcu_read_lock();
  625. for_each_netdev_rcu(&init_net, dev) {
  626. if (!memcmp(dev->perm_addr, uid, 8)) {
  627. memcpy(iucv->src_name, sa->siucv_name, 8);
  628. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  629. sk->sk_bound_dev_if = dev->ifindex;
  630. sk->sk_state = IUCV_BOUND;
  631. iucv->transport = AF_IUCV_TRANS_HIPER;
  632. if (!iucv->msglimit)
  633. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  634. rcu_read_unlock();
  635. goto done_unlock;
  636. }
  637. }
  638. rcu_read_unlock();
  639. vm_bind:
  640. if (pr_iucv) {
  641. /* use local userid for backward compat */
  642. memcpy(iucv->src_name, sa->siucv_name, 8);
  643. memcpy(iucv->src_user_id, iucv_userid, 8);
  644. sk->sk_state = IUCV_BOUND;
  645. iucv->transport = AF_IUCV_TRANS_IUCV;
  646. if (!iucv->msglimit)
  647. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  648. goto done_unlock;
  649. }
  650. /* found no dev to bind */
  651. err = -ENODEV;
  652. done_unlock:
  653. /* Release the socket list lock */
  654. write_unlock_bh(&iucv_sk_list.lock);
  655. done:
  656. release_sock(sk);
  657. return err;
  658. }
  659. /* Automatically bind an unbound socket */
  660. static int iucv_sock_autobind(struct sock *sk)
  661. {
  662. struct iucv_sock *iucv = iucv_sk(sk);
  663. char query_buffer[80];
  664. char name[12];
  665. int err = 0;
  666. /* Set the userid and name */
  667. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  668. if (unlikely(err))
  669. return -EPROTO;
  670. memcpy(iucv->src_user_id, query_buffer, 8);
  671. write_lock_bh(&iucv_sk_list.lock);
  672. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  673. while (__iucv_get_sock_by_name(name)) {
  674. sprintf(name, "%08x",
  675. atomic_inc_return(&iucv_sk_list.autobind_name));
  676. }
  677. write_unlock_bh(&iucv_sk_list.lock);
  678. memcpy(&iucv->src_name, name, 8);
  679. if (!iucv->msglimit)
  680. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  681. return err;
  682. }
  683. static int afiucv_hs_connect(struct socket *sock)
  684. {
  685. struct sock *sk = sock->sk;
  686. struct sk_buff *skb;
  687. int blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  688. int err = 0;
  689. /* send syn */
  690. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  691. if (!skb) {
  692. err = -ENOMEM;
  693. goto done;
  694. }
  695. skb->dev = NULL;
  696. skb_reserve(skb, blen);
  697. err = afiucv_hs_send(NULL, sk, skb, AF_IUCV_FLAG_SYN);
  698. done:
  699. return err;
  700. }
  701. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  702. {
  703. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  704. struct sock *sk = sock->sk;
  705. struct iucv_sock *iucv = iucv_sk(sk);
  706. unsigned char user_data[16];
  707. int err;
  708. high_nmcpy(user_data, sa->siucv_name);
  709. low_nmcpy(user_data, iucv->src_name);
  710. ASCEBC(user_data, sizeof(user_data));
  711. /* Create path. */
  712. iucv->path = iucv_path_alloc(iucv->msglimit,
  713. IUCV_IPRMDATA, GFP_KERNEL);
  714. if (!iucv->path) {
  715. err = -ENOMEM;
  716. goto done;
  717. }
  718. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  719. sa->siucv_user_id, NULL, user_data,
  720. sk);
  721. if (err) {
  722. iucv_path_free(iucv->path);
  723. iucv->path = NULL;
  724. switch (err) {
  725. case 0x0b: /* Target communicator is not logged on */
  726. err = -ENETUNREACH;
  727. break;
  728. case 0x0d: /* Max connections for this guest exceeded */
  729. case 0x0e: /* Max connections for target guest exceeded */
  730. err = -EAGAIN;
  731. break;
  732. case 0x0f: /* Missing IUCV authorization */
  733. err = -EACCES;
  734. break;
  735. default:
  736. err = -ECONNREFUSED;
  737. break;
  738. }
  739. }
  740. done:
  741. return err;
  742. }
  743. /* Connect an unconnected socket */
  744. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  745. int alen, int flags)
  746. {
  747. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  748. struct sock *sk = sock->sk;
  749. struct iucv_sock *iucv = iucv_sk(sk);
  750. int err;
  751. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  752. return -EINVAL;
  753. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  754. return -EBADFD;
  755. if (sk->sk_state == IUCV_OPEN &&
  756. iucv->transport == AF_IUCV_TRANS_HIPER)
  757. return -EBADFD; /* explicit bind required */
  758. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  759. return -EINVAL;
  760. if (sk->sk_state == IUCV_OPEN) {
  761. err = iucv_sock_autobind(sk);
  762. if (unlikely(err))
  763. return err;
  764. }
  765. lock_sock(sk);
  766. /* Set the destination information */
  767. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  768. memcpy(iucv->dst_name, sa->siucv_name, 8);
  769. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  770. err = afiucv_hs_connect(sock);
  771. else
  772. err = afiucv_path_connect(sock, addr);
  773. if (err)
  774. goto done;
  775. if (sk->sk_state != IUCV_CONNECTED)
  776. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  777. IUCV_DISCONN),
  778. sock_sndtimeo(sk, flags & O_NONBLOCK));
  779. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  780. err = -ECONNREFUSED;
  781. if (err && iucv->transport == AF_IUCV_TRANS_IUCV) {
  782. pr_iucv->path_sever(iucv->path, NULL);
  783. iucv_path_free(iucv->path);
  784. iucv->path = NULL;
  785. }
  786. done:
  787. release_sock(sk);
  788. return err;
  789. }
  790. /* Move a socket into listening state. */
  791. static int iucv_sock_listen(struct socket *sock, int backlog)
  792. {
  793. struct sock *sk = sock->sk;
  794. int err;
  795. lock_sock(sk);
  796. err = -EINVAL;
  797. if (sk->sk_state != IUCV_BOUND)
  798. goto done;
  799. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  800. goto done;
  801. sk->sk_max_ack_backlog = backlog;
  802. sk->sk_ack_backlog = 0;
  803. sk->sk_state = IUCV_LISTEN;
  804. err = 0;
  805. done:
  806. release_sock(sk);
  807. return err;
  808. }
  809. /* Accept a pending connection */
  810. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  811. int flags)
  812. {
  813. DECLARE_WAITQUEUE(wait, current);
  814. struct sock *sk = sock->sk, *nsk;
  815. long timeo;
  816. int err = 0;
  817. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  818. if (sk->sk_state != IUCV_LISTEN) {
  819. err = -EBADFD;
  820. goto done;
  821. }
  822. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  823. /* Wait for an incoming connection */
  824. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  825. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  826. set_current_state(TASK_INTERRUPTIBLE);
  827. if (!timeo) {
  828. err = -EAGAIN;
  829. break;
  830. }
  831. release_sock(sk);
  832. timeo = schedule_timeout(timeo);
  833. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  834. if (sk->sk_state != IUCV_LISTEN) {
  835. err = -EBADFD;
  836. break;
  837. }
  838. if (signal_pending(current)) {
  839. err = sock_intr_errno(timeo);
  840. break;
  841. }
  842. }
  843. set_current_state(TASK_RUNNING);
  844. remove_wait_queue(sk_sleep(sk), &wait);
  845. if (err)
  846. goto done;
  847. newsock->state = SS_CONNECTED;
  848. done:
  849. release_sock(sk);
  850. return err;
  851. }
  852. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  853. int *len, int peer)
  854. {
  855. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  856. struct sock *sk = sock->sk;
  857. struct iucv_sock *iucv = iucv_sk(sk);
  858. addr->sa_family = AF_IUCV;
  859. *len = sizeof(struct sockaddr_iucv);
  860. if (peer) {
  861. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  862. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  863. } else {
  864. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  865. memcpy(siucv->siucv_name, iucv->src_name, 8);
  866. }
  867. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  868. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  869. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  870. return 0;
  871. }
  872. /**
  873. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  874. * @path: IUCV path
  875. * @msg: Pointer to a struct iucv_message
  876. * @skb: The socket data to send, skb->len MUST BE <= 7
  877. *
  878. * Send the socket data in the parameter list in the iucv message
  879. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  880. * list and the socket data len at index 7 (last byte).
  881. * See also iucv_msg_length().
  882. *
  883. * Returns the error code from the iucv_message_send() call.
  884. */
  885. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  886. struct sk_buff *skb)
  887. {
  888. u8 prmdata[8];
  889. memcpy(prmdata, (void *) skb->data, skb->len);
  890. prmdata[7] = 0xff - (u8) skb->len;
  891. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  892. (void *) prmdata, 8);
  893. }
  894. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  895. struct msghdr *msg, size_t len)
  896. {
  897. struct sock *sk = sock->sk;
  898. struct iucv_sock *iucv = iucv_sk(sk);
  899. struct sk_buff *skb;
  900. struct iucv_message txmsg;
  901. struct cmsghdr *cmsg;
  902. int cmsg_done;
  903. long timeo;
  904. char user_id[9];
  905. char appl_id[9];
  906. int err;
  907. int noblock = msg->msg_flags & MSG_DONTWAIT;
  908. err = sock_error(sk);
  909. if (err)
  910. return err;
  911. if (msg->msg_flags & MSG_OOB)
  912. return -EOPNOTSUPP;
  913. /* SOCK_SEQPACKET: we do not support segmented records */
  914. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  915. return -EOPNOTSUPP;
  916. lock_sock(sk);
  917. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  918. err = -EPIPE;
  919. goto out;
  920. }
  921. /* Return if the socket is not in connected state */
  922. if (sk->sk_state != IUCV_CONNECTED) {
  923. err = -ENOTCONN;
  924. goto out;
  925. }
  926. /* initialize defaults */
  927. cmsg_done = 0; /* check for duplicate headers */
  928. txmsg.class = 0;
  929. /* iterate over control messages */
  930. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  931. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  932. if (!CMSG_OK(msg, cmsg)) {
  933. err = -EINVAL;
  934. goto out;
  935. }
  936. if (cmsg->cmsg_level != SOL_IUCV)
  937. continue;
  938. if (cmsg->cmsg_type & cmsg_done) {
  939. err = -EINVAL;
  940. goto out;
  941. }
  942. cmsg_done |= cmsg->cmsg_type;
  943. switch (cmsg->cmsg_type) {
  944. case SCM_IUCV_TRGCLS:
  945. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  946. err = -EINVAL;
  947. goto out;
  948. }
  949. /* set iucv message target class */
  950. memcpy(&txmsg.class,
  951. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  952. break;
  953. default:
  954. err = -EINVAL;
  955. goto out;
  956. break;
  957. }
  958. }
  959. /* allocate one skb for each iucv message:
  960. * this is fine for SOCK_SEQPACKET (unless we want to support
  961. * segmented records using the MSG_EOR flag), but
  962. * for SOCK_STREAM we might want to improve it in future */
  963. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  964. skb = sock_alloc_send_skb(sk,
  965. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  966. noblock, &err);
  967. else
  968. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  969. if (!skb)
  970. goto out;
  971. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  972. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  973. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  974. err = -EFAULT;
  975. goto fail;
  976. }
  977. /* wait if outstanding messages for iucv path has reached */
  978. timeo = sock_sndtimeo(sk, noblock);
  979. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  980. if (err)
  981. goto fail;
  982. /* return -ECONNRESET if the socket is no longer connected */
  983. if (sk->sk_state != IUCV_CONNECTED) {
  984. err = -ECONNRESET;
  985. goto fail;
  986. }
  987. /* increment and save iucv message tag for msg_completion cbk */
  988. txmsg.tag = iucv->send_tag++;
  989. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  990. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  991. atomic_inc(&iucv->msg_sent);
  992. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  993. if (err) {
  994. atomic_dec(&iucv->msg_sent);
  995. goto fail;
  996. }
  997. goto release;
  998. }
  999. skb_queue_tail(&iucv->send_skb_q, skb);
  1000. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  1001. && skb->len <= 7) {
  1002. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1003. /* on success: there is no message_complete callback
  1004. * for an IPRMDATA msg; remove skb from send queue */
  1005. if (err == 0) {
  1006. skb_unlink(skb, &iucv->send_skb_q);
  1007. kfree_skb(skb);
  1008. }
  1009. /* this error should never happen since the
  1010. * IUCV_IPRMDATA path flag is set... sever path */
  1011. if (err == 0x15) {
  1012. pr_iucv->path_sever(iucv->path, NULL);
  1013. skb_unlink(skb, &iucv->send_skb_q);
  1014. err = -EPIPE;
  1015. goto fail;
  1016. }
  1017. } else
  1018. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1019. (void *) skb->data, skb->len);
  1020. if (err) {
  1021. if (err == 3) {
  1022. user_id[8] = 0;
  1023. memcpy(user_id, iucv->dst_user_id, 8);
  1024. appl_id[8] = 0;
  1025. memcpy(appl_id, iucv->dst_name, 8);
  1026. pr_err("Application %s on z/VM guest %s"
  1027. " exceeds message limit\n",
  1028. appl_id, user_id);
  1029. err = -EAGAIN;
  1030. } else
  1031. err = -EPIPE;
  1032. skb_unlink(skb, &iucv->send_skb_q);
  1033. goto fail;
  1034. }
  1035. release:
  1036. release_sock(sk);
  1037. return len;
  1038. fail:
  1039. if (skb->dev)
  1040. dev_put(skb->dev);
  1041. kfree_skb(skb);
  1042. out:
  1043. release_sock(sk);
  1044. return err;
  1045. }
  1046. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1047. *
  1048. * Locking: must be called with message_q.lock held
  1049. */
  1050. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1051. {
  1052. int dataleft, size, copied = 0;
  1053. struct sk_buff *nskb;
  1054. dataleft = len;
  1055. while (dataleft) {
  1056. if (dataleft >= sk->sk_rcvbuf / 4)
  1057. size = sk->sk_rcvbuf / 4;
  1058. else
  1059. size = dataleft;
  1060. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1061. if (!nskb)
  1062. return -ENOMEM;
  1063. /* copy target class to control buffer of new skb */
  1064. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1065. /* copy data fragment */
  1066. memcpy(nskb->data, skb->data + copied, size);
  1067. copied += size;
  1068. dataleft -= size;
  1069. skb_reset_transport_header(nskb);
  1070. skb_reset_network_header(nskb);
  1071. nskb->len = size;
  1072. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1073. }
  1074. return 0;
  1075. }
  1076. /* iucv_process_message() - Receive a single outstanding IUCV message
  1077. *
  1078. * Locking: must be called with message_q.lock held
  1079. */
  1080. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1081. struct iucv_path *path,
  1082. struct iucv_message *msg)
  1083. {
  1084. int rc;
  1085. unsigned int len;
  1086. len = iucv_msg_length(msg);
  1087. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1088. /* Note: the first 4 bytes are reserved for msg tag */
  1089. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1090. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1091. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1092. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1093. skb->data = NULL;
  1094. skb->len = 0;
  1095. }
  1096. } else {
  1097. rc = pr_iucv->message_receive(path, msg,
  1098. msg->flags & IUCV_IPRMDATA,
  1099. skb->data, len, NULL);
  1100. if (rc) {
  1101. kfree_skb(skb);
  1102. return;
  1103. }
  1104. /* we need to fragment iucv messages for SOCK_STREAM only;
  1105. * for SOCK_SEQPACKET, it is only relevant if we support
  1106. * record segmentation using MSG_EOR (see also recvmsg()) */
  1107. if (sk->sk_type == SOCK_STREAM &&
  1108. skb->truesize >= sk->sk_rcvbuf / 4) {
  1109. rc = iucv_fragment_skb(sk, skb, len);
  1110. kfree_skb(skb);
  1111. skb = NULL;
  1112. if (rc) {
  1113. pr_iucv->path_sever(path, NULL);
  1114. return;
  1115. }
  1116. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1117. } else {
  1118. skb_reset_transport_header(skb);
  1119. skb_reset_network_header(skb);
  1120. skb->len = len;
  1121. }
  1122. }
  1123. if (sock_queue_rcv_skb(sk, skb))
  1124. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1125. }
  1126. /* iucv_process_message_q() - Process outstanding IUCV messages
  1127. *
  1128. * Locking: must be called with message_q.lock held
  1129. */
  1130. static void iucv_process_message_q(struct sock *sk)
  1131. {
  1132. struct iucv_sock *iucv = iucv_sk(sk);
  1133. struct sk_buff *skb;
  1134. struct sock_msg_q *p, *n;
  1135. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1136. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1137. if (!skb)
  1138. break;
  1139. iucv_process_message(sk, skb, p->path, &p->msg);
  1140. list_del(&p->list);
  1141. kfree(p);
  1142. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1143. break;
  1144. }
  1145. }
  1146. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1147. struct msghdr *msg, size_t len, int flags)
  1148. {
  1149. int noblock = flags & MSG_DONTWAIT;
  1150. struct sock *sk = sock->sk;
  1151. struct iucv_sock *iucv = iucv_sk(sk);
  1152. unsigned int copied, rlen;
  1153. struct sk_buff *skb, *rskb, *cskb, *sskb;
  1154. int blen;
  1155. int err = 0;
  1156. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  1157. skb_queue_empty(&iucv->backlog_skb_q) &&
  1158. skb_queue_empty(&sk->sk_receive_queue) &&
  1159. list_empty(&iucv->message_q.list))
  1160. return 0;
  1161. if (flags & (MSG_OOB))
  1162. return -EOPNOTSUPP;
  1163. /* receive/dequeue next skb:
  1164. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1165. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1166. if (!skb) {
  1167. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1168. return 0;
  1169. return err;
  1170. }
  1171. rlen = skb->len; /* real length of skb */
  1172. copied = min_t(unsigned int, rlen, len);
  1173. cskb = skb;
  1174. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1175. if (!(flags & MSG_PEEK))
  1176. skb_queue_head(&sk->sk_receive_queue, skb);
  1177. return -EFAULT;
  1178. }
  1179. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1180. if (sk->sk_type == SOCK_SEQPACKET) {
  1181. if (copied < rlen)
  1182. msg->msg_flags |= MSG_TRUNC;
  1183. /* each iucv message contains a complete record */
  1184. msg->msg_flags |= MSG_EOR;
  1185. }
  1186. /* create control message to store iucv msg target class:
  1187. * get the trgcls from the control buffer of the skb due to
  1188. * fragmentation of original iucv message. */
  1189. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1190. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1191. if (err) {
  1192. if (!(flags & MSG_PEEK))
  1193. skb_queue_head(&sk->sk_receive_queue, skb);
  1194. return err;
  1195. }
  1196. /* Mark read part of skb as used */
  1197. if (!(flags & MSG_PEEK)) {
  1198. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1199. if (sk->sk_type == SOCK_STREAM) {
  1200. skb_pull(skb, copied);
  1201. if (skb->len) {
  1202. skb_queue_head(&sk->sk_receive_queue, skb);
  1203. goto done;
  1204. }
  1205. }
  1206. kfree_skb(skb);
  1207. atomic_inc(&iucv->msg_recv);
  1208. /* Queue backlog skbs */
  1209. spin_lock_bh(&iucv->message_q.lock);
  1210. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1211. while (rskb) {
  1212. if (sock_queue_rcv_skb(sk, rskb)) {
  1213. skb_queue_head(&iucv->backlog_skb_q,
  1214. rskb);
  1215. break;
  1216. } else {
  1217. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1218. }
  1219. }
  1220. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1221. if (!list_empty(&iucv->message_q.list))
  1222. iucv_process_message_q(sk);
  1223. if (atomic_read(&iucv->msg_recv) >=
  1224. iucv->msglimit / 2) {
  1225. /* send WIN to peer */
  1226. blen = sizeof(struct af_iucv_trans_hdr) +
  1227. ETH_HLEN;
  1228. sskb = sock_alloc_send_skb(sk, blen, 1, &err);
  1229. if (sskb) {
  1230. skb_reserve(sskb, blen);
  1231. err = afiucv_hs_send(NULL, sk, sskb,
  1232. AF_IUCV_FLAG_WIN);
  1233. }
  1234. if (err) {
  1235. sk->sk_state = IUCV_DISCONN;
  1236. sk->sk_state_change(sk);
  1237. }
  1238. }
  1239. }
  1240. spin_unlock_bh(&iucv->message_q.lock);
  1241. }
  1242. done:
  1243. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1244. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1245. copied = rlen;
  1246. return copied;
  1247. }
  1248. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1249. {
  1250. struct iucv_sock *isk, *n;
  1251. struct sock *sk;
  1252. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1253. sk = (struct sock *) isk;
  1254. if (sk->sk_state == IUCV_CONNECTED)
  1255. return POLLIN | POLLRDNORM;
  1256. }
  1257. return 0;
  1258. }
  1259. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1260. poll_table *wait)
  1261. {
  1262. struct sock *sk = sock->sk;
  1263. unsigned int mask = 0;
  1264. sock_poll_wait(file, sk_sleep(sk), wait);
  1265. if (sk->sk_state == IUCV_LISTEN)
  1266. return iucv_accept_poll(sk);
  1267. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1268. mask |= POLLERR;
  1269. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1270. mask |= POLLRDHUP;
  1271. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1272. mask |= POLLHUP;
  1273. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1274. (sk->sk_shutdown & RCV_SHUTDOWN))
  1275. mask |= POLLIN | POLLRDNORM;
  1276. if (sk->sk_state == IUCV_CLOSED)
  1277. mask |= POLLHUP;
  1278. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1279. mask |= POLLIN;
  1280. if (sock_writeable(sk))
  1281. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1282. else
  1283. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1284. return mask;
  1285. }
  1286. static int iucv_sock_shutdown(struct socket *sock, int how)
  1287. {
  1288. struct sock *sk = sock->sk;
  1289. struct iucv_sock *iucv = iucv_sk(sk);
  1290. struct iucv_message txmsg;
  1291. int err = 0;
  1292. how++;
  1293. if ((how & ~SHUTDOWN_MASK) || !how)
  1294. return -EINVAL;
  1295. lock_sock(sk);
  1296. switch (sk->sk_state) {
  1297. case IUCV_DISCONN:
  1298. case IUCV_CLOSING:
  1299. case IUCV_SEVERED:
  1300. case IUCV_CLOSED:
  1301. err = -ENOTCONN;
  1302. goto fail;
  1303. default:
  1304. sk->sk_shutdown |= how;
  1305. break;
  1306. }
  1307. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1308. txmsg.class = 0;
  1309. txmsg.tag = 0;
  1310. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1311. 0, (void *) iprm_shutdown, 8);
  1312. if (err) {
  1313. switch (err) {
  1314. case 1:
  1315. err = -ENOTCONN;
  1316. break;
  1317. case 2:
  1318. err = -ECONNRESET;
  1319. break;
  1320. default:
  1321. err = -ENOTCONN;
  1322. break;
  1323. }
  1324. }
  1325. }
  1326. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1327. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1328. if (err)
  1329. err = -ENOTCONN;
  1330. skb_queue_purge(&sk->sk_receive_queue);
  1331. }
  1332. /* Wake up anyone sleeping in poll */
  1333. sk->sk_state_change(sk);
  1334. fail:
  1335. release_sock(sk);
  1336. return err;
  1337. }
  1338. static int iucv_sock_release(struct socket *sock)
  1339. {
  1340. struct sock *sk = sock->sk;
  1341. int err = 0;
  1342. if (!sk)
  1343. return 0;
  1344. iucv_sock_close(sk);
  1345. /* Unregister with IUCV base support */
  1346. if (iucv_sk(sk)->path) {
  1347. pr_iucv->path_sever(iucv_sk(sk)->path, NULL);
  1348. iucv_path_free(iucv_sk(sk)->path);
  1349. iucv_sk(sk)->path = NULL;
  1350. }
  1351. sock_orphan(sk);
  1352. iucv_sock_kill(sk);
  1353. return err;
  1354. }
  1355. /* getsockopt and setsockopt */
  1356. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1357. char __user *optval, unsigned int optlen)
  1358. {
  1359. struct sock *sk = sock->sk;
  1360. struct iucv_sock *iucv = iucv_sk(sk);
  1361. int val;
  1362. int rc;
  1363. if (level != SOL_IUCV)
  1364. return -ENOPROTOOPT;
  1365. if (optlen < sizeof(int))
  1366. return -EINVAL;
  1367. if (get_user(val, (int __user *) optval))
  1368. return -EFAULT;
  1369. rc = 0;
  1370. lock_sock(sk);
  1371. switch (optname) {
  1372. case SO_IPRMDATA_MSG:
  1373. if (val)
  1374. iucv->flags |= IUCV_IPRMDATA;
  1375. else
  1376. iucv->flags &= ~IUCV_IPRMDATA;
  1377. break;
  1378. case SO_MSGLIMIT:
  1379. switch (sk->sk_state) {
  1380. case IUCV_OPEN:
  1381. case IUCV_BOUND:
  1382. if (val < 1 || val > (u16)(~0))
  1383. rc = -EINVAL;
  1384. else
  1385. iucv->msglimit = val;
  1386. break;
  1387. default:
  1388. rc = -EINVAL;
  1389. break;
  1390. }
  1391. break;
  1392. default:
  1393. rc = -ENOPROTOOPT;
  1394. break;
  1395. }
  1396. release_sock(sk);
  1397. return rc;
  1398. }
  1399. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1400. char __user *optval, int __user *optlen)
  1401. {
  1402. struct sock *sk = sock->sk;
  1403. struct iucv_sock *iucv = iucv_sk(sk);
  1404. int val, len;
  1405. if (level != SOL_IUCV)
  1406. return -ENOPROTOOPT;
  1407. if (get_user(len, optlen))
  1408. return -EFAULT;
  1409. if (len < 0)
  1410. return -EINVAL;
  1411. len = min_t(unsigned int, len, sizeof(int));
  1412. switch (optname) {
  1413. case SO_IPRMDATA_MSG:
  1414. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1415. break;
  1416. case SO_MSGLIMIT:
  1417. lock_sock(sk);
  1418. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1419. : iucv->msglimit; /* default */
  1420. release_sock(sk);
  1421. break;
  1422. default:
  1423. return -ENOPROTOOPT;
  1424. }
  1425. if (put_user(len, optlen))
  1426. return -EFAULT;
  1427. if (copy_to_user(optval, &val, len))
  1428. return -EFAULT;
  1429. return 0;
  1430. }
  1431. /* Callback wrappers - called from iucv base support */
  1432. static int iucv_callback_connreq(struct iucv_path *path,
  1433. u8 ipvmid[8], u8 ipuser[16])
  1434. {
  1435. unsigned char user_data[16];
  1436. unsigned char nuser_data[16];
  1437. unsigned char src_name[8];
  1438. struct hlist_node *node;
  1439. struct sock *sk, *nsk;
  1440. struct iucv_sock *iucv, *niucv;
  1441. int err;
  1442. memcpy(src_name, ipuser, 8);
  1443. EBCASC(src_name, 8);
  1444. /* Find out if this path belongs to af_iucv. */
  1445. read_lock(&iucv_sk_list.lock);
  1446. iucv = NULL;
  1447. sk = NULL;
  1448. sk_for_each(sk, node, &iucv_sk_list.head)
  1449. if (sk->sk_state == IUCV_LISTEN &&
  1450. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1451. /*
  1452. * Found a listening socket with
  1453. * src_name == ipuser[0-7].
  1454. */
  1455. iucv = iucv_sk(sk);
  1456. break;
  1457. }
  1458. read_unlock(&iucv_sk_list.lock);
  1459. if (!iucv)
  1460. /* No socket found, not one of our paths. */
  1461. return -EINVAL;
  1462. bh_lock_sock(sk);
  1463. /* Check if parent socket is listening */
  1464. low_nmcpy(user_data, iucv->src_name);
  1465. high_nmcpy(user_data, iucv->dst_name);
  1466. ASCEBC(user_data, sizeof(user_data));
  1467. if (sk->sk_state != IUCV_LISTEN) {
  1468. err = pr_iucv->path_sever(path, user_data);
  1469. iucv_path_free(path);
  1470. goto fail;
  1471. }
  1472. /* Check for backlog size */
  1473. if (sk_acceptq_is_full(sk)) {
  1474. err = pr_iucv->path_sever(path, user_data);
  1475. iucv_path_free(path);
  1476. goto fail;
  1477. }
  1478. /* Create the new socket */
  1479. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1480. if (!nsk) {
  1481. err = pr_iucv->path_sever(path, user_data);
  1482. iucv_path_free(path);
  1483. goto fail;
  1484. }
  1485. niucv = iucv_sk(nsk);
  1486. iucv_sock_init(nsk, sk);
  1487. /* Set the new iucv_sock */
  1488. memcpy(niucv->dst_name, ipuser + 8, 8);
  1489. EBCASC(niucv->dst_name, 8);
  1490. memcpy(niucv->dst_user_id, ipvmid, 8);
  1491. memcpy(niucv->src_name, iucv->src_name, 8);
  1492. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1493. niucv->path = path;
  1494. /* Call iucv_accept */
  1495. high_nmcpy(nuser_data, ipuser + 8);
  1496. memcpy(nuser_data + 8, niucv->src_name, 8);
  1497. ASCEBC(nuser_data + 8, 8);
  1498. /* set message limit for path based on msglimit of accepting socket */
  1499. niucv->msglimit = iucv->msglimit;
  1500. path->msglim = iucv->msglimit;
  1501. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1502. if (err) {
  1503. err = pr_iucv->path_sever(path, user_data);
  1504. iucv_path_free(path);
  1505. iucv_sock_kill(nsk);
  1506. goto fail;
  1507. }
  1508. iucv_accept_enqueue(sk, nsk);
  1509. /* Wake up accept */
  1510. nsk->sk_state = IUCV_CONNECTED;
  1511. sk->sk_data_ready(sk, 1);
  1512. err = 0;
  1513. fail:
  1514. bh_unlock_sock(sk);
  1515. return 0;
  1516. }
  1517. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1518. {
  1519. struct sock *sk = path->private;
  1520. sk->sk_state = IUCV_CONNECTED;
  1521. sk->sk_state_change(sk);
  1522. }
  1523. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1524. {
  1525. struct sock *sk = path->private;
  1526. struct iucv_sock *iucv = iucv_sk(sk);
  1527. struct sk_buff *skb;
  1528. struct sock_msg_q *save_msg;
  1529. int len;
  1530. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1531. pr_iucv->message_reject(path, msg);
  1532. return;
  1533. }
  1534. spin_lock(&iucv->message_q.lock);
  1535. if (!list_empty(&iucv->message_q.list) ||
  1536. !skb_queue_empty(&iucv->backlog_skb_q))
  1537. goto save_message;
  1538. len = atomic_read(&sk->sk_rmem_alloc);
  1539. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1540. if (len > sk->sk_rcvbuf)
  1541. goto save_message;
  1542. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1543. if (!skb)
  1544. goto save_message;
  1545. iucv_process_message(sk, skb, path, msg);
  1546. goto out_unlock;
  1547. save_message:
  1548. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1549. if (!save_msg)
  1550. goto out_unlock;
  1551. save_msg->path = path;
  1552. save_msg->msg = *msg;
  1553. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1554. out_unlock:
  1555. spin_unlock(&iucv->message_q.lock);
  1556. }
  1557. static void iucv_callback_txdone(struct iucv_path *path,
  1558. struct iucv_message *msg)
  1559. {
  1560. struct sock *sk = path->private;
  1561. struct sk_buff *this = NULL;
  1562. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1563. struct sk_buff *list_skb = list->next;
  1564. unsigned long flags;
  1565. if (!skb_queue_empty(list)) {
  1566. spin_lock_irqsave(&list->lock, flags);
  1567. while (list_skb != (struct sk_buff *)list) {
  1568. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1569. this = list_skb;
  1570. break;
  1571. }
  1572. list_skb = list_skb->next;
  1573. }
  1574. if (this)
  1575. __skb_unlink(this, list);
  1576. spin_unlock_irqrestore(&list->lock, flags);
  1577. if (this) {
  1578. kfree_skb(this);
  1579. /* wake up any process waiting for sending */
  1580. iucv_sock_wake_msglim(sk);
  1581. }
  1582. }
  1583. BUG_ON(!this);
  1584. if (sk->sk_state == IUCV_CLOSING) {
  1585. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1586. sk->sk_state = IUCV_CLOSED;
  1587. sk->sk_state_change(sk);
  1588. }
  1589. }
  1590. }
  1591. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1592. {
  1593. struct sock *sk = path->private;
  1594. if (!list_empty(&iucv_sk(sk)->accept_q))
  1595. sk->sk_state = IUCV_SEVERED;
  1596. else
  1597. sk->sk_state = IUCV_DISCONN;
  1598. sk->sk_state_change(sk);
  1599. }
  1600. /* called if the other communication side shuts down its RECV direction;
  1601. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1602. */
  1603. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1604. {
  1605. struct sock *sk = path->private;
  1606. bh_lock_sock(sk);
  1607. if (sk->sk_state != IUCV_CLOSED) {
  1608. sk->sk_shutdown |= SEND_SHUTDOWN;
  1609. sk->sk_state_change(sk);
  1610. }
  1611. bh_unlock_sock(sk);
  1612. }
  1613. /***************** HiperSockets transport callbacks ********************/
  1614. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1615. {
  1616. struct af_iucv_trans_hdr *trans_hdr =
  1617. (struct af_iucv_trans_hdr *)skb->data;
  1618. char tmpID[8];
  1619. char tmpName[8];
  1620. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1621. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1622. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1623. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1624. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1625. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1626. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1627. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1628. memcpy(trans_hdr->destUserID, tmpID, 8);
  1629. memcpy(trans_hdr->destAppName, tmpName, 8);
  1630. skb_push(skb, ETH_HLEN);
  1631. memset(skb->data, 0, ETH_HLEN);
  1632. }
  1633. /**
  1634. * afiucv_hs_callback_syn - react on received SYN
  1635. **/
  1636. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1637. {
  1638. struct sock *nsk;
  1639. struct iucv_sock *iucv, *niucv;
  1640. struct af_iucv_trans_hdr *trans_hdr;
  1641. int err;
  1642. iucv = iucv_sk(sk);
  1643. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1644. if (!iucv) {
  1645. /* no sock - connection refused */
  1646. afiucv_swap_src_dest(skb);
  1647. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1648. err = dev_queue_xmit(skb);
  1649. goto out;
  1650. }
  1651. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1652. bh_lock_sock(sk);
  1653. if ((sk->sk_state != IUCV_LISTEN) ||
  1654. sk_acceptq_is_full(sk) ||
  1655. !nsk) {
  1656. /* error on server socket - connection refused */
  1657. if (nsk)
  1658. sk_free(nsk);
  1659. afiucv_swap_src_dest(skb);
  1660. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1661. err = dev_queue_xmit(skb);
  1662. bh_unlock_sock(sk);
  1663. goto out;
  1664. }
  1665. niucv = iucv_sk(nsk);
  1666. iucv_sock_init(nsk, sk);
  1667. niucv->transport = AF_IUCV_TRANS_HIPER;
  1668. niucv->msglimit = iucv->msglimit;
  1669. if (!trans_hdr->window)
  1670. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1671. else
  1672. niucv->msglimit_peer = trans_hdr->window;
  1673. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1674. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1675. memcpy(niucv->src_name, iucv->src_name, 8);
  1676. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1677. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1678. afiucv_swap_src_dest(skb);
  1679. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1680. trans_hdr->window = niucv->msglimit;
  1681. /* if receiver acks the xmit connection is established */
  1682. err = dev_queue_xmit(skb);
  1683. if (!err) {
  1684. iucv_accept_enqueue(sk, nsk);
  1685. nsk->sk_state = IUCV_CONNECTED;
  1686. sk->sk_data_ready(sk, 1);
  1687. } else
  1688. iucv_sock_kill(nsk);
  1689. bh_unlock_sock(sk);
  1690. out:
  1691. return NET_RX_SUCCESS;
  1692. }
  1693. /**
  1694. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1695. **/
  1696. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1697. {
  1698. struct iucv_sock *iucv = iucv_sk(sk);
  1699. struct af_iucv_trans_hdr *trans_hdr =
  1700. (struct af_iucv_trans_hdr *)skb->data;
  1701. if (!iucv)
  1702. goto out;
  1703. if (sk->sk_state != IUCV_BOUND)
  1704. goto out;
  1705. bh_lock_sock(sk);
  1706. iucv->msglimit_peer = trans_hdr->window;
  1707. sk->sk_state = IUCV_CONNECTED;
  1708. sk->sk_state_change(sk);
  1709. bh_unlock_sock(sk);
  1710. out:
  1711. kfree_skb(skb);
  1712. return NET_RX_SUCCESS;
  1713. }
  1714. /**
  1715. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1716. **/
  1717. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1718. {
  1719. struct iucv_sock *iucv = iucv_sk(sk);
  1720. if (!iucv)
  1721. goto out;
  1722. if (sk->sk_state != IUCV_BOUND)
  1723. goto out;
  1724. bh_lock_sock(sk);
  1725. sk->sk_state = IUCV_DISCONN;
  1726. sk->sk_state_change(sk);
  1727. bh_unlock_sock(sk);
  1728. out:
  1729. kfree_skb(skb);
  1730. return NET_RX_SUCCESS;
  1731. }
  1732. /**
  1733. * afiucv_hs_callback_fin() - react on received FIN
  1734. **/
  1735. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1736. {
  1737. struct iucv_sock *iucv = iucv_sk(sk);
  1738. /* other end of connection closed */
  1739. if (iucv) {
  1740. bh_lock_sock(sk);
  1741. if (!list_empty(&iucv->accept_q))
  1742. sk->sk_state = IUCV_SEVERED;
  1743. else
  1744. sk->sk_state = IUCV_DISCONN;
  1745. sk->sk_state_change(sk);
  1746. bh_unlock_sock(sk);
  1747. }
  1748. kfree_skb(skb);
  1749. return NET_RX_SUCCESS;
  1750. }
  1751. /**
  1752. * afiucv_hs_callback_win() - react on received WIN
  1753. **/
  1754. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1755. {
  1756. struct iucv_sock *iucv = iucv_sk(sk);
  1757. struct af_iucv_trans_hdr *trans_hdr =
  1758. (struct af_iucv_trans_hdr *)skb->data;
  1759. if (!iucv)
  1760. return NET_RX_SUCCESS;
  1761. if (sk->sk_state != IUCV_CONNECTED)
  1762. return NET_RX_SUCCESS;
  1763. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1764. iucv_sock_wake_msglim(sk);
  1765. return NET_RX_SUCCESS;
  1766. }
  1767. /**
  1768. * afiucv_hs_callback_rx() - react on received data
  1769. **/
  1770. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1771. {
  1772. struct iucv_sock *iucv = iucv_sk(sk);
  1773. if (!iucv) {
  1774. kfree_skb(skb);
  1775. return NET_RX_SUCCESS;
  1776. }
  1777. if (sk->sk_state != IUCV_CONNECTED) {
  1778. kfree_skb(skb);
  1779. return NET_RX_SUCCESS;
  1780. }
  1781. /* write stuff from iucv_msg to skb cb */
  1782. if (skb->len <= sizeof(struct af_iucv_trans_hdr)) {
  1783. kfree_skb(skb);
  1784. return NET_RX_SUCCESS;
  1785. }
  1786. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1787. skb_reset_transport_header(skb);
  1788. skb_reset_network_header(skb);
  1789. spin_lock(&iucv->message_q.lock);
  1790. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1791. if (sock_queue_rcv_skb(sk, skb)) {
  1792. /* handle rcv queue full */
  1793. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1794. }
  1795. } else
  1796. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1797. spin_unlock(&iucv->message_q.lock);
  1798. return NET_RX_SUCCESS;
  1799. }
  1800. /**
  1801. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1802. * transport
  1803. * called from netif RX softirq
  1804. **/
  1805. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1806. struct packet_type *pt, struct net_device *orig_dev)
  1807. {
  1808. struct hlist_node *node;
  1809. struct sock *sk;
  1810. struct iucv_sock *iucv;
  1811. struct af_iucv_trans_hdr *trans_hdr;
  1812. char nullstring[8];
  1813. int err = 0;
  1814. skb_pull(skb, ETH_HLEN);
  1815. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1816. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1817. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1818. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1819. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1820. memset(nullstring, 0, sizeof(nullstring));
  1821. iucv = NULL;
  1822. sk = NULL;
  1823. read_lock(&iucv_sk_list.lock);
  1824. sk_for_each(sk, node, &iucv_sk_list.head) {
  1825. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1826. if ((!memcmp(&iucv_sk(sk)->src_name,
  1827. trans_hdr->destAppName, 8)) &&
  1828. (!memcmp(&iucv_sk(sk)->src_user_id,
  1829. trans_hdr->destUserID, 8)) &&
  1830. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1831. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1832. nullstring, 8))) {
  1833. iucv = iucv_sk(sk);
  1834. break;
  1835. }
  1836. } else {
  1837. if ((!memcmp(&iucv_sk(sk)->src_name,
  1838. trans_hdr->destAppName, 8)) &&
  1839. (!memcmp(&iucv_sk(sk)->src_user_id,
  1840. trans_hdr->destUserID, 8)) &&
  1841. (!memcmp(&iucv_sk(sk)->dst_name,
  1842. trans_hdr->srcAppName, 8)) &&
  1843. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1844. trans_hdr->srcUserID, 8))) {
  1845. iucv = iucv_sk(sk);
  1846. break;
  1847. }
  1848. }
  1849. }
  1850. read_unlock(&iucv_sk_list.lock);
  1851. if (!iucv)
  1852. sk = NULL;
  1853. /* no sock
  1854. how should we send with no sock
  1855. 1) send without sock no send rc checking?
  1856. 2) introduce default sock to handle this cases
  1857. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1858. data -> send FIN
  1859. SYN|ACK, SYN|FIN, FIN -> no action? */
  1860. switch (trans_hdr->flags) {
  1861. case AF_IUCV_FLAG_SYN:
  1862. /* connect request */
  1863. err = afiucv_hs_callback_syn(sk, skb);
  1864. break;
  1865. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1866. /* connect request confirmed */
  1867. err = afiucv_hs_callback_synack(sk, skb);
  1868. break;
  1869. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1870. /* connect request refused */
  1871. err = afiucv_hs_callback_synfin(sk, skb);
  1872. break;
  1873. case (AF_IUCV_FLAG_FIN):
  1874. /* close request */
  1875. err = afiucv_hs_callback_fin(sk, skb);
  1876. break;
  1877. case (AF_IUCV_FLAG_WIN):
  1878. err = afiucv_hs_callback_win(sk, skb);
  1879. if (skb->len > sizeof(struct af_iucv_trans_hdr))
  1880. err = afiucv_hs_callback_rx(sk, skb);
  1881. else
  1882. kfree(skb);
  1883. break;
  1884. case 0:
  1885. /* plain data frame */
  1886. memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
  1887. CB_TRGCLS_LEN);
  1888. err = afiucv_hs_callback_rx(sk, skb);
  1889. break;
  1890. default:
  1891. ;
  1892. }
  1893. return err;
  1894. }
  1895. /**
  1896. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1897. * transport
  1898. **/
  1899. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1900. enum iucv_tx_notify n)
  1901. {
  1902. struct sock *isk = skb->sk;
  1903. struct sock *sk = NULL;
  1904. struct iucv_sock *iucv = NULL;
  1905. struct sk_buff_head *list;
  1906. struct sk_buff *list_skb;
  1907. struct sk_buff *this = NULL;
  1908. unsigned long flags;
  1909. struct hlist_node *node;
  1910. read_lock(&iucv_sk_list.lock);
  1911. sk_for_each(sk, node, &iucv_sk_list.head)
  1912. if (sk == isk) {
  1913. iucv = iucv_sk(sk);
  1914. break;
  1915. }
  1916. read_unlock(&iucv_sk_list.lock);
  1917. if (!iucv)
  1918. return;
  1919. bh_lock_sock(sk);
  1920. list = &iucv->send_skb_q;
  1921. list_skb = list->next;
  1922. if (skb_queue_empty(list))
  1923. goto out_unlock;
  1924. spin_lock_irqsave(&list->lock, flags);
  1925. while (list_skb != (struct sk_buff *)list) {
  1926. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1927. this = list_skb;
  1928. switch (n) {
  1929. case TX_NOTIFY_OK:
  1930. __skb_unlink(this, list);
  1931. iucv_sock_wake_msglim(sk);
  1932. dev_put(this->dev);
  1933. kfree_skb(this);
  1934. break;
  1935. case TX_NOTIFY_PENDING:
  1936. atomic_inc(&iucv->pendings);
  1937. break;
  1938. case TX_NOTIFY_DELAYED_OK:
  1939. __skb_unlink(this, list);
  1940. atomic_dec(&iucv->pendings);
  1941. if (atomic_read(&iucv->pendings) <= 0)
  1942. iucv_sock_wake_msglim(sk);
  1943. dev_put(this->dev);
  1944. kfree_skb(this);
  1945. break;
  1946. case TX_NOTIFY_UNREACHABLE:
  1947. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1948. case TX_NOTIFY_TPQFULL: /* not yet used */
  1949. case TX_NOTIFY_GENERALERROR:
  1950. case TX_NOTIFY_DELAYED_GENERALERROR:
  1951. __skb_unlink(this, list);
  1952. dev_put(this->dev);
  1953. kfree_skb(this);
  1954. if (!list_empty(&iucv->accept_q))
  1955. sk->sk_state = IUCV_SEVERED;
  1956. else
  1957. sk->sk_state = IUCV_DISCONN;
  1958. sk->sk_state_change(sk);
  1959. break;
  1960. }
  1961. break;
  1962. }
  1963. list_skb = list_skb->next;
  1964. }
  1965. spin_unlock_irqrestore(&list->lock, flags);
  1966. if (sk->sk_state == IUCV_CLOSING) {
  1967. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1968. sk->sk_state = IUCV_CLOSED;
  1969. sk->sk_state_change(sk);
  1970. }
  1971. }
  1972. out_unlock:
  1973. bh_unlock_sock(sk);
  1974. }
  1975. static const struct proto_ops iucv_sock_ops = {
  1976. .family = PF_IUCV,
  1977. .owner = THIS_MODULE,
  1978. .release = iucv_sock_release,
  1979. .bind = iucv_sock_bind,
  1980. .connect = iucv_sock_connect,
  1981. .listen = iucv_sock_listen,
  1982. .accept = iucv_sock_accept,
  1983. .getname = iucv_sock_getname,
  1984. .sendmsg = iucv_sock_sendmsg,
  1985. .recvmsg = iucv_sock_recvmsg,
  1986. .poll = iucv_sock_poll,
  1987. .ioctl = sock_no_ioctl,
  1988. .mmap = sock_no_mmap,
  1989. .socketpair = sock_no_socketpair,
  1990. .shutdown = iucv_sock_shutdown,
  1991. .setsockopt = iucv_sock_setsockopt,
  1992. .getsockopt = iucv_sock_getsockopt,
  1993. };
  1994. static const struct net_proto_family iucv_sock_family_ops = {
  1995. .family = AF_IUCV,
  1996. .owner = THIS_MODULE,
  1997. .create = iucv_sock_create,
  1998. };
  1999. static struct packet_type iucv_packet_type = {
  2000. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2001. .func = afiucv_hs_rcv,
  2002. };
  2003. static int afiucv_iucv_init(void)
  2004. {
  2005. int err;
  2006. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2007. if (err)
  2008. goto out;
  2009. /* establish dummy device */
  2010. af_iucv_driver.bus = pr_iucv->bus;
  2011. err = driver_register(&af_iucv_driver);
  2012. if (err)
  2013. goto out_iucv;
  2014. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2015. if (!af_iucv_dev) {
  2016. err = -ENOMEM;
  2017. goto out_driver;
  2018. }
  2019. dev_set_name(af_iucv_dev, "af_iucv");
  2020. af_iucv_dev->bus = pr_iucv->bus;
  2021. af_iucv_dev->parent = pr_iucv->root;
  2022. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2023. af_iucv_dev->driver = &af_iucv_driver;
  2024. err = device_register(af_iucv_dev);
  2025. if (err)
  2026. goto out_driver;
  2027. return 0;
  2028. out_driver:
  2029. driver_unregister(&af_iucv_driver);
  2030. out_iucv:
  2031. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2032. out:
  2033. return err;
  2034. }
  2035. static int __init afiucv_init(void)
  2036. {
  2037. int err;
  2038. if (MACHINE_IS_VM) {
  2039. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2040. if (unlikely(err)) {
  2041. WARN_ON(err);
  2042. err = -EPROTONOSUPPORT;
  2043. goto out;
  2044. }
  2045. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2046. if (!pr_iucv) {
  2047. printk(KERN_WARNING "iucv_if lookup failed\n");
  2048. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2049. }
  2050. } else {
  2051. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2052. pr_iucv = NULL;
  2053. }
  2054. err = proto_register(&iucv_proto, 0);
  2055. if (err)
  2056. goto out;
  2057. err = sock_register(&iucv_sock_family_ops);
  2058. if (err)
  2059. goto out_proto;
  2060. if (pr_iucv) {
  2061. err = afiucv_iucv_init();
  2062. if (err)
  2063. goto out_sock;
  2064. }
  2065. dev_add_pack(&iucv_packet_type);
  2066. return 0;
  2067. out_sock:
  2068. sock_unregister(PF_IUCV);
  2069. out_proto:
  2070. proto_unregister(&iucv_proto);
  2071. out:
  2072. if (pr_iucv)
  2073. symbol_put(iucv_if);
  2074. return err;
  2075. }
  2076. static void __exit afiucv_exit(void)
  2077. {
  2078. if (pr_iucv) {
  2079. device_unregister(af_iucv_dev);
  2080. driver_unregister(&af_iucv_driver);
  2081. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2082. symbol_put(iucv_if);
  2083. }
  2084. dev_remove_pack(&iucv_packet_type);
  2085. sock_unregister(PF_IUCV);
  2086. proto_unregister(&iucv_proto);
  2087. }
  2088. module_init(afiucv_init);
  2089. module_exit(afiucv_exit);
  2090. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2091. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2092. MODULE_VERSION(VERSION);
  2093. MODULE_LICENSE("GPL");
  2094. MODULE_ALIAS_NETPROTO(PF_IUCV);