dn_table.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Routing Forwarding Information Base (Routing Tables)
  7. *
  8. * Author: Steve Whitehouse <SteveW@ACM.org>
  9. * Mostly copied from the IPv4 routing code
  10. *
  11. *
  12. * Changes:
  13. *
  14. */
  15. #include <linux/string.h>
  16. #include <linux/net.h>
  17. #include <linux/socket.h>
  18. #include <linux/sockios.h>
  19. #include <linux/init.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netlink.h>
  22. #include <linux/rtnetlink.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/timer.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/route.h> /* RTF_xxx */
  30. #include <net/neighbour.h>
  31. #include <net/dst.h>
  32. #include <net/flow.h>
  33. #include <net/fib_rules.h>
  34. #include <net/dn.h>
  35. #include <net/dn_route.h>
  36. #include <net/dn_fib.h>
  37. #include <net/dn_neigh.h>
  38. #include <net/dn_dev.h>
  39. struct dn_zone
  40. {
  41. struct dn_zone *dz_next;
  42. struct dn_fib_node **dz_hash;
  43. int dz_nent;
  44. int dz_divisor;
  45. u32 dz_hashmask;
  46. #define DZ_HASHMASK(dz) ((dz)->dz_hashmask)
  47. int dz_order;
  48. __le16 dz_mask;
  49. #define DZ_MASK(dz) ((dz)->dz_mask)
  50. };
  51. struct dn_hash
  52. {
  53. struct dn_zone *dh_zones[17];
  54. struct dn_zone *dh_zone_list;
  55. };
  56. #define dz_key_0(key) ((key).datum = 0)
  57. #define dz_prefix(key,dz) ((key).datum)
  58. #define for_nexthops(fi) { int nhsel; const struct dn_fib_nh *nh;\
  59. for(nhsel = 0, nh = (fi)->fib_nh; nhsel < (fi)->fib_nhs; nh++, nhsel++)
  60. #define endfor_nexthops(fi) }
  61. #define DN_MAX_DIVISOR 1024
  62. #define DN_S_ZOMBIE 1
  63. #define DN_S_ACCESSED 2
  64. #define DN_FIB_SCAN(f, fp) \
  65. for( ; ((f) = *(fp)) != NULL; (fp) = &(f)->fn_next)
  66. #define DN_FIB_SCAN_KEY(f, fp, key) \
  67. for( ; ((f) = *(fp)) != NULL && dn_key_eq((f)->fn_key, (key)); (fp) = &(f)->fn_next)
  68. #define RT_TABLE_MIN 1
  69. static DEFINE_RWLOCK(dn_fib_tables_lock);
  70. struct dn_fib_table *dn_fib_tables[RT_TABLE_MAX + 1];
  71. static kmem_cache_t *dn_hash_kmem __read_mostly;
  72. static int dn_fib_hash_zombies;
  73. static inline dn_fib_idx_t dn_hash(dn_fib_key_t key, struct dn_zone *dz)
  74. {
  75. u16 h = dn_ntohs(key.datum)>>(16 - dz->dz_order);
  76. h ^= (h >> 10);
  77. h ^= (h >> 6);
  78. h &= DZ_HASHMASK(dz);
  79. return *(dn_fib_idx_t *)&h;
  80. }
  81. static inline dn_fib_key_t dz_key(__le16 dst, struct dn_zone *dz)
  82. {
  83. dn_fib_key_t k;
  84. k.datum = dst & DZ_MASK(dz);
  85. return k;
  86. }
  87. static inline struct dn_fib_node **dn_chain_p(dn_fib_key_t key, struct dn_zone *dz)
  88. {
  89. return &dz->dz_hash[dn_hash(key, dz).datum];
  90. }
  91. static inline struct dn_fib_node *dz_chain(dn_fib_key_t key, struct dn_zone *dz)
  92. {
  93. return dz->dz_hash[dn_hash(key, dz).datum];
  94. }
  95. static inline int dn_key_eq(dn_fib_key_t a, dn_fib_key_t b)
  96. {
  97. return a.datum == b.datum;
  98. }
  99. static inline int dn_key_leq(dn_fib_key_t a, dn_fib_key_t b)
  100. {
  101. return a.datum <= b.datum;
  102. }
  103. static inline void dn_rebuild_zone(struct dn_zone *dz,
  104. struct dn_fib_node **old_ht,
  105. int old_divisor)
  106. {
  107. int i;
  108. struct dn_fib_node *f, **fp, *next;
  109. for(i = 0; i < old_divisor; i++) {
  110. for(f = old_ht[i]; f; f = f->fn_next) {
  111. next = f->fn_next;
  112. for(fp = dn_chain_p(f->fn_key, dz);
  113. *fp && dn_key_leq((*fp)->fn_key, f->fn_key);
  114. fp = &(*fp)->fn_next)
  115. /* NOTHING */;
  116. f->fn_next = *fp;
  117. *fp = f;
  118. }
  119. }
  120. }
  121. static void dn_rehash_zone(struct dn_zone *dz)
  122. {
  123. struct dn_fib_node **ht, **old_ht;
  124. int old_divisor, new_divisor;
  125. u32 new_hashmask;
  126. old_divisor = dz->dz_divisor;
  127. switch(old_divisor) {
  128. case 16:
  129. new_divisor = 256;
  130. new_hashmask = 0xFF;
  131. break;
  132. default:
  133. printk(KERN_DEBUG "DECnet: dn_rehash_zone: BUG! %d\n", old_divisor);
  134. case 256:
  135. new_divisor = 1024;
  136. new_hashmask = 0x3FF;
  137. break;
  138. }
  139. ht = kcalloc(new_divisor, sizeof(struct dn_fib_node*), GFP_KERNEL);
  140. if (ht == NULL)
  141. return;
  142. write_lock_bh(&dn_fib_tables_lock);
  143. old_ht = dz->dz_hash;
  144. dz->dz_hash = ht;
  145. dz->dz_hashmask = new_hashmask;
  146. dz->dz_divisor = new_divisor;
  147. dn_rebuild_zone(dz, old_ht, old_divisor);
  148. write_unlock_bh(&dn_fib_tables_lock);
  149. kfree(old_ht);
  150. }
  151. static void dn_free_node(struct dn_fib_node *f)
  152. {
  153. dn_fib_release_info(DN_FIB_INFO(f));
  154. kmem_cache_free(dn_hash_kmem, f);
  155. }
  156. static struct dn_zone *dn_new_zone(struct dn_hash *table, int z)
  157. {
  158. int i;
  159. struct dn_zone *dz = kzalloc(sizeof(struct dn_zone), GFP_KERNEL);
  160. if (!dz)
  161. return NULL;
  162. if (z) {
  163. dz->dz_divisor = 16;
  164. dz->dz_hashmask = 0x0F;
  165. } else {
  166. dz->dz_divisor = 1;
  167. dz->dz_hashmask = 0;
  168. }
  169. dz->dz_hash = kcalloc(dz->dz_divisor, sizeof(struct dn_fib_node *), GFP_KERNEL);
  170. if (!dz->dz_hash) {
  171. kfree(dz);
  172. return NULL;
  173. }
  174. dz->dz_order = z;
  175. dz->dz_mask = dnet_make_mask(z);
  176. for(i = z + 1; i <= 16; i++)
  177. if (table->dh_zones[i])
  178. break;
  179. write_lock_bh(&dn_fib_tables_lock);
  180. if (i>16) {
  181. dz->dz_next = table->dh_zone_list;
  182. table->dh_zone_list = dz;
  183. } else {
  184. dz->dz_next = table->dh_zones[i]->dz_next;
  185. table->dh_zones[i]->dz_next = dz;
  186. }
  187. table->dh_zones[z] = dz;
  188. write_unlock_bh(&dn_fib_tables_lock);
  189. return dz;
  190. }
  191. static int dn_fib_nh_match(struct rtmsg *r, struct nlmsghdr *nlh, struct dn_kern_rta *rta, struct dn_fib_info *fi)
  192. {
  193. struct rtnexthop *nhp;
  194. int nhlen;
  195. if (rta->rta_priority && *rta->rta_priority != fi->fib_priority)
  196. return 1;
  197. if (rta->rta_oif || rta->rta_gw) {
  198. if ((!rta->rta_oif || *rta->rta_oif == fi->fib_nh->nh_oif) &&
  199. (!rta->rta_gw || memcmp(rta->rta_gw, &fi->fib_nh->nh_gw, 2) == 0))
  200. return 0;
  201. return 1;
  202. }
  203. if (rta->rta_mp == NULL)
  204. return 0;
  205. nhp = RTA_DATA(rta->rta_mp);
  206. nhlen = RTA_PAYLOAD(rta->rta_mp);
  207. for_nexthops(fi) {
  208. int attrlen = nhlen - sizeof(struct rtnexthop);
  209. __le16 gw;
  210. if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0)
  211. return -EINVAL;
  212. if (nhp->rtnh_ifindex && nhp->rtnh_ifindex != nh->nh_oif)
  213. return 1;
  214. if (attrlen) {
  215. gw = dn_fib_get_attr16(RTNH_DATA(nhp), attrlen, RTA_GATEWAY);
  216. if (gw && gw != nh->nh_gw)
  217. return 1;
  218. }
  219. nhp = RTNH_NEXT(nhp);
  220. } endfor_nexthops(fi);
  221. return 0;
  222. }
  223. static int dn_fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
  224. u32 tb_id, u8 type, u8 scope, void *dst, int dst_len,
  225. struct dn_fib_info *fi, unsigned int flags)
  226. {
  227. struct rtmsg *rtm;
  228. struct nlmsghdr *nlh;
  229. unsigned char *b = skb->tail;
  230. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*rtm), flags);
  231. rtm = NLMSG_DATA(nlh);
  232. rtm->rtm_family = AF_DECnet;
  233. rtm->rtm_dst_len = dst_len;
  234. rtm->rtm_src_len = 0;
  235. rtm->rtm_tos = 0;
  236. rtm->rtm_table = tb_id;
  237. RTA_PUT_U32(skb, RTA_TABLE, tb_id);
  238. rtm->rtm_flags = fi->fib_flags;
  239. rtm->rtm_scope = scope;
  240. rtm->rtm_type = type;
  241. if (rtm->rtm_dst_len)
  242. RTA_PUT(skb, RTA_DST, 2, dst);
  243. rtm->rtm_protocol = fi->fib_protocol;
  244. if (fi->fib_priority)
  245. RTA_PUT(skb, RTA_PRIORITY, 4, &fi->fib_priority);
  246. if (rtnetlink_put_metrics(skb, fi->fib_metrics) < 0)
  247. goto rtattr_failure;
  248. if (fi->fib_nhs == 1) {
  249. if (fi->fib_nh->nh_gw)
  250. RTA_PUT(skb, RTA_GATEWAY, 2, &fi->fib_nh->nh_gw);
  251. if (fi->fib_nh->nh_oif)
  252. RTA_PUT(skb, RTA_OIF, sizeof(int), &fi->fib_nh->nh_oif);
  253. }
  254. if (fi->fib_nhs > 1) {
  255. struct rtnexthop *nhp;
  256. struct rtattr *mp_head;
  257. if (skb_tailroom(skb) <= RTA_SPACE(0))
  258. goto rtattr_failure;
  259. mp_head = (struct rtattr *)skb_put(skb, RTA_SPACE(0));
  260. for_nexthops(fi) {
  261. if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
  262. goto rtattr_failure;
  263. nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
  264. nhp->rtnh_flags = nh->nh_flags & 0xFF;
  265. nhp->rtnh_hops = nh->nh_weight - 1;
  266. nhp->rtnh_ifindex = nh->nh_oif;
  267. if (nh->nh_gw)
  268. RTA_PUT(skb, RTA_GATEWAY, 2, &nh->nh_gw);
  269. nhp->rtnh_len = skb->tail - (unsigned char *)nhp;
  270. } endfor_nexthops(fi);
  271. mp_head->rta_type = RTA_MULTIPATH;
  272. mp_head->rta_len = skb->tail - (u8*)mp_head;
  273. }
  274. nlh->nlmsg_len = skb->tail - b;
  275. return skb->len;
  276. nlmsg_failure:
  277. rtattr_failure:
  278. skb_trim(skb, b - skb->data);
  279. return -1;
  280. }
  281. static void dn_rtmsg_fib(int event, struct dn_fib_node *f, int z, u32 tb_id,
  282. struct nlmsghdr *nlh, struct netlink_skb_parms *req)
  283. {
  284. struct sk_buff *skb;
  285. u32 pid = req ? req->pid : 0;
  286. int size = NLMSG_SPACE(sizeof(struct rtmsg) + 256);
  287. skb = alloc_skb(size, GFP_KERNEL);
  288. if (!skb)
  289. return;
  290. if (dn_fib_dump_info(skb, pid, nlh->nlmsg_seq, event, tb_id,
  291. f->fn_type, f->fn_scope, &f->fn_key, z,
  292. DN_FIB_INFO(f), 0) < 0) {
  293. kfree_skb(skb);
  294. return;
  295. }
  296. NETLINK_CB(skb).dst_group = RTNLGRP_DECnet_ROUTE;
  297. if (nlh->nlmsg_flags & NLM_F_ECHO)
  298. atomic_inc(&skb->users);
  299. netlink_broadcast(rtnl, skb, pid, RTNLGRP_DECnet_ROUTE, GFP_KERNEL);
  300. if (nlh->nlmsg_flags & NLM_F_ECHO)
  301. netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  302. }
  303. static __inline__ int dn_hash_dump_bucket(struct sk_buff *skb,
  304. struct netlink_callback *cb,
  305. struct dn_fib_table *tb,
  306. struct dn_zone *dz,
  307. struct dn_fib_node *f)
  308. {
  309. int i, s_i;
  310. s_i = cb->args[3];
  311. for(i = 0; f; i++, f = f->fn_next) {
  312. if (i < s_i)
  313. continue;
  314. if (f->fn_state & DN_S_ZOMBIE)
  315. continue;
  316. if (dn_fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
  317. cb->nlh->nlmsg_seq,
  318. RTM_NEWROUTE,
  319. tb->n,
  320. (f->fn_state & DN_S_ZOMBIE) ? 0 : f->fn_type,
  321. f->fn_scope, &f->fn_key, dz->dz_order,
  322. f->fn_info, NLM_F_MULTI) < 0) {
  323. cb->args[3] = i;
  324. return -1;
  325. }
  326. }
  327. cb->args[3] = i;
  328. return skb->len;
  329. }
  330. static __inline__ int dn_hash_dump_zone(struct sk_buff *skb,
  331. struct netlink_callback *cb,
  332. struct dn_fib_table *tb,
  333. struct dn_zone *dz)
  334. {
  335. int h, s_h;
  336. s_h = cb->args[2];
  337. for(h = 0; h < dz->dz_divisor; h++) {
  338. if (h < s_h)
  339. continue;
  340. if (h > s_h)
  341. memset(&cb->args[3], 0, sizeof(cb->args) - 3*sizeof(cb->args[0]));
  342. if (dz->dz_hash == NULL || dz->dz_hash[h] == NULL)
  343. continue;
  344. if (dn_hash_dump_bucket(skb, cb, tb, dz, dz->dz_hash[h]) < 0) {
  345. cb->args[2] = h;
  346. return -1;
  347. }
  348. }
  349. cb->args[2] = h;
  350. return skb->len;
  351. }
  352. static int dn_fib_table_dump(struct dn_fib_table *tb, struct sk_buff *skb,
  353. struct netlink_callback *cb)
  354. {
  355. int m, s_m;
  356. struct dn_zone *dz;
  357. struct dn_hash *table = (struct dn_hash *)tb->data;
  358. s_m = cb->args[1];
  359. read_lock(&dn_fib_tables_lock);
  360. for(dz = table->dh_zone_list, m = 0; dz; dz = dz->dz_next, m++) {
  361. if (m < s_m)
  362. continue;
  363. if (m > s_m)
  364. memset(&cb->args[2], 0, sizeof(cb->args) - 2*sizeof(cb->args[0]));
  365. if (dn_hash_dump_zone(skb, cb, tb, dz) < 0) {
  366. cb->args[1] = m;
  367. read_unlock(&dn_fib_tables_lock);
  368. return -1;
  369. }
  370. }
  371. read_unlock(&dn_fib_tables_lock);
  372. cb->args[1] = m;
  373. return skb->len;
  374. }
  375. static int dn_fib_table_insert(struct dn_fib_table *tb, struct rtmsg *r, struct dn_kern_rta *rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
  376. {
  377. struct dn_hash *table = (struct dn_hash *)tb->data;
  378. struct dn_fib_node *new_f, *f, **fp, **del_fp;
  379. struct dn_zone *dz;
  380. struct dn_fib_info *fi;
  381. int z = r->rtm_dst_len;
  382. int type = r->rtm_type;
  383. dn_fib_key_t key;
  384. int err;
  385. if (z > 16)
  386. return -EINVAL;
  387. dz = table->dh_zones[z];
  388. if (!dz && !(dz = dn_new_zone(table, z)))
  389. return -ENOBUFS;
  390. dz_key_0(key);
  391. if (rta->rta_dst) {
  392. __le16 dst;
  393. memcpy(&dst, rta->rta_dst, 2);
  394. if (dst & ~DZ_MASK(dz))
  395. return -EINVAL;
  396. key = dz_key(dst, dz);
  397. }
  398. if ((fi = dn_fib_create_info(r, rta, n, &err)) == NULL)
  399. return err;
  400. if (dz->dz_nent > (dz->dz_divisor << 2) &&
  401. dz->dz_divisor > DN_MAX_DIVISOR &&
  402. (z==16 || (1<<z) > dz->dz_divisor))
  403. dn_rehash_zone(dz);
  404. fp = dn_chain_p(key, dz);
  405. DN_FIB_SCAN(f, fp) {
  406. if (dn_key_leq(key, f->fn_key))
  407. break;
  408. }
  409. del_fp = NULL;
  410. if (f && (f->fn_state & DN_S_ZOMBIE) &&
  411. dn_key_eq(f->fn_key, key)) {
  412. del_fp = fp;
  413. fp = &f->fn_next;
  414. f = *fp;
  415. goto create;
  416. }
  417. DN_FIB_SCAN_KEY(f, fp, key) {
  418. if (fi->fib_priority <= DN_FIB_INFO(f)->fib_priority)
  419. break;
  420. }
  421. if (f && dn_key_eq(f->fn_key, key) &&
  422. fi->fib_priority == DN_FIB_INFO(f)->fib_priority) {
  423. struct dn_fib_node **ins_fp;
  424. err = -EEXIST;
  425. if (n->nlmsg_flags & NLM_F_EXCL)
  426. goto out;
  427. if (n->nlmsg_flags & NLM_F_REPLACE) {
  428. del_fp = fp;
  429. fp = &f->fn_next;
  430. f = *fp;
  431. goto replace;
  432. }
  433. ins_fp = fp;
  434. err = -EEXIST;
  435. DN_FIB_SCAN_KEY(f, fp, key) {
  436. if (fi->fib_priority != DN_FIB_INFO(f)->fib_priority)
  437. break;
  438. if (f->fn_type == type && f->fn_scope == r->rtm_scope
  439. && DN_FIB_INFO(f) == fi)
  440. goto out;
  441. }
  442. if (!(n->nlmsg_flags & NLM_F_APPEND)) {
  443. fp = ins_fp;
  444. f = *fp;
  445. }
  446. }
  447. create:
  448. err = -ENOENT;
  449. if (!(n->nlmsg_flags & NLM_F_CREATE))
  450. goto out;
  451. replace:
  452. err = -ENOBUFS;
  453. new_f = kmem_cache_alloc(dn_hash_kmem, SLAB_KERNEL);
  454. if (new_f == NULL)
  455. goto out;
  456. memset(new_f, 0, sizeof(struct dn_fib_node));
  457. new_f->fn_key = key;
  458. new_f->fn_type = type;
  459. new_f->fn_scope = r->rtm_scope;
  460. DN_FIB_INFO(new_f) = fi;
  461. new_f->fn_next = f;
  462. write_lock_bh(&dn_fib_tables_lock);
  463. *fp = new_f;
  464. write_unlock_bh(&dn_fib_tables_lock);
  465. dz->dz_nent++;
  466. if (del_fp) {
  467. f = *del_fp;
  468. write_lock_bh(&dn_fib_tables_lock);
  469. *del_fp = f->fn_next;
  470. write_unlock_bh(&dn_fib_tables_lock);
  471. if (!(f->fn_state & DN_S_ZOMBIE))
  472. dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
  473. if (f->fn_state & DN_S_ACCESSED)
  474. dn_rt_cache_flush(-1);
  475. dn_free_node(f);
  476. dz->dz_nent--;
  477. } else {
  478. dn_rt_cache_flush(-1);
  479. }
  480. dn_rtmsg_fib(RTM_NEWROUTE, new_f, z, tb->n, n, req);
  481. return 0;
  482. out:
  483. dn_fib_release_info(fi);
  484. return err;
  485. }
  486. static int dn_fib_table_delete(struct dn_fib_table *tb, struct rtmsg *r, struct dn_kern_rta *rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
  487. {
  488. struct dn_hash *table = (struct dn_hash*)tb->data;
  489. struct dn_fib_node **fp, **del_fp, *f;
  490. int z = r->rtm_dst_len;
  491. struct dn_zone *dz;
  492. dn_fib_key_t key;
  493. int matched;
  494. if (z > 16)
  495. return -EINVAL;
  496. if ((dz = table->dh_zones[z]) == NULL)
  497. return -ESRCH;
  498. dz_key_0(key);
  499. if (rta->rta_dst) {
  500. __le16 dst;
  501. memcpy(&dst, rta->rta_dst, 2);
  502. if (dst & ~DZ_MASK(dz))
  503. return -EINVAL;
  504. key = dz_key(dst, dz);
  505. }
  506. fp = dn_chain_p(key, dz);
  507. DN_FIB_SCAN(f, fp) {
  508. if (dn_key_eq(f->fn_key, key))
  509. break;
  510. if (dn_key_leq(key, f->fn_key))
  511. return -ESRCH;
  512. }
  513. matched = 0;
  514. del_fp = NULL;
  515. DN_FIB_SCAN_KEY(f, fp, key) {
  516. struct dn_fib_info *fi = DN_FIB_INFO(f);
  517. if (f->fn_state & DN_S_ZOMBIE)
  518. return -ESRCH;
  519. matched++;
  520. if (del_fp == NULL &&
  521. (!r->rtm_type || f->fn_type == r->rtm_type) &&
  522. (r->rtm_scope == RT_SCOPE_NOWHERE || f->fn_scope == r->rtm_scope) &&
  523. (!r->rtm_protocol ||
  524. fi->fib_protocol == r->rtm_protocol) &&
  525. dn_fib_nh_match(r, n, rta, fi) == 0)
  526. del_fp = fp;
  527. }
  528. if (del_fp) {
  529. f = *del_fp;
  530. dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
  531. if (matched != 1) {
  532. write_lock_bh(&dn_fib_tables_lock);
  533. *del_fp = f->fn_next;
  534. write_unlock_bh(&dn_fib_tables_lock);
  535. if (f->fn_state & DN_S_ACCESSED)
  536. dn_rt_cache_flush(-1);
  537. dn_free_node(f);
  538. dz->dz_nent--;
  539. } else {
  540. f->fn_state |= DN_S_ZOMBIE;
  541. if (f->fn_state & DN_S_ACCESSED) {
  542. f->fn_state &= ~DN_S_ACCESSED;
  543. dn_rt_cache_flush(-1);
  544. }
  545. if (++dn_fib_hash_zombies > 128)
  546. dn_fib_flush();
  547. }
  548. return 0;
  549. }
  550. return -ESRCH;
  551. }
  552. static inline int dn_flush_list(struct dn_fib_node **fp, int z, struct dn_hash *table)
  553. {
  554. int found = 0;
  555. struct dn_fib_node *f;
  556. while((f = *fp) != NULL) {
  557. struct dn_fib_info *fi = DN_FIB_INFO(f);
  558. if (fi && ((f->fn_state & DN_S_ZOMBIE) || (fi->fib_flags & RTNH_F_DEAD))) {
  559. write_lock_bh(&dn_fib_tables_lock);
  560. *fp = f->fn_next;
  561. write_unlock_bh(&dn_fib_tables_lock);
  562. dn_free_node(f);
  563. found++;
  564. continue;
  565. }
  566. fp = &f->fn_next;
  567. }
  568. return found;
  569. }
  570. static int dn_fib_table_flush(struct dn_fib_table *tb)
  571. {
  572. struct dn_hash *table = (struct dn_hash *)tb->data;
  573. struct dn_zone *dz;
  574. int found = 0;
  575. dn_fib_hash_zombies = 0;
  576. for(dz = table->dh_zone_list; dz; dz = dz->dz_next) {
  577. int i;
  578. int tmp = 0;
  579. for(i = dz->dz_divisor-1; i >= 0; i--)
  580. tmp += dn_flush_list(&dz->dz_hash[i], dz->dz_order, table);
  581. dz->dz_nent -= tmp;
  582. found += tmp;
  583. }
  584. return found;
  585. }
  586. static int dn_fib_table_lookup(struct dn_fib_table *tb, const struct flowi *flp, struct dn_fib_res *res)
  587. {
  588. int err;
  589. struct dn_zone *dz;
  590. struct dn_hash *t = (struct dn_hash *)tb->data;
  591. read_lock(&dn_fib_tables_lock);
  592. for(dz = t->dh_zone_list; dz; dz = dz->dz_next) {
  593. struct dn_fib_node *f;
  594. dn_fib_key_t k = dz_key(flp->fld_dst, dz);
  595. for(f = dz_chain(k, dz); f; f = f->fn_next) {
  596. if (!dn_key_eq(k, f->fn_key)) {
  597. if (dn_key_leq(k, f->fn_key))
  598. break;
  599. else
  600. continue;
  601. }
  602. f->fn_state |= DN_S_ACCESSED;
  603. if (f->fn_state&DN_S_ZOMBIE)
  604. continue;
  605. if (f->fn_scope < flp->fld_scope)
  606. continue;
  607. err = dn_fib_semantic_match(f->fn_type, DN_FIB_INFO(f), flp, res);
  608. if (err == 0) {
  609. res->type = f->fn_type;
  610. res->scope = f->fn_scope;
  611. res->prefixlen = dz->dz_order;
  612. goto out;
  613. }
  614. if (err < 0)
  615. goto out;
  616. }
  617. }
  618. err = 1;
  619. out:
  620. read_unlock(&dn_fib_tables_lock);
  621. return err;
  622. }
  623. struct dn_fib_table *dn_fib_get_table(u32 n, int create)
  624. {
  625. struct dn_fib_table *t;
  626. if (n < RT_TABLE_MIN)
  627. return NULL;
  628. if (n > RT_TABLE_MAX)
  629. return NULL;
  630. if (dn_fib_tables[n])
  631. return dn_fib_tables[n];
  632. if (!create)
  633. return NULL;
  634. if (in_interrupt() && net_ratelimit()) {
  635. printk(KERN_DEBUG "DECnet: BUG! Attempt to create routing table from interrupt\n");
  636. return NULL;
  637. }
  638. if ((t = kmalloc(sizeof(struct dn_fib_table) + sizeof(struct dn_hash), GFP_KERNEL)) == NULL)
  639. return NULL;
  640. memset(t, 0, sizeof(struct dn_fib_table));
  641. t->n = n;
  642. t->insert = dn_fib_table_insert;
  643. t->delete = dn_fib_table_delete;
  644. t->lookup = dn_fib_table_lookup;
  645. t->flush = dn_fib_table_flush;
  646. t->dump = dn_fib_table_dump;
  647. memset(t->data, 0, sizeof(struct dn_hash));
  648. dn_fib_tables[n] = t;
  649. return t;
  650. }
  651. static void dn_fib_del_tree(u32 n)
  652. {
  653. struct dn_fib_table *t;
  654. write_lock(&dn_fib_tables_lock);
  655. t = dn_fib_tables[n];
  656. dn_fib_tables[n] = NULL;
  657. write_unlock(&dn_fib_tables_lock);
  658. kfree(t);
  659. }
  660. struct dn_fib_table *dn_fib_empty_table(void)
  661. {
  662. u32 id;
  663. for(id = RT_TABLE_MIN; id <= RT_TABLE_MAX; id++)
  664. if (dn_fib_tables[id] == NULL)
  665. return dn_fib_get_table(id, 1);
  666. return NULL;
  667. }
  668. void __init dn_fib_table_init(void)
  669. {
  670. dn_hash_kmem = kmem_cache_create("dn_fib_info_cache",
  671. sizeof(struct dn_fib_info),
  672. 0, SLAB_HWCACHE_ALIGN,
  673. NULL, NULL);
  674. }
  675. void __exit dn_fib_table_cleanup(void)
  676. {
  677. int i;
  678. for (i = RT_TABLE_MIN; i <= RT_TABLE_MAX; ++i)
  679. dn_fib_del_tree(i);
  680. return;
  681. }