nvme-core.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/nvme.h>
  19. #include <linux/bio.h>
  20. #include <linux/bitops.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/delay.h>
  23. #include <linux/errno.h>
  24. #include <linux/fs.h>
  25. #include <linux/genhd.h>
  26. #include <linux/idr.h>
  27. #include <linux/init.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/io.h>
  30. #include <linux/kdev_t.h>
  31. #include <linux/kthread.h>
  32. #include <linux/kernel.h>
  33. #include <linux/mm.h>
  34. #include <linux/module.h>
  35. #include <linux/moduleparam.h>
  36. #include <linux/pci.h>
  37. #include <linux/poison.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/sched.h>
  40. #include <linux/slab.h>
  41. #include <linux/types.h>
  42. #include <scsi/sg.h>
  43. #include <asm-generic/io-64-nonatomic-lo-hi.h>
  44. #define NVME_Q_DEPTH 1024
  45. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  46. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  47. #define NVME_MINORS 64
  48. #define ADMIN_TIMEOUT (60 * HZ)
  49. static int nvme_major;
  50. module_param(nvme_major, int, 0);
  51. static int use_threaded_interrupts;
  52. module_param(use_threaded_interrupts, int, 0);
  53. static DEFINE_SPINLOCK(dev_list_lock);
  54. static LIST_HEAD(dev_list);
  55. static struct task_struct *nvme_thread;
  56. /*
  57. * An NVM Express queue. Each device has at least two (one for admin
  58. * commands and one for I/O commands).
  59. */
  60. struct nvme_queue {
  61. struct device *q_dmadev;
  62. struct nvme_dev *dev;
  63. spinlock_t q_lock;
  64. struct nvme_command *sq_cmds;
  65. volatile struct nvme_completion *cqes;
  66. dma_addr_t sq_dma_addr;
  67. dma_addr_t cq_dma_addr;
  68. wait_queue_head_t sq_full;
  69. wait_queue_t sq_cong_wait;
  70. struct bio_list sq_cong;
  71. u32 __iomem *q_db;
  72. u16 q_depth;
  73. u16 cq_vector;
  74. u16 sq_head;
  75. u16 sq_tail;
  76. u16 cq_head;
  77. u8 cq_phase;
  78. u8 cqe_seen;
  79. unsigned long cmdid_data[];
  80. };
  81. /*
  82. * Check we didin't inadvertently grow the command struct
  83. */
  84. static inline void _nvme_check_size(void)
  85. {
  86. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  87. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  88. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  89. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  90. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  91. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  92. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  93. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  94. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  95. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  96. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  97. }
  98. typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
  99. struct nvme_completion *);
  100. struct nvme_cmd_info {
  101. nvme_completion_fn fn;
  102. void *ctx;
  103. unsigned long timeout;
  104. };
  105. static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
  106. {
  107. return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
  108. }
  109. /**
  110. * alloc_cmdid() - Allocate a Command ID
  111. * @nvmeq: The queue that will be used for this command
  112. * @ctx: A pointer that will be passed to the handler
  113. * @handler: The function to call on completion
  114. *
  115. * Allocate a Command ID for a queue. The data passed in will
  116. * be passed to the completion handler. This is implemented by using
  117. * the bottom two bits of the ctx pointer to store the handler ID.
  118. * Passing in a pointer that's not 4-byte aligned will cause a BUG.
  119. * We can change this if it becomes a problem.
  120. *
  121. * May be called with local interrupts disabled and the q_lock held,
  122. * or with interrupts enabled and no locks held.
  123. */
  124. static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
  125. nvme_completion_fn handler, unsigned timeout)
  126. {
  127. int depth = nvmeq->q_depth - 1;
  128. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  129. int cmdid;
  130. do {
  131. cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
  132. if (cmdid >= depth)
  133. return -EBUSY;
  134. } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
  135. info[cmdid].fn = handler;
  136. info[cmdid].ctx = ctx;
  137. info[cmdid].timeout = jiffies + timeout;
  138. return cmdid;
  139. }
  140. static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
  141. nvme_completion_fn handler, unsigned timeout)
  142. {
  143. int cmdid;
  144. wait_event_killable(nvmeq->sq_full,
  145. (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
  146. return (cmdid < 0) ? -EINTR : cmdid;
  147. }
  148. /* Special values must be less than 0x1000 */
  149. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  150. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  151. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  152. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  153. #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
  154. static void special_completion(struct nvme_dev *dev, void *ctx,
  155. struct nvme_completion *cqe)
  156. {
  157. if (ctx == CMD_CTX_CANCELLED)
  158. return;
  159. if (ctx == CMD_CTX_FLUSH)
  160. return;
  161. if (ctx == CMD_CTX_COMPLETED) {
  162. dev_warn(&dev->pci_dev->dev,
  163. "completed id %d twice on queue %d\n",
  164. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  165. return;
  166. }
  167. if (ctx == CMD_CTX_INVALID) {
  168. dev_warn(&dev->pci_dev->dev,
  169. "invalid id %d completed on queue %d\n",
  170. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  171. return;
  172. }
  173. dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
  174. }
  175. /*
  176. * Called with local interrupts disabled and the q_lock held. May not sleep.
  177. */
  178. static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
  179. nvme_completion_fn *fn)
  180. {
  181. void *ctx;
  182. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  183. if (cmdid >= nvmeq->q_depth) {
  184. *fn = special_completion;
  185. return CMD_CTX_INVALID;
  186. }
  187. if (fn)
  188. *fn = info[cmdid].fn;
  189. ctx = info[cmdid].ctx;
  190. info[cmdid].fn = special_completion;
  191. info[cmdid].ctx = CMD_CTX_COMPLETED;
  192. clear_bit(cmdid, nvmeq->cmdid_data);
  193. wake_up(&nvmeq->sq_full);
  194. return ctx;
  195. }
  196. static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
  197. nvme_completion_fn *fn)
  198. {
  199. void *ctx;
  200. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  201. if (fn)
  202. *fn = info[cmdid].fn;
  203. ctx = info[cmdid].ctx;
  204. info[cmdid].fn = special_completion;
  205. info[cmdid].ctx = CMD_CTX_CANCELLED;
  206. return ctx;
  207. }
  208. struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
  209. {
  210. return dev->queues[get_cpu() + 1];
  211. }
  212. void put_nvmeq(struct nvme_queue *nvmeq)
  213. {
  214. put_cpu();
  215. }
  216. /**
  217. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  218. * @nvmeq: The queue to use
  219. * @cmd: The command to send
  220. *
  221. * Safe to use from interrupt context
  222. */
  223. static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  224. {
  225. unsigned long flags;
  226. u16 tail;
  227. spin_lock_irqsave(&nvmeq->q_lock, flags);
  228. tail = nvmeq->sq_tail;
  229. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  230. if (++tail == nvmeq->q_depth)
  231. tail = 0;
  232. writel(tail, nvmeq->q_db);
  233. nvmeq->sq_tail = tail;
  234. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  235. return 0;
  236. }
  237. static __le64 **iod_list(struct nvme_iod *iod)
  238. {
  239. return ((void *)iod) + iod->offset;
  240. }
  241. /*
  242. * Will slightly overestimate the number of pages needed. This is OK
  243. * as it only leads to a small amount of wasted memory for the lifetime of
  244. * the I/O.
  245. */
  246. static int nvme_npages(unsigned size)
  247. {
  248. unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
  249. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  250. }
  251. static struct nvme_iod *
  252. nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
  253. {
  254. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  255. sizeof(__le64 *) * nvme_npages(nbytes) +
  256. sizeof(struct scatterlist) * nseg, gfp);
  257. if (iod) {
  258. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  259. iod->npages = -1;
  260. iod->length = nbytes;
  261. iod->nents = 0;
  262. iod->start_time = jiffies;
  263. }
  264. return iod;
  265. }
  266. void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  267. {
  268. const int last_prp = PAGE_SIZE / 8 - 1;
  269. int i;
  270. __le64 **list = iod_list(iod);
  271. dma_addr_t prp_dma = iod->first_dma;
  272. if (iod->npages == 0)
  273. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  274. for (i = 0; i < iod->npages; i++) {
  275. __le64 *prp_list = list[i];
  276. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  277. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  278. prp_dma = next_prp_dma;
  279. }
  280. kfree(iod);
  281. }
  282. static void nvme_start_io_acct(struct bio *bio)
  283. {
  284. struct gendisk *disk = bio->bi_bdev->bd_disk;
  285. const int rw = bio_data_dir(bio);
  286. int cpu = part_stat_lock();
  287. part_round_stats(cpu, &disk->part0);
  288. part_stat_inc(cpu, &disk->part0, ios[rw]);
  289. part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
  290. part_inc_in_flight(&disk->part0, rw);
  291. part_stat_unlock();
  292. }
  293. static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
  294. {
  295. struct gendisk *disk = bio->bi_bdev->bd_disk;
  296. const int rw = bio_data_dir(bio);
  297. unsigned long duration = jiffies - start_time;
  298. int cpu = part_stat_lock();
  299. part_stat_add(cpu, &disk->part0, ticks[rw], duration);
  300. part_round_stats(cpu, &disk->part0);
  301. part_dec_in_flight(&disk->part0, rw);
  302. part_stat_unlock();
  303. }
  304. static void bio_completion(struct nvme_dev *dev, void *ctx,
  305. struct nvme_completion *cqe)
  306. {
  307. struct nvme_iod *iod = ctx;
  308. struct bio *bio = iod->private;
  309. u16 status = le16_to_cpup(&cqe->status) >> 1;
  310. if (iod->nents) {
  311. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  312. bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  313. nvme_end_io_acct(bio, iod->start_time);
  314. }
  315. nvme_free_iod(dev, iod);
  316. if (status)
  317. bio_endio(bio, -EIO);
  318. else
  319. bio_endio(bio, 0);
  320. }
  321. /* length is in bytes. gfp flags indicates whether we may sleep. */
  322. int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
  323. struct nvme_iod *iod, int total_len, gfp_t gfp)
  324. {
  325. struct dma_pool *pool;
  326. int length = total_len;
  327. struct scatterlist *sg = iod->sg;
  328. int dma_len = sg_dma_len(sg);
  329. u64 dma_addr = sg_dma_address(sg);
  330. int offset = offset_in_page(dma_addr);
  331. __le64 *prp_list;
  332. __le64 **list = iod_list(iod);
  333. dma_addr_t prp_dma;
  334. int nprps, i;
  335. cmd->prp1 = cpu_to_le64(dma_addr);
  336. length -= (PAGE_SIZE - offset);
  337. if (length <= 0)
  338. return total_len;
  339. dma_len -= (PAGE_SIZE - offset);
  340. if (dma_len) {
  341. dma_addr += (PAGE_SIZE - offset);
  342. } else {
  343. sg = sg_next(sg);
  344. dma_addr = sg_dma_address(sg);
  345. dma_len = sg_dma_len(sg);
  346. }
  347. if (length <= PAGE_SIZE) {
  348. cmd->prp2 = cpu_to_le64(dma_addr);
  349. return total_len;
  350. }
  351. nprps = DIV_ROUND_UP(length, PAGE_SIZE);
  352. if (nprps <= (256 / 8)) {
  353. pool = dev->prp_small_pool;
  354. iod->npages = 0;
  355. } else {
  356. pool = dev->prp_page_pool;
  357. iod->npages = 1;
  358. }
  359. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  360. if (!prp_list) {
  361. cmd->prp2 = cpu_to_le64(dma_addr);
  362. iod->npages = -1;
  363. return (total_len - length) + PAGE_SIZE;
  364. }
  365. list[0] = prp_list;
  366. iod->first_dma = prp_dma;
  367. cmd->prp2 = cpu_to_le64(prp_dma);
  368. i = 0;
  369. for (;;) {
  370. if (i == PAGE_SIZE / 8) {
  371. __le64 *old_prp_list = prp_list;
  372. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  373. if (!prp_list)
  374. return total_len - length;
  375. list[iod->npages++] = prp_list;
  376. prp_list[0] = old_prp_list[i - 1];
  377. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  378. i = 1;
  379. }
  380. prp_list[i++] = cpu_to_le64(dma_addr);
  381. dma_len -= PAGE_SIZE;
  382. dma_addr += PAGE_SIZE;
  383. length -= PAGE_SIZE;
  384. if (length <= 0)
  385. break;
  386. if (dma_len > 0)
  387. continue;
  388. BUG_ON(dma_len < 0);
  389. sg = sg_next(sg);
  390. dma_addr = sg_dma_address(sg);
  391. dma_len = sg_dma_len(sg);
  392. }
  393. return total_len;
  394. }
  395. struct nvme_bio_pair {
  396. struct bio b1, b2, *parent;
  397. struct bio_vec *bv1, *bv2;
  398. int err;
  399. atomic_t cnt;
  400. };
  401. static void nvme_bio_pair_endio(struct bio *bio, int err)
  402. {
  403. struct nvme_bio_pair *bp = bio->bi_private;
  404. if (err)
  405. bp->err = err;
  406. if (atomic_dec_and_test(&bp->cnt)) {
  407. bio_endio(bp->parent, bp->err);
  408. kfree(bp->bv1);
  409. kfree(bp->bv2);
  410. kfree(bp);
  411. }
  412. }
  413. static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
  414. int len, int offset)
  415. {
  416. struct nvme_bio_pair *bp;
  417. BUG_ON(len > bio->bi_size);
  418. BUG_ON(idx > bio->bi_vcnt);
  419. bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
  420. if (!bp)
  421. return NULL;
  422. bp->err = 0;
  423. bp->b1 = *bio;
  424. bp->b2 = *bio;
  425. bp->b1.bi_size = len;
  426. bp->b2.bi_size -= len;
  427. bp->b1.bi_vcnt = idx;
  428. bp->b2.bi_idx = idx;
  429. bp->b2.bi_sector += len >> 9;
  430. if (offset) {
  431. bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
  432. GFP_ATOMIC);
  433. if (!bp->bv1)
  434. goto split_fail_1;
  435. bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
  436. GFP_ATOMIC);
  437. if (!bp->bv2)
  438. goto split_fail_2;
  439. memcpy(bp->bv1, bio->bi_io_vec,
  440. bio->bi_max_vecs * sizeof(struct bio_vec));
  441. memcpy(bp->bv2, bio->bi_io_vec,
  442. bio->bi_max_vecs * sizeof(struct bio_vec));
  443. bp->b1.bi_io_vec = bp->bv1;
  444. bp->b2.bi_io_vec = bp->bv2;
  445. bp->b2.bi_io_vec[idx].bv_offset += offset;
  446. bp->b2.bi_io_vec[idx].bv_len -= offset;
  447. bp->b1.bi_io_vec[idx].bv_len = offset;
  448. bp->b1.bi_vcnt++;
  449. } else
  450. bp->bv1 = bp->bv2 = NULL;
  451. bp->b1.bi_private = bp;
  452. bp->b2.bi_private = bp;
  453. bp->b1.bi_end_io = nvme_bio_pair_endio;
  454. bp->b2.bi_end_io = nvme_bio_pair_endio;
  455. bp->parent = bio;
  456. atomic_set(&bp->cnt, 2);
  457. return bp;
  458. split_fail_2:
  459. kfree(bp->bv1);
  460. split_fail_1:
  461. kfree(bp);
  462. return NULL;
  463. }
  464. static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
  465. int idx, int len, int offset)
  466. {
  467. struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
  468. if (!bp)
  469. return -ENOMEM;
  470. if (bio_list_empty(&nvmeq->sq_cong))
  471. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  472. bio_list_add(&nvmeq->sq_cong, &bp->b1);
  473. bio_list_add(&nvmeq->sq_cong, &bp->b2);
  474. return 0;
  475. }
  476. /* NVMe scatterlists require no holes in the virtual address */
  477. #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
  478. (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
  479. static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
  480. struct bio *bio, enum dma_data_direction dma_dir, int psegs)
  481. {
  482. struct bio_vec *bvec, *bvprv = NULL;
  483. struct scatterlist *sg = NULL;
  484. int i, length = 0, nsegs = 0, split_len = bio->bi_size;
  485. if (nvmeq->dev->stripe_size)
  486. split_len = nvmeq->dev->stripe_size -
  487. ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
  488. sg_init_table(iod->sg, psegs);
  489. bio_for_each_segment(bvec, bio, i) {
  490. if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
  491. sg->length += bvec->bv_len;
  492. } else {
  493. if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
  494. return nvme_split_and_submit(bio, nvmeq, i,
  495. length, 0);
  496. sg = sg ? sg + 1 : iod->sg;
  497. sg_set_page(sg, bvec->bv_page, bvec->bv_len,
  498. bvec->bv_offset);
  499. nsegs++;
  500. }
  501. if (split_len - length < bvec->bv_len)
  502. return nvme_split_and_submit(bio, nvmeq, i, split_len,
  503. split_len - length);
  504. length += bvec->bv_len;
  505. bvprv = bvec;
  506. }
  507. iod->nents = nsegs;
  508. sg_mark_end(sg);
  509. if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
  510. return -ENOMEM;
  511. BUG_ON(length != bio->bi_size);
  512. return length;
  513. }
  514. /*
  515. * We reuse the small pool to allocate the 16-byte range here as it is not
  516. * worth having a special pool for these or additional cases to handle freeing
  517. * the iod.
  518. */
  519. static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  520. struct bio *bio, struct nvme_iod *iod, int cmdid)
  521. {
  522. struct nvme_dsm_range *range;
  523. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  524. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  525. &iod->first_dma);
  526. if (!range)
  527. return -ENOMEM;
  528. iod_list(iod)[0] = (__le64 *)range;
  529. iod->npages = 0;
  530. range->cattr = cpu_to_le32(0);
  531. range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
  532. range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
  533. memset(cmnd, 0, sizeof(*cmnd));
  534. cmnd->dsm.opcode = nvme_cmd_dsm;
  535. cmnd->dsm.command_id = cmdid;
  536. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  537. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  538. cmnd->dsm.nr = 0;
  539. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  540. if (++nvmeq->sq_tail == nvmeq->q_depth)
  541. nvmeq->sq_tail = 0;
  542. writel(nvmeq->sq_tail, nvmeq->q_db);
  543. return 0;
  544. }
  545. static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  546. int cmdid)
  547. {
  548. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  549. memset(cmnd, 0, sizeof(*cmnd));
  550. cmnd->common.opcode = nvme_cmd_flush;
  551. cmnd->common.command_id = cmdid;
  552. cmnd->common.nsid = cpu_to_le32(ns->ns_id);
  553. if (++nvmeq->sq_tail == nvmeq->q_depth)
  554. nvmeq->sq_tail = 0;
  555. writel(nvmeq->sq_tail, nvmeq->q_db);
  556. return 0;
  557. }
  558. int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
  559. {
  560. int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
  561. special_completion, NVME_IO_TIMEOUT);
  562. if (unlikely(cmdid < 0))
  563. return cmdid;
  564. return nvme_submit_flush(nvmeq, ns, cmdid);
  565. }
  566. /*
  567. * Called with local interrupts disabled and the q_lock held. May not sleep.
  568. */
  569. static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  570. struct bio *bio)
  571. {
  572. struct nvme_command *cmnd;
  573. struct nvme_iod *iod;
  574. enum dma_data_direction dma_dir;
  575. int cmdid, length, result;
  576. u16 control;
  577. u32 dsmgmt;
  578. int psegs = bio_phys_segments(ns->queue, bio);
  579. if ((bio->bi_rw & REQ_FLUSH) && psegs) {
  580. result = nvme_submit_flush_data(nvmeq, ns);
  581. if (result)
  582. return result;
  583. }
  584. result = -ENOMEM;
  585. iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
  586. if (!iod)
  587. goto nomem;
  588. iod->private = bio;
  589. result = -EBUSY;
  590. cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
  591. if (unlikely(cmdid < 0))
  592. goto free_iod;
  593. if (bio->bi_rw & REQ_DISCARD) {
  594. result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
  595. if (result)
  596. goto free_cmdid;
  597. return result;
  598. }
  599. if ((bio->bi_rw & REQ_FLUSH) && !psegs)
  600. return nvme_submit_flush(nvmeq, ns, cmdid);
  601. control = 0;
  602. if (bio->bi_rw & REQ_FUA)
  603. control |= NVME_RW_FUA;
  604. if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
  605. control |= NVME_RW_LR;
  606. dsmgmt = 0;
  607. if (bio->bi_rw & REQ_RAHEAD)
  608. dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
  609. cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  610. memset(cmnd, 0, sizeof(*cmnd));
  611. if (bio_data_dir(bio)) {
  612. cmnd->rw.opcode = nvme_cmd_write;
  613. dma_dir = DMA_TO_DEVICE;
  614. } else {
  615. cmnd->rw.opcode = nvme_cmd_read;
  616. dma_dir = DMA_FROM_DEVICE;
  617. }
  618. result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
  619. if (result <= 0)
  620. goto free_cmdid;
  621. length = result;
  622. cmnd->rw.command_id = cmdid;
  623. cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
  624. length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
  625. GFP_ATOMIC);
  626. cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
  627. cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
  628. cmnd->rw.control = cpu_to_le16(control);
  629. cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
  630. nvme_start_io_acct(bio);
  631. if (++nvmeq->sq_tail == nvmeq->q_depth)
  632. nvmeq->sq_tail = 0;
  633. writel(nvmeq->sq_tail, nvmeq->q_db);
  634. return 0;
  635. free_cmdid:
  636. free_cmdid(nvmeq, cmdid, NULL);
  637. free_iod:
  638. nvme_free_iod(nvmeq->dev, iod);
  639. nomem:
  640. return result;
  641. }
  642. static int nvme_process_cq(struct nvme_queue *nvmeq)
  643. {
  644. u16 head, phase;
  645. head = nvmeq->cq_head;
  646. phase = nvmeq->cq_phase;
  647. for (;;) {
  648. void *ctx;
  649. nvme_completion_fn fn;
  650. struct nvme_completion cqe = nvmeq->cqes[head];
  651. if ((le16_to_cpu(cqe.status) & 1) != phase)
  652. break;
  653. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  654. if (++head == nvmeq->q_depth) {
  655. head = 0;
  656. phase = !phase;
  657. }
  658. ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
  659. fn(nvmeq->dev, ctx, &cqe);
  660. }
  661. /* If the controller ignores the cq head doorbell and continuously
  662. * writes to the queue, it is theoretically possible to wrap around
  663. * the queue twice and mistakenly return IRQ_NONE. Linux only
  664. * requires that 0.1% of your interrupts are handled, so this isn't
  665. * a big problem.
  666. */
  667. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  668. return 0;
  669. writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
  670. nvmeq->cq_head = head;
  671. nvmeq->cq_phase = phase;
  672. nvmeq->cqe_seen = 1;
  673. return 1;
  674. }
  675. static void nvme_make_request(struct request_queue *q, struct bio *bio)
  676. {
  677. struct nvme_ns *ns = q->queuedata;
  678. struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
  679. int result = -EBUSY;
  680. spin_lock_irq(&nvmeq->q_lock);
  681. if (bio_list_empty(&nvmeq->sq_cong))
  682. result = nvme_submit_bio_queue(nvmeq, ns, bio);
  683. if (unlikely(result)) {
  684. if (bio_list_empty(&nvmeq->sq_cong))
  685. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  686. bio_list_add(&nvmeq->sq_cong, bio);
  687. }
  688. nvme_process_cq(nvmeq);
  689. spin_unlock_irq(&nvmeq->q_lock);
  690. put_nvmeq(nvmeq);
  691. }
  692. static irqreturn_t nvme_irq(int irq, void *data)
  693. {
  694. irqreturn_t result;
  695. struct nvme_queue *nvmeq = data;
  696. spin_lock(&nvmeq->q_lock);
  697. nvme_process_cq(nvmeq);
  698. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  699. nvmeq->cqe_seen = 0;
  700. spin_unlock(&nvmeq->q_lock);
  701. return result;
  702. }
  703. static irqreturn_t nvme_irq_check(int irq, void *data)
  704. {
  705. struct nvme_queue *nvmeq = data;
  706. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  707. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  708. return IRQ_NONE;
  709. return IRQ_WAKE_THREAD;
  710. }
  711. static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
  712. {
  713. spin_lock_irq(&nvmeq->q_lock);
  714. cancel_cmdid(nvmeq, cmdid, NULL);
  715. spin_unlock_irq(&nvmeq->q_lock);
  716. }
  717. struct sync_cmd_info {
  718. struct task_struct *task;
  719. u32 result;
  720. int status;
  721. };
  722. static void sync_completion(struct nvme_dev *dev, void *ctx,
  723. struct nvme_completion *cqe)
  724. {
  725. struct sync_cmd_info *cmdinfo = ctx;
  726. cmdinfo->result = le32_to_cpup(&cqe->result);
  727. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  728. wake_up_process(cmdinfo->task);
  729. }
  730. /*
  731. * Returns 0 on success. If the result is negative, it's a Linux error code;
  732. * if the result is positive, it's an NVM Express status code
  733. */
  734. int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
  735. u32 *result, unsigned timeout)
  736. {
  737. int cmdid;
  738. struct sync_cmd_info cmdinfo;
  739. cmdinfo.task = current;
  740. cmdinfo.status = -EINTR;
  741. cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
  742. timeout);
  743. if (cmdid < 0)
  744. return cmdid;
  745. cmd->common.command_id = cmdid;
  746. set_current_state(TASK_KILLABLE);
  747. nvme_submit_cmd(nvmeq, cmd);
  748. schedule_timeout(timeout);
  749. if (cmdinfo.status == -EINTR) {
  750. nvme_abort_command(nvmeq, cmdid);
  751. return -EINTR;
  752. }
  753. if (result)
  754. *result = cmdinfo.result;
  755. return cmdinfo.status;
  756. }
  757. int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
  758. u32 *result)
  759. {
  760. return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
  761. }
  762. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  763. {
  764. int status;
  765. struct nvme_command c;
  766. memset(&c, 0, sizeof(c));
  767. c.delete_queue.opcode = opcode;
  768. c.delete_queue.qid = cpu_to_le16(id);
  769. status = nvme_submit_admin_cmd(dev, &c, NULL);
  770. if (status)
  771. return -EIO;
  772. return 0;
  773. }
  774. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  775. struct nvme_queue *nvmeq)
  776. {
  777. int status;
  778. struct nvme_command c;
  779. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  780. memset(&c, 0, sizeof(c));
  781. c.create_cq.opcode = nvme_admin_create_cq;
  782. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  783. c.create_cq.cqid = cpu_to_le16(qid);
  784. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  785. c.create_cq.cq_flags = cpu_to_le16(flags);
  786. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  787. status = nvme_submit_admin_cmd(dev, &c, NULL);
  788. if (status)
  789. return -EIO;
  790. return 0;
  791. }
  792. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  793. struct nvme_queue *nvmeq)
  794. {
  795. int status;
  796. struct nvme_command c;
  797. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  798. memset(&c, 0, sizeof(c));
  799. c.create_sq.opcode = nvme_admin_create_sq;
  800. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  801. c.create_sq.sqid = cpu_to_le16(qid);
  802. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  803. c.create_sq.sq_flags = cpu_to_le16(flags);
  804. c.create_sq.cqid = cpu_to_le16(qid);
  805. status = nvme_submit_admin_cmd(dev, &c, NULL);
  806. if (status)
  807. return -EIO;
  808. return 0;
  809. }
  810. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  811. {
  812. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  813. }
  814. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  815. {
  816. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  817. }
  818. int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
  819. dma_addr_t dma_addr)
  820. {
  821. struct nvme_command c;
  822. memset(&c, 0, sizeof(c));
  823. c.identify.opcode = nvme_admin_identify;
  824. c.identify.nsid = cpu_to_le32(nsid);
  825. c.identify.prp1 = cpu_to_le64(dma_addr);
  826. c.identify.cns = cpu_to_le32(cns);
  827. return nvme_submit_admin_cmd(dev, &c, NULL);
  828. }
  829. int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
  830. dma_addr_t dma_addr, u32 *result)
  831. {
  832. struct nvme_command c;
  833. memset(&c, 0, sizeof(c));
  834. c.features.opcode = nvme_admin_get_features;
  835. c.features.nsid = cpu_to_le32(nsid);
  836. c.features.prp1 = cpu_to_le64(dma_addr);
  837. c.features.fid = cpu_to_le32(fid);
  838. return nvme_submit_admin_cmd(dev, &c, result);
  839. }
  840. int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
  841. dma_addr_t dma_addr, u32 *result)
  842. {
  843. struct nvme_command c;
  844. memset(&c, 0, sizeof(c));
  845. c.features.opcode = nvme_admin_set_features;
  846. c.features.prp1 = cpu_to_le64(dma_addr);
  847. c.features.fid = cpu_to_le32(fid);
  848. c.features.dword11 = cpu_to_le32(dword11);
  849. return nvme_submit_admin_cmd(dev, &c, result);
  850. }
  851. /**
  852. * nvme_cancel_ios - Cancel outstanding I/Os
  853. * @queue: The queue to cancel I/Os on
  854. * @timeout: True to only cancel I/Os which have timed out
  855. */
  856. static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
  857. {
  858. int depth = nvmeq->q_depth - 1;
  859. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  860. unsigned long now = jiffies;
  861. int cmdid;
  862. for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
  863. void *ctx;
  864. nvme_completion_fn fn;
  865. static struct nvme_completion cqe = {
  866. .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
  867. };
  868. if (timeout && !time_after(now, info[cmdid].timeout))
  869. continue;
  870. if (info[cmdid].ctx == CMD_CTX_CANCELLED)
  871. continue;
  872. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
  873. ctx = cancel_cmdid(nvmeq, cmdid, &fn);
  874. fn(nvmeq->dev, ctx, &cqe);
  875. }
  876. }
  877. static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
  878. {
  879. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  880. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  881. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  882. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  883. kfree(nvmeq);
  884. }
  885. static void nvme_free_queue(struct nvme_dev *dev, int qid)
  886. {
  887. struct nvme_queue *nvmeq = dev->queues[qid];
  888. int vector = dev->entry[nvmeq->cq_vector].vector;
  889. spin_lock_irq(&nvmeq->q_lock);
  890. nvme_cancel_ios(nvmeq, false);
  891. while (bio_list_peek(&nvmeq->sq_cong)) {
  892. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  893. bio_endio(bio, -EIO);
  894. }
  895. spin_unlock_irq(&nvmeq->q_lock);
  896. irq_set_affinity_hint(vector, NULL);
  897. free_irq(vector, nvmeq);
  898. /* Don't tell the adapter to delete the admin queue */
  899. if (qid) {
  900. adapter_delete_sq(dev, qid);
  901. adapter_delete_cq(dev, qid);
  902. }
  903. nvme_free_queue_mem(nvmeq);
  904. }
  905. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  906. int depth, int vector)
  907. {
  908. struct device *dmadev = &dev->pci_dev->dev;
  909. unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
  910. sizeof(struct nvme_cmd_info));
  911. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
  912. if (!nvmeq)
  913. return NULL;
  914. nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
  915. &nvmeq->cq_dma_addr, GFP_KERNEL);
  916. if (!nvmeq->cqes)
  917. goto free_nvmeq;
  918. memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
  919. nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
  920. &nvmeq->sq_dma_addr, GFP_KERNEL);
  921. if (!nvmeq->sq_cmds)
  922. goto free_cqdma;
  923. nvmeq->q_dmadev = dmadev;
  924. nvmeq->dev = dev;
  925. spin_lock_init(&nvmeq->q_lock);
  926. nvmeq->cq_head = 0;
  927. nvmeq->cq_phase = 1;
  928. init_waitqueue_head(&nvmeq->sq_full);
  929. init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
  930. bio_list_init(&nvmeq->sq_cong);
  931. nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
  932. nvmeq->q_depth = depth;
  933. nvmeq->cq_vector = vector;
  934. return nvmeq;
  935. free_cqdma:
  936. dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  937. nvmeq->cq_dma_addr);
  938. free_nvmeq:
  939. kfree(nvmeq);
  940. return NULL;
  941. }
  942. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  943. const char *name)
  944. {
  945. if (use_threaded_interrupts)
  946. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  947. nvme_irq_check, nvme_irq,
  948. IRQF_DISABLED | IRQF_SHARED,
  949. name, nvmeq);
  950. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  951. IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
  952. }
  953. static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
  954. int cq_size, int vector)
  955. {
  956. int result;
  957. struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
  958. if (!nvmeq)
  959. return ERR_PTR(-ENOMEM);
  960. result = adapter_alloc_cq(dev, qid, nvmeq);
  961. if (result < 0)
  962. goto free_nvmeq;
  963. result = adapter_alloc_sq(dev, qid, nvmeq);
  964. if (result < 0)
  965. goto release_cq;
  966. result = queue_request_irq(dev, nvmeq, "nvme");
  967. if (result < 0)
  968. goto release_sq;
  969. return nvmeq;
  970. release_sq:
  971. adapter_delete_sq(dev, qid);
  972. release_cq:
  973. adapter_delete_cq(dev, qid);
  974. free_nvmeq:
  975. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  976. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  977. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  978. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  979. kfree(nvmeq);
  980. return ERR_PTR(result);
  981. }
  982. static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
  983. {
  984. unsigned long timeout;
  985. u32 bit = enabled ? NVME_CSTS_RDY : 0;
  986. timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
  987. while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
  988. msleep(100);
  989. if (fatal_signal_pending(current))
  990. return -EINTR;
  991. if (time_after(jiffies, timeout)) {
  992. dev_err(&dev->pci_dev->dev,
  993. "Device not ready; aborting initialisation\n");
  994. return -ENODEV;
  995. }
  996. }
  997. return 0;
  998. }
  999. /*
  1000. * If the device has been passed off to us in an enabled state, just clear
  1001. * the enabled bit. The spec says we should set the 'shutdown notification
  1002. * bits', but doing so may cause the device to complete commands to the
  1003. * admin queue ... and we don't know what memory that might be pointing at!
  1004. */
  1005. static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
  1006. {
  1007. u32 cc = readl(&dev->bar->cc);
  1008. if (cc & NVME_CC_ENABLE)
  1009. writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
  1010. return nvme_wait_ready(dev, cap, false);
  1011. }
  1012. static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
  1013. {
  1014. return nvme_wait_ready(dev, cap, true);
  1015. }
  1016. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1017. {
  1018. int result;
  1019. u32 aqa;
  1020. u64 cap = readq(&dev->bar->cap);
  1021. struct nvme_queue *nvmeq;
  1022. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1023. dev->db_stride = NVME_CAP_STRIDE(cap);
  1024. result = nvme_disable_ctrl(dev, cap);
  1025. if (result < 0)
  1026. return result;
  1027. nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
  1028. if (!nvmeq)
  1029. return -ENOMEM;
  1030. aqa = nvmeq->q_depth - 1;
  1031. aqa |= aqa << 16;
  1032. dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
  1033. dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
  1034. dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
  1035. dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
  1036. writel(aqa, &dev->bar->aqa);
  1037. writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
  1038. writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
  1039. writel(dev->ctrl_config, &dev->bar->cc);
  1040. result = nvme_enable_ctrl(dev, cap);
  1041. if (result)
  1042. goto free_q;
  1043. result = queue_request_irq(dev, nvmeq, "nvme admin");
  1044. if (result)
  1045. goto free_q;
  1046. dev->queues[0] = nvmeq;
  1047. return result;
  1048. free_q:
  1049. nvme_free_queue_mem(nvmeq);
  1050. return result;
  1051. }
  1052. struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
  1053. unsigned long addr, unsigned length)
  1054. {
  1055. int i, err, count, nents, offset;
  1056. struct scatterlist *sg;
  1057. struct page **pages;
  1058. struct nvme_iod *iod;
  1059. if (addr & 3)
  1060. return ERR_PTR(-EINVAL);
  1061. if (!length || length > INT_MAX - PAGE_SIZE)
  1062. return ERR_PTR(-EINVAL);
  1063. offset = offset_in_page(addr);
  1064. count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
  1065. pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
  1066. if (!pages)
  1067. return ERR_PTR(-ENOMEM);
  1068. err = get_user_pages_fast(addr, count, 1, pages);
  1069. if (err < count) {
  1070. count = err;
  1071. err = -EFAULT;
  1072. goto put_pages;
  1073. }
  1074. iod = nvme_alloc_iod(count, length, GFP_KERNEL);
  1075. sg = iod->sg;
  1076. sg_init_table(sg, count);
  1077. for (i = 0; i < count; i++) {
  1078. sg_set_page(&sg[i], pages[i],
  1079. min_t(unsigned, length, PAGE_SIZE - offset),
  1080. offset);
  1081. length -= (PAGE_SIZE - offset);
  1082. offset = 0;
  1083. }
  1084. sg_mark_end(&sg[i - 1]);
  1085. iod->nents = count;
  1086. err = -ENOMEM;
  1087. nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
  1088. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1089. if (!nents)
  1090. goto free_iod;
  1091. kfree(pages);
  1092. return iod;
  1093. free_iod:
  1094. kfree(iod);
  1095. put_pages:
  1096. for (i = 0; i < count; i++)
  1097. put_page(pages[i]);
  1098. kfree(pages);
  1099. return ERR_PTR(err);
  1100. }
  1101. void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
  1102. struct nvme_iod *iod)
  1103. {
  1104. int i;
  1105. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  1106. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1107. for (i = 0; i < iod->nents; i++)
  1108. put_page(sg_page(&iod->sg[i]));
  1109. }
  1110. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  1111. {
  1112. struct nvme_dev *dev = ns->dev;
  1113. struct nvme_queue *nvmeq;
  1114. struct nvme_user_io io;
  1115. struct nvme_command c;
  1116. unsigned length, meta_len;
  1117. int status, i;
  1118. struct nvme_iod *iod, *meta_iod = NULL;
  1119. dma_addr_t meta_dma_addr;
  1120. void *meta, *uninitialized_var(meta_mem);
  1121. if (copy_from_user(&io, uio, sizeof(io)))
  1122. return -EFAULT;
  1123. length = (io.nblocks + 1) << ns->lba_shift;
  1124. meta_len = (io.nblocks + 1) * ns->ms;
  1125. if (meta_len && ((io.metadata & 3) || !io.metadata))
  1126. return -EINVAL;
  1127. switch (io.opcode) {
  1128. case nvme_cmd_write:
  1129. case nvme_cmd_read:
  1130. case nvme_cmd_compare:
  1131. iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
  1132. break;
  1133. default:
  1134. return -EINVAL;
  1135. }
  1136. if (IS_ERR(iod))
  1137. return PTR_ERR(iod);
  1138. memset(&c, 0, sizeof(c));
  1139. c.rw.opcode = io.opcode;
  1140. c.rw.flags = io.flags;
  1141. c.rw.nsid = cpu_to_le32(ns->ns_id);
  1142. c.rw.slba = cpu_to_le64(io.slba);
  1143. c.rw.length = cpu_to_le16(io.nblocks);
  1144. c.rw.control = cpu_to_le16(io.control);
  1145. c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
  1146. c.rw.reftag = cpu_to_le32(io.reftag);
  1147. c.rw.apptag = cpu_to_le16(io.apptag);
  1148. c.rw.appmask = cpu_to_le16(io.appmask);
  1149. if (meta_len) {
  1150. meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
  1151. meta_len);
  1152. if (IS_ERR(meta_iod)) {
  1153. status = PTR_ERR(meta_iod);
  1154. meta_iod = NULL;
  1155. goto unmap;
  1156. }
  1157. meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
  1158. &meta_dma_addr, GFP_KERNEL);
  1159. if (!meta_mem) {
  1160. status = -ENOMEM;
  1161. goto unmap;
  1162. }
  1163. if (io.opcode & 1) {
  1164. int meta_offset = 0;
  1165. for (i = 0; i < meta_iod->nents; i++) {
  1166. meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
  1167. meta_iod->sg[i].offset;
  1168. memcpy(meta_mem + meta_offset, meta,
  1169. meta_iod->sg[i].length);
  1170. kunmap_atomic(meta);
  1171. meta_offset += meta_iod->sg[i].length;
  1172. }
  1173. }
  1174. c.rw.metadata = cpu_to_le64(meta_dma_addr);
  1175. }
  1176. length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
  1177. nvmeq = get_nvmeq(dev);
  1178. /*
  1179. * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
  1180. * disabled. We may be preempted at any point, and be rescheduled
  1181. * to a different CPU. That will cause cacheline bouncing, but no
  1182. * additional races since q_lock already protects against other CPUs.
  1183. */
  1184. put_nvmeq(nvmeq);
  1185. if (length != (io.nblocks + 1) << ns->lba_shift)
  1186. status = -ENOMEM;
  1187. else
  1188. status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
  1189. if (meta_len) {
  1190. if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
  1191. int meta_offset = 0;
  1192. for (i = 0; i < meta_iod->nents; i++) {
  1193. meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
  1194. meta_iod->sg[i].offset;
  1195. memcpy(meta, meta_mem + meta_offset,
  1196. meta_iod->sg[i].length);
  1197. kunmap_atomic(meta);
  1198. meta_offset += meta_iod->sg[i].length;
  1199. }
  1200. }
  1201. dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
  1202. meta_dma_addr);
  1203. }
  1204. unmap:
  1205. nvme_unmap_user_pages(dev, io.opcode & 1, iod);
  1206. nvme_free_iod(dev, iod);
  1207. if (meta_iod) {
  1208. nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
  1209. nvme_free_iod(dev, meta_iod);
  1210. }
  1211. return status;
  1212. }
  1213. static int nvme_user_admin_cmd(struct nvme_dev *dev,
  1214. struct nvme_admin_cmd __user *ucmd)
  1215. {
  1216. struct nvme_admin_cmd cmd;
  1217. struct nvme_command c;
  1218. int status, length;
  1219. struct nvme_iod *uninitialized_var(iod);
  1220. unsigned timeout;
  1221. if (!capable(CAP_SYS_ADMIN))
  1222. return -EACCES;
  1223. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  1224. return -EFAULT;
  1225. memset(&c, 0, sizeof(c));
  1226. c.common.opcode = cmd.opcode;
  1227. c.common.flags = cmd.flags;
  1228. c.common.nsid = cpu_to_le32(cmd.nsid);
  1229. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  1230. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  1231. c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
  1232. c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
  1233. c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
  1234. c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
  1235. c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
  1236. c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
  1237. length = cmd.data_len;
  1238. if (cmd.data_len) {
  1239. iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
  1240. length);
  1241. if (IS_ERR(iod))
  1242. return PTR_ERR(iod);
  1243. length = nvme_setup_prps(dev, &c.common, iod, length,
  1244. GFP_KERNEL);
  1245. }
  1246. timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
  1247. ADMIN_TIMEOUT;
  1248. if (length != cmd.data_len)
  1249. status = -ENOMEM;
  1250. else
  1251. status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
  1252. timeout);
  1253. if (cmd.data_len) {
  1254. nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
  1255. nvme_free_iod(dev, iod);
  1256. }
  1257. if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
  1258. sizeof(cmd.result)))
  1259. status = -EFAULT;
  1260. return status;
  1261. }
  1262. static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
  1263. unsigned long arg)
  1264. {
  1265. struct nvme_ns *ns = bdev->bd_disk->private_data;
  1266. switch (cmd) {
  1267. case NVME_IOCTL_ID:
  1268. force_successful_syscall_return();
  1269. return ns->ns_id;
  1270. case NVME_IOCTL_ADMIN_CMD:
  1271. return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
  1272. case NVME_IOCTL_SUBMIT_IO:
  1273. return nvme_submit_io(ns, (void __user *)arg);
  1274. case SG_GET_VERSION_NUM:
  1275. return nvme_sg_get_version_num((void __user *)arg);
  1276. case SG_IO:
  1277. return nvme_sg_io(ns, (void __user *)arg);
  1278. default:
  1279. return -ENOTTY;
  1280. }
  1281. }
  1282. static const struct block_device_operations nvme_fops = {
  1283. .owner = THIS_MODULE,
  1284. .ioctl = nvme_ioctl,
  1285. .compat_ioctl = nvme_ioctl,
  1286. };
  1287. static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
  1288. {
  1289. while (bio_list_peek(&nvmeq->sq_cong)) {
  1290. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  1291. struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
  1292. if (bio_list_empty(&nvmeq->sq_cong))
  1293. remove_wait_queue(&nvmeq->sq_full,
  1294. &nvmeq->sq_cong_wait);
  1295. if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
  1296. if (bio_list_empty(&nvmeq->sq_cong))
  1297. add_wait_queue(&nvmeq->sq_full,
  1298. &nvmeq->sq_cong_wait);
  1299. bio_list_add_head(&nvmeq->sq_cong, bio);
  1300. break;
  1301. }
  1302. }
  1303. }
  1304. static int nvme_kthread(void *data)
  1305. {
  1306. struct nvme_dev *dev;
  1307. while (!kthread_should_stop()) {
  1308. set_current_state(TASK_INTERRUPTIBLE);
  1309. spin_lock(&dev_list_lock);
  1310. list_for_each_entry(dev, &dev_list, node) {
  1311. int i;
  1312. for (i = 0; i < dev->queue_count; i++) {
  1313. struct nvme_queue *nvmeq = dev->queues[i];
  1314. if (!nvmeq)
  1315. continue;
  1316. spin_lock_irq(&nvmeq->q_lock);
  1317. nvme_process_cq(nvmeq);
  1318. nvme_cancel_ios(nvmeq, true);
  1319. nvme_resubmit_bios(nvmeq);
  1320. spin_unlock_irq(&nvmeq->q_lock);
  1321. }
  1322. }
  1323. spin_unlock(&dev_list_lock);
  1324. schedule_timeout(round_jiffies_relative(HZ));
  1325. }
  1326. return 0;
  1327. }
  1328. static DEFINE_IDA(nvme_index_ida);
  1329. static int nvme_get_ns_idx(void)
  1330. {
  1331. int index, error;
  1332. do {
  1333. if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
  1334. return -1;
  1335. spin_lock(&dev_list_lock);
  1336. error = ida_get_new(&nvme_index_ida, &index);
  1337. spin_unlock(&dev_list_lock);
  1338. } while (error == -EAGAIN);
  1339. if (error)
  1340. index = -1;
  1341. return index;
  1342. }
  1343. static void nvme_put_ns_idx(int index)
  1344. {
  1345. spin_lock(&dev_list_lock);
  1346. ida_remove(&nvme_index_ida, index);
  1347. spin_unlock(&dev_list_lock);
  1348. }
  1349. static void nvme_config_discard(struct nvme_ns *ns)
  1350. {
  1351. u32 logical_block_size = queue_logical_block_size(ns->queue);
  1352. ns->queue->limits.discard_zeroes_data = 0;
  1353. ns->queue->limits.discard_alignment = logical_block_size;
  1354. ns->queue->limits.discard_granularity = logical_block_size;
  1355. ns->queue->limits.max_discard_sectors = 0xffffffff;
  1356. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
  1357. }
  1358. static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
  1359. struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
  1360. {
  1361. struct nvme_ns *ns;
  1362. struct gendisk *disk;
  1363. int lbaf;
  1364. if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
  1365. return NULL;
  1366. ns = kzalloc(sizeof(*ns), GFP_KERNEL);
  1367. if (!ns)
  1368. return NULL;
  1369. ns->queue = blk_alloc_queue(GFP_KERNEL);
  1370. if (!ns->queue)
  1371. goto out_free_ns;
  1372. ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
  1373. queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
  1374. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1375. blk_queue_make_request(ns->queue, nvme_make_request);
  1376. ns->dev = dev;
  1377. ns->queue->queuedata = ns;
  1378. disk = alloc_disk(NVME_MINORS);
  1379. if (!disk)
  1380. goto out_free_queue;
  1381. ns->ns_id = nsid;
  1382. ns->disk = disk;
  1383. lbaf = id->flbas & 0xf;
  1384. ns->lba_shift = id->lbaf[lbaf].ds;
  1385. ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
  1386. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1387. if (dev->max_hw_sectors)
  1388. blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
  1389. disk->major = nvme_major;
  1390. disk->minors = NVME_MINORS;
  1391. disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
  1392. disk->fops = &nvme_fops;
  1393. disk->private_data = ns;
  1394. disk->queue = ns->queue;
  1395. disk->driverfs_dev = &dev->pci_dev->dev;
  1396. sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
  1397. set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
  1398. if (dev->oncs & NVME_CTRL_ONCS_DSM)
  1399. nvme_config_discard(ns);
  1400. return ns;
  1401. out_free_queue:
  1402. blk_cleanup_queue(ns->queue);
  1403. out_free_ns:
  1404. kfree(ns);
  1405. return NULL;
  1406. }
  1407. static void nvme_ns_free(struct nvme_ns *ns)
  1408. {
  1409. int index = ns->disk->first_minor / NVME_MINORS;
  1410. put_disk(ns->disk);
  1411. nvme_put_ns_idx(index);
  1412. blk_cleanup_queue(ns->queue);
  1413. kfree(ns);
  1414. }
  1415. static int set_queue_count(struct nvme_dev *dev, int count)
  1416. {
  1417. int status;
  1418. u32 result;
  1419. u32 q_count = (count - 1) | ((count - 1) << 16);
  1420. status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1421. &result);
  1422. if (status)
  1423. return status < 0 ? -EIO : -EBUSY;
  1424. return min(result & 0xffff, result >> 16) + 1;
  1425. }
  1426. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1427. {
  1428. struct pci_dev *pdev = dev->pci_dev;
  1429. int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
  1430. nr_io_queues = num_online_cpus();
  1431. result = set_queue_count(dev, nr_io_queues);
  1432. if (result < 0)
  1433. return result;
  1434. if (result < nr_io_queues)
  1435. nr_io_queues = result;
  1436. /* Deregister the admin queue's interrupt */
  1437. free_irq(dev->entry[0].vector, dev->queues[0]);
  1438. db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
  1439. if (db_bar_size > 8192) {
  1440. iounmap(dev->bar);
  1441. dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
  1442. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1443. dev->queues[0]->q_db = dev->dbs;
  1444. }
  1445. vecs = nr_io_queues;
  1446. for (i = 0; i < vecs; i++)
  1447. dev->entry[i].entry = i;
  1448. for (;;) {
  1449. result = pci_enable_msix(pdev, dev->entry, vecs);
  1450. if (result <= 0)
  1451. break;
  1452. vecs = result;
  1453. }
  1454. if (result < 0) {
  1455. vecs = nr_io_queues;
  1456. if (vecs > 32)
  1457. vecs = 32;
  1458. for (;;) {
  1459. result = pci_enable_msi_block(pdev, vecs);
  1460. if (result == 0) {
  1461. for (i = 0; i < vecs; i++)
  1462. dev->entry[i].vector = i + pdev->irq;
  1463. break;
  1464. } else if (result < 0) {
  1465. vecs = 1;
  1466. break;
  1467. }
  1468. vecs = result;
  1469. }
  1470. }
  1471. /*
  1472. * Should investigate if there's a performance win from allocating
  1473. * more queues than interrupt vectors; it might allow the submission
  1474. * path to scale better, even if the receive path is limited by the
  1475. * number of interrupts.
  1476. */
  1477. nr_io_queues = vecs;
  1478. result = queue_request_irq(dev, dev->queues[0], "nvme admin");
  1479. /* XXX: handle failure here */
  1480. cpu = cpumask_first(cpu_online_mask);
  1481. for (i = 0; i < nr_io_queues; i++) {
  1482. irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
  1483. cpu = cpumask_next(cpu, cpu_online_mask);
  1484. }
  1485. q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
  1486. NVME_Q_DEPTH);
  1487. for (i = 0; i < nr_io_queues; i++) {
  1488. dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
  1489. if (IS_ERR(dev->queues[i + 1]))
  1490. return PTR_ERR(dev->queues[i + 1]);
  1491. dev->queue_count++;
  1492. }
  1493. for (; i < num_possible_cpus(); i++) {
  1494. int target = i % rounddown_pow_of_two(dev->queue_count - 1);
  1495. dev->queues[i + 1] = dev->queues[target + 1];
  1496. }
  1497. return 0;
  1498. }
  1499. static void nvme_free_queues(struct nvme_dev *dev)
  1500. {
  1501. int i;
  1502. for (i = dev->queue_count - 1; i >= 0; i--)
  1503. nvme_free_queue(dev, i);
  1504. }
  1505. /*
  1506. * Return: error value if an error occurred setting up the queues or calling
  1507. * Identify Device. 0 if these succeeded, even if adding some of the
  1508. * namespaces failed. At the moment, these failures are silent. TBD which
  1509. * failures should be reported.
  1510. */
  1511. static int nvme_dev_add(struct nvme_dev *dev)
  1512. {
  1513. int res;
  1514. unsigned nn, i;
  1515. struct nvme_ns *ns;
  1516. struct nvme_id_ctrl *ctrl;
  1517. struct nvme_id_ns *id_ns;
  1518. void *mem;
  1519. dma_addr_t dma_addr;
  1520. int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
  1521. res = nvme_setup_io_queues(dev);
  1522. if (res)
  1523. return res;
  1524. mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
  1525. GFP_KERNEL);
  1526. if (!mem)
  1527. return -ENOMEM;
  1528. res = nvme_identify(dev, 0, 1, dma_addr);
  1529. if (res) {
  1530. res = -EIO;
  1531. goto out;
  1532. }
  1533. ctrl = mem;
  1534. nn = le32_to_cpup(&ctrl->nn);
  1535. dev->oncs = le16_to_cpup(&ctrl->oncs);
  1536. memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
  1537. memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
  1538. memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
  1539. if (ctrl->mdts)
  1540. dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
  1541. if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
  1542. (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
  1543. dev->stripe_size = 1 << (ctrl->vs[3] + shift);
  1544. id_ns = mem;
  1545. for (i = 1; i <= nn; i++) {
  1546. res = nvme_identify(dev, i, 0, dma_addr);
  1547. if (res)
  1548. continue;
  1549. if (id_ns->ncap == 0)
  1550. continue;
  1551. res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
  1552. dma_addr + 4096, NULL);
  1553. if (res)
  1554. memset(mem + 4096, 0, 4096);
  1555. ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
  1556. if (ns)
  1557. list_add_tail(&ns->list, &dev->namespaces);
  1558. }
  1559. list_for_each_entry(ns, &dev->namespaces, list)
  1560. add_disk(ns->disk);
  1561. res = 0;
  1562. out:
  1563. dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
  1564. return res;
  1565. }
  1566. static int nvme_dev_remove(struct nvme_dev *dev)
  1567. {
  1568. struct nvme_ns *ns, *next;
  1569. spin_lock(&dev_list_lock);
  1570. list_del(&dev->node);
  1571. spin_unlock(&dev_list_lock);
  1572. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  1573. list_del(&ns->list);
  1574. del_gendisk(ns->disk);
  1575. nvme_ns_free(ns);
  1576. }
  1577. nvme_free_queues(dev);
  1578. return 0;
  1579. }
  1580. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1581. {
  1582. struct device *dmadev = &dev->pci_dev->dev;
  1583. dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
  1584. PAGE_SIZE, PAGE_SIZE, 0);
  1585. if (!dev->prp_page_pool)
  1586. return -ENOMEM;
  1587. /* Optimisation for I/Os between 4k and 128k */
  1588. dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
  1589. 256, 256, 0);
  1590. if (!dev->prp_small_pool) {
  1591. dma_pool_destroy(dev->prp_page_pool);
  1592. return -ENOMEM;
  1593. }
  1594. return 0;
  1595. }
  1596. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1597. {
  1598. dma_pool_destroy(dev->prp_page_pool);
  1599. dma_pool_destroy(dev->prp_small_pool);
  1600. }
  1601. static DEFINE_IDA(nvme_instance_ida);
  1602. static int nvme_set_instance(struct nvme_dev *dev)
  1603. {
  1604. int instance, error;
  1605. do {
  1606. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  1607. return -ENODEV;
  1608. spin_lock(&dev_list_lock);
  1609. error = ida_get_new(&nvme_instance_ida, &instance);
  1610. spin_unlock(&dev_list_lock);
  1611. } while (error == -EAGAIN);
  1612. if (error)
  1613. return -ENODEV;
  1614. dev->instance = instance;
  1615. return 0;
  1616. }
  1617. static void nvme_release_instance(struct nvme_dev *dev)
  1618. {
  1619. spin_lock(&dev_list_lock);
  1620. ida_remove(&nvme_instance_ida, dev->instance);
  1621. spin_unlock(&dev_list_lock);
  1622. }
  1623. static void nvme_free_dev(struct kref *kref)
  1624. {
  1625. struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
  1626. nvme_dev_remove(dev);
  1627. if (dev->pci_dev->msi_enabled)
  1628. pci_disable_msi(dev->pci_dev);
  1629. else if (dev->pci_dev->msix_enabled)
  1630. pci_disable_msix(dev->pci_dev);
  1631. iounmap(dev->bar);
  1632. nvme_release_instance(dev);
  1633. nvme_release_prp_pools(dev);
  1634. pci_disable_device(dev->pci_dev);
  1635. pci_release_regions(dev->pci_dev);
  1636. kfree(dev->queues);
  1637. kfree(dev->entry);
  1638. kfree(dev);
  1639. }
  1640. static int nvme_dev_open(struct inode *inode, struct file *f)
  1641. {
  1642. struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
  1643. miscdev);
  1644. kref_get(&dev->kref);
  1645. f->private_data = dev;
  1646. return 0;
  1647. }
  1648. static int nvme_dev_release(struct inode *inode, struct file *f)
  1649. {
  1650. struct nvme_dev *dev = f->private_data;
  1651. kref_put(&dev->kref, nvme_free_dev);
  1652. return 0;
  1653. }
  1654. static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1655. {
  1656. struct nvme_dev *dev = f->private_data;
  1657. switch (cmd) {
  1658. case NVME_IOCTL_ADMIN_CMD:
  1659. return nvme_user_admin_cmd(dev, (void __user *)arg);
  1660. default:
  1661. return -ENOTTY;
  1662. }
  1663. }
  1664. static const struct file_operations nvme_dev_fops = {
  1665. .owner = THIS_MODULE,
  1666. .open = nvme_dev_open,
  1667. .release = nvme_dev_release,
  1668. .unlocked_ioctl = nvme_dev_ioctl,
  1669. .compat_ioctl = nvme_dev_ioctl,
  1670. };
  1671. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1672. {
  1673. int bars, result = -ENOMEM;
  1674. struct nvme_dev *dev;
  1675. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  1676. if (!dev)
  1677. return -ENOMEM;
  1678. dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
  1679. GFP_KERNEL);
  1680. if (!dev->entry)
  1681. goto free;
  1682. dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
  1683. GFP_KERNEL);
  1684. if (!dev->queues)
  1685. goto free;
  1686. if (pci_enable_device_mem(pdev))
  1687. goto free;
  1688. pci_set_master(pdev);
  1689. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1690. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1691. goto disable;
  1692. INIT_LIST_HEAD(&dev->namespaces);
  1693. dev->pci_dev = pdev;
  1694. pci_set_drvdata(pdev, dev);
  1695. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
  1696. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
  1697. else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
  1698. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  1699. else
  1700. goto disable;
  1701. result = nvme_set_instance(dev);
  1702. if (result)
  1703. goto disable;
  1704. dev->entry[0].vector = pdev->irq;
  1705. result = nvme_setup_prp_pools(dev);
  1706. if (result)
  1707. goto disable_msix;
  1708. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1709. if (!dev->bar) {
  1710. result = -ENOMEM;
  1711. goto disable_msix;
  1712. }
  1713. result = nvme_configure_admin_queue(dev);
  1714. if (result)
  1715. goto unmap;
  1716. dev->queue_count++;
  1717. spin_lock(&dev_list_lock);
  1718. list_add(&dev->node, &dev_list);
  1719. spin_unlock(&dev_list_lock);
  1720. result = nvme_dev_add(dev);
  1721. if (result && result != -EBUSY)
  1722. goto delete;
  1723. scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
  1724. dev->miscdev.minor = MISC_DYNAMIC_MINOR;
  1725. dev->miscdev.parent = &pdev->dev;
  1726. dev->miscdev.name = dev->name;
  1727. dev->miscdev.fops = &nvme_dev_fops;
  1728. result = misc_register(&dev->miscdev);
  1729. if (result)
  1730. goto remove;
  1731. kref_init(&dev->kref);
  1732. return 0;
  1733. remove:
  1734. nvme_dev_remove(dev);
  1735. delete:
  1736. spin_lock(&dev_list_lock);
  1737. list_del(&dev->node);
  1738. spin_unlock(&dev_list_lock);
  1739. nvme_free_queues(dev);
  1740. unmap:
  1741. iounmap(dev->bar);
  1742. disable_msix:
  1743. if (dev->pci_dev->msi_enabled)
  1744. pci_disable_msi(dev->pci_dev);
  1745. else if (dev->pci_dev->msix_enabled)
  1746. pci_disable_msix(dev->pci_dev);
  1747. nvme_release_instance(dev);
  1748. nvme_release_prp_pools(dev);
  1749. disable:
  1750. pci_disable_device(pdev);
  1751. pci_release_regions(pdev);
  1752. free:
  1753. kfree(dev->queues);
  1754. kfree(dev->entry);
  1755. kfree(dev);
  1756. return result;
  1757. }
  1758. static void nvme_remove(struct pci_dev *pdev)
  1759. {
  1760. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1761. misc_deregister(&dev->miscdev);
  1762. kref_put(&dev->kref, nvme_free_dev);
  1763. }
  1764. /* These functions are yet to be implemented */
  1765. #define nvme_error_detected NULL
  1766. #define nvme_dump_registers NULL
  1767. #define nvme_link_reset NULL
  1768. #define nvme_slot_reset NULL
  1769. #define nvme_error_resume NULL
  1770. #define nvme_suspend NULL
  1771. #define nvme_resume NULL
  1772. static const struct pci_error_handlers nvme_err_handler = {
  1773. .error_detected = nvme_error_detected,
  1774. .mmio_enabled = nvme_dump_registers,
  1775. .link_reset = nvme_link_reset,
  1776. .slot_reset = nvme_slot_reset,
  1777. .resume = nvme_error_resume,
  1778. };
  1779. /* Move to pci_ids.h later */
  1780. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1781. static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
  1782. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1783. { 0, }
  1784. };
  1785. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1786. static struct pci_driver nvme_driver = {
  1787. .name = "nvme",
  1788. .id_table = nvme_id_table,
  1789. .probe = nvme_probe,
  1790. .remove = nvme_remove,
  1791. .suspend = nvme_suspend,
  1792. .resume = nvme_resume,
  1793. .err_handler = &nvme_err_handler,
  1794. };
  1795. static int __init nvme_init(void)
  1796. {
  1797. int result;
  1798. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  1799. if (IS_ERR(nvme_thread))
  1800. return PTR_ERR(nvme_thread);
  1801. result = register_blkdev(nvme_major, "nvme");
  1802. if (result < 0)
  1803. goto kill_kthread;
  1804. else if (result > 0)
  1805. nvme_major = result;
  1806. result = pci_register_driver(&nvme_driver);
  1807. if (result)
  1808. goto unregister_blkdev;
  1809. return 0;
  1810. unregister_blkdev:
  1811. unregister_blkdev(nvme_major, "nvme");
  1812. kill_kthread:
  1813. kthread_stop(nvme_thread);
  1814. return result;
  1815. }
  1816. static void __exit nvme_exit(void)
  1817. {
  1818. pci_unregister_driver(&nvme_driver);
  1819. unregister_blkdev(nvme_major, "nvme");
  1820. kthread_stop(nvme_thread);
  1821. }
  1822. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1823. MODULE_LICENSE("GPL");
  1824. MODULE_VERSION("0.8");
  1825. module_init(nvme_init);
  1826. module_exit(nvme_exit);