md.c 187 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/reboot.h>
  38. #include <linux/file.h>
  39. #include <linux/compat.h>
  40. #include <linux/delay.h>
  41. #include <linux/raid/md_p.h>
  42. #include <linux/raid/md_u.h>
  43. #include "md.h"
  44. #include "bitmap.h"
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. static LIST_HEAD(pers_list);
  51. static DEFINE_SPINLOCK(pers_lock);
  52. static void md_print_devices(void);
  53. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  54. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  55. /*
  56. * Default number of read corrections we'll attempt on an rdev
  57. * before ejecting it from the array. We divide the read error
  58. * count by 2 for every hour elapsed between read errors.
  59. */
  60. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  61. /*
  62. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  63. * is 1000 KB/sec, so the extra system load does not show up that much.
  64. * Increase it if you want to have more _guaranteed_ speed. Note that
  65. * the RAID driver will use the maximum available bandwidth if the IO
  66. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  67. * speed limit - in case reconstruction slows down your system despite
  68. * idle IO detection.
  69. *
  70. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  71. * or /sys/block/mdX/md/sync_speed_{min,max}
  72. */
  73. static int sysctl_speed_limit_min = 1000;
  74. static int sysctl_speed_limit_max = 200000;
  75. static inline int speed_min(mddev_t *mddev)
  76. {
  77. return mddev->sync_speed_min ?
  78. mddev->sync_speed_min : sysctl_speed_limit_min;
  79. }
  80. static inline int speed_max(mddev_t *mddev)
  81. {
  82. return mddev->sync_speed_max ?
  83. mddev->sync_speed_max : sysctl_speed_limit_max;
  84. }
  85. static struct ctl_table_header *raid_table_header;
  86. static ctl_table raid_table[] = {
  87. {
  88. .procname = "speed_limit_min",
  89. .data = &sysctl_speed_limit_min,
  90. .maxlen = sizeof(int),
  91. .mode = S_IRUGO|S_IWUSR,
  92. .proc_handler = proc_dointvec,
  93. },
  94. {
  95. .procname = "speed_limit_max",
  96. .data = &sysctl_speed_limit_max,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. { }
  102. };
  103. static ctl_table raid_dir_table[] = {
  104. {
  105. .procname = "raid",
  106. .maxlen = 0,
  107. .mode = S_IRUGO|S_IXUGO,
  108. .child = raid_table,
  109. },
  110. { }
  111. };
  112. static ctl_table raid_root_table[] = {
  113. {
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { }
  120. };
  121. static const struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. }
  140. EXPORT_SYMBOL_GPL(md_new_event);
  141. /* Alternate version that can be called from interrupts
  142. * when calling sysfs_notify isn't needed.
  143. */
  144. static void md_new_event_inintr(mddev_t *mddev)
  145. {
  146. atomic_inc(&md_event_count);
  147. wake_up(&md_event_waiters);
  148. }
  149. /*
  150. * Enables to iterate over all existing md arrays
  151. * all_mddevs_lock protects this list.
  152. */
  153. static LIST_HEAD(all_mddevs);
  154. static DEFINE_SPINLOCK(all_mddevs_lock);
  155. /*
  156. * iterates through all used mddevs in the system.
  157. * We take care to grab the all_mddevs_lock whenever navigating
  158. * the list, and to always hold a refcount when unlocked.
  159. * Any code which breaks out of this loop while own
  160. * a reference to the current mddev and must mddev_put it.
  161. */
  162. #define for_each_mddev(mddev,tmp) \
  163. \
  164. for (({ spin_lock(&all_mddevs_lock); \
  165. tmp = all_mddevs.next; \
  166. mddev = NULL;}); \
  167. ({ if (tmp != &all_mddevs) \
  168. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  169. spin_unlock(&all_mddevs_lock); \
  170. if (mddev) mddev_put(mddev); \
  171. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  172. tmp != &all_mddevs;}); \
  173. ({ spin_lock(&all_mddevs_lock); \
  174. tmp = tmp->next;}) \
  175. )
  176. /* Rather than calling directly into the personality make_request function,
  177. * IO requests come here first so that we can check if the device is
  178. * being suspended pending a reconfiguration.
  179. * We hold a refcount over the call to ->make_request. By the time that
  180. * call has finished, the bio has been linked into some internal structure
  181. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  182. */
  183. static int md_make_request(struct request_queue *q, struct bio *bio)
  184. {
  185. const int rw = bio_data_dir(bio);
  186. mddev_t *mddev = q->queuedata;
  187. int rv;
  188. int cpu;
  189. if (mddev == NULL || mddev->pers == NULL) {
  190. bio_io_error(bio);
  191. return 0;
  192. }
  193. rcu_read_lock();
  194. if (mddev->suspended || mddev->barrier) {
  195. DEFINE_WAIT(__wait);
  196. for (;;) {
  197. prepare_to_wait(&mddev->sb_wait, &__wait,
  198. TASK_UNINTERRUPTIBLE);
  199. if (!mddev->suspended && !mddev->barrier)
  200. break;
  201. rcu_read_unlock();
  202. schedule();
  203. rcu_read_lock();
  204. }
  205. finish_wait(&mddev->sb_wait, &__wait);
  206. }
  207. atomic_inc(&mddev->active_io);
  208. rcu_read_unlock();
  209. rv = mddev->pers->make_request(mddev, bio);
  210. cpu = part_stat_lock();
  211. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  212. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
  213. bio_sectors(bio));
  214. part_stat_unlock();
  215. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  216. wake_up(&mddev->sb_wait);
  217. return rv;
  218. }
  219. /* mddev_suspend makes sure no new requests are submitted
  220. * to the device, and that any requests that have been submitted
  221. * are completely handled.
  222. * Once ->stop is called and completes, the module will be completely
  223. * unused.
  224. */
  225. static void mddev_suspend(mddev_t *mddev)
  226. {
  227. BUG_ON(mddev->suspended);
  228. mddev->suspended = 1;
  229. synchronize_rcu();
  230. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  231. mddev->pers->quiesce(mddev, 1);
  232. }
  233. static void mddev_resume(mddev_t *mddev)
  234. {
  235. mddev->suspended = 0;
  236. wake_up(&mddev->sb_wait);
  237. mddev->pers->quiesce(mddev, 0);
  238. }
  239. int mddev_congested(mddev_t *mddev, int bits)
  240. {
  241. if (mddev->barrier)
  242. return 1;
  243. return mddev->suspended;
  244. }
  245. EXPORT_SYMBOL(mddev_congested);
  246. /*
  247. * Generic barrier handling for md
  248. */
  249. #define POST_REQUEST_BARRIER ((void*)1)
  250. static void md_end_barrier(struct bio *bio, int err)
  251. {
  252. mdk_rdev_t *rdev = bio->bi_private;
  253. mddev_t *mddev = rdev->mddev;
  254. if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
  255. set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
  256. rdev_dec_pending(rdev, mddev);
  257. if (atomic_dec_and_test(&mddev->flush_pending)) {
  258. if (mddev->barrier == POST_REQUEST_BARRIER) {
  259. /* This was a post-request barrier */
  260. mddev->barrier = NULL;
  261. wake_up(&mddev->sb_wait);
  262. } else
  263. /* The pre-request barrier has finished */
  264. schedule_work(&mddev->barrier_work);
  265. }
  266. bio_put(bio);
  267. }
  268. static void submit_barriers(mddev_t *mddev)
  269. {
  270. mdk_rdev_t *rdev;
  271. rcu_read_lock();
  272. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  273. if (rdev->raid_disk >= 0 &&
  274. !test_bit(Faulty, &rdev->flags)) {
  275. /* Take two references, one is dropped
  276. * when request finishes, one after
  277. * we reclaim rcu_read_lock
  278. */
  279. struct bio *bi;
  280. atomic_inc(&rdev->nr_pending);
  281. atomic_inc(&rdev->nr_pending);
  282. rcu_read_unlock();
  283. bi = bio_alloc(GFP_KERNEL, 0);
  284. bi->bi_end_io = md_end_barrier;
  285. bi->bi_private = rdev;
  286. bi->bi_bdev = rdev->bdev;
  287. atomic_inc(&mddev->flush_pending);
  288. submit_bio(WRITE_BARRIER, bi);
  289. rcu_read_lock();
  290. rdev_dec_pending(rdev, mddev);
  291. }
  292. rcu_read_unlock();
  293. }
  294. static void md_submit_barrier(struct work_struct *ws)
  295. {
  296. mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
  297. struct bio *bio = mddev->barrier;
  298. atomic_set(&mddev->flush_pending, 1);
  299. if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
  300. bio_endio(bio, -EOPNOTSUPP);
  301. else if (bio->bi_size == 0)
  302. /* an empty barrier - all done */
  303. bio_endio(bio, 0);
  304. else {
  305. bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
  306. if (mddev->pers->make_request(mddev, bio))
  307. generic_make_request(bio);
  308. mddev->barrier = POST_REQUEST_BARRIER;
  309. submit_barriers(mddev);
  310. }
  311. if (atomic_dec_and_test(&mddev->flush_pending)) {
  312. mddev->barrier = NULL;
  313. wake_up(&mddev->sb_wait);
  314. }
  315. }
  316. void md_barrier_request(mddev_t *mddev, struct bio *bio)
  317. {
  318. spin_lock_irq(&mddev->write_lock);
  319. wait_event_lock_irq(mddev->sb_wait,
  320. !mddev->barrier,
  321. mddev->write_lock, /*nothing*/);
  322. mddev->barrier = bio;
  323. spin_unlock_irq(&mddev->write_lock);
  324. atomic_set(&mddev->flush_pending, 1);
  325. INIT_WORK(&mddev->barrier_work, md_submit_barrier);
  326. submit_barriers(mddev);
  327. if (atomic_dec_and_test(&mddev->flush_pending))
  328. schedule_work(&mddev->barrier_work);
  329. }
  330. EXPORT_SYMBOL(md_barrier_request);
  331. static inline mddev_t *mddev_get(mddev_t *mddev)
  332. {
  333. atomic_inc(&mddev->active);
  334. return mddev;
  335. }
  336. static void mddev_delayed_delete(struct work_struct *ws);
  337. static void mddev_put(mddev_t *mddev)
  338. {
  339. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  340. return;
  341. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  342. mddev->ctime == 0 && !mddev->hold_active) {
  343. /* Array is not configured at all, and not held active,
  344. * so destroy it */
  345. list_del(&mddev->all_mddevs);
  346. if (mddev->gendisk) {
  347. /* we did a probe so need to clean up.
  348. * Call schedule_work inside the spinlock
  349. * so that flush_scheduled_work() after
  350. * mddev_find will succeed in waiting for the
  351. * work to be done.
  352. */
  353. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  354. schedule_work(&mddev->del_work);
  355. } else
  356. kfree(mddev);
  357. }
  358. spin_unlock(&all_mddevs_lock);
  359. }
  360. static void mddev_init(mddev_t *mddev)
  361. {
  362. mutex_init(&mddev->open_mutex);
  363. mutex_init(&mddev->reconfig_mutex);
  364. mutex_init(&mddev->bitmap_info.mutex);
  365. INIT_LIST_HEAD(&mddev->disks);
  366. INIT_LIST_HEAD(&mddev->all_mddevs);
  367. init_timer(&mddev->safemode_timer);
  368. atomic_set(&mddev->active, 1);
  369. atomic_set(&mddev->openers, 0);
  370. atomic_set(&mddev->active_io, 0);
  371. spin_lock_init(&mddev->write_lock);
  372. atomic_set(&mddev->flush_pending, 0);
  373. init_waitqueue_head(&mddev->sb_wait);
  374. init_waitqueue_head(&mddev->recovery_wait);
  375. mddev->reshape_position = MaxSector;
  376. mddev->resync_min = 0;
  377. mddev->resync_max = MaxSector;
  378. mddev->level = LEVEL_NONE;
  379. }
  380. static mddev_t * mddev_find(dev_t unit)
  381. {
  382. mddev_t *mddev, *new = NULL;
  383. retry:
  384. spin_lock(&all_mddevs_lock);
  385. if (unit) {
  386. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  387. if (mddev->unit == unit) {
  388. mddev_get(mddev);
  389. spin_unlock(&all_mddevs_lock);
  390. kfree(new);
  391. return mddev;
  392. }
  393. if (new) {
  394. list_add(&new->all_mddevs, &all_mddevs);
  395. spin_unlock(&all_mddevs_lock);
  396. new->hold_active = UNTIL_IOCTL;
  397. return new;
  398. }
  399. } else if (new) {
  400. /* find an unused unit number */
  401. static int next_minor = 512;
  402. int start = next_minor;
  403. int is_free = 0;
  404. int dev = 0;
  405. while (!is_free) {
  406. dev = MKDEV(MD_MAJOR, next_minor);
  407. next_minor++;
  408. if (next_minor > MINORMASK)
  409. next_minor = 0;
  410. if (next_minor == start) {
  411. /* Oh dear, all in use. */
  412. spin_unlock(&all_mddevs_lock);
  413. kfree(new);
  414. return NULL;
  415. }
  416. is_free = 1;
  417. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  418. if (mddev->unit == dev) {
  419. is_free = 0;
  420. break;
  421. }
  422. }
  423. new->unit = dev;
  424. new->md_minor = MINOR(dev);
  425. new->hold_active = UNTIL_STOP;
  426. list_add(&new->all_mddevs, &all_mddevs);
  427. spin_unlock(&all_mddevs_lock);
  428. return new;
  429. }
  430. spin_unlock(&all_mddevs_lock);
  431. new = kzalloc(sizeof(*new), GFP_KERNEL);
  432. if (!new)
  433. return NULL;
  434. new->unit = unit;
  435. if (MAJOR(unit) == MD_MAJOR)
  436. new->md_minor = MINOR(unit);
  437. else
  438. new->md_minor = MINOR(unit) >> MdpMinorShift;
  439. mddev_init(new);
  440. goto retry;
  441. }
  442. static inline int mddev_lock(mddev_t * mddev)
  443. {
  444. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  445. }
  446. static inline int mddev_is_locked(mddev_t *mddev)
  447. {
  448. return mutex_is_locked(&mddev->reconfig_mutex);
  449. }
  450. static inline int mddev_trylock(mddev_t * mddev)
  451. {
  452. return mutex_trylock(&mddev->reconfig_mutex);
  453. }
  454. static struct attribute_group md_redundancy_group;
  455. static void mddev_unlock(mddev_t * mddev)
  456. {
  457. if (mddev->to_remove) {
  458. /* These cannot be removed under reconfig_mutex as
  459. * an access to the files will try to take reconfig_mutex
  460. * while holding the file unremovable, which leads to
  461. * a deadlock.
  462. * So hold open_mutex instead - we are allowed to take
  463. * it while holding reconfig_mutex, and md_run can
  464. * use it to wait for the remove to complete.
  465. */
  466. struct attribute_group *to_remove = mddev->to_remove;
  467. mddev->to_remove = NULL;
  468. mutex_lock(&mddev->open_mutex);
  469. mutex_unlock(&mddev->reconfig_mutex);
  470. if (to_remove != &md_redundancy_group)
  471. sysfs_remove_group(&mddev->kobj, to_remove);
  472. if (mddev->pers == NULL ||
  473. mddev->pers->sync_request == NULL) {
  474. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  475. if (mddev->sysfs_action)
  476. sysfs_put(mddev->sysfs_action);
  477. mddev->sysfs_action = NULL;
  478. }
  479. mutex_unlock(&mddev->open_mutex);
  480. } else
  481. mutex_unlock(&mddev->reconfig_mutex);
  482. md_wakeup_thread(mddev->thread);
  483. }
  484. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  485. {
  486. mdk_rdev_t *rdev;
  487. list_for_each_entry(rdev, &mddev->disks, same_set)
  488. if (rdev->desc_nr == nr)
  489. return rdev;
  490. return NULL;
  491. }
  492. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  493. {
  494. mdk_rdev_t *rdev;
  495. list_for_each_entry(rdev, &mddev->disks, same_set)
  496. if (rdev->bdev->bd_dev == dev)
  497. return rdev;
  498. return NULL;
  499. }
  500. static struct mdk_personality *find_pers(int level, char *clevel)
  501. {
  502. struct mdk_personality *pers;
  503. list_for_each_entry(pers, &pers_list, list) {
  504. if (level != LEVEL_NONE && pers->level == level)
  505. return pers;
  506. if (strcmp(pers->name, clevel)==0)
  507. return pers;
  508. }
  509. return NULL;
  510. }
  511. /* return the offset of the super block in 512byte sectors */
  512. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  513. {
  514. sector_t num_sectors = bdev->bd_inode->i_size / 512;
  515. return MD_NEW_SIZE_SECTORS(num_sectors);
  516. }
  517. static int alloc_disk_sb(mdk_rdev_t * rdev)
  518. {
  519. if (rdev->sb_page)
  520. MD_BUG();
  521. rdev->sb_page = alloc_page(GFP_KERNEL);
  522. if (!rdev->sb_page) {
  523. printk(KERN_ALERT "md: out of memory.\n");
  524. return -ENOMEM;
  525. }
  526. return 0;
  527. }
  528. static void free_disk_sb(mdk_rdev_t * rdev)
  529. {
  530. if (rdev->sb_page) {
  531. put_page(rdev->sb_page);
  532. rdev->sb_loaded = 0;
  533. rdev->sb_page = NULL;
  534. rdev->sb_start = 0;
  535. rdev->sectors = 0;
  536. }
  537. }
  538. static void super_written(struct bio *bio, int error)
  539. {
  540. mdk_rdev_t *rdev = bio->bi_private;
  541. mddev_t *mddev = rdev->mddev;
  542. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  543. printk("md: super_written gets error=%d, uptodate=%d\n",
  544. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  545. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  546. md_error(mddev, rdev);
  547. }
  548. if (atomic_dec_and_test(&mddev->pending_writes))
  549. wake_up(&mddev->sb_wait);
  550. bio_put(bio);
  551. }
  552. static void super_written_barrier(struct bio *bio, int error)
  553. {
  554. struct bio *bio2 = bio->bi_private;
  555. mdk_rdev_t *rdev = bio2->bi_private;
  556. mddev_t *mddev = rdev->mddev;
  557. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  558. error == -EOPNOTSUPP) {
  559. unsigned long flags;
  560. /* barriers don't appear to be supported :-( */
  561. set_bit(BarriersNotsupp, &rdev->flags);
  562. mddev->barriers_work = 0;
  563. spin_lock_irqsave(&mddev->write_lock, flags);
  564. bio2->bi_next = mddev->biolist;
  565. mddev->biolist = bio2;
  566. spin_unlock_irqrestore(&mddev->write_lock, flags);
  567. wake_up(&mddev->sb_wait);
  568. bio_put(bio);
  569. } else {
  570. bio_put(bio2);
  571. bio->bi_private = rdev;
  572. super_written(bio, error);
  573. }
  574. }
  575. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  576. sector_t sector, int size, struct page *page)
  577. {
  578. /* write first size bytes of page to sector of rdev
  579. * Increment mddev->pending_writes before returning
  580. * and decrement it on completion, waking up sb_wait
  581. * if zero is reached.
  582. * If an error occurred, call md_error
  583. *
  584. * As we might need to resubmit the request if BIO_RW_BARRIER
  585. * causes ENOTSUPP, we allocate a spare bio...
  586. */
  587. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  588. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
  589. bio->bi_bdev = rdev->bdev;
  590. bio->bi_sector = sector;
  591. bio_add_page(bio, page, size, 0);
  592. bio->bi_private = rdev;
  593. bio->bi_end_io = super_written;
  594. bio->bi_rw = rw;
  595. atomic_inc(&mddev->pending_writes);
  596. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  597. struct bio *rbio;
  598. rw |= (1<<BIO_RW_BARRIER);
  599. rbio = bio_clone(bio, GFP_NOIO);
  600. rbio->bi_private = bio;
  601. rbio->bi_end_io = super_written_barrier;
  602. submit_bio(rw, rbio);
  603. } else
  604. submit_bio(rw, bio);
  605. }
  606. void md_super_wait(mddev_t *mddev)
  607. {
  608. /* wait for all superblock writes that were scheduled to complete.
  609. * if any had to be retried (due to BARRIER problems), retry them
  610. */
  611. DEFINE_WAIT(wq);
  612. for(;;) {
  613. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  614. if (atomic_read(&mddev->pending_writes)==0)
  615. break;
  616. while (mddev->biolist) {
  617. struct bio *bio;
  618. spin_lock_irq(&mddev->write_lock);
  619. bio = mddev->biolist;
  620. mddev->biolist = bio->bi_next ;
  621. bio->bi_next = NULL;
  622. spin_unlock_irq(&mddev->write_lock);
  623. submit_bio(bio->bi_rw, bio);
  624. }
  625. schedule();
  626. }
  627. finish_wait(&mddev->sb_wait, &wq);
  628. }
  629. static void bi_complete(struct bio *bio, int error)
  630. {
  631. complete((struct completion*)bio->bi_private);
  632. }
  633. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  634. struct page *page, int rw)
  635. {
  636. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  637. struct completion event;
  638. int ret;
  639. rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
  640. bio->bi_bdev = bdev;
  641. bio->bi_sector = sector;
  642. bio_add_page(bio, page, size, 0);
  643. init_completion(&event);
  644. bio->bi_private = &event;
  645. bio->bi_end_io = bi_complete;
  646. submit_bio(rw, bio);
  647. wait_for_completion(&event);
  648. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  649. bio_put(bio);
  650. return ret;
  651. }
  652. EXPORT_SYMBOL_GPL(sync_page_io);
  653. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  654. {
  655. char b[BDEVNAME_SIZE];
  656. if (!rdev->sb_page) {
  657. MD_BUG();
  658. return -EINVAL;
  659. }
  660. if (rdev->sb_loaded)
  661. return 0;
  662. if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
  663. goto fail;
  664. rdev->sb_loaded = 1;
  665. return 0;
  666. fail:
  667. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  668. bdevname(rdev->bdev,b));
  669. return -EINVAL;
  670. }
  671. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  672. {
  673. return sb1->set_uuid0 == sb2->set_uuid0 &&
  674. sb1->set_uuid1 == sb2->set_uuid1 &&
  675. sb1->set_uuid2 == sb2->set_uuid2 &&
  676. sb1->set_uuid3 == sb2->set_uuid3;
  677. }
  678. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  679. {
  680. int ret;
  681. mdp_super_t *tmp1, *tmp2;
  682. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  683. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  684. if (!tmp1 || !tmp2) {
  685. ret = 0;
  686. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  687. goto abort;
  688. }
  689. *tmp1 = *sb1;
  690. *tmp2 = *sb2;
  691. /*
  692. * nr_disks is not constant
  693. */
  694. tmp1->nr_disks = 0;
  695. tmp2->nr_disks = 0;
  696. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  697. abort:
  698. kfree(tmp1);
  699. kfree(tmp2);
  700. return ret;
  701. }
  702. static u32 md_csum_fold(u32 csum)
  703. {
  704. csum = (csum & 0xffff) + (csum >> 16);
  705. return (csum & 0xffff) + (csum >> 16);
  706. }
  707. static unsigned int calc_sb_csum(mdp_super_t * sb)
  708. {
  709. u64 newcsum = 0;
  710. u32 *sb32 = (u32*)sb;
  711. int i;
  712. unsigned int disk_csum, csum;
  713. disk_csum = sb->sb_csum;
  714. sb->sb_csum = 0;
  715. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  716. newcsum += sb32[i];
  717. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  718. #ifdef CONFIG_ALPHA
  719. /* This used to use csum_partial, which was wrong for several
  720. * reasons including that different results are returned on
  721. * different architectures. It isn't critical that we get exactly
  722. * the same return value as before (we always csum_fold before
  723. * testing, and that removes any differences). However as we
  724. * know that csum_partial always returned a 16bit value on
  725. * alphas, do a fold to maximise conformity to previous behaviour.
  726. */
  727. sb->sb_csum = md_csum_fold(disk_csum);
  728. #else
  729. sb->sb_csum = disk_csum;
  730. #endif
  731. return csum;
  732. }
  733. /*
  734. * Handle superblock details.
  735. * We want to be able to handle multiple superblock formats
  736. * so we have a common interface to them all, and an array of
  737. * different handlers.
  738. * We rely on user-space to write the initial superblock, and support
  739. * reading and updating of superblocks.
  740. * Interface methods are:
  741. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  742. * loads and validates a superblock on dev.
  743. * if refdev != NULL, compare superblocks on both devices
  744. * Return:
  745. * 0 - dev has a superblock that is compatible with refdev
  746. * 1 - dev has a superblock that is compatible and newer than refdev
  747. * so dev should be used as the refdev in future
  748. * -EINVAL superblock incompatible or invalid
  749. * -othererror e.g. -EIO
  750. *
  751. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  752. * Verify that dev is acceptable into mddev.
  753. * The first time, mddev->raid_disks will be 0, and data from
  754. * dev should be merged in. Subsequent calls check that dev
  755. * is new enough. Return 0 or -EINVAL
  756. *
  757. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  758. * Update the superblock for rdev with data in mddev
  759. * This does not write to disc.
  760. *
  761. */
  762. struct super_type {
  763. char *name;
  764. struct module *owner;
  765. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  766. int minor_version);
  767. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  768. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  769. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  770. sector_t num_sectors);
  771. };
  772. /*
  773. * Check that the given mddev has no bitmap.
  774. *
  775. * This function is called from the run method of all personalities that do not
  776. * support bitmaps. It prints an error message and returns non-zero if mddev
  777. * has a bitmap. Otherwise, it returns 0.
  778. *
  779. */
  780. int md_check_no_bitmap(mddev_t *mddev)
  781. {
  782. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  783. return 0;
  784. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  785. mdname(mddev), mddev->pers->name);
  786. return 1;
  787. }
  788. EXPORT_SYMBOL(md_check_no_bitmap);
  789. /*
  790. * load_super for 0.90.0
  791. */
  792. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  793. {
  794. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  795. mdp_super_t *sb;
  796. int ret;
  797. /*
  798. * Calculate the position of the superblock (512byte sectors),
  799. * it's at the end of the disk.
  800. *
  801. * It also happens to be a multiple of 4Kb.
  802. */
  803. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  804. ret = read_disk_sb(rdev, MD_SB_BYTES);
  805. if (ret) return ret;
  806. ret = -EINVAL;
  807. bdevname(rdev->bdev, b);
  808. sb = (mdp_super_t*)page_address(rdev->sb_page);
  809. if (sb->md_magic != MD_SB_MAGIC) {
  810. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  811. b);
  812. goto abort;
  813. }
  814. if (sb->major_version != 0 ||
  815. sb->minor_version < 90 ||
  816. sb->minor_version > 91) {
  817. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  818. sb->major_version, sb->minor_version,
  819. b);
  820. goto abort;
  821. }
  822. if (sb->raid_disks <= 0)
  823. goto abort;
  824. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  825. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  826. b);
  827. goto abort;
  828. }
  829. rdev->preferred_minor = sb->md_minor;
  830. rdev->data_offset = 0;
  831. rdev->sb_size = MD_SB_BYTES;
  832. if (sb->level == LEVEL_MULTIPATH)
  833. rdev->desc_nr = -1;
  834. else
  835. rdev->desc_nr = sb->this_disk.number;
  836. if (!refdev) {
  837. ret = 1;
  838. } else {
  839. __u64 ev1, ev2;
  840. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  841. if (!uuid_equal(refsb, sb)) {
  842. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  843. b, bdevname(refdev->bdev,b2));
  844. goto abort;
  845. }
  846. if (!sb_equal(refsb, sb)) {
  847. printk(KERN_WARNING "md: %s has same UUID"
  848. " but different superblock to %s\n",
  849. b, bdevname(refdev->bdev, b2));
  850. goto abort;
  851. }
  852. ev1 = md_event(sb);
  853. ev2 = md_event(refsb);
  854. if (ev1 > ev2)
  855. ret = 1;
  856. else
  857. ret = 0;
  858. }
  859. rdev->sectors = rdev->sb_start;
  860. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  861. /* "this cannot possibly happen" ... */
  862. ret = -EINVAL;
  863. abort:
  864. return ret;
  865. }
  866. /*
  867. * validate_super for 0.90.0
  868. */
  869. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  870. {
  871. mdp_disk_t *desc;
  872. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  873. __u64 ev1 = md_event(sb);
  874. rdev->raid_disk = -1;
  875. clear_bit(Faulty, &rdev->flags);
  876. clear_bit(In_sync, &rdev->flags);
  877. clear_bit(WriteMostly, &rdev->flags);
  878. clear_bit(BarriersNotsupp, &rdev->flags);
  879. if (mddev->raid_disks == 0) {
  880. mddev->major_version = 0;
  881. mddev->minor_version = sb->minor_version;
  882. mddev->patch_version = sb->patch_version;
  883. mddev->external = 0;
  884. mddev->chunk_sectors = sb->chunk_size >> 9;
  885. mddev->ctime = sb->ctime;
  886. mddev->utime = sb->utime;
  887. mddev->level = sb->level;
  888. mddev->clevel[0] = 0;
  889. mddev->layout = sb->layout;
  890. mddev->raid_disks = sb->raid_disks;
  891. mddev->dev_sectors = sb->size * 2;
  892. mddev->events = ev1;
  893. mddev->bitmap_info.offset = 0;
  894. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  895. if (mddev->minor_version >= 91) {
  896. mddev->reshape_position = sb->reshape_position;
  897. mddev->delta_disks = sb->delta_disks;
  898. mddev->new_level = sb->new_level;
  899. mddev->new_layout = sb->new_layout;
  900. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  901. } else {
  902. mddev->reshape_position = MaxSector;
  903. mddev->delta_disks = 0;
  904. mddev->new_level = mddev->level;
  905. mddev->new_layout = mddev->layout;
  906. mddev->new_chunk_sectors = mddev->chunk_sectors;
  907. }
  908. if (sb->state & (1<<MD_SB_CLEAN))
  909. mddev->recovery_cp = MaxSector;
  910. else {
  911. if (sb->events_hi == sb->cp_events_hi &&
  912. sb->events_lo == sb->cp_events_lo) {
  913. mddev->recovery_cp = sb->recovery_cp;
  914. } else
  915. mddev->recovery_cp = 0;
  916. }
  917. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  918. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  919. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  920. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  921. mddev->max_disks = MD_SB_DISKS;
  922. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  923. mddev->bitmap_info.file == NULL)
  924. mddev->bitmap_info.offset =
  925. mddev->bitmap_info.default_offset;
  926. } else if (mddev->pers == NULL) {
  927. /* Insist on good event counter while assembling */
  928. ++ev1;
  929. if (ev1 < mddev->events)
  930. return -EINVAL;
  931. } else if (mddev->bitmap) {
  932. /* if adding to array with a bitmap, then we can accept an
  933. * older device ... but not too old.
  934. */
  935. if (ev1 < mddev->bitmap->events_cleared)
  936. return 0;
  937. } else {
  938. if (ev1 < mddev->events)
  939. /* just a hot-add of a new device, leave raid_disk at -1 */
  940. return 0;
  941. }
  942. if (mddev->level != LEVEL_MULTIPATH) {
  943. desc = sb->disks + rdev->desc_nr;
  944. if (desc->state & (1<<MD_DISK_FAULTY))
  945. set_bit(Faulty, &rdev->flags);
  946. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  947. desc->raid_disk < mddev->raid_disks */) {
  948. set_bit(In_sync, &rdev->flags);
  949. rdev->raid_disk = desc->raid_disk;
  950. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  951. /* active but not in sync implies recovery up to
  952. * reshape position. We don't know exactly where
  953. * that is, so set to zero for now */
  954. if (mddev->minor_version >= 91) {
  955. rdev->recovery_offset = 0;
  956. rdev->raid_disk = desc->raid_disk;
  957. }
  958. }
  959. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  960. set_bit(WriteMostly, &rdev->flags);
  961. } else /* MULTIPATH are always insync */
  962. set_bit(In_sync, &rdev->flags);
  963. return 0;
  964. }
  965. /*
  966. * sync_super for 0.90.0
  967. */
  968. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  969. {
  970. mdp_super_t *sb;
  971. mdk_rdev_t *rdev2;
  972. int next_spare = mddev->raid_disks;
  973. /* make rdev->sb match mddev data..
  974. *
  975. * 1/ zero out disks
  976. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  977. * 3/ any empty disks < next_spare become removed
  978. *
  979. * disks[0] gets initialised to REMOVED because
  980. * we cannot be sure from other fields if it has
  981. * been initialised or not.
  982. */
  983. int i;
  984. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  985. rdev->sb_size = MD_SB_BYTES;
  986. sb = (mdp_super_t*)page_address(rdev->sb_page);
  987. memset(sb, 0, sizeof(*sb));
  988. sb->md_magic = MD_SB_MAGIC;
  989. sb->major_version = mddev->major_version;
  990. sb->patch_version = mddev->patch_version;
  991. sb->gvalid_words = 0; /* ignored */
  992. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  993. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  994. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  995. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  996. sb->ctime = mddev->ctime;
  997. sb->level = mddev->level;
  998. sb->size = mddev->dev_sectors / 2;
  999. sb->raid_disks = mddev->raid_disks;
  1000. sb->md_minor = mddev->md_minor;
  1001. sb->not_persistent = 0;
  1002. sb->utime = mddev->utime;
  1003. sb->state = 0;
  1004. sb->events_hi = (mddev->events>>32);
  1005. sb->events_lo = (u32)mddev->events;
  1006. if (mddev->reshape_position == MaxSector)
  1007. sb->minor_version = 90;
  1008. else {
  1009. sb->minor_version = 91;
  1010. sb->reshape_position = mddev->reshape_position;
  1011. sb->new_level = mddev->new_level;
  1012. sb->delta_disks = mddev->delta_disks;
  1013. sb->new_layout = mddev->new_layout;
  1014. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1015. }
  1016. mddev->minor_version = sb->minor_version;
  1017. if (mddev->in_sync)
  1018. {
  1019. sb->recovery_cp = mddev->recovery_cp;
  1020. sb->cp_events_hi = (mddev->events>>32);
  1021. sb->cp_events_lo = (u32)mddev->events;
  1022. if (mddev->recovery_cp == MaxSector)
  1023. sb->state = (1<< MD_SB_CLEAN);
  1024. } else
  1025. sb->recovery_cp = 0;
  1026. sb->layout = mddev->layout;
  1027. sb->chunk_size = mddev->chunk_sectors << 9;
  1028. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1029. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1030. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1031. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1032. mdp_disk_t *d;
  1033. int desc_nr;
  1034. int is_active = test_bit(In_sync, &rdev2->flags);
  1035. if (rdev2->raid_disk >= 0 &&
  1036. sb->minor_version >= 91)
  1037. /* we have nowhere to store the recovery_offset,
  1038. * but if it is not below the reshape_position,
  1039. * we can piggy-back on that.
  1040. */
  1041. is_active = 1;
  1042. if (rdev2->raid_disk < 0 ||
  1043. test_bit(Faulty, &rdev2->flags))
  1044. is_active = 0;
  1045. if (is_active)
  1046. desc_nr = rdev2->raid_disk;
  1047. else
  1048. desc_nr = next_spare++;
  1049. rdev2->desc_nr = desc_nr;
  1050. d = &sb->disks[rdev2->desc_nr];
  1051. nr_disks++;
  1052. d->number = rdev2->desc_nr;
  1053. d->major = MAJOR(rdev2->bdev->bd_dev);
  1054. d->minor = MINOR(rdev2->bdev->bd_dev);
  1055. if (is_active)
  1056. d->raid_disk = rdev2->raid_disk;
  1057. else
  1058. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1059. if (test_bit(Faulty, &rdev2->flags))
  1060. d->state = (1<<MD_DISK_FAULTY);
  1061. else if (is_active) {
  1062. d->state = (1<<MD_DISK_ACTIVE);
  1063. if (test_bit(In_sync, &rdev2->flags))
  1064. d->state |= (1<<MD_DISK_SYNC);
  1065. active++;
  1066. working++;
  1067. } else {
  1068. d->state = 0;
  1069. spare++;
  1070. working++;
  1071. }
  1072. if (test_bit(WriteMostly, &rdev2->flags))
  1073. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1074. }
  1075. /* now set the "removed" and "faulty" bits on any missing devices */
  1076. for (i=0 ; i < mddev->raid_disks ; i++) {
  1077. mdp_disk_t *d = &sb->disks[i];
  1078. if (d->state == 0 && d->number == 0) {
  1079. d->number = i;
  1080. d->raid_disk = i;
  1081. d->state = (1<<MD_DISK_REMOVED);
  1082. d->state |= (1<<MD_DISK_FAULTY);
  1083. failed++;
  1084. }
  1085. }
  1086. sb->nr_disks = nr_disks;
  1087. sb->active_disks = active;
  1088. sb->working_disks = working;
  1089. sb->failed_disks = failed;
  1090. sb->spare_disks = spare;
  1091. sb->this_disk = sb->disks[rdev->desc_nr];
  1092. sb->sb_csum = calc_sb_csum(sb);
  1093. }
  1094. /*
  1095. * rdev_size_change for 0.90.0
  1096. */
  1097. static unsigned long long
  1098. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1099. {
  1100. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1101. return 0; /* component must fit device */
  1102. if (rdev->mddev->bitmap_info.offset)
  1103. return 0; /* can't move bitmap */
  1104. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  1105. if (!num_sectors || num_sectors > rdev->sb_start)
  1106. num_sectors = rdev->sb_start;
  1107. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1108. rdev->sb_page);
  1109. md_super_wait(rdev->mddev);
  1110. return num_sectors / 2; /* kB for sysfs */
  1111. }
  1112. /*
  1113. * version 1 superblock
  1114. */
  1115. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1116. {
  1117. __le32 disk_csum;
  1118. u32 csum;
  1119. unsigned long long newcsum;
  1120. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1121. __le32 *isuper = (__le32*)sb;
  1122. int i;
  1123. disk_csum = sb->sb_csum;
  1124. sb->sb_csum = 0;
  1125. newcsum = 0;
  1126. for (i=0; size>=4; size -= 4 )
  1127. newcsum += le32_to_cpu(*isuper++);
  1128. if (size == 2)
  1129. newcsum += le16_to_cpu(*(__le16*) isuper);
  1130. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1131. sb->sb_csum = disk_csum;
  1132. return cpu_to_le32(csum);
  1133. }
  1134. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1135. {
  1136. struct mdp_superblock_1 *sb;
  1137. int ret;
  1138. sector_t sb_start;
  1139. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1140. int bmask;
  1141. /*
  1142. * Calculate the position of the superblock in 512byte sectors.
  1143. * It is always aligned to a 4K boundary and
  1144. * depeding on minor_version, it can be:
  1145. * 0: At least 8K, but less than 12K, from end of device
  1146. * 1: At start of device
  1147. * 2: 4K from start of device.
  1148. */
  1149. switch(minor_version) {
  1150. case 0:
  1151. sb_start = rdev->bdev->bd_inode->i_size >> 9;
  1152. sb_start -= 8*2;
  1153. sb_start &= ~(sector_t)(4*2-1);
  1154. break;
  1155. case 1:
  1156. sb_start = 0;
  1157. break;
  1158. case 2:
  1159. sb_start = 8;
  1160. break;
  1161. default:
  1162. return -EINVAL;
  1163. }
  1164. rdev->sb_start = sb_start;
  1165. /* superblock is rarely larger than 1K, but it can be larger,
  1166. * and it is safe to read 4k, so we do that
  1167. */
  1168. ret = read_disk_sb(rdev, 4096);
  1169. if (ret) return ret;
  1170. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1171. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1172. sb->major_version != cpu_to_le32(1) ||
  1173. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1174. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1175. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1176. return -EINVAL;
  1177. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1178. printk("md: invalid superblock checksum on %s\n",
  1179. bdevname(rdev->bdev,b));
  1180. return -EINVAL;
  1181. }
  1182. if (le64_to_cpu(sb->data_size) < 10) {
  1183. printk("md: data_size too small on %s\n",
  1184. bdevname(rdev->bdev,b));
  1185. return -EINVAL;
  1186. }
  1187. rdev->preferred_minor = 0xffff;
  1188. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1189. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1190. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1191. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1192. if (rdev->sb_size & bmask)
  1193. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1194. if (minor_version
  1195. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1196. return -EINVAL;
  1197. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1198. rdev->desc_nr = -1;
  1199. else
  1200. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1201. if (!refdev) {
  1202. ret = 1;
  1203. } else {
  1204. __u64 ev1, ev2;
  1205. struct mdp_superblock_1 *refsb =
  1206. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  1207. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1208. sb->level != refsb->level ||
  1209. sb->layout != refsb->layout ||
  1210. sb->chunksize != refsb->chunksize) {
  1211. printk(KERN_WARNING "md: %s has strangely different"
  1212. " superblock to %s\n",
  1213. bdevname(rdev->bdev,b),
  1214. bdevname(refdev->bdev,b2));
  1215. return -EINVAL;
  1216. }
  1217. ev1 = le64_to_cpu(sb->events);
  1218. ev2 = le64_to_cpu(refsb->events);
  1219. if (ev1 > ev2)
  1220. ret = 1;
  1221. else
  1222. ret = 0;
  1223. }
  1224. if (minor_version)
  1225. rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  1226. le64_to_cpu(sb->data_offset);
  1227. else
  1228. rdev->sectors = rdev->sb_start;
  1229. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1230. return -EINVAL;
  1231. rdev->sectors = le64_to_cpu(sb->data_size);
  1232. if (le64_to_cpu(sb->size) > rdev->sectors)
  1233. return -EINVAL;
  1234. return ret;
  1235. }
  1236. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1237. {
  1238. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1239. __u64 ev1 = le64_to_cpu(sb->events);
  1240. rdev->raid_disk = -1;
  1241. clear_bit(Faulty, &rdev->flags);
  1242. clear_bit(In_sync, &rdev->flags);
  1243. clear_bit(WriteMostly, &rdev->flags);
  1244. clear_bit(BarriersNotsupp, &rdev->flags);
  1245. if (mddev->raid_disks == 0) {
  1246. mddev->major_version = 1;
  1247. mddev->patch_version = 0;
  1248. mddev->external = 0;
  1249. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1250. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1251. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1252. mddev->level = le32_to_cpu(sb->level);
  1253. mddev->clevel[0] = 0;
  1254. mddev->layout = le32_to_cpu(sb->layout);
  1255. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1256. mddev->dev_sectors = le64_to_cpu(sb->size);
  1257. mddev->events = ev1;
  1258. mddev->bitmap_info.offset = 0;
  1259. mddev->bitmap_info.default_offset = 1024 >> 9;
  1260. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1261. memcpy(mddev->uuid, sb->set_uuid, 16);
  1262. mddev->max_disks = (4096-256)/2;
  1263. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1264. mddev->bitmap_info.file == NULL )
  1265. mddev->bitmap_info.offset =
  1266. (__s32)le32_to_cpu(sb->bitmap_offset);
  1267. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1268. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1269. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1270. mddev->new_level = le32_to_cpu(sb->new_level);
  1271. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1272. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1273. } else {
  1274. mddev->reshape_position = MaxSector;
  1275. mddev->delta_disks = 0;
  1276. mddev->new_level = mddev->level;
  1277. mddev->new_layout = mddev->layout;
  1278. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1279. }
  1280. } else if (mddev->pers == NULL) {
  1281. /* Insist of good event counter while assembling */
  1282. ++ev1;
  1283. if (ev1 < mddev->events)
  1284. return -EINVAL;
  1285. } else if (mddev->bitmap) {
  1286. /* If adding to array with a bitmap, then we can accept an
  1287. * older device, but not too old.
  1288. */
  1289. if (ev1 < mddev->bitmap->events_cleared)
  1290. return 0;
  1291. } else {
  1292. if (ev1 < mddev->events)
  1293. /* just a hot-add of a new device, leave raid_disk at -1 */
  1294. return 0;
  1295. }
  1296. if (mddev->level != LEVEL_MULTIPATH) {
  1297. int role;
  1298. if (rdev->desc_nr < 0 ||
  1299. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1300. role = 0xffff;
  1301. rdev->desc_nr = -1;
  1302. } else
  1303. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1304. switch(role) {
  1305. case 0xffff: /* spare */
  1306. break;
  1307. case 0xfffe: /* faulty */
  1308. set_bit(Faulty, &rdev->flags);
  1309. break;
  1310. default:
  1311. if ((le32_to_cpu(sb->feature_map) &
  1312. MD_FEATURE_RECOVERY_OFFSET))
  1313. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1314. else
  1315. set_bit(In_sync, &rdev->flags);
  1316. rdev->raid_disk = role;
  1317. break;
  1318. }
  1319. if (sb->devflags & WriteMostly1)
  1320. set_bit(WriteMostly, &rdev->flags);
  1321. } else /* MULTIPATH are always insync */
  1322. set_bit(In_sync, &rdev->flags);
  1323. return 0;
  1324. }
  1325. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1326. {
  1327. struct mdp_superblock_1 *sb;
  1328. mdk_rdev_t *rdev2;
  1329. int max_dev, i;
  1330. /* make rdev->sb match mddev and rdev data. */
  1331. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1332. sb->feature_map = 0;
  1333. sb->pad0 = 0;
  1334. sb->recovery_offset = cpu_to_le64(0);
  1335. memset(sb->pad1, 0, sizeof(sb->pad1));
  1336. memset(sb->pad2, 0, sizeof(sb->pad2));
  1337. memset(sb->pad3, 0, sizeof(sb->pad3));
  1338. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1339. sb->events = cpu_to_le64(mddev->events);
  1340. if (mddev->in_sync)
  1341. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1342. else
  1343. sb->resync_offset = cpu_to_le64(0);
  1344. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1345. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1346. sb->size = cpu_to_le64(mddev->dev_sectors);
  1347. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1348. sb->level = cpu_to_le32(mddev->level);
  1349. sb->layout = cpu_to_le32(mddev->layout);
  1350. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1351. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1352. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1353. }
  1354. if (rdev->raid_disk >= 0 &&
  1355. !test_bit(In_sync, &rdev->flags)) {
  1356. sb->feature_map |=
  1357. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1358. sb->recovery_offset =
  1359. cpu_to_le64(rdev->recovery_offset);
  1360. }
  1361. if (mddev->reshape_position != MaxSector) {
  1362. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1363. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1364. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1365. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1366. sb->new_level = cpu_to_le32(mddev->new_level);
  1367. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1368. }
  1369. max_dev = 0;
  1370. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1371. if (rdev2->desc_nr+1 > max_dev)
  1372. max_dev = rdev2->desc_nr+1;
  1373. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1374. int bmask;
  1375. sb->max_dev = cpu_to_le32(max_dev);
  1376. rdev->sb_size = max_dev * 2 + 256;
  1377. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1378. if (rdev->sb_size & bmask)
  1379. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1380. }
  1381. for (i=0; i<max_dev;i++)
  1382. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1383. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1384. i = rdev2->desc_nr;
  1385. if (test_bit(Faulty, &rdev2->flags))
  1386. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1387. else if (test_bit(In_sync, &rdev2->flags))
  1388. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1389. else if (rdev2->raid_disk >= 0)
  1390. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1391. else
  1392. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1393. }
  1394. sb->sb_csum = calc_sb_1_csum(sb);
  1395. }
  1396. static unsigned long long
  1397. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1398. {
  1399. struct mdp_superblock_1 *sb;
  1400. sector_t max_sectors;
  1401. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1402. return 0; /* component must fit device */
  1403. if (rdev->sb_start < rdev->data_offset) {
  1404. /* minor versions 1 and 2; superblock before data */
  1405. max_sectors = rdev->bdev->bd_inode->i_size >> 9;
  1406. max_sectors -= rdev->data_offset;
  1407. if (!num_sectors || num_sectors > max_sectors)
  1408. num_sectors = max_sectors;
  1409. } else if (rdev->mddev->bitmap_info.offset) {
  1410. /* minor version 0 with bitmap we can't move */
  1411. return 0;
  1412. } else {
  1413. /* minor version 0; superblock after data */
  1414. sector_t sb_start;
  1415. sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
  1416. sb_start &= ~(sector_t)(4*2 - 1);
  1417. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1418. if (!num_sectors || num_sectors > max_sectors)
  1419. num_sectors = max_sectors;
  1420. rdev->sb_start = sb_start;
  1421. }
  1422. sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
  1423. sb->data_size = cpu_to_le64(num_sectors);
  1424. sb->super_offset = rdev->sb_start;
  1425. sb->sb_csum = calc_sb_1_csum(sb);
  1426. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1427. rdev->sb_page);
  1428. md_super_wait(rdev->mddev);
  1429. return num_sectors / 2; /* kB for sysfs */
  1430. }
  1431. static struct super_type super_types[] = {
  1432. [0] = {
  1433. .name = "0.90.0",
  1434. .owner = THIS_MODULE,
  1435. .load_super = super_90_load,
  1436. .validate_super = super_90_validate,
  1437. .sync_super = super_90_sync,
  1438. .rdev_size_change = super_90_rdev_size_change,
  1439. },
  1440. [1] = {
  1441. .name = "md-1",
  1442. .owner = THIS_MODULE,
  1443. .load_super = super_1_load,
  1444. .validate_super = super_1_validate,
  1445. .sync_super = super_1_sync,
  1446. .rdev_size_change = super_1_rdev_size_change,
  1447. },
  1448. };
  1449. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1450. {
  1451. mdk_rdev_t *rdev, *rdev2;
  1452. rcu_read_lock();
  1453. rdev_for_each_rcu(rdev, mddev1)
  1454. rdev_for_each_rcu(rdev2, mddev2)
  1455. if (rdev->bdev->bd_contains ==
  1456. rdev2->bdev->bd_contains) {
  1457. rcu_read_unlock();
  1458. return 1;
  1459. }
  1460. rcu_read_unlock();
  1461. return 0;
  1462. }
  1463. static LIST_HEAD(pending_raid_disks);
  1464. /*
  1465. * Try to register data integrity profile for an mddev
  1466. *
  1467. * This is called when an array is started and after a disk has been kicked
  1468. * from the array. It only succeeds if all working and active component devices
  1469. * are integrity capable with matching profiles.
  1470. */
  1471. int md_integrity_register(mddev_t *mddev)
  1472. {
  1473. mdk_rdev_t *rdev, *reference = NULL;
  1474. if (list_empty(&mddev->disks))
  1475. return 0; /* nothing to do */
  1476. if (blk_get_integrity(mddev->gendisk))
  1477. return 0; /* already registered */
  1478. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1479. /* skip spares and non-functional disks */
  1480. if (test_bit(Faulty, &rdev->flags))
  1481. continue;
  1482. if (rdev->raid_disk < 0)
  1483. continue;
  1484. /*
  1485. * If at least one rdev is not integrity capable, we can not
  1486. * enable data integrity for the md device.
  1487. */
  1488. if (!bdev_get_integrity(rdev->bdev))
  1489. return -EINVAL;
  1490. if (!reference) {
  1491. /* Use the first rdev as the reference */
  1492. reference = rdev;
  1493. continue;
  1494. }
  1495. /* does this rdev's profile match the reference profile? */
  1496. if (blk_integrity_compare(reference->bdev->bd_disk,
  1497. rdev->bdev->bd_disk) < 0)
  1498. return -EINVAL;
  1499. }
  1500. /*
  1501. * All component devices are integrity capable and have matching
  1502. * profiles, register the common profile for the md device.
  1503. */
  1504. if (blk_integrity_register(mddev->gendisk,
  1505. bdev_get_integrity(reference->bdev)) != 0) {
  1506. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1507. mdname(mddev));
  1508. return -EINVAL;
  1509. }
  1510. printk(KERN_NOTICE "md: data integrity on %s enabled\n",
  1511. mdname(mddev));
  1512. return 0;
  1513. }
  1514. EXPORT_SYMBOL(md_integrity_register);
  1515. /* Disable data integrity if non-capable/non-matching disk is being added */
  1516. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1517. {
  1518. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1519. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1520. if (!bi_mddev) /* nothing to do */
  1521. return;
  1522. if (rdev->raid_disk < 0) /* skip spares */
  1523. return;
  1524. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1525. rdev->bdev->bd_disk) >= 0)
  1526. return;
  1527. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1528. blk_integrity_unregister(mddev->gendisk);
  1529. }
  1530. EXPORT_SYMBOL(md_integrity_add_rdev);
  1531. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1532. {
  1533. char b[BDEVNAME_SIZE];
  1534. struct kobject *ko;
  1535. char *s;
  1536. int err;
  1537. if (rdev->mddev) {
  1538. MD_BUG();
  1539. return -EINVAL;
  1540. }
  1541. /* prevent duplicates */
  1542. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1543. return -EEXIST;
  1544. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1545. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1546. rdev->sectors < mddev->dev_sectors)) {
  1547. if (mddev->pers) {
  1548. /* Cannot change size, so fail
  1549. * If mddev->level <= 0, then we don't care
  1550. * about aligning sizes (e.g. linear)
  1551. */
  1552. if (mddev->level > 0)
  1553. return -ENOSPC;
  1554. } else
  1555. mddev->dev_sectors = rdev->sectors;
  1556. }
  1557. /* Verify rdev->desc_nr is unique.
  1558. * If it is -1, assign a free number, else
  1559. * check number is not in use
  1560. */
  1561. if (rdev->desc_nr < 0) {
  1562. int choice = 0;
  1563. if (mddev->pers) choice = mddev->raid_disks;
  1564. while (find_rdev_nr(mddev, choice))
  1565. choice++;
  1566. rdev->desc_nr = choice;
  1567. } else {
  1568. if (find_rdev_nr(mddev, rdev->desc_nr))
  1569. return -EBUSY;
  1570. }
  1571. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1572. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1573. mdname(mddev), mddev->max_disks);
  1574. return -EBUSY;
  1575. }
  1576. bdevname(rdev->bdev,b);
  1577. while ( (s=strchr(b, '/')) != NULL)
  1578. *s = '!';
  1579. rdev->mddev = mddev;
  1580. printk(KERN_INFO "md: bind<%s>\n", b);
  1581. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1582. goto fail;
  1583. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1584. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1585. kobject_del(&rdev->kobj);
  1586. goto fail;
  1587. }
  1588. rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
  1589. list_add_rcu(&rdev->same_set, &mddev->disks);
  1590. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1591. /* May as well allow recovery to be retried once */
  1592. mddev->recovery_disabled = 0;
  1593. return 0;
  1594. fail:
  1595. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1596. b, mdname(mddev));
  1597. return err;
  1598. }
  1599. static void md_delayed_delete(struct work_struct *ws)
  1600. {
  1601. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1602. kobject_del(&rdev->kobj);
  1603. kobject_put(&rdev->kobj);
  1604. }
  1605. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1606. {
  1607. char b[BDEVNAME_SIZE];
  1608. if (!rdev->mddev) {
  1609. MD_BUG();
  1610. return;
  1611. }
  1612. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1613. list_del_rcu(&rdev->same_set);
  1614. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1615. rdev->mddev = NULL;
  1616. sysfs_remove_link(&rdev->kobj, "block");
  1617. sysfs_put(rdev->sysfs_state);
  1618. rdev->sysfs_state = NULL;
  1619. /* We need to delay this, otherwise we can deadlock when
  1620. * writing to 'remove' to "dev/state". We also need
  1621. * to delay it due to rcu usage.
  1622. */
  1623. synchronize_rcu();
  1624. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1625. kobject_get(&rdev->kobj);
  1626. schedule_work(&rdev->del_work);
  1627. }
  1628. /*
  1629. * prevent the device from being mounted, repartitioned or
  1630. * otherwise reused by a RAID array (or any other kernel
  1631. * subsystem), by bd_claiming the device.
  1632. */
  1633. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1634. {
  1635. int err = 0;
  1636. struct block_device *bdev;
  1637. char b[BDEVNAME_SIZE];
  1638. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1639. if (IS_ERR(bdev)) {
  1640. printk(KERN_ERR "md: could not open %s.\n",
  1641. __bdevname(dev, b));
  1642. return PTR_ERR(bdev);
  1643. }
  1644. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1645. if (err) {
  1646. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1647. bdevname(bdev, b));
  1648. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1649. return err;
  1650. }
  1651. if (!shared)
  1652. set_bit(AllReserved, &rdev->flags);
  1653. rdev->bdev = bdev;
  1654. return err;
  1655. }
  1656. static void unlock_rdev(mdk_rdev_t *rdev)
  1657. {
  1658. struct block_device *bdev = rdev->bdev;
  1659. rdev->bdev = NULL;
  1660. if (!bdev)
  1661. MD_BUG();
  1662. bd_release(bdev);
  1663. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1664. }
  1665. void md_autodetect_dev(dev_t dev);
  1666. static void export_rdev(mdk_rdev_t * rdev)
  1667. {
  1668. char b[BDEVNAME_SIZE];
  1669. printk(KERN_INFO "md: export_rdev(%s)\n",
  1670. bdevname(rdev->bdev,b));
  1671. if (rdev->mddev)
  1672. MD_BUG();
  1673. free_disk_sb(rdev);
  1674. #ifndef MODULE
  1675. if (test_bit(AutoDetected, &rdev->flags))
  1676. md_autodetect_dev(rdev->bdev->bd_dev);
  1677. #endif
  1678. unlock_rdev(rdev);
  1679. kobject_put(&rdev->kobj);
  1680. }
  1681. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1682. {
  1683. unbind_rdev_from_array(rdev);
  1684. export_rdev(rdev);
  1685. }
  1686. static void export_array(mddev_t *mddev)
  1687. {
  1688. mdk_rdev_t *rdev, *tmp;
  1689. rdev_for_each(rdev, tmp, mddev) {
  1690. if (!rdev->mddev) {
  1691. MD_BUG();
  1692. continue;
  1693. }
  1694. kick_rdev_from_array(rdev);
  1695. }
  1696. if (!list_empty(&mddev->disks))
  1697. MD_BUG();
  1698. mddev->raid_disks = 0;
  1699. mddev->major_version = 0;
  1700. }
  1701. static void print_desc(mdp_disk_t *desc)
  1702. {
  1703. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1704. desc->major,desc->minor,desc->raid_disk,desc->state);
  1705. }
  1706. static void print_sb_90(mdp_super_t *sb)
  1707. {
  1708. int i;
  1709. printk(KERN_INFO
  1710. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1711. sb->major_version, sb->minor_version, sb->patch_version,
  1712. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1713. sb->ctime);
  1714. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1715. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1716. sb->md_minor, sb->layout, sb->chunk_size);
  1717. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1718. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1719. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1720. sb->failed_disks, sb->spare_disks,
  1721. sb->sb_csum, (unsigned long)sb->events_lo);
  1722. printk(KERN_INFO);
  1723. for (i = 0; i < MD_SB_DISKS; i++) {
  1724. mdp_disk_t *desc;
  1725. desc = sb->disks + i;
  1726. if (desc->number || desc->major || desc->minor ||
  1727. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1728. printk(" D %2d: ", i);
  1729. print_desc(desc);
  1730. }
  1731. }
  1732. printk(KERN_INFO "md: THIS: ");
  1733. print_desc(&sb->this_disk);
  1734. }
  1735. static void print_sb_1(struct mdp_superblock_1 *sb)
  1736. {
  1737. __u8 *uuid;
  1738. uuid = sb->set_uuid;
  1739. printk(KERN_INFO
  1740. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1741. "md: Name: \"%s\" CT:%llu\n",
  1742. le32_to_cpu(sb->major_version),
  1743. le32_to_cpu(sb->feature_map),
  1744. uuid,
  1745. sb->set_name,
  1746. (unsigned long long)le64_to_cpu(sb->ctime)
  1747. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1748. uuid = sb->device_uuid;
  1749. printk(KERN_INFO
  1750. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1751. " RO:%llu\n"
  1752. "md: Dev:%08x UUID: %pU\n"
  1753. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1754. "md: (MaxDev:%u) \n",
  1755. le32_to_cpu(sb->level),
  1756. (unsigned long long)le64_to_cpu(sb->size),
  1757. le32_to_cpu(sb->raid_disks),
  1758. le32_to_cpu(sb->layout),
  1759. le32_to_cpu(sb->chunksize),
  1760. (unsigned long long)le64_to_cpu(sb->data_offset),
  1761. (unsigned long long)le64_to_cpu(sb->data_size),
  1762. (unsigned long long)le64_to_cpu(sb->super_offset),
  1763. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1764. le32_to_cpu(sb->dev_number),
  1765. uuid,
  1766. sb->devflags,
  1767. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1768. (unsigned long long)le64_to_cpu(sb->events),
  1769. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1770. le32_to_cpu(sb->sb_csum),
  1771. le32_to_cpu(sb->max_dev)
  1772. );
  1773. }
  1774. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1775. {
  1776. char b[BDEVNAME_SIZE];
  1777. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1778. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1779. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1780. rdev->desc_nr);
  1781. if (rdev->sb_loaded) {
  1782. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1783. switch (major_version) {
  1784. case 0:
  1785. print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
  1786. break;
  1787. case 1:
  1788. print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
  1789. break;
  1790. }
  1791. } else
  1792. printk(KERN_INFO "md: no rdev superblock!\n");
  1793. }
  1794. static void md_print_devices(void)
  1795. {
  1796. struct list_head *tmp;
  1797. mdk_rdev_t *rdev;
  1798. mddev_t *mddev;
  1799. char b[BDEVNAME_SIZE];
  1800. printk("\n");
  1801. printk("md: **********************************\n");
  1802. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1803. printk("md: **********************************\n");
  1804. for_each_mddev(mddev, tmp) {
  1805. if (mddev->bitmap)
  1806. bitmap_print_sb(mddev->bitmap);
  1807. else
  1808. printk("%s: ", mdname(mddev));
  1809. list_for_each_entry(rdev, &mddev->disks, same_set)
  1810. printk("<%s>", bdevname(rdev->bdev,b));
  1811. printk("\n");
  1812. list_for_each_entry(rdev, &mddev->disks, same_set)
  1813. print_rdev(rdev, mddev->major_version);
  1814. }
  1815. printk("md: **********************************\n");
  1816. printk("\n");
  1817. }
  1818. static void sync_sbs(mddev_t * mddev, int nospares)
  1819. {
  1820. /* Update each superblock (in-memory image), but
  1821. * if we are allowed to, skip spares which already
  1822. * have the right event counter, or have one earlier
  1823. * (which would mean they aren't being marked as dirty
  1824. * with the rest of the array)
  1825. */
  1826. mdk_rdev_t *rdev;
  1827. /* First make sure individual recovery_offsets are correct */
  1828. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1829. if (rdev->raid_disk >= 0 &&
  1830. !test_bit(In_sync, &rdev->flags) &&
  1831. mddev->curr_resync_completed > rdev->recovery_offset)
  1832. rdev->recovery_offset = mddev->curr_resync_completed;
  1833. }
  1834. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1835. if (rdev->sb_events == mddev->events ||
  1836. (nospares &&
  1837. rdev->raid_disk < 0 &&
  1838. (rdev->sb_events&1)==0 &&
  1839. rdev->sb_events+1 == mddev->events)) {
  1840. /* Don't update this superblock */
  1841. rdev->sb_loaded = 2;
  1842. } else {
  1843. super_types[mddev->major_version].
  1844. sync_super(mddev, rdev);
  1845. rdev->sb_loaded = 1;
  1846. }
  1847. }
  1848. }
  1849. static void md_update_sb(mddev_t * mddev, int force_change)
  1850. {
  1851. mdk_rdev_t *rdev;
  1852. int sync_req;
  1853. int nospares = 0;
  1854. mddev->utime = get_seconds();
  1855. if (mddev->external)
  1856. return;
  1857. repeat:
  1858. spin_lock_irq(&mddev->write_lock);
  1859. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1860. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1861. force_change = 1;
  1862. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1863. /* just a clean<-> dirty transition, possibly leave spares alone,
  1864. * though if events isn't the right even/odd, we will have to do
  1865. * spares after all
  1866. */
  1867. nospares = 1;
  1868. if (force_change)
  1869. nospares = 0;
  1870. if (mddev->degraded)
  1871. /* If the array is degraded, then skipping spares is both
  1872. * dangerous and fairly pointless.
  1873. * Dangerous because a device that was removed from the array
  1874. * might have a event_count that still looks up-to-date,
  1875. * so it can be re-added without a resync.
  1876. * Pointless because if there are any spares to skip,
  1877. * then a recovery will happen and soon that array won't
  1878. * be degraded any more and the spare can go back to sleep then.
  1879. */
  1880. nospares = 0;
  1881. sync_req = mddev->in_sync;
  1882. /* If this is just a dirty<->clean transition, and the array is clean
  1883. * and 'events' is odd, we can roll back to the previous clean state */
  1884. if (nospares
  1885. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1886. && (mddev->events & 1)
  1887. && mddev->events != 1)
  1888. mddev->events--;
  1889. else {
  1890. /* otherwise we have to go forward and ... */
  1891. mddev->events ++;
  1892. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1893. /* .. if the array isn't clean, an 'even' event must also go
  1894. * to spares. */
  1895. if ((mddev->events&1)==0)
  1896. nospares = 0;
  1897. } else {
  1898. /* otherwise an 'odd' event must go to spares */
  1899. if ((mddev->events&1))
  1900. nospares = 0;
  1901. }
  1902. }
  1903. if (!mddev->events) {
  1904. /*
  1905. * oops, this 64-bit counter should never wrap.
  1906. * Either we are in around ~1 trillion A.C., assuming
  1907. * 1 reboot per second, or we have a bug:
  1908. */
  1909. MD_BUG();
  1910. mddev->events --;
  1911. }
  1912. /*
  1913. * do not write anything to disk if using
  1914. * nonpersistent superblocks
  1915. */
  1916. if (!mddev->persistent) {
  1917. if (!mddev->external)
  1918. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1919. spin_unlock_irq(&mddev->write_lock);
  1920. wake_up(&mddev->sb_wait);
  1921. return;
  1922. }
  1923. sync_sbs(mddev, nospares);
  1924. spin_unlock_irq(&mddev->write_lock);
  1925. dprintk(KERN_INFO
  1926. "md: updating %s RAID superblock on device (in sync %d)\n",
  1927. mdname(mddev),mddev->in_sync);
  1928. bitmap_update_sb(mddev->bitmap);
  1929. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1930. char b[BDEVNAME_SIZE];
  1931. dprintk(KERN_INFO "md: ");
  1932. if (rdev->sb_loaded != 1)
  1933. continue; /* no noise on spare devices */
  1934. if (test_bit(Faulty, &rdev->flags))
  1935. dprintk("(skipping faulty ");
  1936. dprintk("%s ", bdevname(rdev->bdev,b));
  1937. if (!test_bit(Faulty, &rdev->flags)) {
  1938. md_super_write(mddev,rdev,
  1939. rdev->sb_start, rdev->sb_size,
  1940. rdev->sb_page);
  1941. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1942. bdevname(rdev->bdev,b),
  1943. (unsigned long long)rdev->sb_start);
  1944. rdev->sb_events = mddev->events;
  1945. } else
  1946. dprintk(")\n");
  1947. if (mddev->level == LEVEL_MULTIPATH)
  1948. /* only need to write one superblock... */
  1949. break;
  1950. }
  1951. md_super_wait(mddev);
  1952. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1953. spin_lock_irq(&mddev->write_lock);
  1954. if (mddev->in_sync != sync_req ||
  1955. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1956. /* have to write it out again */
  1957. spin_unlock_irq(&mddev->write_lock);
  1958. goto repeat;
  1959. }
  1960. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1961. spin_unlock_irq(&mddev->write_lock);
  1962. wake_up(&mddev->sb_wait);
  1963. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  1964. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  1965. }
  1966. /* words written to sysfs files may, or may not, be \n terminated.
  1967. * We want to accept with case. For this we use cmd_match.
  1968. */
  1969. static int cmd_match(const char *cmd, const char *str)
  1970. {
  1971. /* See if cmd, written into a sysfs file, matches
  1972. * str. They must either be the same, or cmd can
  1973. * have a trailing newline
  1974. */
  1975. while (*cmd && *str && *cmd == *str) {
  1976. cmd++;
  1977. str++;
  1978. }
  1979. if (*cmd == '\n')
  1980. cmd++;
  1981. if (*str || *cmd)
  1982. return 0;
  1983. return 1;
  1984. }
  1985. struct rdev_sysfs_entry {
  1986. struct attribute attr;
  1987. ssize_t (*show)(mdk_rdev_t *, char *);
  1988. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1989. };
  1990. static ssize_t
  1991. state_show(mdk_rdev_t *rdev, char *page)
  1992. {
  1993. char *sep = "";
  1994. size_t len = 0;
  1995. if (test_bit(Faulty, &rdev->flags)) {
  1996. len+= sprintf(page+len, "%sfaulty",sep);
  1997. sep = ",";
  1998. }
  1999. if (test_bit(In_sync, &rdev->flags)) {
  2000. len += sprintf(page+len, "%sin_sync",sep);
  2001. sep = ",";
  2002. }
  2003. if (test_bit(WriteMostly, &rdev->flags)) {
  2004. len += sprintf(page+len, "%swrite_mostly",sep);
  2005. sep = ",";
  2006. }
  2007. if (test_bit(Blocked, &rdev->flags)) {
  2008. len += sprintf(page+len, "%sblocked", sep);
  2009. sep = ",";
  2010. }
  2011. if (!test_bit(Faulty, &rdev->flags) &&
  2012. !test_bit(In_sync, &rdev->flags)) {
  2013. len += sprintf(page+len, "%sspare", sep);
  2014. sep = ",";
  2015. }
  2016. return len+sprintf(page+len, "\n");
  2017. }
  2018. static ssize_t
  2019. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2020. {
  2021. /* can write
  2022. * faulty - simulates and error
  2023. * remove - disconnects the device
  2024. * writemostly - sets write_mostly
  2025. * -writemostly - clears write_mostly
  2026. * blocked - sets the Blocked flag
  2027. * -blocked - clears the Blocked flag
  2028. * insync - sets Insync providing device isn't active
  2029. */
  2030. int err = -EINVAL;
  2031. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2032. md_error(rdev->mddev, rdev);
  2033. err = 0;
  2034. } else if (cmd_match(buf, "remove")) {
  2035. if (rdev->raid_disk >= 0)
  2036. err = -EBUSY;
  2037. else {
  2038. mddev_t *mddev = rdev->mddev;
  2039. kick_rdev_from_array(rdev);
  2040. if (mddev->pers)
  2041. md_update_sb(mddev, 1);
  2042. md_new_event(mddev);
  2043. err = 0;
  2044. }
  2045. } else if (cmd_match(buf, "writemostly")) {
  2046. set_bit(WriteMostly, &rdev->flags);
  2047. err = 0;
  2048. } else if (cmd_match(buf, "-writemostly")) {
  2049. clear_bit(WriteMostly, &rdev->flags);
  2050. err = 0;
  2051. } else if (cmd_match(buf, "blocked")) {
  2052. set_bit(Blocked, &rdev->flags);
  2053. err = 0;
  2054. } else if (cmd_match(buf, "-blocked")) {
  2055. clear_bit(Blocked, &rdev->flags);
  2056. wake_up(&rdev->blocked_wait);
  2057. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2058. md_wakeup_thread(rdev->mddev->thread);
  2059. err = 0;
  2060. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2061. set_bit(In_sync, &rdev->flags);
  2062. err = 0;
  2063. }
  2064. if (!err && rdev->sysfs_state)
  2065. sysfs_notify_dirent(rdev->sysfs_state);
  2066. return err ? err : len;
  2067. }
  2068. static struct rdev_sysfs_entry rdev_state =
  2069. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2070. static ssize_t
  2071. errors_show(mdk_rdev_t *rdev, char *page)
  2072. {
  2073. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2074. }
  2075. static ssize_t
  2076. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2077. {
  2078. char *e;
  2079. unsigned long n = simple_strtoul(buf, &e, 10);
  2080. if (*buf && (*e == 0 || *e == '\n')) {
  2081. atomic_set(&rdev->corrected_errors, n);
  2082. return len;
  2083. }
  2084. return -EINVAL;
  2085. }
  2086. static struct rdev_sysfs_entry rdev_errors =
  2087. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2088. static ssize_t
  2089. slot_show(mdk_rdev_t *rdev, char *page)
  2090. {
  2091. if (rdev->raid_disk < 0)
  2092. return sprintf(page, "none\n");
  2093. else
  2094. return sprintf(page, "%d\n", rdev->raid_disk);
  2095. }
  2096. static ssize_t
  2097. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2098. {
  2099. char *e;
  2100. int err;
  2101. char nm[20];
  2102. int slot = simple_strtoul(buf, &e, 10);
  2103. if (strncmp(buf, "none", 4)==0)
  2104. slot = -1;
  2105. else if (e==buf || (*e && *e!= '\n'))
  2106. return -EINVAL;
  2107. if (rdev->mddev->pers && slot == -1) {
  2108. /* Setting 'slot' on an active array requires also
  2109. * updating the 'rd%d' link, and communicating
  2110. * with the personality with ->hot_*_disk.
  2111. * For now we only support removing
  2112. * failed/spare devices. This normally happens automatically,
  2113. * but not when the metadata is externally managed.
  2114. */
  2115. if (rdev->raid_disk == -1)
  2116. return -EEXIST;
  2117. /* personality does all needed checks */
  2118. if (rdev->mddev->pers->hot_add_disk == NULL)
  2119. return -EINVAL;
  2120. err = rdev->mddev->pers->
  2121. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2122. if (err)
  2123. return err;
  2124. sprintf(nm, "rd%d", rdev->raid_disk);
  2125. sysfs_remove_link(&rdev->mddev->kobj, nm);
  2126. rdev->raid_disk = -1;
  2127. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2128. md_wakeup_thread(rdev->mddev->thread);
  2129. } else if (rdev->mddev->pers) {
  2130. mdk_rdev_t *rdev2;
  2131. /* Activating a spare .. or possibly reactivating
  2132. * if we ever get bitmaps working here.
  2133. */
  2134. if (rdev->raid_disk != -1)
  2135. return -EBUSY;
  2136. if (rdev->mddev->pers->hot_add_disk == NULL)
  2137. return -EINVAL;
  2138. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2139. if (rdev2->raid_disk == slot)
  2140. return -EEXIST;
  2141. rdev->raid_disk = slot;
  2142. if (test_bit(In_sync, &rdev->flags))
  2143. rdev->saved_raid_disk = slot;
  2144. else
  2145. rdev->saved_raid_disk = -1;
  2146. err = rdev->mddev->pers->
  2147. hot_add_disk(rdev->mddev, rdev);
  2148. if (err) {
  2149. rdev->raid_disk = -1;
  2150. return err;
  2151. } else
  2152. sysfs_notify_dirent(rdev->sysfs_state);
  2153. sprintf(nm, "rd%d", rdev->raid_disk);
  2154. if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
  2155. printk(KERN_WARNING
  2156. "md: cannot register "
  2157. "%s for %s\n",
  2158. nm, mdname(rdev->mddev));
  2159. /* don't wakeup anyone, leave that to userspace. */
  2160. } else {
  2161. if (slot >= rdev->mddev->raid_disks)
  2162. return -ENOSPC;
  2163. rdev->raid_disk = slot;
  2164. /* assume it is working */
  2165. clear_bit(Faulty, &rdev->flags);
  2166. clear_bit(WriteMostly, &rdev->flags);
  2167. set_bit(In_sync, &rdev->flags);
  2168. sysfs_notify_dirent(rdev->sysfs_state);
  2169. }
  2170. return len;
  2171. }
  2172. static struct rdev_sysfs_entry rdev_slot =
  2173. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2174. static ssize_t
  2175. offset_show(mdk_rdev_t *rdev, char *page)
  2176. {
  2177. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2178. }
  2179. static ssize_t
  2180. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2181. {
  2182. char *e;
  2183. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2184. if (e==buf || (*e && *e != '\n'))
  2185. return -EINVAL;
  2186. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2187. return -EBUSY;
  2188. if (rdev->sectors && rdev->mddev->external)
  2189. /* Must set offset before size, so overlap checks
  2190. * can be sane */
  2191. return -EBUSY;
  2192. rdev->data_offset = offset;
  2193. return len;
  2194. }
  2195. static struct rdev_sysfs_entry rdev_offset =
  2196. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2197. static ssize_t
  2198. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2199. {
  2200. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2201. }
  2202. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2203. {
  2204. /* check if two start/length pairs overlap */
  2205. if (s1+l1 <= s2)
  2206. return 0;
  2207. if (s2+l2 <= s1)
  2208. return 0;
  2209. return 1;
  2210. }
  2211. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2212. {
  2213. unsigned long long blocks;
  2214. sector_t new;
  2215. if (strict_strtoull(buf, 10, &blocks) < 0)
  2216. return -EINVAL;
  2217. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2218. return -EINVAL; /* sector conversion overflow */
  2219. new = blocks * 2;
  2220. if (new != blocks * 2)
  2221. return -EINVAL; /* unsigned long long to sector_t overflow */
  2222. *sectors = new;
  2223. return 0;
  2224. }
  2225. static ssize_t
  2226. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2227. {
  2228. mddev_t *my_mddev = rdev->mddev;
  2229. sector_t oldsectors = rdev->sectors;
  2230. sector_t sectors;
  2231. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2232. return -EINVAL;
  2233. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2234. if (my_mddev->persistent) {
  2235. sectors = super_types[my_mddev->major_version].
  2236. rdev_size_change(rdev, sectors);
  2237. if (!sectors)
  2238. return -EBUSY;
  2239. } else if (!sectors)
  2240. sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  2241. rdev->data_offset;
  2242. }
  2243. if (sectors < my_mddev->dev_sectors)
  2244. return -EINVAL; /* component must fit device */
  2245. rdev->sectors = sectors;
  2246. if (sectors > oldsectors && my_mddev->external) {
  2247. /* need to check that all other rdevs with the same ->bdev
  2248. * do not overlap. We need to unlock the mddev to avoid
  2249. * a deadlock. We have already changed rdev->sectors, and if
  2250. * we have to change it back, we will have the lock again.
  2251. */
  2252. mddev_t *mddev;
  2253. int overlap = 0;
  2254. struct list_head *tmp;
  2255. mddev_unlock(my_mddev);
  2256. for_each_mddev(mddev, tmp) {
  2257. mdk_rdev_t *rdev2;
  2258. mddev_lock(mddev);
  2259. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2260. if (test_bit(AllReserved, &rdev2->flags) ||
  2261. (rdev->bdev == rdev2->bdev &&
  2262. rdev != rdev2 &&
  2263. overlaps(rdev->data_offset, rdev->sectors,
  2264. rdev2->data_offset,
  2265. rdev2->sectors))) {
  2266. overlap = 1;
  2267. break;
  2268. }
  2269. mddev_unlock(mddev);
  2270. if (overlap) {
  2271. mddev_put(mddev);
  2272. break;
  2273. }
  2274. }
  2275. mddev_lock(my_mddev);
  2276. if (overlap) {
  2277. /* Someone else could have slipped in a size
  2278. * change here, but doing so is just silly.
  2279. * We put oldsectors back because we *know* it is
  2280. * safe, and trust userspace not to race with
  2281. * itself
  2282. */
  2283. rdev->sectors = oldsectors;
  2284. return -EBUSY;
  2285. }
  2286. }
  2287. return len;
  2288. }
  2289. static struct rdev_sysfs_entry rdev_size =
  2290. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2291. static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
  2292. {
  2293. unsigned long long recovery_start = rdev->recovery_offset;
  2294. if (test_bit(In_sync, &rdev->flags) ||
  2295. recovery_start == MaxSector)
  2296. return sprintf(page, "none\n");
  2297. return sprintf(page, "%llu\n", recovery_start);
  2298. }
  2299. static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2300. {
  2301. unsigned long long recovery_start;
  2302. if (cmd_match(buf, "none"))
  2303. recovery_start = MaxSector;
  2304. else if (strict_strtoull(buf, 10, &recovery_start))
  2305. return -EINVAL;
  2306. if (rdev->mddev->pers &&
  2307. rdev->raid_disk >= 0)
  2308. return -EBUSY;
  2309. rdev->recovery_offset = recovery_start;
  2310. if (recovery_start == MaxSector)
  2311. set_bit(In_sync, &rdev->flags);
  2312. else
  2313. clear_bit(In_sync, &rdev->flags);
  2314. return len;
  2315. }
  2316. static struct rdev_sysfs_entry rdev_recovery_start =
  2317. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2318. static struct attribute *rdev_default_attrs[] = {
  2319. &rdev_state.attr,
  2320. &rdev_errors.attr,
  2321. &rdev_slot.attr,
  2322. &rdev_offset.attr,
  2323. &rdev_size.attr,
  2324. &rdev_recovery_start.attr,
  2325. NULL,
  2326. };
  2327. static ssize_t
  2328. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2329. {
  2330. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2331. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2332. mddev_t *mddev = rdev->mddev;
  2333. ssize_t rv;
  2334. if (!entry->show)
  2335. return -EIO;
  2336. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2337. if (!rv) {
  2338. if (rdev->mddev == NULL)
  2339. rv = -EBUSY;
  2340. else
  2341. rv = entry->show(rdev, page);
  2342. mddev_unlock(mddev);
  2343. }
  2344. return rv;
  2345. }
  2346. static ssize_t
  2347. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2348. const char *page, size_t length)
  2349. {
  2350. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2351. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2352. ssize_t rv;
  2353. mddev_t *mddev = rdev->mddev;
  2354. if (!entry->store)
  2355. return -EIO;
  2356. if (!capable(CAP_SYS_ADMIN))
  2357. return -EACCES;
  2358. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2359. if (!rv) {
  2360. if (rdev->mddev == NULL)
  2361. rv = -EBUSY;
  2362. else
  2363. rv = entry->store(rdev, page, length);
  2364. mddev_unlock(mddev);
  2365. }
  2366. return rv;
  2367. }
  2368. static void rdev_free(struct kobject *ko)
  2369. {
  2370. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2371. kfree(rdev);
  2372. }
  2373. static struct sysfs_ops rdev_sysfs_ops = {
  2374. .show = rdev_attr_show,
  2375. .store = rdev_attr_store,
  2376. };
  2377. static struct kobj_type rdev_ktype = {
  2378. .release = rdev_free,
  2379. .sysfs_ops = &rdev_sysfs_ops,
  2380. .default_attrs = rdev_default_attrs,
  2381. };
  2382. /*
  2383. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2384. *
  2385. * mark the device faulty if:
  2386. *
  2387. * - the device is nonexistent (zero size)
  2388. * - the device has no valid superblock
  2389. *
  2390. * a faulty rdev _never_ has rdev->sb set.
  2391. */
  2392. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2393. {
  2394. char b[BDEVNAME_SIZE];
  2395. int err;
  2396. mdk_rdev_t *rdev;
  2397. sector_t size;
  2398. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2399. if (!rdev) {
  2400. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2401. return ERR_PTR(-ENOMEM);
  2402. }
  2403. if ((err = alloc_disk_sb(rdev)))
  2404. goto abort_free;
  2405. err = lock_rdev(rdev, newdev, super_format == -2);
  2406. if (err)
  2407. goto abort_free;
  2408. kobject_init(&rdev->kobj, &rdev_ktype);
  2409. rdev->desc_nr = -1;
  2410. rdev->saved_raid_disk = -1;
  2411. rdev->raid_disk = -1;
  2412. rdev->flags = 0;
  2413. rdev->data_offset = 0;
  2414. rdev->sb_events = 0;
  2415. rdev->last_read_error.tv_sec = 0;
  2416. rdev->last_read_error.tv_nsec = 0;
  2417. atomic_set(&rdev->nr_pending, 0);
  2418. atomic_set(&rdev->read_errors, 0);
  2419. atomic_set(&rdev->corrected_errors, 0);
  2420. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2421. if (!size) {
  2422. printk(KERN_WARNING
  2423. "md: %s has zero or unknown size, marking faulty!\n",
  2424. bdevname(rdev->bdev,b));
  2425. err = -EINVAL;
  2426. goto abort_free;
  2427. }
  2428. if (super_format >= 0) {
  2429. err = super_types[super_format].
  2430. load_super(rdev, NULL, super_minor);
  2431. if (err == -EINVAL) {
  2432. printk(KERN_WARNING
  2433. "md: %s does not have a valid v%d.%d "
  2434. "superblock, not importing!\n",
  2435. bdevname(rdev->bdev,b),
  2436. super_format, super_minor);
  2437. goto abort_free;
  2438. }
  2439. if (err < 0) {
  2440. printk(KERN_WARNING
  2441. "md: could not read %s's sb, not importing!\n",
  2442. bdevname(rdev->bdev,b));
  2443. goto abort_free;
  2444. }
  2445. }
  2446. INIT_LIST_HEAD(&rdev->same_set);
  2447. init_waitqueue_head(&rdev->blocked_wait);
  2448. return rdev;
  2449. abort_free:
  2450. if (rdev->sb_page) {
  2451. if (rdev->bdev)
  2452. unlock_rdev(rdev);
  2453. free_disk_sb(rdev);
  2454. }
  2455. kfree(rdev);
  2456. return ERR_PTR(err);
  2457. }
  2458. /*
  2459. * Check a full RAID array for plausibility
  2460. */
  2461. static void analyze_sbs(mddev_t * mddev)
  2462. {
  2463. int i;
  2464. mdk_rdev_t *rdev, *freshest, *tmp;
  2465. char b[BDEVNAME_SIZE];
  2466. freshest = NULL;
  2467. rdev_for_each(rdev, tmp, mddev)
  2468. switch (super_types[mddev->major_version].
  2469. load_super(rdev, freshest, mddev->minor_version)) {
  2470. case 1:
  2471. freshest = rdev;
  2472. break;
  2473. case 0:
  2474. break;
  2475. default:
  2476. printk( KERN_ERR \
  2477. "md: fatal superblock inconsistency in %s"
  2478. " -- removing from array\n",
  2479. bdevname(rdev->bdev,b));
  2480. kick_rdev_from_array(rdev);
  2481. }
  2482. super_types[mddev->major_version].
  2483. validate_super(mddev, freshest);
  2484. i = 0;
  2485. rdev_for_each(rdev, tmp, mddev) {
  2486. if (mddev->max_disks &&
  2487. (rdev->desc_nr >= mddev->max_disks ||
  2488. i > mddev->max_disks)) {
  2489. printk(KERN_WARNING
  2490. "md: %s: %s: only %d devices permitted\n",
  2491. mdname(mddev), bdevname(rdev->bdev, b),
  2492. mddev->max_disks);
  2493. kick_rdev_from_array(rdev);
  2494. continue;
  2495. }
  2496. if (rdev != freshest)
  2497. if (super_types[mddev->major_version].
  2498. validate_super(mddev, rdev)) {
  2499. printk(KERN_WARNING "md: kicking non-fresh %s"
  2500. " from array!\n",
  2501. bdevname(rdev->bdev,b));
  2502. kick_rdev_from_array(rdev);
  2503. continue;
  2504. }
  2505. if (mddev->level == LEVEL_MULTIPATH) {
  2506. rdev->desc_nr = i++;
  2507. rdev->raid_disk = rdev->desc_nr;
  2508. set_bit(In_sync, &rdev->flags);
  2509. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2510. rdev->raid_disk = -1;
  2511. clear_bit(In_sync, &rdev->flags);
  2512. }
  2513. }
  2514. }
  2515. /* Read a fixed-point number.
  2516. * Numbers in sysfs attributes should be in "standard" units where
  2517. * possible, so time should be in seconds.
  2518. * However we internally use a a much smaller unit such as
  2519. * milliseconds or jiffies.
  2520. * This function takes a decimal number with a possible fractional
  2521. * component, and produces an integer which is the result of
  2522. * multiplying that number by 10^'scale'.
  2523. * all without any floating-point arithmetic.
  2524. */
  2525. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2526. {
  2527. unsigned long result = 0;
  2528. long decimals = -1;
  2529. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2530. if (*cp == '.')
  2531. decimals = 0;
  2532. else if (decimals < scale) {
  2533. unsigned int value;
  2534. value = *cp - '0';
  2535. result = result * 10 + value;
  2536. if (decimals >= 0)
  2537. decimals++;
  2538. }
  2539. cp++;
  2540. }
  2541. if (*cp == '\n')
  2542. cp++;
  2543. if (*cp)
  2544. return -EINVAL;
  2545. if (decimals < 0)
  2546. decimals = 0;
  2547. while (decimals < scale) {
  2548. result *= 10;
  2549. decimals ++;
  2550. }
  2551. *res = result;
  2552. return 0;
  2553. }
  2554. static void md_safemode_timeout(unsigned long data);
  2555. static ssize_t
  2556. safe_delay_show(mddev_t *mddev, char *page)
  2557. {
  2558. int msec = (mddev->safemode_delay*1000)/HZ;
  2559. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2560. }
  2561. static ssize_t
  2562. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2563. {
  2564. unsigned long msec;
  2565. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2566. return -EINVAL;
  2567. if (msec == 0)
  2568. mddev->safemode_delay = 0;
  2569. else {
  2570. unsigned long old_delay = mddev->safemode_delay;
  2571. mddev->safemode_delay = (msec*HZ)/1000;
  2572. if (mddev->safemode_delay == 0)
  2573. mddev->safemode_delay = 1;
  2574. if (mddev->safemode_delay < old_delay)
  2575. md_safemode_timeout((unsigned long)mddev);
  2576. }
  2577. return len;
  2578. }
  2579. static struct md_sysfs_entry md_safe_delay =
  2580. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2581. static ssize_t
  2582. level_show(mddev_t *mddev, char *page)
  2583. {
  2584. struct mdk_personality *p = mddev->pers;
  2585. if (p)
  2586. return sprintf(page, "%s\n", p->name);
  2587. else if (mddev->clevel[0])
  2588. return sprintf(page, "%s\n", mddev->clevel);
  2589. else if (mddev->level != LEVEL_NONE)
  2590. return sprintf(page, "%d\n", mddev->level);
  2591. else
  2592. return 0;
  2593. }
  2594. static ssize_t
  2595. level_store(mddev_t *mddev, const char *buf, size_t len)
  2596. {
  2597. char level[16];
  2598. ssize_t rv = len;
  2599. struct mdk_personality *pers;
  2600. void *priv;
  2601. mdk_rdev_t *rdev;
  2602. if (mddev->pers == NULL) {
  2603. if (len == 0)
  2604. return 0;
  2605. if (len >= sizeof(mddev->clevel))
  2606. return -ENOSPC;
  2607. strncpy(mddev->clevel, buf, len);
  2608. if (mddev->clevel[len-1] == '\n')
  2609. len--;
  2610. mddev->clevel[len] = 0;
  2611. mddev->level = LEVEL_NONE;
  2612. return rv;
  2613. }
  2614. /* request to change the personality. Need to ensure:
  2615. * - array is not engaged in resync/recovery/reshape
  2616. * - old personality can be suspended
  2617. * - new personality will access other array.
  2618. */
  2619. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  2620. return -EBUSY;
  2621. if (!mddev->pers->quiesce) {
  2622. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2623. mdname(mddev), mddev->pers->name);
  2624. return -EINVAL;
  2625. }
  2626. /* Now find the new personality */
  2627. if (len == 0 || len >= sizeof(level))
  2628. return -EINVAL;
  2629. strncpy(level, buf, len);
  2630. if (level[len-1] == '\n')
  2631. len--;
  2632. level[len] = 0;
  2633. request_module("md-%s", level);
  2634. spin_lock(&pers_lock);
  2635. pers = find_pers(LEVEL_NONE, level);
  2636. if (!pers || !try_module_get(pers->owner)) {
  2637. spin_unlock(&pers_lock);
  2638. printk(KERN_WARNING "md: personality %s not loaded\n", level);
  2639. return -EINVAL;
  2640. }
  2641. spin_unlock(&pers_lock);
  2642. if (pers == mddev->pers) {
  2643. /* Nothing to do! */
  2644. module_put(pers->owner);
  2645. return rv;
  2646. }
  2647. if (!pers->takeover) {
  2648. module_put(pers->owner);
  2649. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2650. mdname(mddev), level);
  2651. return -EINVAL;
  2652. }
  2653. /* ->takeover must set new_* and/or delta_disks
  2654. * if it succeeds, and may set them when it fails.
  2655. */
  2656. priv = pers->takeover(mddev);
  2657. if (IS_ERR(priv)) {
  2658. mddev->new_level = mddev->level;
  2659. mddev->new_layout = mddev->layout;
  2660. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2661. mddev->raid_disks -= mddev->delta_disks;
  2662. mddev->delta_disks = 0;
  2663. module_put(pers->owner);
  2664. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2665. mdname(mddev), level);
  2666. return PTR_ERR(priv);
  2667. }
  2668. /* Looks like we have a winner */
  2669. mddev_suspend(mddev);
  2670. mddev->pers->stop(mddev);
  2671. if (mddev->pers->sync_request == NULL &&
  2672. pers->sync_request != NULL) {
  2673. /* need to add the md_redundancy_group */
  2674. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2675. printk(KERN_WARNING
  2676. "md: cannot register extra attributes for %s\n",
  2677. mdname(mddev));
  2678. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  2679. }
  2680. if (mddev->pers->sync_request != NULL &&
  2681. pers->sync_request == NULL) {
  2682. /* need to remove the md_redundancy_group */
  2683. if (mddev->to_remove == NULL)
  2684. mddev->to_remove = &md_redundancy_group;
  2685. }
  2686. if (mddev->pers->sync_request == NULL &&
  2687. mddev->external) {
  2688. /* We are converting from a no-redundancy array
  2689. * to a redundancy array and metadata is managed
  2690. * externally so we need to be sure that writes
  2691. * won't block due to a need to transition
  2692. * clean->dirty
  2693. * until external management is started.
  2694. */
  2695. mddev->in_sync = 0;
  2696. mddev->safemode_delay = 0;
  2697. mddev->safemode = 0;
  2698. }
  2699. module_put(mddev->pers->owner);
  2700. /* Invalidate devices that are now superfluous */
  2701. list_for_each_entry(rdev, &mddev->disks, same_set)
  2702. if (rdev->raid_disk >= mddev->raid_disks) {
  2703. rdev->raid_disk = -1;
  2704. clear_bit(In_sync, &rdev->flags);
  2705. }
  2706. mddev->pers = pers;
  2707. mddev->private = priv;
  2708. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2709. mddev->level = mddev->new_level;
  2710. mddev->layout = mddev->new_layout;
  2711. mddev->chunk_sectors = mddev->new_chunk_sectors;
  2712. mddev->delta_disks = 0;
  2713. if (mddev->pers->sync_request == NULL) {
  2714. /* this is now an array without redundancy, so
  2715. * it must always be in_sync
  2716. */
  2717. mddev->in_sync = 1;
  2718. del_timer_sync(&mddev->safemode_timer);
  2719. }
  2720. pers->run(mddev);
  2721. mddev_resume(mddev);
  2722. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2723. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2724. md_wakeup_thread(mddev->thread);
  2725. sysfs_notify(&mddev->kobj, NULL, "level");
  2726. return rv;
  2727. }
  2728. static struct md_sysfs_entry md_level =
  2729. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2730. static ssize_t
  2731. layout_show(mddev_t *mddev, char *page)
  2732. {
  2733. /* just a number, not meaningful for all levels */
  2734. if (mddev->reshape_position != MaxSector &&
  2735. mddev->layout != mddev->new_layout)
  2736. return sprintf(page, "%d (%d)\n",
  2737. mddev->new_layout, mddev->layout);
  2738. return sprintf(page, "%d\n", mddev->layout);
  2739. }
  2740. static ssize_t
  2741. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2742. {
  2743. char *e;
  2744. unsigned long n = simple_strtoul(buf, &e, 10);
  2745. if (!*buf || (*e && *e != '\n'))
  2746. return -EINVAL;
  2747. if (mddev->pers) {
  2748. int err;
  2749. if (mddev->pers->check_reshape == NULL)
  2750. return -EBUSY;
  2751. mddev->new_layout = n;
  2752. err = mddev->pers->check_reshape(mddev);
  2753. if (err) {
  2754. mddev->new_layout = mddev->layout;
  2755. return err;
  2756. }
  2757. } else {
  2758. mddev->new_layout = n;
  2759. if (mddev->reshape_position == MaxSector)
  2760. mddev->layout = n;
  2761. }
  2762. return len;
  2763. }
  2764. static struct md_sysfs_entry md_layout =
  2765. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2766. static ssize_t
  2767. raid_disks_show(mddev_t *mddev, char *page)
  2768. {
  2769. if (mddev->raid_disks == 0)
  2770. return 0;
  2771. if (mddev->reshape_position != MaxSector &&
  2772. mddev->delta_disks != 0)
  2773. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2774. mddev->raid_disks - mddev->delta_disks);
  2775. return sprintf(page, "%d\n", mddev->raid_disks);
  2776. }
  2777. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2778. static ssize_t
  2779. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2780. {
  2781. char *e;
  2782. int rv = 0;
  2783. unsigned long n = simple_strtoul(buf, &e, 10);
  2784. if (!*buf || (*e && *e != '\n'))
  2785. return -EINVAL;
  2786. if (mddev->pers)
  2787. rv = update_raid_disks(mddev, n);
  2788. else if (mddev->reshape_position != MaxSector) {
  2789. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2790. mddev->delta_disks = n - olddisks;
  2791. mddev->raid_disks = n;
  2792. } else
  2793. mddev->raid_disks = n;
  2794. return rv ? rv : len;
  2795. }
  2796. static struct md_sysfs_entry md_raid_disks =
  2797. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2798. static ssize_t
  2799. chunk_size_show(mddev_t *mddev, char *page)
  2800. {
  2801. if (mddev->reshape_position != MaxSector &&
  2802. mddev->chunk_sectors != mddev->new_chunk_sectors)
  2803. return sprintf(page, "%d (%d)\n",
  2804. mddev->new_chunk_sectors << 9,
  2805. mddev->chunk_sectors << 9);
  2806. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  2807. }
  2808. static ssize_t
  2809. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2810. {
  2811. char *e;
  2812. unsigned long n = simple_strtoul(buf, &e, 10);
  2813. if (!*buf || (*e && *e != '\n'))
  2814. return -EINVAL;
  2815. if (mddev->pers) {
  2816. int err;
  2817. if (mddev->pers->check_reshape == NULL)
  2818. return -EBUSY;
  2819. mddev->new_chunk_sectors = n >> 9;
  2820. err = mddev->pers->check_reshape(mddev);
  2821. if (err) {
  2822. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2823. return err;
  2824. }
  2825. } else {
  2826. mddev->new_chunk_sectors = n >> 9;
  2827. if (mddev->reshape_position == MaxSector)
  2828. mddev->chunk_sectors = n >> 9;
  2829. }
  2830. return len;
  2831. }
  2832. static struct md_sysfs_entry md_chunk_size =
  2833. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2834. static ssize_t
  2835. resync_start_show(mddev_t *mddev, char *page)
  2836. {
  2837. if (mddev->recovery_cp == MaxSector)
  2838. return sprintf(page, "none\n");
  2839. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2840. }
  2841. static ssize_t
  2842. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2843. {
  2844. char *e;
  2845. unsigned long long n = simple_strtoull(buf, &e, 10);
  2846. if (mddev->pers)
  2847. return -EBUSY;
  2848. if (cmd_match(buf, "none"))
  2849. n = MaxSector;
  2850. else if (!*buf || (*e && *e != '\n'))
  2851. return -EINVAL;
  2852. mddev->recovery_cp = n;
  2853. return len;
  2854. }
  2855. static struct md_sysfs_entry md_resync_start =
  2856. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2857. /*
  2858. * The array state can be:
  2859. *
  2860. * clear
  2861. * No devices, no size, no level
  2862. * Equivalent to STOP_ARRAY ioctl
  2863. * inactive
  2864. * May have some settings, but array is not active
  2865. * all IO results in error
  2866. * When written, doesn't tear down array, but just stops it
  2867. * suspended (not supported yet)
  2868. * All IO requests will block. The array can be reconfigured.
  2869. * Writing this, if accepted, will block until array is quiescent
  2870. * readonly
  2871. * no resync can happen. no superblocks get written.
  2872. * write requests fail
  2873. * read-auto
  2874. * like readonly, but behaves like 'clean' on a write request.
  2875. *
  2876. * clean - no pending writes, but otherwise active.
  2877. * When written to inactive array, starts without resync
  2878. * If a write request arrives then
  2879. * if metadata is known, mark 'dirty' and switch to 'active'.
  2880. * if not known, block and switch to write-pending
  2881. * If written to an active array that has pending writes, then fails.
  2882. * active
  2883. * fully active: IO and resync can be happening.
  2884. * When written to inactive array, starts with resync
  2885. *
  2886. * write-pending
  2887. * clean, but writes are blocked waiting for 'active' to be written.
  2888. *
  2889. * active-idle
  2890. * like active, but no writes have been seen for a while (100msec).
  2891. *
  2892. */
  2893. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2894. write_pending, active_idle, bad_word};
  2895. static char *array_states[] = {
  2896. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2897. "write-pending", "active-idle", NULL };
  2898. static int match_word(const char *word, char **list)
  2899. {
  2900. int n;
  2901. for (n=0; list[n]; n++)
  2902. if (cmd_match(word, list[n]))
  2903. break;
  2904. return n;
  2905. }
  2906. static ssize_t
  2907. array_state_show(mddev_t *mddev, char *page)
  2908. {
  2909. enum array_state st = inactive;
  2910. if (mddev->pers)
  2911. switch(mddev->ro) {
  2912. case 1:
  2913. st = readonly;
  2914. break;
  2915. case 2:
  2916. st = read_auto;
  2917. break;
  2918. case 0:
  2919. if (mddev->in_sync)
  2920. st = clean;
  2921. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2922. st = write_pending;
  2923. else if (mddev->safemode)
  2924. st = active_idle;
  2925. else
  2926. st = active;
  2927. }
  2928. else {
  2929. if (list_empty(&mddev->disks) &&
  2930. mddev->raid_disks == 0 &&
  2931. mddev->dev_sectors == 0)
  2932. st = clear;
  2933. else
  2934. st = inactive;
  2935. }
  2936. return sprintf(page, "%s\n", array_states[st]);
  2937. }
  2938. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  2939. static int md_set_readonly(mddev_t * mddev, int is_open);
  2940. static int do_md_run(mddev_t * mddev);
  2941. static int restart_array(mddev_t *mddev);
  2942. static ssize_t
  2943. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2944. {
  2945. int err = -EINVAL;
  2946. enum array_state st = match_word(buf, array_states);
  2947. switch(st) {
  2948. case bad_word:
  2949. break;
  2950. case clear:
  2951. /* stopping an active array */
  2952. if (atomic_read(&mddev->openers) > 0)
  2953. return -EBUSY;
  2954. err = do_md_stop(mddev, 0, 0);
  2955. break;
  2956. case inactive:
  2957. /* stopping an active array */
  2958. if (mddev->pers) {
  2959. if (atomic_read(&mddev->openers) > 0)
  2960. return -EBUSY;
  2961. err = do_md_stop(mddev, 2, 0);
  2962. } else
  2963. err = 0; /* already inactive */
  2964. break;
  2965. case suspended:
  2966. break; /* not supported yet */
  2967. case readonly:
  2968. if (mddev->pers)
  2969. err = md_set_readonly(mddev, 0);
  2970. else {
  2971. mddev->ro = 1;
  2972. set_disk_ro(mddev->gendisk, 1);
  2973. err = do_md_run(mddev);
  2974. }
  2975. break;
  2976. case read_auto:
  2977. if (mddev->pers) {
  2978. if (mddev->ro == 0)
  2979. err = md_set_readonly(mddev, 0);
  2980. else if (mddev->ro == 1)
  2981. err = restart_array(mddev);
  2982. if (err == 0) {
  2983. mddev->ro = 2;
  2984. set_disk_ro(mddev->gendisk, 0);
  2985. }
  2986. } else {
  2987. mddev->ro = 2;
  2988. err = do_md_run(mddev);
  2989. }
  2990. break;
  2991. case clean:
  2992. if (mddev->pers) {
  2993. restart_array(mddev);
  2994. spin_lock_irq(&mddev->write_lock);
  2995. if (atomic_read(&mddev->writes_pending) == 0) {
  2996. if (mddev->in_sync == 0) {
  2997. mddev->in_sync = 1;
  2998. if (mddev->safemode == 1)
  2999. mddev->safemode = 0;
  3000. if (mddev->persistent)
  3001. set_bit(MD_CHANGE_CLEAN,
  3002. &mddev->flags);
  3003. }
  3004. err = 0;
  3005. } else
  3006. err = -EBUSY;
  3007. spin_unlock_irq(&mddev->write_lock);
  3008. } else
  3009. err = -EINVAL;
  3010. break;
  3011. case active:
  3012. if (mddev->pers) {
  3013. restart_array(mddev);
  3014. if (mddev->external)
  3015. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3016. wake_up(&mddev->sb_wait);
  3017. err = 0;
  3018. } else {
  3019. mddev->ro = 0;
  3020. set_disk_ro(mddev->gendisk, 0);
  3021. err = do_md_run(mddev);
  3022. }
  3023. break;
  3024. case write_pending:
  3025. case active_idle:
  3026. /* these cannot be set */
  3027. break;
  3028. }
  3029. if (err)
  3030. return err;
  3031. else {
  3032. sysfs_notify_dirent(mddev->sysfs_state);
  3033. return len;
  3034. }
  3035. }
  3036. static struct md_sysfs_entry md_array_state =
  3037. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3038. static ssize_t
  3039. max_corrected_read_errors_show(mddev_t *mddev, char *page) {
  3040. return sprintf(page, "%d\n",
  3041. atomic_read(&mddev->max_corr_read_errors));
  3042. }
  3043. static ssize_t
  3044. max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
  3045. {
  3046. char *e;
  3047. unsigned long n = simple_strtoul(buf, &e, 10);
  3048. if (*buf && (*e == 0 || *e == '\n')) {
  3049. atomic_set(&mddev->max_corr_read_errors, n);
  3050. return len;
  3051. }
  3052. return -EINVAL;
  3053. }
  3054. static struct md_sysfs_entry max_corr_read_errors =
  3055. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3056. max_corrected_read_errors_store);
  3057. static ssize_t
  3058. null_show(mddev_t *mddev, char *page)
  3059. {
  3060. return -EINVAL;
  3061. }
  3062. static ssize_t
  3063. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  3064. {
  3065. /* buf must be %d:%d\n? giving major and minor numbers */
  3066. /* The new device is added to the array.
  3067. * If the array has a persistent superblock, we read the
  3068. * superblock to initialise info and check validity.
  3069. * Otherwise, only checking done is that in bind_rdev_to_array,
  3070. * which mainly checks size.
  3071. */
  3072. char *e;
  3073. int major = simple_strtoul(buf, &e, 10);
  3074. int minor;
  3075. dev_t dev;
  3076. mdk_rdev_t *rdev;
  3077. int err;
  3078. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3079. return -EINVAL;
  3080. minor = simple_strtoul(e+1, &e, 10);
  3081. if (*e && *e != '\n')
  3082. return -EINVAL;
  3083. dev = MKDEV(major, minor);
  3084. if (major != MAJOR(dev) ||
  3085. minor != MINOR(dev))
  3086. return -EOVERFLOW;
  3087. if (mddev->persistent) {
  3088. rdev = md_import_device(dev, mddev->major_version,
  3089. mddev->minor_version);
  3090. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3091. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3092. mdk_rdev_t, same_set);
  3093. err = super_types[mddev->major_version]
  3094. .load_super(rdev, rdev0, mddev->minor_version);
  3095. if (err < 0)
  3096. goto out;
  3097. }
  3098. } else if (mddev->external)
  3099. rdev = md_import_device(dev, -2, -1);
  3100. else
  3101. rdev = md_import_device(dev, -1, -1);
  3102. if (IS_ERR(rdev))
  3103. return PTR_ERR(rdev);
  3104. err = bind_rdev_to_array(rdev, mddev);
  3105. out:
  3106. if (err)
  3107. export_rdev(rdev);
  3108. return err ? err : len;
  3109. }
  3110. static struct md_sysfs_entry md_new_device =
  3111. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3112. static ssize_t
  3113. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  3114. {
  3115. char *end;
  3116. unsigned long chunk, end_chunk;
  3117. if (!mddev->bitmap)
  3118. goto out;
  3119. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3120. while (*buf) {
  3121. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3122. if (buf == end) break;
  3123. if (*end == '-') { /* range */
  3124. buf = end + 1;
  3125. end_chunk = simple_strtoul(buf, &end, 0);
  3126. if (buf == end) break;
  3127. }
  3128. if (*end && !isspace(*end)) break;
  3129. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3130. buf = skip_spaces(end);
  3131. }
  3132. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3133. out:
  3134. return len;
  3135. }
  3136. static struct md_sysfs_entry md_bitmap =
  3137. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3138. static ssize_t
  3139. size_show(mddev_t *mddev, char *page)
  3140. {
  3141. return sprintf(page, "%llu\n",
  3142. (unsigned long long)mddev->dev_sectors / 2);
  3143. }
  3144. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3145. static ssize_t
  3146. size_store(mddev_t *mddev, const char *buf, size_t len)
  3147. {
  3148. /* If array is inactive, we can reduce the component size, but
  3149. * not increase it (except from 0).
  3150. * If array is active, we can try an on-line resize
  3151. */
  3152. sector_t sectors;
  3153. int err = strict_blocks_to_sectors(buf, &sectors);
  3154. if (err < 0)
  3155. return err;
  3156. if (mddev->pers) {
  3157. err = update_size(mddev, sectors);
  3158. md_update_sb(mddev, 1);
  3159. } else {
  3160. if (mddev->dev_sectors == 0 ||
  3161. mddev->dev_sectors > sectors)
  3162. mddev->dev_sectors = sectors;
  3163. else
  3164. err = -ENOSPC;
  3165. }
  3166. return err ? err : len;
  3167. }
  3168. static struct md_sysfs_entry md_size =
  3169. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3170. /* Metdata version.
  3171. * This is one of
  3172. * 'none' for arrays with no metadata (good luck...)
  3173. * 'external' for arrays with externally managed metadata,
  3174. * or N.M for internally known formats
  3175. */
  3176. static ssize_t
  3177. metadata_show(mddev_t *mddev, char *page)
  3178. {
  3179. if (mddev->persistent)
  3180. return sprintf(page, "%d.%d\n",
  3181. mddev->major_version, mddev->minor_version);
  3182. else if (mddev->external)
  3183. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3184. else
  3185. return sprintf(page, "none\n");
  3186. }
  3187. static ssize_t
  3188. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3189. {
  3190. int major, minor;
  3191. char *e;
  3192. /* Changing the details of 'external' metadata is
  3193. * always permitted. Otherwise there must be
  3194. * no devices attached to the array.
  3195. */
  3196. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3197. ;
  3198. else if (!list_empty(&mddev->disks))
  3199. return -EBUSY;
  3200. if (cmd_match(buf, "none")) {
  3201. mddev->persistent = 0;
  3202. mddev->external = 0;
  3203. mddev->major_version = 0;
  3204. mddev->minor_version = 90;
  3205. return len;
  3206. }
  3207. if (strncmp(buf, "external:", 9) == 0) {
  3208. size_t namelen = len-9;
  3209. if (namelen >= sizeof(mddev->metadata_type))
  3210. namelen = sizeof(mddev->metadata_type)-1;
  3211. strncpy(mddev->metadata_type, buf+9, namelen);
  3212. mddev->metadata_type[namelen] = 0;
  3213. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3214. mddev->metadata_type[--namelen] = 0;
  3215. mddev->persistent = 0;
  3216. mddev->external = 1;
  3217. mddev->major_version = 0;
  3218. mddev->minor_version = 90;
  3219. return len;
  3220. }
  3221. major = simple_strtoul(buf, &e, 10);
  3222. if (e==buf || *e != '.')
  3223. return -EINVAL;
  3224. buf = e+1;
  3225. minor = simple_strtoul(buf, &e, 10);
  3226. if (e==buf || (*e && *e != '\n') )
  3227. return -EINVAL;
  3228. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3229. return -ENOENT;
  3230. mddev->major_version = major;
  3231. mddev->minor_version = minor;
  3232. mddev->persistent = 1;
  3233. mddev->external = 0;
  3234. return len;
  3235. }
  3236. static struct md_sysfs_entry md_metadata =
  3237. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3238. static ssize_t
  3239. action_show(mddev_t *mddev, char *page)
  3240. {
  3241. char *type = "idle";
  3242. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3243. type = "frozen";
  3244. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3245. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3246. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3247. type = "reshape";
  3248. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3249. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3250. type = "resync";
  3251. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3252. type = "check";
  3253. else
  3254. type = "repair";
  3255. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3256. type = "recover";
  3257. }
  3258. return sprintf(page, "%s\n", type);
  3259. }
  3260. static ssize_t
  3261. action_store(mddev_t *mddev, const char *page, size_t len)
  3262. {
  3263. if (!mddev->pers || !mddev->pers->sync_request)
  3264. return -EINVAL;
  3265. if (cmd_match(page, "frozen"))
  3266. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3267. else
  3268. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3269. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3270. if (mddev->sync_thread) {
  3271. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3272. md_unregister_thread(mddev->sync_thread);
  3273. mddev->sync_thread = NULL;
  3274. mddev->recovery = 0;
  3275. }
  3276. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3277. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3278. return -EBUSY;
  3279. else if (cmd_match(page, "resync"))
  3280. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3281. else if (cmd_match(page, "recover")) {
  3282. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3283. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3284. } else if (cmd_match(page, "reshape")) {
  3285. int err;
  3286. if (mddev->pers->start_reshape == NULL)
  3287. return -EINVAL;
  3288. err = mddev->pers->start_reshape(mddev);
  3289. if (err)
  3290. return err;
  3291. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3292. } else {
  3293. if (cmd_match(page, "check"))
  3294. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3295. else if (!cmd_match(page, "repair"))
  3296. return -EINVAL;
  3297. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3298. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3299. }
  3300. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3301. md_wakeup_thread(mddev->thread);
  3302. sysfs_notify_dirent(mddev->sysfs_action);
  3303. return len;
  3304. }
  3305. static ssize_t
  3306. mismatch_cnt_show(mddev_t *mddev, char *page)
  3307. {
  3308. return sprintf(page, "%llu\n",
  3309. (unsigned long long) mddev->resync_mismatches);
  3310. }
  3311. static struct md_sysfs_entry md_scan_mode =
  3312. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3313. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3314. static ssize_t
  3315. sync_min_show(mddev_t *mddev, char *page)
  3316. {
  3317. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3318. mddev->sync_speed_min ? "local": "system");
  3319. }
  3320. static ssize_t
  3321. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3322. {
  3323. int min;
  3324. char *e;
  3325. if (strncmp(buf, "system", 6)==0) {
  3326. mddev->sync_speed_min = 0;
  3327. return len;
  3328. }
  3329. min = simple_strtoul(buf, &e, 10);
  3330. if (buf == e || (*e && *e != '\n') || min <= 0)
  3331. return -EINVAL;
  3332. mddev->sync_speed_min = min;
  3333. return len;
  3334. }
  3335. static struct md_sysfs_entry md_sync_min =
  3336. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3337. static ssize_t
  3338. sync_max_show(mddev_t *mddev, char *page)
  3339. {
  3340. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3341. mddev->sync_speed_max ? "local": "system");
  3342. }
  3343. static ssize_t
  3344. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3345. {
  3346. int max;
  3347. char *e;
  3348. if (strncmp(buf, "system", 6)==0) {
  3349. mddev->sync_speed_max = 0;
  3350. return len;
  3351. }
  3352. max = simple_strtoul(buf, &e, 10);
  3353. if (buf == e || (*e && *e != '\n') || max <= 0)
  3354. return -EINVAL;
  3355. mddev->sync_speed_max = max;
  3356. return len;
  3357. }
  3358. static struct md_sysfs_entry md_sync_max =
  3359. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3360. static ssize_t
  3361. degraded_show(mddev_t *mddev, char *page)
  3362. {
  3363. return sprintf(page, "%d\n", mddev->degraded);
  3364. }
  3365. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3366. static ssize_t
  3367. sync_force_parallel_show(mddev_t *mddev, char *page)
  3368. {
  3369. return sprintf(page, "%d\n", mddev->parallel_resync);
  3370. }
  3371. static ssize_t
  3372. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3373. {
  3374. long n;
  3375. if (strict_strtol(buf, 10, &n))
  3376. return -EINVAL;
  3377. if (n != 0 && n != 1)
  3378. return -EINVAL;
  3379. mddev->parallel_resync = n;
  3380. if (mddev->sync_thread)
  3381. wake_up(&resync_wait);
  3382. return len;
  3383. }
  3384. /* force parallel resync, even with shared block devices */
  3385. static struct md_sysfs_entry md_sync_force_parallel =
  3386. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3387. sync_force_parallel_show, sync_force_parallel_store);
  3388. static ssize_t
  3389. sync_speed_show(mddev_t *mddev, char *page)
  3390. {
  3391. unsigned long resync, dt, db;
  3392. if (mddev->curr_resync == 0)
  3393. return sprintf(page, "none\n");
  3394. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3395. dt = (jiffies - mddev->resync_mark) / HZ;
  3396. if (!dt) dt++;
  3397. db = resync - mddev->resync_mark_cnt;
  3398. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3399. }
  3400. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3401. static ssize_t
  3402. sync_completed_show(mddev_t *mddev, char *page)
  3403. {
  3404. unsigned long max_sectors, resync;
  3405. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3406. return sprintf(page, "none\n");
  3407. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3408. max_sectors = mddev->resync_max_sectors;
  3409. else
  3410. max_sectors = mddev->dev_sectors;
  3411. resync = mddev->curr_resync_completed;
  3412. return sprintf(page, "%lu / %lu\n", resync, max_sectors);
  3413. }
  3414. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3415. static ssize_t
  3416. min_sync_show(mddev_t *mddev, char *page)
  3417. {
  3418. return sprintf(page, "%llu\n",
  3419. (unsigned long long)mddev->resync_min);
  3420. }
  3421. static ssize_t
  3422. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3423. {
  3424. unsigned long long min;
  3425. if (strict_strtoull(buf, 10, &min))
  3426. return -EINVAL;
  3427. if (min > mddev->resync_max)
  3428. return -EINVAL;
  3429. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3430. return -EBUSY;
  3431. /* Must be a multiple of chunk_size */
  3432. if (mddev->chunk_sectors) {
  3433. sector_t temp = min;
  3434. if (sector_div(temp, mddev->chunk_sectors))
  3435. return -EINVAL;
  3436. }
  3437. mddev->resync_min = min;
  3438. return len;
  3439. }
  3440. static struct md_sysfs_entry md_min_sync =
  3441. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3442. static ssize_t
  3443. max_sync_show(mddev_t *mddev, char *page)
  3444. {
  3445. if (mddev->resync_max == MaxSector)
  3446. return sprintf(page, "max\n");
  3447. else
  3448. return sprintf(page, "%llu\n",
  3449. (unsigned long long)mddev->resync_max);
  3450. }
  3451. static ssize_t
  3452. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3453. {
  3454. if (strncmp(buf, "max", 3) == 0)
  3455. mddev->resync_max = MaxSector;
  3456. else {
  3457. unsigned long long max;
  3458. if (strict_strtoull(buf, 10, &max))
  3459. return -EINVAL;
  3460. if (max < mddev->resync_min)
  3461. return -EINVAL;
  3462. if (max < mddev->resync_max &&
  3463. mddev->ro == 0 &&
  3464. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3465. return -EBUSY;
  3466. /* Must be a multiple of chunk_size */
  3467. if (mddev->chunk_sectors) {
  3468. sector_t temp = max;
  3469. if (sector_div(temp, mddev->chunk_sectors))
  3470. return -EINVAL;
  3471. }
  3472. mddev->resync_max = max;
  3473. }
  3474. wake_up(&mddev->recovery_wait);
  3475. return len;
  3476. }
  3477. static struct md_sysfs_entry md_max_sync =
  3478. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3479. static ssize_t
  3480. suspend_lo_show(mddev_t *mddev, char *page)
  3481. {
  3482. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3483. }
  3484. static ssize_t
  3485. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3486. {
  3487. char *e;
  3488. unsigned long long new = simple_strtoull(buf, &e, 10);
  3489. if (mddev->pers == NULL ||
  3490. mddev->pers->quiesce == NULL)
  3491. return -EINVAL;
  3492. if (buf == e || (*e && *e != '\n'))
  3493. return -EINVAL;
  3494. if (new >= mddev->suspend_hi ||
  3495. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  3496. mddev->suspend_lo = new;
  3497. mddev->pers->quiesce(mddev, 2);
  3498. return len;
  3499. } else
  3500. return -EINVAL;
  3501. }
  3502. static struct md_sysfs_entry md_suspend_lo =
  3503. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3504. static ssize_t
  3505. suspend_hi_show(mddev_t *mddev, char *page)
  3506. {
  3507. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3508. }
  3509. static ssize_t
  3510. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3511. {
  3512. char *e;
  3513. unsigned long long new = simple_strtoull(buf, &e, 10);
  3514. if (mddev->pers == NULL ||
  3515. mddev->pers->quiesce == NULL)
  3516. return -EINVAL;
  3517. if (buf == e || (*e && *e != '\n'))
  3518. return -EINVAL;
  3519. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  3520. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  3521. mddev->suspend_hi = new;
  3522. mddev->pers->quiesce(mddev, 1);
  3523. mddev->pers->quiesce(mddev, 0);
  3524. return len;
  3525. } else
  3526. return -EINVAL;
  3527. }
  3528. static struct md_sysfs_entry md_suspend_hi =
  3529. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3530. static ssize_t
  3531. reshape_position_show(mddev_t *mddev, char *page)
  3532. {
  3533. if (mddev->reshape_position != MaxSector)
  3534. return sprintf(page, "%llu\n",
  3535. (unsigned long long)mddev->reshape_position);
  3536. strcpy(page, "none\n");
  3537. return 5;
  3538. }
  3539. static ssize_t
  3540. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3541. {
  3542. char *e;
  3543. unsigned long long new = simple_strtoull(buf, &e, 10);
  3544. if (mddev->pers)
  3545. return -EBUSY;
  3546. if (buf == e || (*e && *e != '\n'))
  3547. return -EINVAL;
  3548. mddev->reshape_position = new;
  3549. mddev->delta_disks = 0;
  3550. mddev->new_level = mddev->level;
  3551. mddev->new_layout = mddev->layout;
  3552. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3553. return len;
  3554. }
  3555. static struct md_sysfs_entry md_reshape_position =
  3556. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3557. reshape_position_store);
  3558. static ssize_t
  3559. array_size_show(mddev_t *mddev, char *page)
  3560. {
  3561. if (mddev->external_size)
  3562. return sprintf(page, "%llu\n",
  3563. (unsigned long long)mddev->array_sectors/2);
  3564. else
  3565. return sprintf(page, "default\n");
  3566. }
  3567. static ssize_t
  3568. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3569. {
  3570. sector_t sectors;
  3571. if (strncmp(buf, "default", 7) == 0) {
  3572. if (mddev->pers)
  3573. sectors = mddev->pers->size(mddev, 0, 0);
  3574. else
  3575. sectors = mddev->array_sectors;
  3576. mddev->external_size = 0;
  3577. } else {
  3578. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3579. return -EINVAL;
  3580. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3581. return -E2BIG;
  3582. mddev->external_size = 1;
  3583. }
  3584. mddev->array_sectors = sectors;
  3585. set_capacity(mddev->gendisk, mddev->array_sectors);
  3586. if (mddev->pers)
  3587. revalidate_disk(mddev->gendisk);
  3588. return len;
  3589. }
  3590. static struct md_sysfs_entry md_array_size =
  3591. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3592. array_size_store);
  3593. static struct attribute *md_default_attrs[] = {
  3594. &md_level.attr,
  3595. &md_layout.attr,
  3596. &md_raid_disks.attr,
  3597. &md_chunk_size.attr,
  3598. &md_size.attr,
  3599. &md_resync_start.attr,
  3600. &md_metadata.attr,
  3601. &md_new_device.attr,
  3602. &md_safe_delay.attr,
  3603. &md_array_state.attr,
  3604. &md_reshape_position.attr,
  3605. &md_array_size.attr,
  3606. &max_corr_read_errors.attr,
  3607. NULL,
  3608. };
  3609. static struct attribute *md_redundancy_attrs[] = {
  3610. &md_scan_mode.attr,
  3611. &md_mismatches.attr,
  3612. &md_sync_min.attr,
  3613. &md_sync_max.attr,
  3614. &md_sync_speed.attr,
  3615. &md_sync_force_parallel.attr,
  3616. &md_sync_completed.attr,
  3617. &md_min_sync.attr,
  3618. &md_max_sync.attr,
  3619. &md_suspend_lo.attr,
  3620. &md_suspend_hi.attr,
  3621. &md_bitmap.attr,
  3622. &md_degraded.attr,
  3623. NULL,
  3624. };
  3625. static struct attribute_group md_redundancy_group = {
  3626. .name = NULL,
  3627. .attrs = md_redundancy_attrs,
  3628. };
  3629. static ssize_t
  3630. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3631. {
  3632. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3633. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3634. ssize_t rv;
  3635. if (!entry->show)
  3636. return -EIO;
  3637. rv = mddev_lock(mddev);
  3638. if (!rv) {
  3639. rv = entry->show(mddev, page);
  3640. mddev_unlock(mddev);
  3641. }
  3642. return rv;
  3643. }
  3644. static ssize_t
  3645. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3646. const char *page, size_t length)
  3647. {
  3648. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3649. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3650. ssize_t rv;
  3651. if (!entry->store)
  3652. return -EIO;
  3653. if (!capable(CAP_SYS_ADMIN))
  3654. return -EACCES;
  3655. rv = mddev_lock(mddev);
  3656. if (mddev->hold_active == UNTIL_IOCTL)
  3657. mddev->hold_active = 0;
  3658. if (!rv) {
  3659. rv = entry->store(mddev, page, length);
  3660. mddev_unlock(mddev);
  3661. }
  3662. return rv;
  3663. }
  3664. static void md_free(struct kobject *ko)
  3665. {
  3666. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3667. if (mddev->sysfs_state)
  3668. sysfs_put(mddev->sysfs_state);
  3669. if (mddev->gendisk) {
  3670. del_gendisk(mddev->gendisk);
  3671. put_disk(mddev->gendisk);
  3672. }
  3673. if (mddev->queue)
  3674. blk_cleanup_queue(mddev->queue);
  3675. kfree(mddev);
  3676. }
  3677. static struct sysfs_ops md_sysfs_ops = {
  3678. .show = md_attr_show,
  3679. .store = md_attr_store,
  3680. };
  3681. static struct kobj_type md_ktype = {
  3682. .release = md_free,
  3683. .sysfs_ops = &md_sysfs_ops,
  3684. .default_attrs = md_default_attrs,
  3685. };
  3686. int mdp_major = 0;
  3687. static void mddev_delayed_delete(struct work_struct *ws)
  3688. {
  3689. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3690. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  3691. kobject_del(&mddev->kobj);
  3692. kobject_put(&mddev->kobj);
  3693. }
  3694. static int md_alloc(dev_t dev, char *name)
  3695. {
  3696. static DEFINE_MUTEX(disks_mutex);
  3697. mddev_t *mddev = mddev_find(dev);
  3698. struct gendisk *disk;
  3699. int partitioned;
  3700. int shift;
  3701. int unit;
  3702. int error;
  3703. if (!mddev)
  3704. return -ENODEV;
  3705. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3706. shift = partitioned ? MdpMinorShift : 0;
  3707. unit = MINOR(mddev->unit) >> shift;
  3708. /* wait for any previous instance if this device
  3709. * to be completed removed (mddev_delayed_delete).
  3710. */
  3711. flush_scheduled_work();
  3712. mutex_lock(&disks_mutex);
  3713. error = -EEXIST;
  3714. if (mddev->gendisk)
  3715. goto abort;
  3716. if (name) {
  3717. /* Need to ensure that 'name' is not a duplicate.
  3718. */
  3719. mddev_t *mddev2;
  3720. spin_lock(&all_mddevs_lock);
  3721. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3722. if (mddev2->gendisk &&
  3723. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3724. spin_unlock(&all_mddevs_lock);
  3725. goto abort;
  3726. }
  3727. spin_unlock(&all_mddevs_lock);
  3728. }
  3729. error = -ENOMEM;
  3730. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3731. if (!mddev->queue)
  3732. goto abort;
  3733. mddev->queue->queuedata = mddev;
  3734. /* Can be unlocked because the queue is new: no concurrency */
  3735. queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
  3736. blk_queue_make_request(mddev->queue, md_make_request);
  3737. disk = alloc_disk(1 << shift);
  3738. if (!disk) {
  3739. blk_cleanup_queue(mddev->queue);
  3740. mddev->queue = NULL;
  3741. goto abort;
  3742. }
  3743. disk->major = MAJOR(mddev->unit);
  3744. disk->first_minor = unit << shift;
  3745. if (name)
  3746. strcpy(disk->disk_name, name);
  3747. else if (partitioned)
  3748. sprintf(disk->disk_name, "md_d%d", unit);
  3749. else
  3750. sprintf(disk->disk_name, "md%d", unit);
  3751. disk->fops = &md_fops;
  3752. disk->private_data = mddev;
  3753. disk->queue = mddev->queue;
  3754. /* Allow extended partitions. This makes the
  3755. * 'mdp' device redundant, but we can't really
  3756. * remove it now.
  3757. */
  3758. disk->flags |= GENHD_FL_EXT_DEVT;
  3759. add_disk(disk);
  3760. mddev->gendisk = disk;
  3761. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3762. &disk_to_dev(disk)->kobj, "%s", "md");
  3763. if (error) {
  3764. /* This isn't possible, but as kobject_init_and_add is marked
  3765. * __must_check, we must do something with the result
  3766. */
  3767. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3768. disk->disk_name);
  3769. error = 0;
  3770. }
  3771. if (sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  3772. printk(KERN_DEBUG "pointless warning\n");
  3773. abort:
  3774. mutex_unlock(&disks_mutex);
  3775. if (!error) {
  3776. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3777. mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
  3778. }
  3779. mddev_put(mddev);
  3780. return error;
  3781. }
  3782. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3783. {
  3784. md_alloc(dev, NULL);
  3785. return NULL;
  3786. }
  3787. static int add_named_array(const char *val, struct kernel_param *kp)
  3788. {
  3789. /* val must be "md_*" where * is not all digits.
  3790. * We allocate an array with a large free minor number, and
  3791. * set the name to val. val must not already be an active name.
  3792. */
  3793. int len = strlen(val);
  3794. char buf[DISK_NAME_LEN];
  3795. while (len && val[len-1] == '\n')
  3796. len--;
  3797. if (len >= DISK_NAME_LEN)
  3798. return -E2BIG;
  3799. strlcpy(buf, val, len+1);
  3800. if (strncmp(buf, "md_", 3) != 0)
  3801. return -EINVAL;
  3802. return md_alloc(0, buf);
  3803. }
  3804. static void md_safemode_timeout(unsigned long data)
  3805. {
  3806. mddev_t *mddev = (mddev_t *) data;
  3807. if (!atomic_read(&mddev->writes_pending)) {
  3808. mddev->safemode = 1;
  3809. if (mddev->external)
  3810. sysfs_notify_dirent(mddev->sysfs_state);
  3811. }
  3812. md_wakeup_thread(mddev->thread);
  3813. }
  3814. static int start_dirty_degraded;
  3815. static int md_run(mddev_t *mddev)
  3816. {
  3817. int err;
  3818. mdk_rdev_t *rdev;
  3819. struct mdk_personality *pers;
  3820. if (list_empty(&mddev->disks))
  3821. /* cannot run an array with no devices.. */
  3822. return -EINVAL;
  3823. if (mddev->pers)
  3824. return -EBUSY;
  3825. /* These two calls synchronise us with the
  3826. * sysfs_remove_group calls in mddev_unlock,
  3827. * so they must have completed.
  3828. */
  3829. mutex_lock(&mddev->open_mutex);
  3830. mutex_unlock(&mddev->open_mutex);
  3831. /*
  3832. * Analyze all RAID superblock(s)
  3833. */
  3834. if (!mddev->raid_disks) {
  3835. if (!mddev->persistent)
  3836. return -EINVAL;
  3837. analyze_sbs(mddev);
  3838. }
  3839. if (mddev->level != LEVEL_NONE)
  3840. request_module("md-level-%d", mddev->level);
  3841. else if (mddev->clevel[0])
  3842. request_module("md-%s", mddev->clevel);
  3843. /*
  3844. * Drop all container device buffers, from now on
  3845. * the only valid external interface is through the md
  3846. * device.
  3847. */
  3848. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3849. if (test_bit(Faulty, &rdev->flags))
  3850. continue;
  3851. sync_blockdev(rdev->bdev);
  3852. invalidate_bdev(rdev->bdev);
  3853. /* perform some consistency tests on the device.
  3854. * We don't want the data to overlap the metadata,
  3855. * Internal Bitmap issues have been handled elsewhere.
  3856. */
  3857. if (rdev->data_offset < rdev->sb_start) {
  3858. if (mddev->dev_sectors &&
  3859. rdev->data_offset + mddev->dev_sectors
  3860. > rdev->sb_start) {
  3861. printk("md: %s: data overlaps metadata\n",
  3862. mdname(mddev));
  3863. return -EINVAL;
  3864. }
  3865. } else {
  3866. if (rdev->sb_start + rdev->sb_size/512
  3867. > rdev->data_offset) {
  3868. printk("md: %s: metadata overlaps data\n",
  3869. mdname(mddev));
  3870. return -EINVAL;
  3871. }
  3872. }
  3873. sysfs_notify_dirent(rdev->sysfs_state);
  3874. }
  3875. spin_lock(&pers_lock);
  3876. pers = find_pers(mddev->level, mddev->clevel);
  3877. if (!pers || !try_module_get(pers->owner)) {
  3878. spin_unlock(&pers_lock);
  3879. if (mddev->level != LEVEL_NONE)
  3880. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  3881. mddev->level);
  3882. else
  3883. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3884. mddev->clevel);
  3885. return -EINVAL;
  3886. }
  3887. mddev->pers = pers;
  3888. spin_unlock(&pers_lock);
  3889. if (mddev->level != pers->level) {
  3890. mddev->level = pers->level;
  3891. mddev->new_level = pers->level;
  3892. }
  3893. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3894. if (mddev->reshape_position != MaxSector &&
  3895. pers->start_reshape == NULL) {
  3896. /* This personality cannot handle reshaping... */
  3897. mddev->pers = NULL;
  3898. module_put(pers->owner);
  3899. return -EINVAL;
  3900. }
  3901. if (pers->sync_request) {
  3902. /* Warn if this is a potentially silly
  3903. * configuration.
  3904. */
  3905. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3906. mdk_rdev_t *rdev2;
  3907. int warned = 0;
  3908. list_for_each_entry(rdev, &mddev->disks, same_set)
  3909. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  3910. if (rdev < rdev2 &&
  3911. rdev->bdev->bd_contains ==
  3912. rdev2->bdev->bd_contains) {
  3913. printk(KERN_WARNING
  3914. "%s: WARNING: %s appears to be"
  3915. " on the same physical disk as"
  3916. " %s.\n",
  3917. mdname(mddev),
  3918. bdevname(rdev->bdev,b),
  3919. bdevname(rdev2->bdev,b2));
  3920. warned = 1;
  3921. }
  3922. }
  3923. if (warned)
  3924. printk(KERN_WARNING
  3925. "True protection against single-disk"
  3926. " failure might be compromised.\n");
  3927. }
  3928. mddev->recovery = 0;
  3929. /* may be over-ridden by personality */
  3930. mddev->resync_max_sectors = mddev->dev_sectors;
  3931. mddev->barriers_work = 1;
  3932. mddev->ok_start_degraded = start_dirty_degraded;
  3933. if (start_readonly && mddev->ro == 0)
  3934. mddev->ro = 2; /* read-only, but switch on first write */
  3935. err = mddev->pers->run(mddev);
  3936. if (err)
  3937. printk(KERN_ERR "md: pers->run() failed ...\n");
  3938. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  3939. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  3940. " but 'external_size' not in effect?\n", __func__);
  3941. printk(KERN_ERR
  3942. "md: invalid array_size %llu > default size %llu\n",
  3943. (unsigned long long)mddev->array_sectors / 2,
  3944. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  3945. err = -EINVAL;
  3946. mddev->pers->stop(mddev);
  3947. }
  3948. if (err == 0 && mddev->pers->sync_request) {
  3949. err = bitmap_create(mddev);
  3950. if (err) {
  3951. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3952. mdname(mddev), err);
  3953. mddev->pers->stop(mddev);
  3954. }
  3955. }
  3956. if (err) {
  3957. module_put(mddev->pers->owner);
  3958. mddev->pers = NULL;
  3959. bitmap_destroy(mddev);
  3960. return err;
  3961. }
  3962. if (mddev->pers->sync_request) {
  3963. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3964. printk(KERN_WARNING
  3965. "md: cannot register extra attributes for %s\n",
  3966. mdname(mddev));
  3967. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3968. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3969. mddev->ro = 0;
  3970. atomic_set(&mddev->writes_pending,0);
  3971. atomic_set(&mddev->max_corr_read_errors,
  3972. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  3973. mddev->safemode = 0;
  3974. mddev->safemode_timer.function = md_safemode_timeout;
  3975. mddev->safemode_timer.data = (unsigned long) mddev;
  3976. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3977. mddev->in_sync = 1;
  3978. list_for_each_entry(rdev, &mddev->disks, same_set)
  3979. if (rdev->raid_disk >= 0) {
  3980. char nm[20];
  3981. sprintf(nm, "rd%d", rdev->raid_disk);
  3982. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3983. printk("md: cannot register %s for %s\n",
  3984. nm, mdname(mddev));
  3985. }
  3986. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3987. if (mddev->flags)
  3988. md_update_sb(mddev, 0);
  3989. md_wakeup_thread(mddev->thread);
  3990. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3991. md_new_event(mddev);
  3992. sysfs_notify_dirent(mddev->sysfs_state);
  3993. if (mddev->sysfs_action)
  3994. sysfs_notify_dirent(mddev->sysfs_action);
  3995. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3996. return 0;
  3997. }
  3998. static int do_md_run(mddev_t *mddev)
  3999. {
  4000. int err;
  4001. err = md_run(mddev);
  4002. if (err)
  4003. goto out;
  4004. set_capacity(mddev->gendisk, mddev->array_sectors);
  4005. revalidate_disk(mddev->gendisk);
  4006. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4007. out:
  4008. return err;
  4009. }
  4010. static int restart_array(mddev_t *mddev)
  4011. {
  4012. struct gendisk *disk = mddev->gendisk;
  4013. /* Complain if it has no devices */
  4014. if (list_empty(&mddev->disks))
  4015. return -ENXIO;
  4016. if (!mddev->pers)
  4017. return -EINVAL;
  4018. if (!mddev->ro)
  4019. return -EBUSY;
  4020. mddev->safemode = 0;
  4021. mddev->ro = 0;
  4022. set_disk_ro(disk, 0);
  4023. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4024. mdname(mddev));
  4025. /* Kick recovery or resync if necessary */
  4026. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4027. md_wakeup_thread(mddev->thread);
  4028. md_wakeup_thread(mddev->sync_thread);
  4029. sysfs_notify_dirent(mddev->sysfs_state);
  4030. return 0;
  4031. }
  4032. /* similar to deny_write_access, but accounts for our holding a reference
  4033. * to the file ourselves */
  4034. static int deny_bitmap_write_access(struct file * file)
  4035. {
  4036. struct inode *inode = file->f_mapping->host;
  4037. spin_lock(&inode->i_lock);
  4038. if (atomic_read(&inode->i_writecount) > 1) {
  4039. spin_unlock(&inode->i_lock);
  4040. return -ETXTBSY;
  4041. }
  4042. atomic_set(&inode->i_writecount, -1);
  4043. spin_unlock(&inode->i_lock);
  4044. return 0;
  4045. }
  4046. void restore_bitmap_write_access(struct file *file)
  4047. {
  4048. struct inode *inode = file->f_mapping->host;
  4049. spin_lock(&inode->i_lock);
  4050. atomic_set(&inode->i_writecount, 1);
  4051. spin_unlock(&inode->i_lock);
  4052. }
  4053. static void md_clean(mddev_t *mddev)
  4054. {
  4055. mddev->array_sectors = 0;
  4056. mddev->external_size = 0;
  4057. mddev->dev_sectors = 0;
  4058. mddev->raid_disks = 0;
  4059. mddev->recovery_cp = 0;
  4060. mddev->resync_min = 0;
  4061. mddev->resync_max = MaxSector;
  4062. mddev->reshape_position = MaxSector;
  4063. mddev->external = 0;
  4064. mddev->persistent = 0;
  4065. mddev->level = LEVEL_NONE;
  4066. mddev->clevel[0] = 0;
  4067. mddev->flags = 0;
  4068. mddev->ro = 0;
  4069. mddev->metadata_type[0] = 0;
  4070. mddev->chunk_sectors = 0;
  4071. mddev->ctime = mddev->utime = 0;
  4072. mddev->layout = 0;
  4073. mddev->max_disks = 0;
  4074. mddev->events = 0;
  4075. mddev->delta_disks = 0;
  4076. mddev->new_level = LEVEL_NONE;
  4077. mddev->new_layout = 0;
  4078. mddev->new_chunk_sectors = 0;
  4079. mddev->curr_resync = 0;
  4080. mddev->resync_mismatches = 0;
  4081. mddev->suspend_lo = mddev->suspend_hi = 0;
  4082. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4083. mddev->recovery = 0;
  4084. mddev->in_sync = 0;
  4085. mddev->degraded = 0;
  4086. mddev->barriers_work = 0;
  4087. mddev->safemode = 0;
  4088. mddev->bitmap_info.offset = 0;
  4089. mddev->bitmap_info.default_offset = 0;
  4090. mddev->bitmap_info.chunksize = 0;
  4091. mddev->bitmap_info.daemon_sleep = 0;
  4092. mddev->bitmap_info.max_write_behind = 0;
  4093. }
  4094. static void md_stop_writes(mddev_t *mddev)
  4095. {
  4096. if (mddev->sync_thread) {
  4097. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4098. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4099. md_unregister_thread(mddev->sync_thread);
  4100. mddev->sync_thread = NULL;
  4101. }
  4102. del_timer_sync(&mddev->safemode_timer);
  4103. bitmap_flush(mddev);
  4104. md_super_wait(mddev);
  4105. if (!mddev->in_sync || mddev->flags) {
  4106. /* mark array as shutdown cleanly */
  4107. mddev->in_sync = 1;
  4108. md_update_sb(mddev, 1);
  4109. }
  4110. }
  4111. static void md_stop(mddev_t *mddev)
  4112. {
  4113. md_stop_writes(mddev);
  4114. mddev->pers->stop(mddev);
  4115. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4116. mddev->to_remove = &md_redundancy_group;
  4117. module_put(mddev->pers->owner);
  4118. mddev->pers = NULL;
  4119. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4120. }
  4121. static int md_set_readonly(mddev_t *mddev, int is_open)
  4122. {
  4123. int err = 0;
  4124. mutex_lock(&mddev->open_mutex);
  4125. if (atomic_read(&mddev->openers) > is_open) {
  4126. printk("md: %s still in use.\n",mdname(mddev));
  4127. err = -EBUSY;
  4128. goto out;
  4129. }
  4130. if (mddev->pers) {
  4131. md_stop_writes(mddev);
  4132. err = -ENXIO;
  4133. if (mddev->ro==1)
  4134. goto out;
  4135. mddev->ro = 1;
  4136. set_disk_ro(mddev->gendisk, 1);
  4137. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4138. sysfs_notify_dirent(mddev->sysfs_state);
  4139. err = 0;
  4140. }
  4141. out:
  4142. mutex_unlock(&mddev->open_mutex);
  4143. return err;
  4144. }
  4145. /* mode:
  4146. * 0 - completely stop and dis-assemble array
  4147. * 2 - stop but do not disassemble array
  4148. */
  4149. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  4150. {
  4151. int err = 0;
  4152. struct gendisk *disk = mddev->gendisk;
  4153. mdk_rdev_t *rdev;
  4154. mutex_lock(&mddev->open_mutex);
  4155. if (atomic_read(&mddev->openers) > is_open) {
  4156. printk("md: %s still in use.\n",mdname(mddev));
  4157. err = -EBUSY;
  4158. } else if (mddev->pers) {
  4159. if (mddev->ro)
  4160. set_disk_ro(disk, 0);
  4161. md_stop(mddev);
  4162. mddev->queue->merge_bvec_fn = NULL;
  4163. mddev->queue->unplug_fn = NULL;
  4164. mddev->queue->backing_dev_info.congested_fn = NULL;
  4165. /* tell userspace to handle 'inactive' */
  4166. sysfs_notify_dirent(mddev->sysfs_state);
  4167. list_for_each_entry(rdev, &mddev->disks, same_set)
  4168. if (rdev->raid_disk >= 0) {
  4169. char nm[20];
  4170. sprintf(nm, "rd%d", rdev->raid_disk);
  4171. sysfs_remove_link(&mddev->kobj, nm);
  4172. }
  4173. set_capacity(disk, 0);
  4174. revalidate_disk(disk);
  4175. if (mddev->ro)
  4176. mddev->ro = 0;
  4177. err = 0;
  4178. }
  4179. mutex_unlock(&mddev->open_mutex);
  4180. if (err)
  4181. return err;
  4182. /*
  4183. * Free resources if final stop
  4184. */
  4185. if (mode == 0) {
  4186. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4187. bitmap_destroy(mddev);
  4188. if (mddev->bitmap_info.file) {
  4189. restore_bitmap_write_access(mddev->bitmap_info.file);
  4190. fput(mddev->bitmap_info.file);
  4191. mddev->bitmap_info.file = NULL;
  4192. }
  4193. mddev->bitmap_info.offset = 0;
  4194. export_array(mddev);
  4195. md_clean(mddev);
  4196. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4197. if (mddev->hold_active == UNTIL_STOP)
  4198. mddev->hold_active = 0;
  4199. }
  4200. err = 0;
  4201. blk_integrity_unregister(disk);
  4202. md_new_event(mddev);
  4203. sysfs_notify_dirent(mddev->sysfs_state);
  4204. return err;
  4205. }
  4206. #ifndef MODULE
  4207. static void autorun_array(mddev_t *mddev)
  4208. {
  4209. mdk_rdev_t *rdev;
  4210. int err;
  4211. if (list_empty(&mddev->disks))
  4212. return;
  4213. printk(KERN_INFO "md: running: ");
  4214. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4215. char b[BDEVNAME_SIZE];
  4216. printk("<%s>", bdevname(rdev->bdev,b));
  4217. }
  4218. printk("\n");
  4219. err = do_md_run(mddev);
  4220. if (err) {
  4221. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4222. do_md_stop(mddev, 0, 0);
  4223. }
  4224. }
  4225. /*
  4226. * lets try to run arrays based on all disks that have arrived
  4227. * until now. (those are in pending_raid_disks)
  4228. *
  4229. * the method: pick the first pending disk, collect all disks with
  4230. * the same UUID, remove all from the pending list and put them into
  4231. * the 'same_array' list. Then order this list based on superblock
  4232. * update time (freshest comes first), kick out 'old' disks and
  4233. * compare superblocks. If everything's fine then run it.
  4234. *
  4235. * If "unit" is allocated, then bump its reference count
  4236. */
  4237. static void autorun_devices(int part)
  4238. {
  4239. mdk_rdev_t *rdev0, *rdev, *tmp;
  4240. mddev_t *mddev;
  4241. char b[BDEVNAME_SIZE];
  4242. printk(KERN_INFO "md: autorun ...\n");
  4243. while (!list_empty(&pending_raid_disks)) {
  4244. int unit;
  4245. dev_t dev;
  4246. LIST_HEAD(candidates);
  4247. rdev0 = list_entry(pending_raid_disks.next,
  4248. mdk_rdev_t, same_set);
  4249. printk(KERN_INFO "md: considering %s ...\n",
  4250. bdevname(rdev0->bdev,b));
  4251. INIT_LIST_HEAD(&candidates);
  4252. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4253. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4254. printk(KERN_INFO "md: adding %s ...\n",
  4255. bdevname(rdev->bdev,b));
  4256. list_move(&rdev->same_set, &candidates);
  4257. }
  4258. /*
  4259. * now we have a set of devices, with all of them having
  4260. * mostly sane superblocks. It's time to allocate the
  4261. * mddev.
  4262. */
  4263. if (part) {
  4264. dev = MKDEV(mdp_major,
  4265. rdev0->preferred_minor << MdpMinorShift);
  4266. unit = MINOR(dev) >> MdpMinorShift;
  4267. } else {
  4268. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4269. unit = MINOR(dev);
  4270. }
  4271. if (rdev0->preferred_minor != unit) {
  4272. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4273. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4274. break;
  4275. }
  4276. md_probe(dev, NULL, NULL);
  4277. mddev = mddev_find(dev);
  4278. if (!mddev || !mddev->gendisk) {
  4279. if (mddev)
  4280. mddev_put(mddev);
  4281. printk(KERN_ERR
  4282. "md: cannot allocate memory for md drive.\n");
  4283. break;
  4284. }
  4285. if (mddev_lock(mddev))
  4286. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4287. mdname(mddev));
  4288. else if (mddev->raid_disks || mddev->major_version
  4289. || !list_empty(&mddev->disks)) {
  4290. printk(KERN_WARNING
  4291. "md: %s already running, cannot run %s\n",
  4292. mdname(mddev), bdevname(rdev0->bdev,b));
  4293. mddev_unlock(mddev);
  4294. } else {
  4295. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4296. mddev->persistent = 1;
  4297. rdev_for_each_list(rdev, tmp, &candidates) {
  4298. list_del_init(&rdev->same_set);
  4299. if (bind_rdev_to_array(rdev, mddev))
  4300. export_rdev(rdev);
  4301. }
  4302. autorun_array(mddev);
  4303. mddev_unlock(mddev);
  4304. }
  4305. /* on success, candidates will be empty, on error
  4306. * it won't...
  4307. */
  4308. rdev_for_each_list(rdev, tmp, &candidates) {
  4309. list_del_init(&rdev->same_set);
  4310. export_rdev(rdev);
  4311. }
  4312. mddev_put(mddev);
  4313. }
  4314. printk(KERN_INFO "md: ... autorun DONE.\n");
  4315. }
  4316. #endif /* !MODULE */
  4317. static int get_version(void __user * arg)
  4318. {
  4319. mdu_version_t ver;
  4320. ver.major = MD_MAJOR_VERSION;
  4321. ver.minor = MD_MINOR_VERSION;
  4322. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4323. if (copy_to_user(arg, &ver, sizeof(ver)))
  4324. return -EFAULT;
  4325. return 0;
  4326. }
  4327. static int get_array_info(mddev_t * mddev, void __user * arg)
  4328. {
  4329. mdu_array_info_t info;
  4330. int nr,working,insync,failed,spare;
  4331. mdk_rdev_t *rdev;
  4332. nr=working=insync=failed=spare=0;
  4333. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4334. nr++;
  4335. if (test_bit(Faulty, &rdev->flags))
  4336. failed++;
  4337. else {
  4338. working++;
  4339. if (test_bit(In_sync, &rdev->flags))
  4340. insync++;
  4341. else
  4342. spare++;
  4343. }
  4344. }
  4345. info.major_version = mddev->major_version;
  4346. info.minor_version = mddev->minor_version;
  4347. info.patch_version = MD_PATCHLEVEL_VERSION;
  4348. info.ctime = mddev->ctime;
  4349. info.level = mddev->level;
  4350. info.size = mddev->dev_sectors / 2;
  4351. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4352. info.size = -1;
  4353. info.nr_disks = nr;
  4354. info.raid_disks = mddev->raid_disks;
  4355. info.md_minor = mddev->md_minor;
  4356. info.not_persistent= !mddev->persistent;
  4357. info.utime = mddev->utime;
  4358. info.state = 0;
  4359. if (mddev->in_sync)
  4360. info.state = (1<<MD_SB_CLEAN);
  4361. if (mddev->bitmap && mddev->bitmap_info.offset)
  4362. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4363. info.active_disks = insync;
  4364. info.working_disks = working;
  4365. info.failed_disks = failed;
  4366. info.spare_disks = spare;
  4367. info.layout = mddev->layout;
  4368. info.chunk_size = mddev->chunk_sectors << 9;
  4369. if (copy_to_user(arg, &info, sizeof(info)))
  4370. return -EFAULT;
  4371. return 0;
  4372. }
  4373. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4374. {
  4375. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4376. char *ptr, *buf = NULL;
  4377. int err = -ENOMEM;
  4378. if (md_allow_write(mddev))
  4379. file = kmalloc(sizeof(*file), GFP_NOIO);
  4380. else
  4381. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4382. if (!file)
  4383. goto out;
  4384. /* bitmap disabled, zero the first byte and copy out */
  4385. if (!mddev->bitmap || !mddev->bitmap->file) {
  4386. file->pathname[0] = '\0';
  4387. goto copy_out;
  4388. }
  4389. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4390. if (!buf)
  4391. goto out;
  4392. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4393. if (IS_ERR(ptr))
  4394. goto out;
  4395. strcpy(file->pathname, ptr);
  4396. copy_out:
  4397. err = 0;
  4398. if (copy_to_user(arg, file, sizeof(*file)))
  4399. err = -EFAULT;
  4400. out:
  4401. kfree(buf);
  4402. kfree(file);
  4403. return err;
  4404. }
  4405. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4406. {
  4407. mdu_disk_info_t info;
  4408. mdk_rdev_t *rdev;
  4409. if (copy_from_user(&info, arg, sizeof(info)))
  4410. return -EFAULT;
  4411. rdev = find_rdev_nr(mddev, info.number);
  4412. if (rdev) {
  4413. info.major = MAJOR(rdev->bdev->bd_dev);
  4414. info.minor = MINOR(rdev->bdev->bd_dev);
  4415. info.raid_disk = rdev->raid_disk;
  4416. info.state = 0;
  4417. if (test_bit(Faulty, &rdev->flags))
  4418. info.state |= (1<<MD_DISK_FAULTY);
  4419. else if (test_bit(In_sync, &rdev->flags)) {
  4420. info.state |= (1<<MD_DISK_ACTIVE);
  4421. info.state |= (1<<MD_DISK_SYNC);
  4422. }
  4423. if (test_bit(WriteMostly, &rdev->flags))
  4424. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4425. } else {
  4426. info.major = info.minor = 0;
  4427. info.raid_disk = -1;
  4428. info.state = (1<<MD_DISK_REMOVED);
  4429. }
  4430. if (copy_to_user(arg, &info, sizeof(info)))
  4431. return -EFAULT;
  4432. return 0;
  4433. }
  4434. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4435. {
  4436. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4437. mdk_rdev_t *rdev;
  4438. dev_t dev = MKDEV(info->major,info->minor);
  4439. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4440. return -EOVERFLOW;
  4441. if (!mddev->raid_disks) {
  4442. int err;
  4443. /* expecting a device which has a superblock */
  4444. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4445. if (IS_ERR(rdev)) {
  4446. printk(KERN_WARNING
  4447. "md: md_import_device returned %ld\n",
  4448. PTR_ERR(rdev));
  4449. return PTR_ERR(rdev);
  4450. }
  4451. if (!list_empty(&mddev->disks)) {
  4452. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4453. mdk_rdev_t, same_set);
  4454. err = super_types[mddev->major_version]
  4455. .load_super(rdev, rdev0, mddev->minor_version);
  4456. if (err < 0) {
  4457. printk(KERN_WARNING
  4458. "md: %s has different UUID to %s\n",
  4459. bdevname(rdev->bdev,b),
  4460. bdevname(rdev0->bdev,b2));
  4461. export_rdev(rdev);
  4462. return -EINVAL;
  4463. }
  4464. }
  4465. err = bind_rdev_to_array(rdev, mddev);
  4466. if (err)
  4467. export_rdev(rdev);
  4468. return err;
  4469. }
  4470. /*
  4471. * add_new_disk can be used once the array is assembled
  4472. * to add "hot spares". They must already have a superblock
  4473. * written
  4474. */
  4475. if (mddev->pers) {
  4476. int err;
  4477. if (!mddev->pers->hot_add_disk) {
  4478. printk(KERN_WARNING
  4479. "%s: personality does not support diskops!\n",
  4480. mdname(mddev));
  4481. return -EINVAL;
  4482. }
  4483. if (mddev->persistent)
  4484. rdev = md_import_device(dev, mddev->major_version,
  4485. mddev->minor_version);
  4486. else
  4487. rdev = md_import_device(dev, -1, -1);
  4488. if (IS_ERR(rdev)) {
  4489. printk(KERN_WARNING
  4490. "md: md_import_device returned %ld\n",
  4491. PTR_ERR(rdev));
  4492. return PTR_ERR(rdev);
  4493. }
  4494. /* set save_raid_disk if appropriate */
  4495. if (!mddev->persistent) {
  4496. if (info->state & (1<<MD_DISK_SYNC) &&
  4497. info->raid_disk < mddev->raid_disks)
  4498. rdev->raid_disk = info->raid_disk;
  4499. else
  4500. rdev->raid_disk = -1;
  4501. } else
  4502. super_types[mddev->major_version].
  4503. validate_super(mddev, rdev);
  4504. rdev->saved_raid_disk = rdev->raid_disk;
  4505. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4506. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4507. set_bit(WriteMostly, &rdev->flags);
  4508. else
  4509. clear_bit(WriteMostly, &rdev->flags);
  4510. rdev->raid_disk = -1;
  4511. err = bind_rdev_to_array(rdev, mddev);
  4512. if (!err && !mddev->pers->hot_remove_disk) {
  4513. /* If there is hot_add_disk but no hot_remove_disk
  4514. * then added disks for geometry changes,
  4515. * and should be added immediately.
  4516. */
  4517. super_types[mddev->major_version].
  4518. validate_super(mddev, rdev);
  4519. err = mddev->pers->hot_add_disk(mddev, rdev);
  4520. if (err)
  4521. unbind_rdev_from_array(rdev);
  4522. }
  4523. if (err)
  4524. export_rdev(rdev);
  4525. else
  4526. sysfs_notify_dirent(rdev->sysfs_state);
  4527. md_update_sb(mddev, 1);
  4528. if (mddev->degraded)
  4529. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4530. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4531. md_wakeup_thread(mddev->thread);
  4532. return err;
  4533. }
  4534. /* otherwise, add_new_disk is only allowed
  4535. * for major_version==0 superblocks
  4536. */
  4537. if (mddev->major_version != 0) {
  4538. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4539. mdname(mddev));
  4540. return -EINVAL;
  4541. }
  4542. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4543. int err;
  4544. rdev = md_import_device(dev, -1, 0);
  4545. if (IS_ERR(rdev)) {
  4546. printk(KERN_WARNING
  4547. "md: error, md_import_device() returned %ld\n",
  4548. PTR_ERR(rdev));
  4549. return PTR_ERR(rdev);
  4550. }
  4551. rdev->desc_nr = info->number;
  4552. if (info->raid_disk < mddev->raid_disks)
  4553. rdev->raid_disk = info->raid_disk;
  4554. else
  4555. rdev->raid_disk = -1;
  4556. if (rdev->raid_disk < mddev->raid_disks)
  4557. if (info->state & (1<<MD_DISK_SYNC))
  4558. set_bit(In_sync, &rdev->flags);
  4559. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4560. set_bit(WriteMostly, &rdev->flags);
  4561. if (!mddev->persistent) {
  4562. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4563. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4564. } else
  4565. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4566. rdev->sectors = rdev->sb_start;
  4567. err = bind_rdev_to_array(rdev, mddev);
  4568. if (err) {
  4569. export_rdev(rdev);
  4570. return err;
  4571. }
  4572. }
  4573. return 0;
  4574. }
  4575. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4576. {
  4577. char b[BDEVNAME_SIZE];
  4578. mdk_rdev_t *rdev;
  4579. rdev = find_rdev(mddev, dev);
  4580. if (!rdev)
  4581. return -ENXIO;
  4582. if (rdev->raid_disk >= 0)
  4583. goto busy;
  4584. kick_rdev_from_array(rdev);
  4585. md_update_sb(mddev, 1);
  4586. md_new_event(mddev);
  4587. return 0;
  4588. busy:
  4589. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4590. bdevname(rdev->bdev,b), mdname(mddev));
  4591. return -EBUSY;
  4592. }
  4593. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4594. {
  4595. char b[BDEVNAME_SIZE];
  4596. int err;
  4597. mdk_rdev_t *rdev;
  4598. if (!mddev->pers)
  4599. return -ENODEV;
  4600. if (mddev->major_version != 0) {
  4601. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4602. " version-0 superblocks.\n",
  4603. mdname(mddev));
  4604. return -EINVAL;
  4605. }
  4606. if (!mddev->pers->hot_add_disk) {
  4607. printk(KERN_WARNING
  4608. "%s: personality does not support diskops!\n",
  4609. mdname(mddev));
  4610. return -EINVAL;
  4611. }
  4612. rdev = md_import_device(dev, -1, 0);
  4613. if (IS_ERR(rdev)) {
  4614. printk(KERN_WARNING
  4615. "md: error, md_import_device() returned %ld\n",
  4616. PTR_ERR(rdev));
  4617. return -EINVAL;
  4618. }
  4619. if (mddev->persistent)
  4620. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4621. else
  4622. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4623. rdev->sectors = rdev->sb_start;
  4624. if (test_bit(Faulty, &rdev->flags)) {
  4625. printk(KERN_WARNING
  4626. "md: can not hot-add faulty %s disk to %s!\n",
  4627. bdevname(rdev->bdev,b), mdname(mddev));
  4628. err = -EINVAL;
  4629. goto abort_export;
  4630. }
  4631. clear_bit(In_sync, &rdev->flags);
  4632. rdev->desc_nr = -1;
  4633. rdev->saved_raid_disk = -1;
  4634. err = bind_rdev_to_array(rdev, mddev);
  4635. if (err)
  4636. goto abort_export;
  4637. /*
  4638. * The rest should better be atomic, we can have disk failures
  4639. * noticed in interrupt contexts ...
  4640. */
  4641. rdev->raid_disk = -1;
  4642. md_update_sb(mddev, 1);
  4643. /*
  4644. * Kick recovery, maybe this spare has to be added to the
  4645. * array immediately.
  4646. */
  4647. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4648. md_wakeup_thread(mddev->thread);
  4649. md_new_event(mddev);
  4650. return 0;
  4651. abort_export:
  4652. export_rdev(rdev);
  4653. return err;
  4654. }
  4655. static int set_bitmap_file(mddev_t *mddev, int fd)
  4656. {
  4657. int err;
  4658. if (mddev->pers) {
  4659. if (!mddev->pers->quiesce)
  4660. return -EBUSY;
  4661. if (mddev->recovery || mddev->sync_thread)
  4662. return -EBUSY;
  4663. /* we should be able to change the bitmap.. */
  4664. }
  4665. if (fd >= 0) {
  4666. if (mddev->bitmap)
  4667. return -EEXIST; /* cannot add when bitmap is present */
  4668. mddev->bitmap_info.file = fget(fd);
  4669. if (mddev->bitmap_info.file == NULL) {
  4670. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4671. mdname(mddev));
  4672. return -EBADF;
  4673. }
  4674. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  4675. if (err) {
  4676. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4677. mdname(mddev));
  4678. fput(mddev->bitmap_info.file);
  4679. mddev->bitmap_info.file = NULL;
  4680. return err;
  4681. }
  4682. mddev->bitmap_info.offset = 0; /* file overrides offset */
  4683. } else if (mddev->bitmap == NULL)
  4684. return -ENOENT; /* cannot remove what isn't there */
  4685. err = 0;
  4686. if (mddev->pers) {
  4687. mddev->pers->quiesce(mddev, 1);
  4688. if (fd >= 0)
  4689. err = bitmap_create(mddev);
  4690. if (fd < 0 || err) {
  4691. bitmap_destroy(mddev);
  4692. fd = -1; /* make sure to put the file */
  4693. }
  4694. mddev->pers->quiesce(mddev, 0);
  4695. }
  4696. if (fd < 0) {
  4697. if (mddev->bitmap_info.file) {
  4698. restore_bitmap_write_access(mddev->bitmap_info.file);
  4699. fput(mddev->bitmap_info.file);
  4700. }
  4701. mddev->bitmap_info.file = NULL;
  4702. }
  4703. return err;
  4704. }
  4705. /*
  4706. * set_array_info is used two different ways
  4707. * The original usage is when creating a new array.
  4708. * In this usage, raid_disks is > 0 and it together with
  4709. * level, size, not_persistent,layout,chunksize determine the
  4710. * shape of the array.
  4711. * This will always create an array with a type-0.90.0 superblock.
  4712. * The newer usage is when assembling an array.
  4713. * In this case raid_disks will be 0, and the major_version field is
  4714. * use to determine which style super-blocks are to be found on the devices.
  4715. * The minor and patch _version numbers are also kept incase the
  4716. * super_block handler wishes to interpret them.
  4717. */
  4718. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4719. {
  4720. if (info->raid_disks == 0) {
  4721. /* just setting version number for superblock loading */
  4722. if (info->major_version < 0 ||
  4723. info->major_version >= ARRAY_SIZE(super_types) ||
  4724. super_types[info->major_version].name == NULL) {
  4725. /* maybe try to auto-load a module? */
  4726. printk(KERN_INFO
  4727. "md: superblock version %d not known\n",
  4728. info->major_version);
  4729. return -EINVAL;
  4730. }
  4731. mddev->major_version = info->major_version;
  4732. mddev->minor_version = info->minor_version;
  4733. mddev->patch_version = info->patch_version;
  4734. mddev->persistent = !info->not_persistent;
  4735. /* ensure mddev_put doesn't delete this now that there
  4736. * is some minimal configuration.
  4737. */
  4738. mddev->ctime = get_seconds();
  4739. return 0;
  4740. }
  4741. mddev->major_version = MD_MAJOR_VERSION;
  4742. mddev->minor_version = MD_MINOR_VERSION;
  4743. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4744. mddev->ctime = get_seconds();
  4745. mddev->level = info->level;
  4746. mddev->clevel[0] = 0;
  4747. mddev->dev_sectors = 2 * (sector_t)info->size;
  4748. mddev->raid_disks = info->raid_disks;
  4749. /* don't set md_minor, it is determined by which /dev/md* was
  4750. * openned
  4751. */
  4752. if (info->state & (1<<MD_SB_CLEAN))
  4753. mddev->recovery_cp = MaxSector;
  4754. else
  4755. mddev->recovery_cp = 0;
  4756. mddev->persistent = ! info->not_persistent;
  4757. mddev->external = 0;
  4758. mddev->layout = info->layout;
  4759. mddev->chunk_sectors = info->chunk_size >> 9;
  4760. mddev->max_disks = MD_SB_DISKS;
  4761. if (mddev->persistent)
  4762. mddev->flags = 0;
  4763. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4764. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  4765. mddev->bitmap_info.offset = 0;
  4766. mddev->reshape_position = MaxSector;
  4767. /*
  4768. * Generate a 128 bit UUID
  4769. */
  4770. get_random_bytes(mddev->uuid, 16);
  4771. mddev->new_level = mddev->level;
  4772. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4773. mddev->new_layout = mddev->layout;
  4774. mddev->delta_disks = 0;
  4775. return 0;
  4776. }
  4777. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  4778. {
  4779. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  4780. if (mddev->external_size)
  4781. return;
  4782. mddev->array_sectors = array_sectors;
  4783. }
  4784. EXPORT_SYMBOL(md_set_array_sectors);
  4785. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4786. {
  4787. mdk_rdev_t *rdev;
  4788. int rv;
  4789. int fit = (num_sectors == 0);
  4790. if (mddev->pers->resize == NULL)
  4791. return -EINVAL;
  4792. /* The "num_sectors" is the number of sectors of each device that
  4793. * is used. This can only make sense for arrays with redundancy.
  4794. * linear and raid0 always use whatever space is available. We can only
  4795. * consider changing this number if no resync or reconstruction is
  4796. * happening, and if the new size is acceptable. It must fit before the
  4797. * sb_start or, if that is <data_offset, it must fit before the size
  4798. * of each device. If num_sectors is zero, we find the largest size
  4799. * that fits.
  4800. */
  4801. if (mddev->sync_thread)
  4802. return -EBUSY;
  4803. if (mddev->bitmap)
  4804. /* Sorry, cannot grow a bitmap yet, just remove it,
  4805. * grow, and re-add.
  4806. */
  4807. return -EBUSY;
  4808. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4809. sector_t avail = rdev->sectors;
  4810. if (fit && (num_sectors == 0 || num_sectors > avail))
  4811. num_sectors = avail;
  4812. if (avail < num_sectors)
  4813. return -ENOSPC;
  4814. }
  4815. rv = mddev->pers->resize(mddev, num_sectors);
  4816. if (!rv)
  4817. revalidate_disk(mddev->gendisk);
  4818. return rv;
  4819. }
  4820. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4821. {
  4822. int rv;
  4823. /* change the number of raid disks */
  4824. if (mddev->pers->check_reshape == NULL)
  4825. return -EINVAL;
  4826. if (raid_disks <= 0 ||
  4827. (mddev->max_disks && raid_disks >= mddev->max_disks))
  4828. return -EINVAL;
  4829. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4830. return -EBUSY;
  4831. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4832. rv = mddev->pers->check_reshape(mddev);
  4833. return rv;
  4834. }
  4835. /*
  4836. * update_array_info is used to change the configuration of an
  4837. * on-line array.
  4838. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4839. * fields in the info are checked against the array.
  4840. * Any differences that cannot be handled will cause an error.
  4841. * Normally, only one change can be managed at a time.
  4842. */
  4843. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4844. {
  4845. int rv = 0;
  4846. int cnt = 0;
  4847. int state = 0;
  4848. /* calculate expected state,ignoring low bits */
  4849. if (mddev->bitmap && mddev->bitmap_info.offset)
  4850. state |= (1 << MD_SB_BITMAP_PRESENT);
  4851. if (mddev->major_version != info->major_version ||
  4852. mddev->minor_version != info->minor_version ||
  4853. /* mddev->patch_version != info->patch_version || */
  4854. mddev->ctime != info->ctime ||
  4855. mddev->level != info->level ||
  4856. /* mddev->layout != info->layout || */
  4857. !mddev->persistent != info->not_persistent||
  4858. mddev->chunk_sectors != info->chunk_size >> 9 ||
  4859. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  4860. ((state^info->state) & 0xfffffe00)
  4861. )
  4862. return -EINVAL;
  4863. /* Check there is only one change */
  4864. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4865. cnt++;
  4866. if (mddev->raid_disks != info->raid_disks)
  4867. cnt++;
  4868. if (mddev->layout != info->layout)
  4869. cnt++;
  4870. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  4871. cnt++;
  4872. if (cnt == 0)
  4873. return 0;
  4874. if (cnt > 1)
  4875. return -EINVAL;
  4876. if (mddev->layout != info->layout) {
  4877. /* Change layout
  4878. * we don't need to do anything at the md level, the
  4879. * personality will take care of it all.
  4880. */
  4881. if (mddev->pers->check_reshape == NULL)
  4882. return -EINVAL;
  4883. else {
  4884. mddev->new_layout = info->layout;
  4885. rv = mddev->pers->check_reshape(mddev);
  4886. if (rv)
  4887. mddev->new_layout = mddev->layout;
  4888. return rv;
  4889. }
  4890. }
  4891. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4892. rv = update_size(mddev, (sector_t)info->size * 2);
  4893. if (mddev->raid_disks != info->raid_disks)
  4894. rv = update_raid_disks(mddev, info->raid_disks);
  4895. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  4896. if (mddev->pers->quiesce == NULL)
  4897. return -EINVAL;
  4898. if (mddev->recovery || mddev->sync_thread)
  4899. return -EBUSY;
  4900. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  4901. /* add the bitmap */
  4902. if (mddev->bitmap)
  4903. return -EEXIST;
  4904. if (mddev->bitmap_info.default_offset == 0)
  4905. return -EINVAL;
  4906. mddev->bitmap_info.offset =
  4907. mddev->bitmap_info.default_offset;
  4908. mddev->pers->quiesce(mddev, 1);
  4909. rv = bitmap_create(mddev);
  4910. if (rv)
  4911. bitmap_destroy(mddev);
  4912. mddev->pers->quiesce(mddev, 0);
  4913. } else {
  4914. /* remove the bitmap */
  4915. if (!mddev->bitmap)
  4916. return -ENOENT;
  4917. if (mddev->bitmap->file)
  4918. return -EINVAL;
  4919. mddev->pers->quiesce(mddev, 1);
  4920. bitmap_destroy(mddev);
  4921. mddev->pers->quiesce(mddev, 0);
  4922. mddev->bitmap_info.offset = 0;
  4923. }
  4924. }
  4925. md_update_sb(mddev, 1);
  4926. return rv;
  4927. }
  4928. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  4929. {
  4930. mdk_rdev_t *rdev;
  4931. if (mddev->pers == NULL)
  4932. return -ENODEV;
  4933. rdev = find_rdev(mddev, dev);
  4934. if (!rdev)
  4935. return -ENODEV;
  4936. md_error(mddev, rdev);
  4937. return 0;
  4938. }
  4939. /*
  4940. * We have a problem here : there is no easy way to give a CHS
  4941. * virtual geometry. We currently pretend that we have a 2 heads
  4942. * 4 sectors (with a BIG number of cylinders...). This drives
  4943. * dosfs just mad... ;-)
  4944. */
  4945. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4946. {
  4947. mddev_t *mddev = bdev->bd_disk->private_data;
  4948. geo->heads = 2;
  4949. geo->sectors = 4;
  4950. geo->cylinders = mddev->array_sectors / 8;
  4951. return 0;
  4952. }
  4953. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  4954. unsigned int cmd, unsigned long arg)
  4955. {
  4956. int err = 0;
  4957. void __user *argp = (void __user *)arg;
  4958. mddev_t *mddev = NULL;
  4959. int ro;
  4960. if (!capable(CAP_SYS_ADMIN))
  4961. return -EACCES;
  4962. /*
  4963. * Commands dealing with the RAID driver but not any
  4964. * particular array:
  4965. */
  4966. switch (cmd)
  4967. {
  4968. case RAID_VERSION:
  4969. err = get_version(argp);
  4970. goto done;
  4971. case PRINT_RAID_DEBUG:
  4972. err = 0;
  4973. md_print_devices();
  4974. goto done;
  4975. #ifndef MODULE
  4976. case RAID_AUTORUN:
  4977. err = 0;
  4978. autostart_arrays(arg);
  4979. goto done;
  4980. #endif
  4981. default:;
  4982. }
  4983. /*
  4984. * Commands creating/starting a new array:
  4985. */
  4986. mddev = bdev->bd_disk->private_data;
  4987. if (!mddev) {
  4988. BUG();
  4989. goto abort;
  4990. }
  4991. err = mddev_lock(mddev);
  4992. if (err) {
  4993. printk(KERN_INFO
  4994. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4995. err, cmd);
  4996. goto abort;
  4997. }
  4998. switch (cmd)
  4999. {
  5000. case SET_ARRAY_INFO:
  5001. {
  5002. mdu_array_info_t info;
  5003. if (!arg)
  5004. memset(&info, 0, sizeof(info));
  5005. else if (copy_from_user(&info, argp, sizeof(info))) {
  5006. err = -EFAULT;
  5007. goto abort_unlock;
  5008. }
  5009. if (mddev->pers) {
  5010. err = update_array_info(mddev, &info);
  5011. if (err) {
  5012. printk(KERN_WARNING "md: couldn't update"
  5013. " array info. %d\n", err);
  5014. goto abort_unlock;
  5015. }
  5016. goto done_unlock;
  5017. }
  5018. if (!list_empty(&mddev->disks)) {
  5019. printk(KERN_WARNING
  5020. "md: array %s already has disks!\n",
  5021. mdname(mddev));
  5022. err = -EBUSY;
  5023. goto abort_unlock;
  5024. }
  5025. if (mddev->raid_disks) {
  5026. printk(KERN_WARNING
  5027. "md: array %s already initialised!\n",
  5028. mdname(mddev));
  5029. err = -EBUSY;
  5030. goto abort_unlock;
  5031. }
  5032. err = set_array_info(mddev, &info);
  5033. if (err) {
  5034. printk(KERN_WARNING "md: couldn't set"
  5035. " array info. %d\n", err);
  5036. goto abort_unlock;
  5037. }
  5038. }
  5039. goto done_unlock;
  5040. default:;
  5041. }
  5042. /*
  5043. * Commands querying/configuring an existing array:
  5044. */
  5045. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5046. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5047. if ((!mddev->raid_disks && !mddev->external)
  5048. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5049. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5050. && cmd != GET_BITMAP_FILE) {
  5051. err = -ENODEV;
  5052. goto abort_unlock;
  5053. }
  5054. /*
  5055. * Commands even a read-only array can execute:
  5056. */
  5057. switch (cmd)
  5058. {
  5059. case GET_ARRAY_INFO:
  5060. err = get_array_info(mddev, argp);
  5061. goto done_unlock;
  5062. case GET_BITMAP_FILE:
  5063. err = get_bitmap_file(mddev, argp);
  5064. goto done_unlock;
  5065. case GET_DISK_INFO:
  5066. err = get_disk_info(mddev, argp);
  5067. goto done_unlock;
  5068. case RESTART_ARRAY_RW:
  5069. err = restart_array(mddev);
  5070. goto done_unlock;
  5071. case STOP_ARRAY:
  5072. err = do_md_stop(mddev, 0, 1);
  5073. goto done_unlock;
  5074. case STOP_ARRAY_RO:
  5075. err = md_set_readonly(mddev, 1);
  5076. goto done_unlock;
  5077. case BLKROSET:
  5078. if (get_user(ro, (int __user *)(arg))) {
  5079. err = -EFAULT;
  5080. goto done_unlock;
  5081. }
  5082. err = -EINVAL;
  5083. /* if the bdev is going readonly the value of mddev->ro
  5084. * does not matter, no writes are coming
  5085. */
  5086. if (ro)
  5087. goto done_unlock;
  5088. /* are we are already prepared for writes? */
  5089. if (mddev->ro != 1)
  5090. goto done_unlock;
  5091. /* transitioning to readauto need only happen for
  5092. * arrays that call md_write_start
  5093. */
  5094. if (mddev->pers) {
  5095. err = restart_array(mddev);
  5096. if (err == 0) {
  5097. mddev->ro = 2;
  5098. set_disk_ro(mddev->gendisk, 0);
  5099. }
  5100. }
  5101. goto done_unlock;
  5102. }
  5103. /*
  5104. * The remaining ioctls are changing the state of the
  5105. * superblock, so we do not allow them on read-only arrays.
  5106. * However non-MD ioctls (e.g. get-size) will still come through
  5107. * here and hit the 'default' below, so only disallow
  5108. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5109. */
  5110. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5111. if (mddev->ro == 2) {
  5112. mddev->ro = 0;
  5113. sysfs_notify_dirent(mddev->sysfs_state);
  5114. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5115. md_wakeup_thread(mddev->thread);
  5116. } else {
  5117. err = -EROFS;
  5118. goto abort_unlock;
  5119. }
  5120. }
  5121. switch (cmd)
  5122. {
  5123. case ADD_NEW_DISK:
  5124. {
  5125. mdu_disk_info_t info;
  5126. if (copy_from_user(&info, argp, sizeof(info)))
  5127. err = -EFAULT;
  5128. else
  5129. err = add_new_disk(mddev, &info);
  5130. goto done_unlock;
  5131. }
  5132. case HOT_REMOVE_DISK:
  5133. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5134. goto done_unlock;
  5135. case HOT_ADD_DISK:
  5136. err = hot_add_disk(mddev, new_decode_dev(arg));
  5137. goto done_unlock;
  5138. case SET_DISK_FAULTY:
  5139. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5140. goto done_unlock;
  5141. case RUN_ARRAY:
  5142. err = do_md_run(mddev);
  5143. goto done_unlock;
  5144. case SET_BITMAP_FILE:
  5145. err = set_bitmap_file(mddev, (int)arg);
  5146. goto done_unlock;
  5147. default:
  5148. err = -EINVAL;
  5149. goto abort_unlock;
  5150. }
  5151. done_unlock:
  5152. abort_unlock:
  5153. if (mddev->hold_active == UNTIL_IOCTL &&
  5154. err != -EINVAL)
  5155. mddev->hold_active = 0;
  5156. mddev_unlock(mddev);
  5157. return err;
  5158. done:
  5159. if (err)
  5160. MD_BUG();
  5161. abort:
  5162. return err;
  5163. }
  5164. #ifdef CONFIG_COMPAT
  5165. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5166. unsigned int cmd, unsigned long arg)
  5167. {
  5168. switch (cmd) {
  5169. case HOT_REMOVE_DISK:
  5170. case HOT_ADD_DISK:
  5171. case SET_DISK_FAULTY:
  5172. case SET_BITMAP_FILE:
  5173. /* These take in integer arg, do not convert */
  5174. break;
  5175. default:
  5176. arg = (unsigned long)compat_ptr(arg);
  5177. break;
  5178. }
  5179. return md_ioctl(bdev, mode, cmd, arg);
  5180. }
  5181. #endif /* CONFIG_COMPAT */
  5182. static int md_open(struct block_device *bdev, fmode_t mode)
  5183. {
  5184. /*
  5185. * Succeed if we can lock the mddev, which confirms that
  5186. * it isn't being stopped right now.
  5187. */
  5188. mddev_t *mddev = mddev_find(bdev->bd_dev);
  5189. int err;
  5190. if (mddev->gendisk != bdev->bd_disk) {
  5191. /* we are racing with mddev_put which is discarding this
  5192. * bd_disk.
  5193. */
  5194. mddev_put(mddev);
  5195. /* Wait until bdev->bd_disk is definitely gone */
  5196. flush_scheduled_work();
  5197. /* Then retry the open from the top */
  5198. return -ERESTARTSYS;
  5199. }
  5200. BUG_ON(mddev != bdev->bd_disk->private_data);
  5201. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5202. goto out;
  5203. err = 0;
  5204. atomic_inc(&mddev->openers);
  5205. mutex_unlock(&mddev->open_mutex);
  5206. out:
  5207. return err;
  5208. }
  5209. static int md_release(struct gendisk *disk, fmode_t mode)
  5210. {
  5211. mddev_t *mddev = disk->private_data;
  5212. BUG_ON(!mddev);
  5213. atomic_dec(&mddev->openers);
  5214. mddev_put(mddev);
  5215. return 0;
  5216. }
  5217. static const struct block_device_operations md_fops =
  5218. {
  5219. .owner = THIS_MODULE,
  5220. .open = md_open,
  5221. .release = md_release,
  5222. .ioctl = md_ioctl,
  5223. #ifdef CONFIG_COMPAT
  5224. .compat_ioctl = md_compat_ioctl,
  5225. #endif
  5226. .getgeo = md_getgeo,
  5227. };
  5228. static int md_thread(void * arg)
  5229. {
  5230. mdk_thread_t *thread = arg;
  5231. /*
  5232. * md_thread is a 'system-thread', it's priority should be very
  5233. * high. We avoid resource deadlocks individually in each
  5234. * raid personality. (RAID5 does preallocation) We also use RR and
  5235. * the very same RT priority as kswapd, thus we will never get
  5236. * into a priority inversion deadlock.
  5237. *
  5238. * we definitely have to have equal or higher priority than
  5239. * bdflush, otherwise bdflush will deadlock if there are too
  5240. * many dirty RAID5 blocks.
  5241. */
  5242. allow_signal(SIGKILL);
  5243. while (!kthread_should_stop()) {
  5244. /* We need to wait INTERRUPTIBLE so that
  5245. * we don't add to the load-average.
  5246. * That means we need to be sure no signals are
  5247. * pending
  5248. */
  5249. if (signal_pending(current))
  5250. flush_signals(current);
  5251. wait_event_interruptible_timeout
  5252. (thread->wqueue,
  5253. test_bit(THREAD_WAKEUP, &thread->flags)
  5254. || kthread_should_stop(),
  5255. thread->timeout);
  5256. clear_bit(THREAD_WAKEUP, &thread->flags);
  5257. thread->run(thread->mddev);
  5258. }
  5259. return 0;
  5260. }
  5261. void md_wakeup_thread(mdk_thread_t *thread)
  5262. {
  5263. if (thread) {
  5264. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  5265. set_bit(THREAD_WAKEUP, &thread->flags);
  5266. wake_up(&thread->wqueue);
  5267. }
  5268. }
  5269. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5270. const char *name)
  5271. {
  5272. mdk_thread_t *thread;
  5273. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5274. if (!thread)
  5275. return NULL;
  5276. init_waitqueue_head(&thread->wqueue);
  5277. thread->run = run;
  5278. thread->mddev = mddev;
  5279. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5280. thread->tsk = kthread_run(md_thread, thread,
  5281. "%s_%s",
  5282. mdname(thread->mddev),
  5283. name ?: mddev->pers->name);
  5284. if (IS_ERR(thread->tsk)) {
  5285. kfree(thread);
  5286. return NULL;
  5287. }
  5288. return thread;
  5289. }
  5290. void md_unregister_thread(mdk_thread_t *thread)
  5291. {
  5292. if (!thread)
  5293. return;
  5294. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5295. kthread_stop(thread->tsk);
  5296. kfree(thread);
  5297. }
  5298. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5299. {
  5300. if (!mddev) {
  5301. MD_BUG();
  5302. return;
  5303. }
  5304. if (!rdev || test_bit(Faulty, &rdev->flags))
  5305. return;
  5306. if (mddev->external)
  5307. set_bit(Blocked, &rdev->flags);
  5308. /*
  5309. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  5310. mdname(mddev),
  5311. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  5312. __builtin_return_address(0),__builtin_return_address(1),
  5313. __builtin_return_address(2),__builtin_return_address(3));
  5314. */
  5315. if (!mddev->pers)
  5316. return;
  5317. if (!mddev->pers->error_handler)
  5318. return;
  5319. mddev->pers->error_handler(mddev,rdev);
  5320. if (mddev->degraded)
  5321. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5322. sysfs_notify_dirent(rdev->sysfs_state);
  5323. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5324. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5325. md_wakeup_thread(mddev->thread);
  5326. md_new_event_inintr(mddev);
  5327. }
  5328. /* seq_file implementation /proc/mdstat */
  5329. static void status_unused(struct seq_file *seq)
  5330. {
  5331. int i = 0;
  5332. mdk_rdev_t *rdev;
  5333. seq_printf(seq, "unused devices: ");
  5334. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5335. char b[BDEVNAME_SIZE];
  5336. i++;
  5337. seq_printf(seq, "%s ",
  5338. bdevname(rdev->bdev,b));
  5339. }
  5340. if (!i)
  5341. seq_printf(seq, "<none>");
  5342. seq_printf(seq, "\n");
  5343. }
  5344. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5345. {
  5346. sector_t max_sectors, resync, res;
  5347. unsigned long dt, db;
  5348. sector_t rt;
  5349. int scale;
  5350. unsigned int per_milli;
  5351. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5352. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5353. max_sectors = mddev->resync_max_sectors;
  5354. else
  5355. max_sectors = mddev->dev_sectors;
  5356. /*
  5357. * Should not happen.
  5358. */
  5359. if (!max_sectors) {
  5360. MD_BUG();
  5361. return;
  5362. }
  5363. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5364. * in a sector_t, and (max_sectors>>scale) will fit in a
  5365. * u32, as those are the requirements for sector_div.
  5366. * Thus 'scale' must be at least 10
  5367. */
  5368. scale = 10;
  5369. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5370. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5371. scale++;
  5372. }
  5373. res = (resync>>scale)*1000;
  5374. sector_div(res, (u32)((max_sectors>>scale)+1));
  5375. per_milli = res;
  5376. {
  5377. int i, x = per_milli/50, y = 20-x;
  5378. seq_printf(seq, "[");
  5379. for (i = 0; i < x; i++)
  5380. seq_printf(seq, "=");
  5381. seq_printf(seq, ">");
  5382. for (i = 0; i < y; i++)
  5383. seq_printf(seq, ".");
  5384. seq_printf(seq, "] ");
  5385. }
  5386. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5387. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5388. "reshape" :
  5389. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5390. "check" :
  5391. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5392. "resync" : "recovery"))),
  5393. per_milli/10, per_milli % 10,
  5394. (unsigned long long) resync/2,
  5395. (unsigned long long) max_sectors/2);
  5396. /*
  5397. * dt: time from mark until now
  5398. * db: blocks written from mark until now
  5399. * rt: remaining time
  5400. *
  5401. * rt is a sector_t, so could be 32bit or 64bit.
  5402. * So we divide before multiply in case it is 32bit and close
  5403. * to the limit.
  5404. * We scale the divisor (db) by 32 to avoid loosing precision
  5405. * near the end of resync when the number of remaining sectors
  5406. * is close to 'db'.
  5407. * We then divide rt by 32 after multiplying by db to compensate.
  5408. * The '+1' avoids division by zero if db is very small.
  5409. */
  5410. dt = ((jiffies - mddev->resync_mark) / HZ);
  5411. if (!dt) dt++;
  5412. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5413. - mddev->resync_mark_cnt;
  5414. rt = max_sectors - resync; /* number of remaining sectors */
  5415. sector_div(rt, db/32+1);
  5416. rt *= dt;
  5417. rt >>= 5;
  5418. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5419. ((unsigned long)rt % 60)/6);
  5420. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5421. }
  5422. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5423. {
  5424. struct list_head *tmp;
  5425. loff_t l = *pos;
  5426. mddev_t *mddev;
  5427. if (l >= 0x10000)
  5428. return NULL;
  5429. if (!l--)
  5430. /* header */
  5431. return (void*)1;
  5432. spin_lock(&all_mddevs_lock);
  5433. list_for_each(tmp,&all_mddevs)
  5434. if (!l--) {
  5435. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5436. mddev_get(mddev);
  5437. spin_unlock(&all_mddevs_lock);
  5438. return mddev;
  5439. }
  5440. spin_unlock(&all_mddevs_lock);
  5441. if (!l--)
  5442. return (void*)2;/* tail */
  5443. return NULL;
  5444. }
  5445. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5446. {
  5447. struct list_head *tmp;
  5448. mddev_t *next_mddev, *mddev = v;
  5449. ++*pos;
  5450. if (v == (void*)2)
  5451. return NULL;
  5452. spin_lock(&all_mddevs_lock);
  5453. if (v == (void*)1)
  5454. tmp = all_mddevs.next;
  5455. else
  5456. tmp = mddev->all_mddevs.next;
  5457. if (tmp != &all_mddevs)
  5458. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5459. else {
  5460. next_mddev = (void*)2;
  5461. *pos = 0x10000;
  5462. }
  5463. spin_unlock(&all_mddevs_lock);
  5464. if (v != (void*)1)
  5465. mddev_put(mddev);
  5466. return next_mddev;
  5467. }
  5468. static void md_seq_stop(struct seq_file *seq, void *v)
  5469. {
  5470. mddev_t *mddev = v;
  5471. if (mddev && v != (void*)1 && v != (void*)2)
  5472. mddev_put(mddev);
  5473. }
  5474. struct mdstat_info {
  5475. int event;
  5476. };
  5477. static int md_seq_show(struct seq_file *seq, void *v)
  5478. {
  5479. mddev_t *mddev = v;
  5480. sector_t sectors;
  5481. mdk_rdev_t *rdev;
  5482. struct mdstat_info *mi = seq->private;
  5483. struct bitmap *bitmap;
  5484. if (v == (void*)1) {
  5485. struct mdk_personality *pers;
  5486. seq_printf(seq, "Personalities : ");
  5487. spin_lock(&pers_lock);
  5488. list_for_each_entry(pers, &pers_list, list)
  5489. seq_printf(seq, "[%s] ", pers->name);
  5490. spin_unlock(&pers_lock);
  5491. seq_printf(seq, "\n");
  5492. mi->event = atomic_read(&md_event_count);
  5493. return 0;
  5494. }
  5495. if (v == (void*)2) {
  5496. status_unused(seq);
  5497. return 0;
  5498. }
  5499. if (mddev_lock(mddev) < 0)
  5500. return -EINTR;
  5501. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5502. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5503. mddev->pers ? "" : "in");
  5504. if (mddev->pers) {
  5505. if (mddev->ro==1)
  5506. seq_printf(seq, " (read-only)");
  5507. if (mddev->ro==2)
  5508. seq_printf(seq, " (auto-read-only)");
  5509. seq_printf(seq, " %s", mddev->pers->name);
  5510. }
  5511. sectors = 0;
  5512. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5513. char b[BDEVNAME_SIZE];
  5514. seq_printf(seq, " %s[%d]",
  5515. bdevname(rdev->bdev,b), rdev->desc_nr);
  5516. if (test_bit(WriteMostly, &rdev->flags))
  5517. seq_printf(seq, "(W)");
  5518. if (test_bit(Faulty, &rdev->flags)) {
  5519. seq_printf(seq, "(F)");
  5520. continue;
  5521. } else if (rdev->raid_disk < 0)
  5522. seq_printf(seq, "(S)"); /* spare */
  5523. sectors += rdev->sectors;
  5524. }
  5525. if (!list_empty(&mddev->disks)) {
  5526. if (mddev->pers)
  5527. seq_printf(seq, "\n %llu blocks",
  5528. (unsigned long long)
  5529. mddev->array_sectors / 2);
  5530. else
  5531. seq_printf(seq, "\n %llu blocks",
  5532. (unsigned long long)sectors / 2);
  5533. }
  5534. if (mddev->persistent) {
  5535. if (mddev->major_version != 0 ||
  5536. mddev->minor_version != 90) {
  5537. seq_printf(seq," super %d.%d",
  5538. mddev->major_version,
  5539. mddev->minor_version);
  5540. }
  5541. } else if (mddev->external)
  5542. seq_printf(seq, " super external:%s",
  5543. mddev->metadata_type);
  5544. else
  5545. seq_printf(seq, " super non-persistent");
  5546. if (mddev->pers) {
  5547. mddev->pers->status(seq, mddev);
  5548. seq_printf(seq, "\n ");
  5549. if (mddev->pers->sync_request) {
  5550. if (mddev->curr_resync > 2) {
  5551. status_resync(seq, mddev);
  5552. seq_printf(seq, "\n ");
  5553. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5554. seq_printf(seq, "\tresync=DELAYED\n ");
  5555. else if (mddev->recovery_cp < MaxSector)
  5556. seq_printf(seq, "\tresync=PENDING\n ");
  5557. }
  5558. } else
  5559. seq_printf(seq, "\n ");
  5560. if ((bitmap = mddev->bitmap)) {
  5561. unsigned long chunk_kb;
  5562. unsigned long flags;
  5563. spin_lock_irqsave(&bitmap->lock, flags);
  5564. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5565. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5566. "%lu%s chunk",
  5567. bitmap->pages - bitmap->missing_pages,
  5568. bitmap->pages,
  5569. (bitmap->pages - bitmap->missing_pages)
  5570. << (PAGE_SHIFT - 10),
  5571. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5572. chunk_kb ? "KB" : "B");
  5573. if (bitmap->file) {
  5574. seq_printf(seq, ", file: ");
  5575. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5576. }
  5577. seq_printf(seq, "\n");
  5578. spin_unlock_irqrestore(&bitmap->lock, flags);
  5579. }
  5580. seq_printf(seq, "\n");
  5581. }
  5582. mddev_unlock(mddev);
  5583. return 0;
  5584. }
  5585. static const struct seq_operations md_seq_ops = {
  5586. .start = md_seq_start,
  5587. .next = md_seq_next,
  5588. .stop = md_seq_stop,
  5589. .show = md_seq_show,
  5590. };
  5591. static int md_seq_open(struct inode *inode, struct file *file)
  5592. {
  5593. int error;
  5594. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5595. if (mi == NULL)
  5596. return -ENOMEM;
  5597. error = seq_open(file, &md_seq_ops);
  5598. if (error)
  5599. kfree(mi);
  5600. else {
  5601. struct seq_file *p = file->private_data;
  5602. p->private = mi;
  5603. mi->event = atomic_read(&md_event_count);
  5604. }
  5605. return error;
  5606. }
  5607. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5608. {
  5609. struct seq_file *m = filp->private_data;
  5610. struct mdstat_info *mi = m->private;
  5611. int mask;
  5612. poll_wait(filp, &md_event_waiters, wait);
  5613. /* always allow read */
  5614. mask = POLLIN | POLLRDNORM;
  5615. if (mi->event != atomic_read(&md_event_count))
  5616. mask |= POLLERR | POLLPRI;
  5617. return mask;
  5618. }
  5619. static const struct file_operations md_seq_fops = {
  5620. .owner = THIS_MODULE,
  5621. .open = md_seq_open,
  5622. .read = seq_read,
  5623. .llseek = seq_lseek,
  5624. .release = seq_release_private,
  5625. .poll = mdstat_poll,
  5626. };
  5627. int register_md_personality(struct mdk_personality *p)
  5628. {
  5629. spin_lock(&pers_lock);
  5630. list_add_tail(&p->list, &pers_list);
  5631. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5632. spin_unlock(&pers_lock);
  5633. return 0;
  5634. }
  5635. int unregister_md_personality(struct mdk_personality *p)
  5636. {
  5637. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5638. spin_lock(&pers_lock);
  5639. list_del_init(&p->list);
  5640. spin_unlock(&pers_lock);
  5641. return 0;
  5642. }
  5643. static int is_mddev_idle(mddev_t *mddev, int init)
  5644. {
  5645. mdk_rdev_t * rdev;
  5646. int idle;
  5647. int curr_events;
  5648. idle = 1;
  5649. rcu_read_lock();
  5650. rdev_for_each_rcu(rdev, mddev) {
  5651. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5652. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5653. (int)part_stat_read(&disk->part0, sectors[1]) -
  5654. atomic_read(&disk->sync_io);
  5655. /* sync IO will cause sync_io to increase before the disk_stats
  5656. * as sync_io is counted when a request starts, and
  5657. * disk_stats is counted when it completes.
  5658. * So resync activity will cause curr_events to be smaller than
  5659. * when there was no such activity.
  5660. * non-sync IO will cause disk_stat to increase without
  5661. * increasing sync_io so curr_events will (eventually)
  5662. * be larger than it was before. Once it becomes
  5663. * substantially larger, the test below will cause
  5664. * the array to appear non-idle, and resync will slow
  5665. * down.
  5666. * If there is a lot of outstanding resync activity when
  5667. * we set last_event to curr_events, then all that activity
  5668. * completing might cause the array to appear non-idle
  5669. * and resync will be slowed down even though there might
  5670. * not have been non-resync activity. This will only
  5671. * happen once though. 'last_events' will soon reflect
  5672. * the state where there is little or no outstanding
  5673. * resync requests, and further resync activity will
  5674. * always make curr_events less than last_events.
  5675. *
  5676. */
  5677. if (init || curr_events - rdev->last_events > 64) {
  5678. rdev->last_events = curr_events;
  5679. idle = 0;
  5680. }
  5681. }
  5682. rcu_read_unlock();
  5683. return idle;
  5684. }
  5685. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5686. {
  5687. /* another "blocks" (512byte) blocks have been synced */
  5688. atomic_sub(blocks, &mddev->recovery_active);
  5689. wake_up(&mddev->recovery_wait);
  5690. if (!ok) {
  5691. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5692. md_wakeup_thread(mddev->thread);
  5693. // stop recovery, signal do_sync ....
  5694. }
  5695. }
  5696. /* md_write_start(mddev, bi)
  5697. * If we need to update some array metadata (e.g. 'active' flag
  5698. * in superblock) before writing, schedule a superblock update
  5699. * and wait for it to complete.
  5700. */
  5701. void md_write_start(mddev_t *mddev, struct bio *bi)
  5702. {
  5703. int did_change = 0;
  5704. if (bio_data_dir(bi) != WRITE)
  5705. return;
  5706. BUG_ON(mddev->ro == 1);
  5707. if (mddev->ro == 2) {
  5708. /* need to switch to read/write */
  5709. mddev->ro = 0;
  5710. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5711. md_wakeup_thread(mddev->thread);
  5712. md_wakeup_thread(mddev->sync_thread);
  5713. did_change = 1;
  5714. }
  5715. atomic_inc(&mddev->writes_pending);
  5716. if (mddev->safemode == 1)
  5717. mddev->safemode = 0;
  5718. if (mddev->in_sync) {
  5719. spin_lock_irq(&mddev->write_lock);
  5720. if (mddev->in_sync) {
  5721. mddev->in_sync = 0;
  5722. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5723. md_wakeup_thread(mddev->thread);
  5724. did_change = 1;
  5725. }
  5726. spin_unlock_irq(&mddev->write_lock);
  5727. }
  5728. if (did_change)
  5729. sysfs_notify_dirent(mddev->sysfs_state);
  5730. wait_event(mddev->sb_wait,
  5731. !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
  5732. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5733. }
  5734. void md_write_end(mddev_t *mddev)
  5735. {
  5736. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5737. if (mddev->safemode == 2)
  5738. md_wakeup_thread(mddev->thread);
  5739. else if (mddev->safemode_delay)
  5740. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5741. }
  5742. }
  5743. /* md_allow_write(mddev)
  5744. * Calling this ensures that the array is marked 'active' so that writes
  5745. * may proceed without blocking. It is important to call this before
  5746. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5747. * Must be called with mddev_lock held.
  5748. *
  5749. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5750. * is dropped, so return -EAGAIN after notifying userspace.
  5751. */
  5752. int md_allow_write(mddev_t *mddev)
  5753. {
  5754. if (!mddev->pers)
  5755. return 0;
  5756. if (mddev->ro)
  5757. return 0;
  5758. if (!mddev->pers->sync_request)
  5759. return 0;
  5760. spin_lock_irq(&mddev->write_lock);
  5761. if (mddev->in_sync) {
  5762. mddev->in_sync = 0;
  5763. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5764. if (mddev->safemode_delay &&
  5765. mddev->safemode == 0)
  5766. mddev->safemode = 1;
  5767. spin_unlock_irq(&mddev->write_lock);
  5768. md_update_sb(mddev, 0);
  5769. sysfs_notify_dirent(mddev->sysfs_state);
  5770. } else
  5771. spin_unlock_irq(&mddev->write_lock);
  5772. if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  5773. return -EAGAIN;
  5774. else
  5775. return 0;
  5776. }
  5777. EXPORT_SYMBOL_GPL(md_allow_write);
  5778. #define SYNC_MARKS 10
  5779. #define SYNC_MARK_STEP (3*HZ)
  5780. void md_do_sync(mddev_t *mddev)
  5781. {
  5782. mddev_t *mddev2;
  5783. unsigned int currspeed = 0,
  5784. window;
  5785. sector_t max_sectors,j, io_sectors;
  5786. unsigned long mark[SYNC_MARKS];
  5787. sector_t mark_cnt[SYNC_MARKS];
  5788. int last_mark,m;
  5789. struct list_head *tmp;
  5790. sector_t last_check;
  5791. int skipped = 0;
  5792. mdk_rdev_t *rdev;
  5793. char *desc;
  5794. /* just incase thread restarts... */
  5795. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5796. return;
  5797. if (mddev->ro) /* never try to sync a read-only array */
  5798. return;
  5799. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5800. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5801. desc = "data-check";
  5802. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5803. desc = "requested-resync";
  5804. else
  5805. desc = "resync";
  5806. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5807. desc = "reshape";
  5808. else
  5809. desc = "recovery";
  5810. /* we overload curr_resync somewhat here.
  5811. * 0 == not engaged in resync at all
  5812. * 2 == checking that there is no conflict with another sync
  5813. * 1 == like 2, but have yielded to allow conflicting resync to
  5814. * commense
  5815. * other == active in resync - this many blocks
  5816. *
  5817. * Before starting a resync we must have set curr_resync to
  5818. * 2, and then checked that every "conflicting" array has curr_resync
  5819. * less than ours. When we find one that is the same or higher
  5820. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5821. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5822. * This will mean we have to start checking from the beginning again.
  5823. *
  5824. */
  5825. do {
  5826. mddev->curr_resync = 2;
  5827. try_again:
  5828. if (kthread_should_stop())
  5829. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5830. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5831. goto skip;
  5832. for_each_mddev(mddev2, tmp) {
  5833. if (mddev2 == mddev)
  5834. continue;
  5835. if (!mddev->parallel_resync
  5836. && mddev2->curr_resync
  5837. && match_mddev_units(mddev, mddev2)) {
  5838. DEFINE_WAIT(wq);
  5839. if (mddev < mddev2 && mddev->curr_resync == 2) {
  5840. /* arbitrarily yield */
  5841. mddev->curr_resync = 1;
  5842. wake_up(&resync_wait);
  5843. }
  5844. if (mddev > mddev2 && mddev->curr_resync == 1)
  5845. /* no need to wait here, we can wait the next
  5846. * time 'round when curr_resync == 2
  5847. */
  5848. continue;
  5849. /* We need to wait 'interruptible' so as not to
  5850. * contribute to the load average, and not to
  5851. * be caught by 'softlockup'
  5852. */
  5853. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  5854. if (!kthread_should_stop() &&
  5855. mddev2->curr_resync >= mddev->curr_resync) {
  5856. printk(KERN_INFO "md: delaying %s of %s"
  5857. " until %s has finished (they"
  5858. " share one or more physical units)\n",
  5859. desc, mdname(mddev), mdname(mddev2));
  5860. mddev_put(mddev2);
  5861. if (signal_pending(current))
  5862. flush_signals(current);
  5863. schedule();
  5864. finish_wait(&resync_wait, &wq);
  5865. goto try_again;
  5866. }
  5867. finish_wait(&resync_wait, &wq);
  5868. }
  5869. }
  5870. } while (mddev->curr_resync < 2);
  5871. j = 0;
  5872. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5873. /* resync follows the size requested by the personality,
  5874. * which defaults to physical size, but can be virtual size
  5875. */
  5876. max_sectors = mddev->resync_max_sectors;
  5877. mddev->resync_mismatches = 0;
  5878. /* we don't use the checkpoint if there's a bitmap */
  5879. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5880. j = mddev->resync_min;
  5881. else if (!mddev->bitmap)
  5882. j = mddev->recovery_cp;
  5883. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5884. max_sectors = mddev->dev_sectors;
  5885. else {
  5886. /* recovery follows the physical size of devices */
  5887. max_sectors = mddev->dev_sectors;
  5888. j = MaxSector;
  5889. rcu_read_lock();
  5890. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  5891. if (rdev->raid_disk >= 0 &&
  5892. !test_bit(Faulty, &rdev->flags) &&
  5893. !test_bit(In_sync, &rdev->flags) &&
  5894. rdev->recovery_offset < j)
  5895. j = rdev->recovery_offset;
  5896. rcu_read_unlock();
  5897. }
  5898. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  5899. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  5900. " %d KB/sec/disk.\n", speed_min(mddev));
  5901. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  5902. "(but not more than %d KB/sec) for %s.\n",
  5903. speed_max(mddev), desc);
  5904. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  5905. io_sectors = 0;
  5906. for (m = 0; m < SYNC_MARKS; m++) {
  5907. mark[m] = jiffies;
  5908. mark_cnt[m] = io_sectors;
  5909. }
  5910. last_mark = 0;
  5911. mddev->resync_mark = mark[last_mark];
  5912. mddev->resync_mark_cnt = mark_cnt[last_mark];
  5913. /*
  5914. * Tune reconstruction:
  5915. */
  5916. window = 32*(PAGE_SIZE/512);
  5917. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  5918. window/2,(unsigned long long) max_sectors/2);
  5919. atomic_set(&mddev->recovery_active, 0);
  5920. last_check = 0;
  5921. if (j>2) {
  5922. printk(KERN_INFO
  5923. "md: resuming %s of %s from checkpoint.\n",
  5924. desc, mdname(mddev));
  5925. mddev->curr_resync = j;
  5926. }
  5927. mddev->curr_resync_completed = mddev->curr_resync;
  5928. while (j < max_sectors) {
  5929. sector_t sectors;
  5930. skipped = 0;
  5931. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  5932. ((mddev->curr_resync > mddev->curr_resync_completed &&
  5933. (mddev->curr_resync - mddev->curr_resync_completed)
  5934. > (max_sectors >> 4)) ||
  5935. (j - mddev->curr_resync_completed)*2
  5936. >= mddev->resync_max - mddev->curr_resync_completed
  5937. )) {
  5938. /* time to update curr_resync_completed */
  5939. blk_unplug(mddev->queue);
  5940. wait_event(mddev->recovery_wait,
  5941. atomic_read(&mddev->recovery_active) == 0);
  5942. mddev->curr_resync_completed =
  5943. mddev->curr_resync;
  5944. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5945. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5946. }
  5947. while (j >= mddev->resync_max && !kthread_should_stop()) {
  5948. /* As this condition is controlled by user-space,
  5949. * we can block indefinitely, so use '_interruptible'
  5950. * to avoid triggering warnings.
  5951. */
  5952. flush_signals(current); /* just in case */
  5953. wait_event_interruptible(mddev->recovery_wait,
  5954. mddev->resync_max > j
  5955. || kthread_should_stop());
  5956. }
  5957. if (kthread_should_stop())
  5958. goto interrupted;
  5959. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  5960. currspeed < speed_min(mddev));
  5961. if (sectors == 0) {
  5962. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5963. goto out;
  5964. }
  5965. if (!skipped) { /* actual IO requested */
  5966. io_sectors += sectors;
  5967. atomic_add(sectors, &mddev->recovery_active);
  5968. }
  5969. j += sectors;
  5970. if (j>1) mddev->curr_resync = j;
  5971. mddev->curr_mark_cnt = io_sectors;
  5972. if (last_check == 0)
  5973. /* this is the earliers that rebuilt will be
  5974. * visible in /proc/mdstat
  5975. */
  5976. md_new_event(mddev);
  5977. if (last_check + window > io_sectors || j == max_sectors)
  5978. continue;
  5979. last_check = io_sectors;
  5980. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5981. break;
  5982. repeat:
  5983. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  5984. /* step marks */
  5985. int next = (last_mark+1) % SYNC_MARKS;
  5986. mddev->resync_mark = mark[next];
  5987. mddev->resync_mark_cnt = mark_cnt[next];
  5988. mark[next] = jiffies;
  5989. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  5990. last_mark = next;
  5991. }
  5992. if (kthread_should_stop())
  5993. goto interrupted;
  5994. /*
  5995. * this loop exits only if either when we are slower than
  5996. * the 'hard' speed limit, or the system was IO-idle for
  5997. * a jiffy.
  5998. * the system might be non-idle CPU-wise, but we only care
  5999. * about not overloading the IO subsystem. (things like an
  6000. * e2fsck being done on the RAID array should execute fast)
  6001. */
  6002. blk_unplug(mddev->queue);
  6003. cond_resched();
  6004. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6005. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6006. if (currspeed > speed_min(mddev)) {
  6007. if ((currspeed > speed_max(mddev)) ||
  6008. !is_mddev_idle(mddev, 0)) {
  6009. msleep(500);
  6010. goto repeat;
  6011. }
  6012. }
  6013. }
  6014. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6015. /*
  6016. * this also signals 'finished resyncing' to md_stop
  6017. */
  6018. out:
  6019. blk_unplug(mddev->queue);
  6020. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6021. /* tell personality that we are finished */
  6022. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6023. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6024. mddev->curr_resync > 2) {
  6025. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6026. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6027. if (mddev->curr_resync >= mddev->recovery_cp) {
  6028. printk(KERN_INFO
  6029. "md: checkpointing %s of %s.\n",
  6030. desc, mdname(mddev));
  6031. mddev->recovery_cp = mddev->curr_resync;
  6032. }
  6033. } else
  6034. mddev->recovery_cp = MaxSector;
  6035. } else {
  6036. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6037. mddev->curr_resync = MaxSector;
  6038. rcu_read_lock();
  6039. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6040. if (rdev->raid_disk >= 0 &&
  6041. !test_bit(Faulty, &rdev->flags) &&
  6042. !test_bit(In_sync, &rdev->flags) &&
  6043. rdev->recovery_offset < mddev->curr_resync)
  6044. rdev->recovery_offset = mddev->curr_resync;
  6045. rcu_read_unlock();
  6046. }
  6047. }
  6048. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6049. skip:
  6050. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6051. /* We completed so min/max setting can be forgotten if used. */
  6052. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6053. mddev->resync_min = 0;
  6054. mddev->resync_max = MaxSector;
  6055. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6056. mddev->resync_min = mddev->curr_resync_completed;
  6057. mddev->curr_resync = 0;
  6058. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6059. mddev->curr_resync_completed = 0;
  6060. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6061. wake_up(&resync_wait);
  6062. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6063. md_wakeup_thread(mddev->thread);
  6064. return;
  6065. interrupted:
  6066. /*
  6067. * got a signal, exit.
  6068. */
  6069. printk(KERN_INFO
  6070. "md: md_do_sync() got signal ... exiting\n");
  6071. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6072. goto out;
  6073. }
  6074. EXPORT_SYMBOL_GPL(md_do_sync);
  6075. static int remove_and_add_spares(mddev_t *mddev)
  6076. {
  6077. mdk_rdev_t *rdev;
  6078. int spares = 0;
  6079. mddev->curr_resync_completed = 0;
  6080. list_for_each_entry(rdev, &mddev->disks, same_set)
  6081. if (rdev->raid_disk >= 0 &&
  6082. !test_bit(Blocked, &rdev->flags) &&
  6083. (test_bit(Faulty, &rdev->flags) ||
  6084. ! test_bit(In_sync, &rdev->flags)) &&
  6085. atomic_read(&rdev->nr_pending)==0) {
  6086. if (mddev->pers->hot_remove_disk(
  6087. mddev, rdev->raid_disk)==0) {
  6088. char nm[20];
  6089. sprintf(nm,"rd%d", rdev->raid_disk);
  6090. sysfs_remove_link(&mddev->kobj, nm);
  6091. rdev->raid_disk = -1;
  6092. }
  6093. }
  6094. if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
  6095. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6096. if (rdev->raid_disk >= 0 &&
  6097. !test_bit(In_sync, &rdev->flags) &&
  6098. !test_bit(Blocked, &rdev->flags))
  6099. spares++;
  6100. if (rdev->raid_disk < 0
  6101. && !test_bit(Faulty, &rdev->flags)) {
  6102. rdev->recovery_offset = 0;
  6103. if (mddev->pers->
  6104. hot_add_disk(mddev, rdev) == 0) {
  6105. char nm[20];
  6106. sprintf(nm, "rd%d", rdev->raid_disk);
  6107. if (sysfs_create_link(&mddev->kobj,
  6108. &rdev->kobj, nm))
  6109. printk(KERN_WARNING
  6110. "md: cannot register "
  6111. "%s for %s\n",
  6112. nm, mdname(mddev));
  6113. spares++;
  6114. md_new_event(mddev);
  6115. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6116. } else
  6117. break;
  6118. }
  6119. }
  6120. }
  6121. return spares;
  6122. }
  6123. /*
  6124. * This routine is regularly called by all per-raid-array threads to
  6125. * deal with generic issues like resync and super-block update.
  6126. * Raid personalities that don't have a thread (linear/raid0) do not
  6127. * need this as they never do any recovery or update the superblock.
  6128. *
  6129. * It does not do any resync itself, but rather "forks" off other threads
  6130. * to do that as needed.
  6131. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6132. * "->recovery" and create a thread at ->sync_thread.
  6133. * When the thread finishes it sets MD_RECOVERY_DONE
  6134. * and wakeups up this thread which will reap the thread and finish up.
  6135. * This thread also removes any faulty devices (with nr_pending == 0).
  6136. *
  6137. * The overall approach is:
  6138. * 1/ if the superblock needs updating, update it.
  6139. * 2/ If a recovery thread is running, don't do anything else.
  6140. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6141. * 4/ If there are any faulty devices, remove them.
  6142. * 5/ If array is degraded, try to add spares devices
  6143. * 6/ If array has spares or is not in-sync, start a resync thread.
  6144. */
  6145. void md_check_recovery(mddev_t *mddev)
  6146. {
  6147. mdk_rdev_t *rdev;
  6148. if (mddev->bitmap)
  6149. bitmap_daemon_work(mddev);
  6150. if (mddev->ro)
  6151. return;
  6152. if (signal_pending(current)) {
  6153. if (mddev->pers->sync_request && !mddev->external) {
  6154. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6155. mdname(mddev));
  6156. mddev->safemode = 2;
  6157. }
  6158. flush_signals(current);
  6159. }
  6160. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6161. return;
  6162. if ( ! (
  6163. (mddev->flags && !mddev->external) ||
  6164. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6165. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6166. (mddev->external == 0 && mddev->safemode == 1) ||
  6167. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6168. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6169. ))
  6170. return;
  6171. if (mddev_trylock(mddev)) {
  6172. int spares = 0;
  6173. if (mddev->ro) {
  6174. /* Only thing we do on a ro array is remove
  6175. * failed devices.
  6176. */
  6177. remove_and_add_spares(mddev);
  6178. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6179. goto unlock;
  6180. }
  6181. if (!mddev->external) {
  6182. int did_change = 0;
  6183. spin_lock_irq(&mddev->write_lock);
  6184. if (mddev->safemode &&
  6185. !atomic_read(&mddev->writes_pending) &&
  6186. !mddev->in_sync &&
  6187. mddev->recovery_cp == MaxSector) {
  6188. mddev->in_sync = 1;
  6189. did_change = 1;
  6190. if (mddev->persistent)
  6191. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6192. }
  6193. if (mddev->safemode == 1)
  6194. mddev->safemode = 0;
  6195. spin_unlock_irq(&mddev->write_lock);
  6196. if (did_change)
  6197. sysfs_notify_dirent(mddev->sysfs_state);
  6198. }
  6199. if (mddev->flags)
  6200. md_update_sb(mddev, 0);
  6201. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6202. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6203. /* resync/recovery still happening */
  6204. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6205. goto unlock;
  6206. }
  6207. if (mddev->sync_thread) {
  6208. /* resync has finished, collect result */
  6209. md_unregister_thread(mddev->sync_thread);
  6210. mddev->sync_thread = NULL;
  6211. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6212. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6213. /* success...*/
  6214. /* activate any spares */
  6215. if (mddev->pers->spare_active(mddev))
  6216. sysfs_notify(&mddev->kobj, NULL,
  6217. "degraded");
  6218. }
  6219. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6220. mddev->pers->finish_reshape)
  6221. mddev->pers->finish_reshape(mddev);
  6222. md_update_sb(mddev, 1);
  6223. /* if array is no-longer degraded, then any saved_raid_disk
  6224. * information must be scrapped
  6225. */
  6226. if (!mddev->degraded)
  6227. list_for_each_entry(rdev, &mddev->disks, same_set)
  6228. rdev->saved_raid_disk = -1;
  6229. mddev->recovery = 0;
  6230. /* flag recovery needed just to double check */
  6231. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6232. sysfs_notify_dirent(mddev->sysfs_action);
  6233. md_new_event(mddev);
  6234. goto unlock;
  6235. }
  6236. /* Set RUNNING before clearing NEEDED to avoid
  6237. * any transients in the value of "sync_action".
  6238. */
  6239. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6240. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6241. /* Clear some bits that don't mean anything, but
  6242. * might be left set
  6243. */
  6244. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6245. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6246. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6247. goto unlock;
  6248. /* no recovery is running.
  6249. * remove any failed drives, then
  6250. * add spares if possible.
  6251. * Spare are also removed and re-added, to allow
  6252. * the personality to fail the re-add.
  6253. */
  6254. if (mddev->reshape_position != MaxSector) {
  6255. if (mddev->pers->check_reshape == NULL ||
  6256. mddev->pers->check_reshape(mddev) != 0)
  6257. /* Cannot proceed */
  6258. goto unlock;
  6259. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6260. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6261. } else if ((spares = remove_and_add_spares(mddev))) {
  6262. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6263. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6264. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6265. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6266. } else if (mddev->recovery_cp < MaxSector) {
  6267. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6268. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6269. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6270. /* nothing to be done ... */
  6271. goto unlock;
  6272. if (mddev->pers->sync_request) {
  6273. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6274. /* We are adding a device or devices to an array
  6275. * which has the bitmap stored on all devices.
  6276. * So make sure all bitmap pages get written
  6277. */
  6278. bitmap_write_all(mddev->bitmap);
  6279. }
  6280. mddev->sync_thread = md_register_thread(md_do_sync,
  6281. mddev,
  6282. "resync");
  6283. if (!mddev->sync_thread) {
  6284. printk(KERN_ERR "%s: could not start resync"
  6285. " thread...\n",
  6286. mdname(mddev));
  6287. /* leave the spares where they are, it shouldn't hurt */
  6288. mddev->recovery = 0;
  6289. } else
  6290. md_wakeup_thread(mddev->sync_thread);
  6291. sysfs_notify_dirent(mddev->sysfs_action);
  6292. md_new_event(mddev);
  6293. }
  6294. unlock:
  6295. if (!mddev->sync_thread) {
  6296. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6297. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6298. &mddev->recovery))
  6299. if (mddev->sysfs_action)
  6300. sysfs_notify_dirent(mddev->sysfs_action);
  6301. }
  6302. mddev_unlock(mddev);
  6303. }
  6304. }
  6305. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6306. {
  6307. sysfs_notify_dirent(rdev->sysfs_state);
  6308. wait_event_timeout(rdev->blocked_wait,
  6309. !test_bit(Blocked, &rdev->flags),
  6310. msecs_to_jiffies(5000));
  6311. rdev_dec_pending(rdev, mddev);
  6312. }
  6313. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6314. static int md_notify_reboot(struct notifier_block *this,
  6315. unsigned long code, void *x)
  6316. {
  6317. struct list_head *tmp;
  6318. mddev_t *mddev;
  6319. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  6320. printk(KERN_INFO "md: stopping all md devices.\n");
  6321. for_each_mddev(mddev, tmp)
  6322. if (mddev_trylock(mddev)) {
  6323. /* Force a switch to readonly even array
  6324. * appears to still be in use. Hence
  6325. * the '100'.
  6326. */
  6327. md_set_readonly(mddev, 100);
  6328. mddev_unlock(mddev);
  6329. }
  6330. /*
  6331. * certain more exotic SCSI devices are known to be
  6332. * volatile wrt too early system reboots. While the
  6333. * right place to handle this issue is the given
  6334. * driver, we do want to have a safe RAID driver ...
  6335. */
  6336. mdelay(1000*1);
  6337. }
  6338. return NOTIFY_DONE;
  6339. }
  6340. static struct notifier_block md_notifier = {
  6341. .notifier_call = md_notify_reboot,
  6342. .next = NULL,
  6343. .priority = INT_MAX, /* before any real devices */
  6344. };
  6345. static void md_geninit(void)
  6346. {
  6347. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  6348. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  6349. }
  6350. static int __init md_init(void)
  6351. {
  6352. if (register_blkdev(MD_MAJOR, "md"))
  6353. return -1;
  6354. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  6355. unregister_blkdev(MD_MAJOR, "md");
  6356. return -1;
  6357. }
  6358. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  6359. md_probe, NULL, NULL);
  6360. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  6361. md_probe, NULL, NULL);
  6362. register_reboot_notifier(&md_notifier);
  6363. raid_table_header = register_sysctl_table(raid_root_table);
  6364. md_geninit();
  6365. return 0;
  6366. }
  6367. #ifndef MODULE
  6368. /*
  6369. * Searches all registered partitions for autorun RAID arrays
  6370. * at boot time.
  6371. */
  6372. static LIST_HEAD(all_detected_devices);
  6373. struct detected_devices_node {
  6374. struct list_head list;
  6375. dev_t dev;
  6376. };
  6377. void md_autodetect_dev(dev_t dev)
  6378. {
  6379. struct detected_devices_node *node_detected_dev;
  6380. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  6381. if (node_detected_dev) {
  6382. node_detected_dev->dev = dev;
  6383. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  6384. } else {
  6385. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  6386. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  6387. }
  6388. }
  6389. static void autostart_arrays(int part)
  6390. {
  6391. mdk_rdev_t *rdev;
  6392. struct detected_devices_node *node_detected_dev;
  6393. dev_t dev;
  6394. int i_scanned, i_passed;
  6395. i_scanned = 0;
  6396. i_passed = 0;
  6397. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  6398. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  6399. i_scanned++;
  6400. node_detected_dev = list_entry(all_detected_devices.next,
  6401. struct detected_devices_node, list);
  6402. list_del(&node_detected_dev->list);
  6403. dev = node_detected_dev->dev;
  6404. kfree(node_detected_dev);
  6405. rdev = md_import_device(dev,0, 90);
  6406. if (IS_ERR(rdev))
  6407. continue;
  6408. if (test_bit(Faulty, &rdev->flags)) {
  6409. MD_BUG();
  6410. continue;
  6411. }
  6412. set_bit(AutoDetected, &rdev->flags);
  6413. list_add(&rdev->same_set, &pending_raid_disks);
  6414. i_passed++;
  6415. }
  6416. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  6417. i_scanned, i_passed);
  6418. autorun_devices(part);
  6419. }
  6420. #endif /* !MODULE */
  6421. static __exit void md_exit(void)
  6422. {
  6423. mddev_t *mddev;
  6424. struct list_head *tmp;
  6425. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  6426. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  6427. unregister_blkdev(MD_MAJOR,"md");
  6428. unregister_blkdev(mdp_major, "mdp");
  6429. unregister_reboot_notifier(&md_notifier);
  6430. unregister_sysctl_table(raid_table_header);
  6431. remove_proc_entry("mdstat", NULL);
  6432. for_each_mddev(mddev, tmp) {
  6433. export_array(mddev);
  6434. mddev->hold_active = 0;
  6435. }
  6436. }
  6437. subsys_initcall(md_init);
  6438. module_exit(md_exit)
  6439. static int get_ro(char *buffer, struct kernel_param *kp)
  6440. {
  6441. return sprintf(buffer, "%d", start_readonly);
  6442. }
  6443. static int set_ro(const char *val, struct kernel_param *kp)
  6444. {
  6445. char *e;
  6446. int num = simple_strtoul(val, &e, 10);
  6447. if (*val && (*e == '\0' || *e == '\n')) {
  6448. start_readonly = num;
  6449. return 0;
  6450. }
  6451. return -EINVAL;
  6452. }
  6453. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  6454. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  6455. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  6456. EXPORT_SYMBOL(register_md_personality);
  6457. EXPORT_SYMBOL(unregister_md_personality);
  6458. EXPORT_SYMBOL(md_error);
  6459. EXPORT_SYMBOL(md_done_sync);
  6460. EXPORT_SYMBOL(md_write_start);
  6461. EXPORT_SYMBOL(md_write_end);
  6462. EXPORT_SYMBOL(md_register_thread);
  6463. EXPORT_SYMBOL(md_unregister_thread);
  6464. EXPORT_SYMBOL(md_wakeup_thread);
  6465. EXPORT_SYMBOL(md_check_recovery);
  6466. MODULE_LICENSE("GPL");
  6467. MODULE_DESCRIPTION("MD RAID framework");
  6468. MODULE_ALIAS("md");
  6469. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);