perf_counter.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. int enabled;
  31. };
  32. /*
  33. * struct x86_pmu - generic x86 pmu
  34. */
  35. struct x86_pmu {
  36. const char *name;
  37. int version;
  38. int (*handle_irq)(struct pt_regs *, int);
  39. void (*disable_all)(void);
  40. void (*enable_all)(void);
  41. void (*enable)(struct hw_perf_counter *, int);
  42. void (*disable)(struct hw_perf_counter *, int);
  43. unsigned eventsel;
  44. unsigned perfctr;
  45. u64 (*event_map)(int);
  46. u64 (*raw_event)(u64);
  47. int max_events;
  48. int num_counters;
  49. int num_counters_fixed;
  50. int counter_bits;
  51. u64 counter_mask;
  52. u64 max_period;
  53. u64 intel_ctrl;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. static u64 intel_pmu_raw_event(u64 event)
  77. {
  78. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  79. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  80. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  81. #define CORE_EVNTSEL_MASK \
  82. (CORE_EVNTSEL_EVENT_MASK | \
  83. CORE_EVNTSEL_UNIT_MASK | \
  84. CORE_EVNTSEL_COUNTER_MASK)
  85. return event & CORE_EVNTSEL_MASK;
  86. }
  87. /*
  88. * AMD Performance Monitor K7 and later.
  89. */
  90. static const u64 amd_perfmon_event_map[] =
  91. {
  92. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  93. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  94. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  95. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  96. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  97. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  98. };
  99. static u64 amd_pmu_event_map(int event)
  100. {
  101. return amd_perfmon_event_map[event];
  102. }
  103. static u64 amd_pmu_raw_event(u64 event)
  104. {
  105. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  106. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  107. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  108. #define K7_EVNTSEL_MASK \
  109. (K7_EVNTSEL_EVENT_MASK | \
  110. K7_EVNTSEL_UNIT_MASK | \
  111. K7_EVNTSEL_COUNTER_MASK)
  112. return event & K7_EVNTSEL_MASK;
  113. }
  114. /*
  115. * Propagate counter elapsed time into the generic counter.
  116. * Can only be executed on the CPU where the counter is active.
  117. * Returns the delta events processed.
  118. */
  119. static u64
  120. x86_perf_counter_update(struct perf_counter *counter,
  121. struct hw_perf_counter *hwc, int idx)
  122. {
  123. int shift = 64 - x86_pmu.counter_bits;
  124. u64 prev_raw_count, new_raw_count;
  125. s64 delta;
  126. /*
  127. * Careful: an NMI might modify the previous counter value.
  128. *
  129. * Our tactic to handle this is to first atomically read and
  130. * exchange a new raw count - then add that new-prev delta
  131. * count to the generic counter atomically:
  132. */
  133. again:
  134. prev_raw_count = atomic64_read(&hwc->prev_count);
  135. rdmsrl(hwc->counter_base + idx, new_raw_count);
  136. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  137. new_raw_count) != prev_raw_count)
  138. goto again;
  139. /*
  140. * Now we have the new raw value and have updated the prev
  141. * timestamp already. We can now calculate the elapsed delta
  142. * (counter-)time and add that to the generic counter.
  143. *
  144. * Careful, not all hw sign-extends above the physical width
  145. * of the count.
  146. */
  147. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  148. delta >>= shift;
  149. atomic64_add(delta, &counter->count);
  150. atomic64_sub(delta, &hwc->period_left);
  151. return new_raw_count;
  152. }
  153. static atomic_t active_counters;
  154. static DEFINE_MUTEX(pmc_reserve_mutex);
  155. static bool reserve_pmc_hardware(void)
  156. {
  157. int i;
  158. if (nmi_watchdog == NMI_LOCAL_APIC)
  159. disable_lapic_nmi_watchdog();
  160. for (i = 0; i < x86_pmu.num_counters; i++) {
  161. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  162. goto perfctr_fail;
  163. }
  164. for (i = 0; i < x86_pmu.num_counters; i++) {
  165. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  166. goto eventsel_fail;
  167. }
  168. return true;
  169. eventsel_fail:
  170. for (i--; i >= 0; i--)
  171. release_evntsel_nmi(x86_pmu.eventsel + i);
  172. i = x86_pmu.num_counters;
  173. perfctr_fail:
  174. for (i--; i >= 0; i--)
  175. release_perfctr_nmi(x86_pmu.perfctr + i);
  176. if (nmi_watchdog == NMI_LOCAL_APIC)
  177. enable_lapic_nmi_watchdog();
  178. return false;
  179. }
  180. static void release_pmc_hardware(void)
  181. {
  182. int i;
  183. for (i = 0; i < x86_pmu.num_counters; i++) {
  184. release_perfctr_nmi(x86_pmu.perfctr + i);
  185. release_evntsel_nmi(x86_pmu.eventsel + i);
  186. }
  187. if (nmi_watchdog == NMI_LOCAL_APIC)
  188. enable_lapic_nmi_watchdog();
  189. }
  190. static void hw_perf_counter_destroy(struct perf_counter *counter)
  191. {
  192. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  193. release_pmc_hardware();
  194. mutex_unlock(&pmc_reserve_mutex);
  195. }
  196. }
  197. static inline int x86_pmu_initialized(void)
  198. {
  199. return x86_pmu.handle_irq != NULL;
  200. }
  201. /*
  202. * Setup the hardware configuration for a given hw_event_type
  203. */
  204. static int __hw_perf_counter_init(struct perf_counter *counter)
  205. {
  206. struct perf_counter_hw_event *hw_event = &counter->hw_event;
  207. struct hw_perf_counter *hwc = &counter->hw;
  208. int err;
  209. if (!x86_pmu_initialized())
  210. return -ENODEV;
  211. err = 0;
  212. if (!atomic_inc_not_zero(&active_counters)) {
  213. mutex_lock(&pmc_reserve_mutex);
  214. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  215. err = -EBUSY;
  216. else
  217. atomic_inc(&active_counters);
  218. mutex_unlock(&pmc_reserve_mutex);
  219. }
  220. if (err)
  221. return err;
  222. /*
  223. * Generate PMC IRQs:
  224. * (keep 'enabled' bit clear for now)
  225. */
  226. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  227. /*
  228. * Count user and OS events unless requested not to.
  229. */
  230. if (!hw_event->exclude_user)
  231. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  232. if (!hw_event->exclude_kernel)
  233. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  234. /*
  235. * If privileged enough, allow NMI events:
  236. */
  237. hwc->nmi = 0;
  238. if (hw_event->nmi) {
  239. if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
  240. return -EACCES;
  241. hwc->nmi = 1;
  242. }
  243. hwc->irq_period = hw_event->irq_period;
  244. if ((s64)hwc->irq_period <= 0 || hwc->irq_period > x86_pmu.max_period)
  245. hwc->irq_period = x86_pmu.max_period;
  246. atomic64_set(&hwc->period_left, hwc->irq_period);
  247. /*
  248. * Raw event type provide the config in the event structure
  249. */
  250. if (perf_event_raw(hw_event)) {
  251. hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
  252. } else {
  253. if (perf_event_id(hw_event) >= x86_pmu.max_events)
  254. return -EINVAL;
  255. /*
  256. * The generic map:
  257. */
  258. hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
  259. }
  260. counter->destroy = hw_perf_counter_destroy;
  261. return 0;
  262. }
  263. static void intel_pmu_disable_all(void)
  264. {
  265. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  266. }
  267. static void amd_pmu_disable_all(void)
  268. {
  269. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  270. int idx;
  271. if (!cpuc->enabled)
  272. return;
  273. cpuc->enabled = 0;
  274. /*
  275. * ensure we write the disable before we start disabling the
  276. * counters proper, so that amd_pmu_enable_counter() does the
  277. * right thing.
  278. */
  279. barrier();
  280. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  281. u64 val;
  282. if (!test_bit(idx, cpuc->active_mask))
  283. continue;
  284. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  285. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  286. continue;
  287. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  288. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  289. }
  290. }
  291. void hw_perf_disable(void)
  292. {
  293. if (!x86_pmu_initialized())
  294. return;
  295. return x86_pmu.disable_all();
  296. }
  297. static void intel_pmu_enable_all(void)
  298. {
  299. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  300. }
  301. static void amd_pmu_enable_all(void)
  302. {
  303. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  304. int idx;
  305. if (cpuc->enabled)
  306. return;
  307. cpuc->enabled = 1;
  308. barrier();
  309. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  310. u64 val;
  311. if (!test_bit(idx, cpuc->active_mask))
  312. continue;
  313. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  314. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  315. continue;
  316. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  317. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  318. }
  319. }
  320. void hw_perf_enable(void)
  321. {
  322. if (!x86_pmu_initialized())
  323. return;
  324. x86_pmu.enable_all();
  325. }
  326. static inline u64 intel_pmu_get_status(void)
  327. {
  328. u64 status;
  329. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  330. return status;
  331. }
  332. static inline void intel_pmu_ack_status(u64 ack)
  333. {
  334. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  335. }
  336. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  337. {
  338. int err;
  339. err = checking_wrmsrl(hwc->config_base + idx,
  340. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  341. }
  342. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  343. {
  344. int err;
  345. err = checking_wrmsrl(hwc->config_base + idx,
  346. hwc->config);
  347. }
  348. static inline void
  349. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  350. {
  351. int idx = __idx - X86_PMC_IDX_FIXED;
  352. u64 ctrl_val, mask;
  353. int err;
  354. mask = 0xfULL << (idx * 4);
  355. rdmsrl(hwc->config_base, ctrl_val);
  356. ctrl_val &= ~mask;
  357. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  358. }
  359. static inline void
  360. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  361. {
  362. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  363. intel_pmu_disable_fixed(hwc, idx);
  364. return;
  365. }
  366. x86_pmu_disable_counter(hwc, idx);
  367. }
  368. static inline void
  369. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  370. {
  371. x86_pmu_disable_counter(hwc, idx);
  372. }
  373. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  374. /*
  375. * Set the next IRQ period, based on the hwc->period_left value.
  376. * To be called with the counter disabled in hw:
  377. */
  378. static void
  379. x86_perf_counter_set_period(struct perf_counter *counter,
  380. struct hw_perf_counter *hwc, int idx)
  381. {
  382. s64 left = atomic64_read(&hwc->period_left);
  383. s64 period = hwc->irq_period;
  384. int err;
  385. /*
  386. * If we are way outside a reasoable range then just skip forward:
  387. */
  388. if (unlikely(left <= -period)) {
  389. left = period;
  390. atomic64_set(&hwc->period_left, left);
  391. }
  392. if (unlikely(left <= 0)) {
  393. left += period;
  394. atomic64_set(&hwc->period_left, left);
  395. }
  396. per_cpu(prev_left[idx], smp_processor_id()) = left;
  397. /*
  398. * The hw counter starts counting from this counter offset,
  399. * mark it to be able to extra future deltas:
  400. */
  401. atomic64_set(&hwc->prev_count, (u64)-left);
  402. err = checking_wrmsrl(hwc->counter_base + idx,
  403. (u64)(-left) & x86_pmu.counter_mask);
  404. }
  405. static inline void
  406. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  407. {
  408. int idx = __idx - X86_PMC_IDX_FIXED;
  409. u64 ctrl_val, bits, mask;
  410. int err;
  411. /*
  412. * Enable IRQ generation (0x8),
  413. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  414. * if requested:
  415. */
  416. bits = 0x8ULL;
  417. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  418. bits |= 0x2;
  419. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  420. bits |= 0x1;
  421. bits <<= (idx * 4);
  422. mask = 0xfULL << (idx * 4);
  423. rdmsrl(hwc->config_base, ctrl_val);
  424. ctrl_val &= ~mask;
  425. ctrl_val |= bits;
  426. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  427. }
  428. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  429. {
  430. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  431. intel_pmu_enable_fixed(hwc, idx);
  432. return;
  433. }
  434. x86_pmu_enable_counter(hwc, idx);
  435. }
  436. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  437. {
  438. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  439. if (cpuc->enabled)
  440. x86_pmu_enable_counter(hwc, idx);
  441. else
  442. x86_pmu_disable_counter(hwc, idx);
  443. }
  444. static int
  445. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  446. {
  447. unsigned int event;
  448. if (!x86_pmu.num_counters_fixed)
  449. return -1;
  450. if (unlikely(hwc->nmi))
  451. return -1;
  452. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  453. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  454. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  455. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  456. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  457. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  458. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  459. return -1;
  460. }
  461. /*
  462. * Find a PMC slot for the freshly enabled / scheduled in counter:
  463. */
  464. static int x86_pmu_enable(struct perf_counter *counter)
  465. {
  466. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  467. struct hw_perf_counter *hwc = &counter->hw;
  468. int idx;
  469. idx = fixed_mode_idx(counter, hwc);
  470. if (idx >= 0) {
  471. /*
  472. * Try to get the fixed counter, if that is already taken
  473. * then try to get a generic counter:
  474. */
  475. if (test_and_set_bit(idx, cpuc->used_mask))
  476. goto try_generic;
  477. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  478. /*
  479. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  480. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  481. */
  482. hwc->counter_base =
  483. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  484. hwc->idx = idx;
  485. } else {
  486. idx = hwc->idx;
  487. /* Try to get the previous generic counter again */
  488. if (test_and_set_bit(idx, cpuc->used_mask)) {
  489. try_generic:
  490. idx = find_first_zero_bit(cpuc->used_mask,
  491. x86_pmu.num_counters);
  492. if (idx == x86_pmu.num_counters)
  493. return -EAGAIN;
  494. set_bit(idx, cpuc->used_mask);
  495. hwc->idx = idx;
  496. }
  497. hwc->config_base = x86_pmu.eventsel;
  498. hwc->counter_base = x86_pmu.perfctr;
  499. }
  500. perf_counters_lapic_init(hwc->nmi);
  501. x86_pmu.disable(hwc, idx);
  502. cpuc->counters[idx] = counter;
  503. set_bit(idx, cpuc->active_mask);
  504. x86_perf_counter_set_period(counter, hwc, idx);
  505. x86_pmu.enable(hwc, idx);
  506. return 0;
  507. }
  508. void perf_counter_print_debug(void)
  509. {
  510. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  511. struct cpu_hw_counters *cpuc;
  512. unsigned long flags;
  513. int cpu, idx;
  514. if (!x86_pmu.num_counters)
  515. return;
  516. local_irq_save(flags);
  517. cpu = smp_processor_id();
  518. cpuc = &per_cpu(cpu_hw_counters, cpu);
  519. if (x86_pmu.version >= 2) {
  520. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  521. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  522. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  523. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  524. pr_info("\n");
  525. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  526. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  527. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  528. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  529. }
  530. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  531. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  532. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  533. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  534. prev_left = per_cpu(prev_left[idx], cpu);
  535. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  536. cpu, idx, pmc_ctrl);
  537. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  538. cpu, idx, pmc_count);
  539. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  540. cpu, idx, prev_left);
  541. }
  542. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  543. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  544. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  545. cpu, idx, pmc_count);
  546. }
  547. local_irq_restore(flags);
  548. }
  549. static void x86_pmu_disable(struct perf_counter *counter)
  550. {
  551. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  552. struct hw_perf_counter *hwc = &counter->hw;
  553. int idx = hwc->idx;
  554. /*
  555. * Must be done before we disable, otherwise the nmi handler
  556. * could reenable again:
  557. */
  558. clear_bit(idx, cpuc->active_mask);
  559. x86_pmu.disable(hwc, idx);
  560. /*
  561. * Make sure the cleared pointer becomes visible before we
  562. * (potentially) free the counter:
  563. */
  564. barrier();
  565. /*
  566. * Drain the remaining delta count out of a counter
  567. * that we are disabling:
  568. */
  569. x86_perf_counter_update(counter, hwc, idx);
  570. cpuc->counters[idx] = NULL;
  571. clear_bit(idx, cpuc->used_mask);
  572. }
  573. /*
  574. * Save and restart an expired counter. Called by NMI contexts,
  575. * so it has to be careful about preempting normal counter ops:
  576. */
  577. static void intel_pmu_save_and_restart(struct perf_counter *counter)
  578. {
  579. struct hw_perf_counter *hwc = &counter->hw;
  580. int idx = hwc->idx;
  581. x86_perf_counter_update(counter, hwc, idx);
  582. x86_perf_counter_set_period(counter, hwc, idx);
  583. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  584. intel_pmu_enable_counter(hwc, idx);
  585. }
  586. /*
  587. * Maximum interrupt frequency of 100KHz per CPU
  588. */
  589. #define PERFMON_MAX_INTERRUPTS (100000/HZ)
  590. /*
  591. * This handler is triggered by the local APIC, so the APIC IRQ handling
  592. * rules apply:
  593. */
  594. static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
  595. {
  596. int bit, cpu = smp_processor_id();
  597. u64 ack, status;
  598. struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
  599. perf_disable();
  600. status = intel_pmu_get_status();
  601. if (!status) {
  602. perf_enable();
  603. return 0;
  604. }
  605. again:
  606. inc_irq_stat(apic_perf_irqs);
  607. ack = status;
  608. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  609. struct perf_counter *counter = cpuc->counters[bit];
  610. clear_bit(bit, (unsigned long *) &status);
  611. if (!test_bit(bit, cpuc->active_mask))
  612. continue;
  613. intel_pmu_save_and_restart(counter);
  614. if (perf_counter_overflow(counter, nmi, regs, 0))
  615. intel_pmu_disable_counter(&counter->hw, bit);
  616. }
  617. intel_pmu_ack_status(ack);
  618. /*
  619. * Repeat if there is more work to be done:
  620. */
  621. status = intel_pmu_get_status();
  622. if (status)
  623. goto again;
  624. if (++cpuc->interrupts != PERFMON_MAX_INTERRUPTS)
  625. perf_enable();
  626. return 1;
  627. }
  628. static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
  629. {
  630. int cpu = smp_processor_id();
  631. struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
  632. u64 val;
  633. int handled = 0;
  634. struct perf_counter *counter;
  635. struct hw_perf_counter *hwc;
  636. int idx, throttle = 0;
  637. if (++cpuc->interrupts == PERFMON_MAX_INTERRUPTS) {
  638. throttle = 1;
  639. __perf_disable();
  640. cpuc->enabled = 0;
  641. barrier();
  642. }
  643. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  644. int disable = 0;
  645. if (!test_bit(idx, cpuc->active_mask))
  646. continue;
  647. counter = cpuc->counters[idx];
  648. hwc = &counter->hw;
  649. val = x86_perf_counter_update(counter, hwc, idx);
  650. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  651. goto next;
  652. /* counter overflow */
  653. x86_perf_counter_set_period(counter, hwc, idx);
  654. handled = 1;
  655. inc_irq_stat(apic_perf_irqs);
  656. disable = perf_counter_overflow(counter, nmi, regs, 0);
  657. next:
  658. if (disable || throttle)
  659. amd_pmu_disable_counter(hwc, idx);
  660. }
  661. return handled;
  662. }
  663. void perf_counter_unthrottle(void)
  664. {
  665. struct cpu_hw_counters *cpuc;
  666. if (!x86_pmu_initialized())
  667. return;
  668. cpuc = &__get_cpu_var(cpu_hw_counters);
  669. if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS) {
  670. /*
  671. * Clear them before re-enabling irqs/NMIs again:
  672. */
  673. cpuc->interrupts = 0;
  674. perf_enable();
  675. } else {
  676. cpuc->interrupts = 0;
  677. }
  678. }
  679. void smp_perf_counter_interrupt(struct pt_regs *regs)
  680. {
  681. irq_enter();
  682. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  683. ack_APIC_irq();
  684. x86_pmu.handle_irq(regs, 0);
  685. irq_exit();
  686. }
  687. void smp_perf_pending_interrupt(struct pt_regs *regs)
  688. {
  689. irq_enter();
  690. ack_APIC_irq();
  691. inc_irq_stat(apic_pending_irqs);
  692. perf_counter_do_pending();
  693. irq_exit();
  694. }
  695. void set_perf_counter_pending(void)
  696. {
  697. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  698. }
  699. void perf_counters_lapic_init(int nmi)
  700. {
  701. u32 apic_val;
  702. if (!x86_pmu_initialized())
  703. return;
  704. /*
  705. * Enable the performance counter vector in the APIC LVT:
  706. */
  707. apic_val = apic_read(APIC_LVTERR);
  708. apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
  709. if (nmi)
  710. apic_write(APIC_LVTPC, APIC_DM_NMI);
  711. else
  712. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  713. apic_write(APIC_LVTERR, apic_val);
  714. }
  715. static int __kprobes
  716. perf_counter_nmi_handler(struct notifier_block *self,
  717. unsigned long cmd, void *__args)
  718. {
  719. struct die_args *args = __args;
  720. struct pt_regs *regs;
  721. int ret;
  722. if (!atomic_read(&active_counters))
  723. return NOTIFY_DONE;
  724. switch (cmd) {
  725. case DIE_NMI:
  726. case DIE_NMI_IPI:
  727. break;
  728. default:
  729. return NOTIFY_DONE;
  730. }
  731. regs = args->regs;
  732. apic_write(APIC_LVTPC, APIC_DM_NMI);
  733. ret = x86_pmu.handle_irq(regs, 1);
  734. return ret ? NOTIFY_STOP : NOTIFY_OK;
  735. }
  736. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  737. .notifier_call = perf_counter_nmi_handler,
  738. .next = NULL,
  739. .priority = 1
  740. };
  741. static struct x86_pmu intel_pmu = {
  742. .name = "Intel",
  743. .handle_irq = intel_pmu_handle_irq,
  744. .disable_all = intel_pmu_disable_all,
  745. .enable_all = intel_pmu_enable_all,
  746. .enable = intel_pmu_enable_counter,
  747. .disable = intel_pmu_disable_counter,
  748. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  749. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  750. .event_map = intel_pmu_event_map,
  751. .raw_event = intel_pmu_raw_event,
  752. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  753. /*
  754. * Intel PMCs cannot be accessed sanely above 32 bit width,
  755. * so we install an artificial 1<<31 period regardless of
  756. * the generic counter period:
  757. */
  758. .max_period = (1ULL << 31) - 1,
  759. };
  760. static struct x86_pmu amd_pmu = {
  761. .name = "AMD",
  762. .handle_irq = amd_pmu_handle_irq,
  763. .disable_all = amd_pmu_disable_all,
  764. .enable_all = amd_pmu_enable_all,
  765. .enable = amd_pmu_enable_counter,
  766. .disable = amd_pmu_disable_counter,
  767. .eventsel = MSR_K7_EVNTSEL0,
  768. .perfctr = MSR_K7_PERFCTR0,
  769. .event_map = amd_pmu_event_map,
  770. .raw_event = amd_pmu_raw_event,
  771. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  772. .num_counters = 4,
  773. .counter_bits = 48,
  774. .counter_mask = (1ULL << 48) - 1,
  775. /* use highest bit to detect overflow */
  776. .max_period = (1ULL << 47) - 1,
  777. };
  778. static int intel_pmu_init(void)
  779. {
  780. union cpuid10_edx edx;
  781. union cpuid10_eax eax;
  782. unsigned int unused;
  783. unsigned int ebx;
  784. int version;
  785. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  786. return -ENODEV;
  787. /*
  788. * Check whether the Architectural PerfMon supports
  789. * Branch Misses Retired Event or not.
  790. */
  791. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  792. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  793. return -ENODEV;
  794. version = eax.split.version_id;
  795. if (version < 2)
  796. return -ENODEV;
  797. x86_pmu = intel_pmu;
  798. x86_pmu.version = version;
  799. x86_pmu.num_counters = eax.split.num_counters;
  800. /*
  801. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  802. * assume at least 3 counters:
  803. */
  804. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  805. x86_pmu.counter_bits = eax.split.bit_width;
  806. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  807. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  808. return 0;
  809. }
  810. static int amd_pmu_init(void)
  811. {
  812. x86_pmu = amd_pmu;
  813. return 0;
  814. }
  815. void __init init_hw_perf_counters(void)
  816. {
  817. int err;
  818. switch (boot_cpu_data.x86_vendor) {
  819. case X86_VENDOR_INTEL:
  820. err = intel_pmu_init();
  821. break;
  822. case X86_VENDOR_AMD:
  823. err = amd_pmu_init();
  824. break;
  825. default:
  826. return;
  827. }
  828. if (err != 0)
  829. return;
  830. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  831. pr_info("... version: %d\n", x86_pmu.version);
  832. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  833. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  834. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  835. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  836. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  837. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  838. }
  839. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  840. perf_max_counters = x86_pmu.num_counters;
  841. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  842. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  843. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  844. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  845. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  846. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  847. }
  848. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  849. perf_counter_mask |=
  850. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  851. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  852. perf_counters_lapic_init(0);
  853. register_die_notifier(&perf_counter_nmi_notifier);
  854. }
  855. static inline void x86_pmu_read(struct perf_counter *counter)
  856. {
  857. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  858. }
  859. static const struct pmu pmu = {
  860. .enable = x86_pmu_enable,
  861. .disable = x86_pmu_disable,
  862. .read = x86_pmu_read,
  863. };
  864. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  865. {
  866. int err;
  867. err = __hw_perf_counter_init(counter);
  868. if (err)
  869. return ERR_PTR(err);
  870. return &pmu;
  871. }
  872. /*
  873. * callchain support
  874. */
  875. static inline
  876. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  877. {
  878. if (entry->nr < MAX_STACK_DEPTH)
  879. entry->ip[entry->nr++] = ip;
  880. }
  881. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  882. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  883. static void
  884. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  885. {
  886. /* Ignore warnings */
  887. }
  888. static void backtrace_warning(void *data, char *msg)
  889. {
  890. /* Ignore warnings */
  891. }
  892. static int backtrace_stack(void *data, char *name)
  893. {
  894. /* Don't bother with IRQ stacks for now */
  895. return -1;
  896. }
  897. static void backtrace_address(void *data, unsigned long addr, int reliable)
  898. {
  899. struct perf_callchain_entry *entry = data;
  900. if (reliable)
  901. callchain_store(entry, addr);
  902. }
  903. static const struct stacktrace_ops backtrace_ops = {
  904. .warning = backtrace_warning,
  905. .warning_symbol = backtrace_warning_symbol,
  906. .stack = backtrace_stack,
  907. .address = backtrace_address,
  908. };
  909. static void
  910. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  911. {
  912. unsigned long bp;
  913. char *stack;
  914. int nr = entry->nr;
  915. callchain_store(entry, instruction_pointer(regs));
  916. stack = ((char *)regs + sizeof(struct pt_regs));
  917. #ifdef CONFIG_FRAME_POINTER
  918. bp = frame_pointer(regs);
  919. #else
  920. bp = 0;
  921. #endif
  922. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  923. entry->kernel = entry->nr - nr;
  924. }
  925. struct stack_frame {
  926. const void __user *next_fp;
  927. unsigned long return_address;
  928. };
  929. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  930. {
  931. int ret;
  932. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  933. return 0;
  934. ret = 1;
  935. pagefault_disable();
  936. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  937. ret = 0;
  938. pagefault_enable();
  939. return ret;
  940. }
  941. static void
  942. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  943. {
  944. struct stack_frame frame;
  945. const void __user *fp;
  946. int nr = entry->nr;
  947. regs = (struct pt_regs *)current->thread.sp0 - 1;
  948. fp = (void __user *)regs->bp;
  949. callchain_store(entry, regs->ip);
  950. while (entry->nr < MAX_STACK_DEPTH) {
  951. frame.next_fp = NULL;
  952. frame.return_address = 0;
  953. if (!copy_stack_frame(fp, &frame))
  954. break;
  955. if ((unsigned long)fp < user_stack_pointer(regs))
  956. break;
  957. callchain_store(entry, frame.return_address);
  958. fp = frame.next_fp;
  959. }
  960. entry->user = entry->nr - nr;
  961. }
  962. static void
  963. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  964. {
  965. int is_user;
  966. if (!regs)
  967. return;
  968. is_user = user_mode(regs);
  969. if (!current || current->pid == 0)
  970. return;
  971. if (is_user && current->state != TASK_RUNNING)
  972. return;
  973. if (!is_user)
  974. perf_callchain_kernel(regs, entry);
  975. if (current->mm)
  976. perf_callchain_user(regs, entry);
  977. }
  978. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  979. {
  980. struct perf_callchain_entry *entry;
  981. if (in_nmi())
  982. entry = &__get_cpu_var(nmi_entry);
  983. else
  984. entry = &__get_cpu_var(irq_entry);
  985. entry->nr = 0;
  986. entry->hv = 0;
  987. entry->kernel = 0;
  988. entry->user = 0;
  989. perf_do_callchain(regs, entry);
  990. return entry;
  991. }