sched_fair.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  126. {
  127. if (!cfs_rq->on_list) {
  128. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  129. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  130. cfs_rq->on_list = 1;
  131. }
  132. }
  133. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  134. {
  135. if (cfs_rq->on_list) {
  136. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  137. cfs_rq->on_list = 0;
  138. }
  139. }
  140. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  141. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  142. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  143. /* Do the two (enqueued) entities belong to the same group ? */
  144. static inline int
  145. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  146. {
  147. if (se->cfs_rq == pse->cfs_rq)
  148. return 1;
  149. return 0;
  150. }
  151. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  152. {
  153. return se->parent;
  154. }
  155. /* return depth at which a sched entity is present in the hierarchy */
  156. static inline int depth_se(struct sched_entity *se)
  157. {
  158. int depth = 0;
  159. for_each_sched_entity(se)
  160. depth++;
  161. return depth;
  162. }
  163. static void
  164. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  165. {
  166. int se_depth, pse_depth;
  167. /*
  168. * preemption test can be made between sibling entities who are in the
  169. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  170. * both tasks until we find their ancestors who are siblings of common
  171. * parent.
  172. */
  173. /* First walk up until both entities are at same depth */
  174. se_depth = depth_se(*se);
  175. pse_depth = depth_se(*pse);
  176. while (se_depth > pse_depth) {
  177. se_depth--;
  178. *se = parent_entity(*se);
  179. }
  180. while (pse_depth > se_depth) {
  181. pse_depth--;
  182. *pse = parent_entity(*pse);
  183. }
  184. while (!is_same_group(*se, *pse)) {
  185. *se = parent_entity(*se);
  186. *pse = parent_entity(*pse);
  187. }
  188. }
  189. #else /* !CONFIG_FAIR_GROUP_SCHED */
  190. static inline struct task_struct *task_of(struct sched_entity *se)
  191. {
  192. return container_of(se, struct task_struct, se);
  193. }
  194. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  195. {
  196. return container_of(cfs_rq, struct rq, cfs);
  197. }
  198. #define entity_is_task(se) 1
  199. #define for_each_sched_entity(se) \
  200. for (; se; se = NULL)
  201. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  202. {
  203. return &task_rq(p)->cfs;
  204. }
  205. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  206. {
  207. struct task_struct *p = task_of(se);
  208. struct rq *rq = task_rq(p);
  209. return &rq->cfs;
  210. }
  211. /* runqueue "owned" by this group */
  212. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  213. {
  214. return NULL;
  215. }
  216. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  217. {
  218. return &cpu_rq(this_cpu)->cfs;
  219. }
  220. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  221. {
  222. }
  223. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. }
  226. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  227. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  228. static inline int
  229. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  230. {
  231. return 1;
  232. }
  233. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  234. {
  235. return NULL;
  236. }
  237. static inline void
  238. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  239. {
  240. }
  241. #endif /* CONFIG_FAIR_GROUP_SCHED */
  242. /**************************************************************
  243. * Scheduling class tree data structure manipulation methods:
  244. */
  245. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  246. {
  247. s64 delta = (s64)(vruntime - min_vruntime);
  248. if (delta > 0)
  249. min_vruntime = vruntime;
  250. return min_vruntime;
  251. }
  252. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  253. {
  254. s64 delta = (s64)(vruntime - min_vruntime);
  255. if (delta < 0)
  256. min_vruntime = vruntime;
  257. return min_vruntime;
  258. }
  259. static inline int entity_before(struct sched_entity *a,
  260. struct sched_entity *b)
  261. {
  262. return (s64)(a->vruntime - b->vruntime) < 0;
  263. }
  264. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  265. {
  266. return se->vruntime - cfs_rq->min_vruntime;
  267. }
  268. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  269. {
  270. u64 vruntime = cfs_rq->min_vruntime;
  271. if (cfs_rq->curr)
  272. vruntime = cfs_rq->curr->vruntime;
  273. if (cfs_rq->rb_leftmost) {
  274. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  275. struct sched_entity,
  276. run_node);
  277. if (!cfs_rq->curr)
  278. vruntime = se->vruntime;
  279. else
  280. vruntime = min_vruntime(vruntime, se->vruntime);
  281. }
  282. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  283. }
  284. /*
  285. * Enqueue an entity into the rb-tree:
  286. */
  287. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  288. {
  289. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  290. struct rb_node *parent = NULL;
  291. struct sched_entity *entry;
  292. s64 key = entity_key(cfs_rq, se);
  293. int leftmost = 1;
  294. /*
  295. * Find the right place in the rbtree:
  296. */
  297. while (*link) {
  298. parent = *link;
  299. entry = rb_entry(parent, struct sched_entity, run_node);
  300. /*
  301. * We dont care about collisions. Nodes with
  302. * the same key stay together.
  303. */
  304. if (key < entity_key(cfs_rq, entry)) {
  305. link = &parent->rb_left;
  306. } else {
  307. link = &parent->rb_right;
  308. leftmost = 0;
  309. }
  310. }
  311. /*
  312. * Maintain a cache of leftmost tree entries (it is frequently
  313. * used):
  314. */
  315. if (leftmost)
  316. cfs_rq->rb_leftmost = &se->run_node;
  317. rb_link_node(&se->run_node, parent, link);
  318. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  319. }
  320. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  321. {
  322. if (cfs_rq->rb_leftmost == &se->run_node) {
  323. struct rb_node *next_node;
  324. next_node = rb_next(&se->run_node);
  325. cfs_rq->rb_leftmost = next_node;
  326. }
  327. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  328. }
  329. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  330. {
  331. struct rb_node *left = cfs_rq->rb_leftmost;
  332. if (!left)
  333. return NULL;
  334. return rb_entry(left, struct sched_entity, run_node);
  335. }
  336. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  337. {
  338. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  339. if (!last)
  340. return NULL;
  341. return rb_entry(last, struct sched_entity, run_node);
  342. }
  343. /**************************************************************
  344. * Scheduling class statistics methods:
  345. */
  346. #ifdef CONFIG_SCHED_DEBUG
  347. int sched_proc_update_handler(struct ctl_table *table, int write,
  348. void __user *buffer, size_t *lenp,
  349. loff_t *ppos)
  350. {
  351. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  352. int factor = get_update_sysctl_factor();
  353. if (ret || !write)
  354. return ret;
  355. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  356. sysctl_sched_min_granularity);
  357. #define WRT_SYSCTL(name) \
  358. (normalized_sysctl_##name = sysctl_##name / (factor))
  359. WRT_SYSCTL(sched_min_granularity);
  360. WRT_SYSCTL(sched_latency);
  361. WRT_SYSCTL(sched_wakeup_granularity);
  362. #undef WRT_SYSCTL
  363. return 0;
  364. }
  365. #endif
  366. /*
  367. * delta /= w
  368. */
  369. static inline unsigned long
  370. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  371. {
  372. if (unlikely(se->load.weight != NICE_0_LOAD))
  373. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  374. return delta;
  375. }
  376. /*
  377. * The idea is to set a period in which each task runs once.
  378. *
  379. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  380. * this period because otherwise the slices get too small.
  381. *
  382. * p = (nr <= nl) ? l : l*nr/nl
  383. */
  384. static u64 __sched_period(unsigned long nr_running)
  385. {
  386. u64 period = sysctl_sched_latency;
  387. unsigned long nr_latency = sched_nr_latency;
  388. if (unlikely(nr_running > nr_latency)) {
  389. period = sysctl_sched_min_granularity;
  390. period *= nr_running;
  391. }
  392. return period;
  393. }
  394. /*
  395. * We calculate the wall-time slice from the period by taking a part
  396. * proportional to the weight.
  397. *
  398. * s = p*P[w/rw]
  399. */
  400. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  401. {
  402. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  403. for_each_sched_entity(se) {
  404. struct load_weight *load;
  405. struct load_weight lw;
  406. cfs_rq = cfs_rq_of(se);
  407. load = &cfs_rq->load;
  408. if (unlikely(!se->on_rq)) {
  409. lw = cfs_rq->load;
  410. update_load_add(&lw, se->load.weight);
  411. load = &lw;
  412. }
  413. slice = calc_delta_mine(slice, se->load.weight, load);
  414. }
  415. return slice;
  416. }
  417. /*
  418. * We calculate the vruntime slice of a to be inserted task
  419. *
  420. * vs = s/w
  421. */
  422. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  423. {
  424. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  425. }
  426. /*
  427. * Update the current task's runtime statistics. Skip current tasks that
  428. * are not in our scheduling class.
  429. */
  430. static inline void
  431. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  432. unsigned long delta_exec)
  433. {
  434. unsigned long delta_exec_weighted;
  435. schedstat_set(curr->statistics.exec_max,
  436. max((u64)delta_exec, curr->statistics.exec_max));
  437. curr->sum_exec_runtime += delta_exec;
  438. schedstat_add(cfs_rq, exec_clock, delta_exec);
  439. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  440. curr->vruntime += delta_exec_weighted;
  441. update_min_vruntime(cfs_rq);
  442. }
  443. static void update_curr(struct cfs_rq *cfs_rq)
  444. {
  445. struct sched_entity *curr = cfs_rq->curr;
  446. u64 now = rq_of(cfs_rq)->clock_task;
  447. unsigned long delta_exec;
  448. if (unlikely(!curr))
  449. return;
  450. /*
  451. * Get the amount of time the current task was running
  452. * since the last time we changed load (this cannot
  453. * overflow on 32 bits):
  454. */
  455. delta_exec = (unsigned long)(now - curr->exec_start);
  456. if (!delta_exec)
  457. return;
  458. __update_curr(cfs_rq, curr, delta_exec);
  459. curr->exec_start = now;
  460. if (entity_is_task(curr)) {
  461. struct task_struct *curtask = task_of(curr);
  462. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  463. cpuacct_charge(curtask, delta_exec);
  464. account_group_exec_runtime(curtask, delta_exec);
  465. }
  466. }
  467. static inline void
  468. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  469. {
  470. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  471. }
  472. /*
  473. * Task is being enqueued - update stats:
  474. */
  475. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  476. {
  477. /*
  478. * Are we enqueueing a waiting task? (for current tasks
  479. * a dequeue/enqueue event is a NOP)
  480. */
  481. if (se != cfs_rq->curr)
  482. update_stats_wait_start(cfs_rq, se);
  483. }
  484. static void
  485. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  486. {
  487. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  488. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  489. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  490. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  491. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  492. #ifdef CONFIG_SCHEDSTATS
  493. if (entity_is_task(se)) {
  494. trace_sched_stat_wait(task_of(se),
  495. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  496. }
  497. #endif
  498. schedstat_set(se->statistics.wait_start, 0);
  499. }
  500. static inline void
  501. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  502. {
  503. /*
  504. * Mark the end of the wait period if dequeueing a
  505. * waiting task:
  506. */
  507. if (se != cfs_rq->curr)
  508. update_stats_wait_end(cfs_rq, se);
  509. }
  510. /*
  511. * We are picking a new current task - update its stats:
  512. */
  513. static inline void
  514. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. /*
  517. * We are starting a new run period:
  518. */
  519. se->exec_start = rq_of(cfs_rq)->clock_task;
  520. }
  521. /**************************************************
  522. * Scheduling class queueing methods:
  523. */
  524. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  525. static void
  526. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  527. {
  528. cfs_rq->task_weight += weight;
  529. }
  530. #else
  531. static inline void
  532. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  533. {
  534. }
  535. #endif
  536. static void
  537. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. update_load_add(&cfs_rq->load, se->load.weight);
  540. if (!parent_entity(se))
  541. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  542. if (entity_is_task(se)) {
  543. add_cfs_task_weight(cfs_rq, se->load.weight);
  544. list_add(&se->group_node, &cfs_rq->tasks);
  545. }
  546. cfs_rq->nr_running++;
  547. }
  548. static void
  549. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  550. {
  551. update_load_sub(&cfs_rq->load, se->load.weight);
  552. if (!parent_entity(se))
  553. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  554. if (entity_is_task(se)) {
  555. add_cfs_task_weight(cfs_rq, -se->load.weight);
  556. list_del_init(&se->group_node);
  557. }
  558. cfs_rq->nr_running--;
  559. }
  560. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  561. static void update_cfs_load(struct cfs_rq *cfs_rq, int lb)
  562. {
  563. u64 period = sched_avg_period();
  564. u64 now, delta;
  565. if (!cfs_rq)
  566. return;
  567. now = rq_of(cfs_rq)->clock;
  568. delta = now - cfs_rq->load_stamp;
  569. cfs_rq->load_stamp = now;
  570. cfs_rq->load_period += delta;
  571. cfs_rq->load_avg += delta * cfs_rq->load.weight;
  572. while (cfs_rq->load_period > period) {
  573. /*
  574. * Inline assembly required to prevent the compiler
  575. * optimising this loop into a divmod call.
  576. * See __iter_div_u64_rem() for another example of this.
  577. */
  578. asm("" : "+rm" (cfs_rq->load_period));
  579. cfs_rq->load_period /= 2;
  580. cfs_rq->load_avg /= 2;
  581. }
  582. if (lb && !cfs_rq->nr_running) {
  583. if (cfs_rq->load_avg < (period / 8))
  584. list_del_leaf_cfs_rq(cfs_rq);
  585. }
  586. }
  587. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  588. unsigned long weight)
  589. {
  590. if (se->on_rq)
  591. account_entity_dequeue(cfs_rq, se);
  592. update_load_set(&se->load, weight);
  593. if (se->on_rq)
  594. account_entity_enqueue(cfs_rq, se);
  595. }
  596. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  597. {
  598. struct task_group *tg;
  599. struct sched_entity *se;
  600. long load_weight, load, shares;
  601. if (!cfs_rq)
  602. return;
  603. tg = cfs_rq->tg;
  604. se = tg->se[cpu_of(rq_of(cfs_rq))];
  605. if (!se)
  606. return;
  607. load = cfs_rq->load.weight;
  608. load_weight = atomic_read(&tg->load_weight);
  609. load_weight -= cfs_rq->load_contribution;
  610. load_weight += load;
  611. shares = (tg->shares * load);
  612. if (load_weight)
  613. shares /= load_weight;
  614. if (shares < MIN_SHARES)
  615. shares = MIN_SHARES;
  616. if (shares > tg->shares)
  617. shares = tg->shares;
  618. reweight_entity(cfs_rq_of(se), se, shares);
  619. }
  620. #else /* CONFIG_FAIR_GROUP_SCHED */
  621. static inline void update_cfs_load(struct cfs_rq *cfs_rq, int lb)
  622. {
  623. }
  624. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  625. {
  626. }
  627. #endif /* CONFIG_FAIR_GROUP_SCHED */
  628. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  629. {
  630. #ifdef CONFIG_SCHEDSTATS
  631. struct task_struct *tsk = NULL;
  632. if (entity_is_task(se))
  633. tsk = task_of(se);
  634. if (se->statistics.sleep_start) {
  635. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  636. if ((s64)delta < 0)
  637. delta = 0;
  638. if (unlikely(delta > se->statistics.sleep_max))
  639. se->statistics.sleep_max = delta;
  640. se->statistics.sleep_start = 0;
  641. se->statistics.sum_sleep_runtime += delta;
  642. if (tsk) {
  643. account_scheduler_latency(tsk, delta >> 10, 1);
  644. trace_sched_stat_sleep(tsk, delta);
  645. }
  646. }
  647. if (se->statistics.block_start) {
  648. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  649. if ((s64)delta < 0)
  650. delta = 0;
  651. if (unlikely(delta > se->statistics.block_max))
  652. se->statistics.block_max = delta;
  653. se->statistics.block_start = 0;
  654. se->statistics.sum_sleep_runtime += delta;
  655. if (tsk) {
  656. if (tsk->in_iowait) {
  657. se->statistics.iowait_sum += delta;
  658. se->statistics.iowait_count++;
  659. trace_sched_stat_iowait(tsk, delta);
  660. }
  661. /*
  662. * Blocking time is in units of nanosecs, so shift by
  663. * 20 to get a milliseconds-range estimation of the
  664. * amount of time that the task spent sleeping:
  665. */
  666. if (unlikely(prof_on == SLEEP_PROFILING)) {
  667. profile_hits(SLEEP_PROFILING,
  668. (void *)get_wchan(tsk),
  669. delta >> 20);
  670. }
  671. account_scheduler_latency(tsk, delta >> 10, 0);
  672. }
  673. }
  674. #endif
  675. }
  676. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  677. {
  678. #ifdef CONFIG_SCHED_DEBUG
  679. s64 d = se->vruntime - cfs_rq->min_vruntime;
  680. if (d < 0)
  681. d = -d;
  682. if (d > 3*sysctl_sched_latency)
  683. schedstat_inc(cfs_rq, nr_spread_over);
  684. #endif
  685. }
  686. static void
  687. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  688. {
  689. u64 vruntime = cfs_rq->min_vruntime;
  690. /*
  691. * The 'current' period is already promised to the current tasks,
  692. * however the extra weight of the new task will slow them down a
  693. * little, place the new task so that it fits in the slot that
  694. * stays open at the end.
  695. */
  696. if (initial && sched_feat(START_DEBIT))
  697. vruntime += sched_vslice(cfs_rq, se);
  698. /* sleeps up to a single latency don't count. */
  699. if (!initial) {
  700. unsigned long thresh = sysctl_sched_latency;
  701. /*
  702. * Halve their sleep time's effect, to allow
  703. * for a gentler effect of sleepers:
  704. */
  705. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  706. thresh >>= 1;
  707. vruntime -= thresh;
  708. }
  709. /* ensure we never gain time by being placed backwards. */
  710. vruntime = max_vruntime(se->vruntime, vruntime);
  711. se->vruntime = vruntime;
  712. }
  713. static void
  714. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  715. {
  716. /*
  717. * Update the normalized vruntime before updating min_vruntime
  718. * through callig update_curr().
  719. */
  720. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  721. se->vruntime += cfs_rq->min_vruntime;
  722. /*
  723. * Update run-time statistics of the 'current'.
  724. */
  725. update_curr(cfs_rq);
  726. update_cfs_load(cfs_rq, 0);
  727. account_entity_enqueue(cfs_rq, se);
  728. update_cfs_shares(cfs_rq);
  729. if (flags & ENQUEUE_WAKEUP) {
  730. place_entity(cfs_rq, se, 0);
  731. enqueue_sleeper(cfs_rq, se);
  732. }
  733. update_stats_enqueue(cfs_rq, se);
  734. check_spread(cfs_rq, se);
  735. if (se != cfs_rq->curr)
  736. __enqueue_entity(cfs_rq, se);
  737. se->on_rq = 1;
  738. if (cfs_rq->nr_running == 1)
  739. list_add_leaf_cfs_rq(cfs_rq);
  740. }
  741. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  742. {
  743. if (!se || cfs_rq->last == se)
  744. cfs_rq->last = NULL;
  745. if (!se || cfs_rq->next == se)
  746. cfs_rq->next = NULL;
  747. }
  748. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  749. {
  750. for_each_sched_entity(se)
  751. __clear_buddies(cfs_rq_of(se), se);
  752. }
  753. static void
  754. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  755. {
  756. /*
  757. * Update run-time statistics of the 'current'.
  758. */
  759. update_curr(cfs_rq);
  760. update_stats_dequeue(cfs_rq, se);
  761. if (flags & DEQUEUE_SLEEP) {
  762. #ifdef CONFIG_SCHEDSTATS
  763. if (entity_is_task(se)) {
  764. struct task_struct *tsk = task_of(se);
  765. if (tsk->state & TASK_INTERRUPTIBLE)
  766. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  767. if (tsk->state & TASK_UNINTERRUPTIBLE)
  768. se->statistics.block_start = rq_of(cfs_rq)->clock;
  769. }
  770. #endif
  771. }
  772. clear_buddies(cfs_rq, se);
  773. if (se != cfs_rq->curr)
  774. __dequeue_entity(cfs_rq, se);
  775. se->on_rq = 0;
  776. update_cfs_load(cfs_rq, 0);
  777. account_entity_dequeue(cfs_rq, se);
  778. update_min_vruntime(cfs_rq);
  779. update_cfs_shares(cfs_rq);
  780. /*
  781. * Normalize the entity after updating the min_vruntime because the
  782. * update can refer to the ->curr item and we need to reflect this
  783. * movement in our normalized position.
  784. */
  785. if (!(flags & DEQUEUE_SLEEP))
  786. se->vruntime -= cfs_rq->min_vruntime;
  787. }
  788. /*
  789. * Preempt the current task with a newly woken task if needed:
  790. */
  791. static void
  792. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  793. {
  794. unsigned long ideal_runtime, delta_exec;
  795. ideal_runtime = sched_slice(cfs_rq, curr);
  796. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  797. if (delta_exec > ideal_runtime) {
  798. resched_task(rq_of(cfs_rq)->curr);
  799. /*
  800. * The current task ran long enough, ensure it doesn't get
  801. * re-elected due to buddy favours.
  802. */
  803. clear_buddies(cfs_rq, curr);
  804. return;
  805. }
  806. /*
  807. * Ensure that a task that missed wakeup preemption by a
  808. * narrow margin doesn't have to wait for a full slice.
  809. * This also mitigates buddy induced latencies under load.
  810. */
  811. if (!sched_feat(WAKEUP_PREEMPT))
  812. return;
  813. if (delta_exec < sysctl_sched_min_granularity)
  814. return;
  815. if (cfs_rq->nr_running > 1) {
  816. struct sched_entity *se = __pick_next_entity(cfs_rq);
  817. s64 delta = curr->vruntime - se->vruntime;
  818. if (delta > ideal_runtime)
  819. resched_task(rq_of(cfs_rq)->curr);
  820. }
  821. }
  822. static void
  823. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  824. {
  825. /* 'current' is not kept within the tree. */
  826. if (se->on_rq) {
  827. /*
  828. * Any task has to be enqueued before it get to execute on
  829. * a CPU. So account for the time it spent waiting on the
  830. * runqueue.
  831. */
  832. update_stats_wait_end(cfs_rq, se);
  833. __dequeue_entity(cfs_rq, se);
  834. }
  835. update_stats_curr_start(cfs_rq, se);
  836. cfs_rq->curr = se;
  837. #ifdef CONFIG_SCHEDSTATS
  838. /*
  839. * Track our maximum slice length, if the CPU's load is at
  840. * least twice that of our own weight (i.e. dont track it
  841. * when there are only lesser-weight tasks around):
  842. */
  843. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  844. se->statistics.slice_max = max(se->statistics.slice_max,
  845. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  846. }
  847. #endif
  848. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  849. }
  850. static int
  851. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  852. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  853. {
  854. struct sched_entity *se = __pick_next_entity(cfs_rq);
  855. struct sched_entity *left = se;
  856. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  857. se = cfs_rq->next;
  858. /*
  859. * Prefer last buddy, try to return the CPU to a preempted task.
  860. */
  861. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  862. se = cfs_rq->last;
  863. clear_buddies(cfs_rq, se);
  864. return se;
  865. }
  866. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  867. {
  868. /*
  869. * If still on the runqueue then deactivate_task()
  870. * was not called and update_curr() has to be done:
  871. */
  872. if (prev->on_rq)
  873. update_curr(cfs_rq);
  874. check_spread(cfs_rq, prev);
  875. if (prev->on_rq) {
  876. update_stats_wait_start(cfs_rq, prev);
  877. /* Put 'current' back into the tree. */
  878. __enqueue_entity(cfs_rq, prev);
  879. }
  880. cfs_rq->curr = NULL;
  881. }
  882. static void
  883. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  884. {
  885. /*
  886. * Update run-time statistics of the 'current'.
  887. */
  888. update_curr(cfs_rq);
  889. #ifdef CONFIG_SCHED_HRTICK
  890. /*
  891. * queued ticks are scheduled to match the slice, so don't bother
  892. * validating it and just reschedule.
  893. */
  894. if (queued) {
  895. resched_task(rq_of(cfs_rq)->curr);
  896. return;
  897. }
  898. /*
  899. * don't let the period tick interfere with the hrtick preemption
  900. */
  901. if (!sched_feat(DOUBLE_TICK) &&
  902. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  903. return;
  904. #endif
  905. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  906. check_preempt_tick(cfs_rq, curr);
  907. }
  908. /**************************************************
  909. * CFS operations on tasks:
  910. */
  911. #ifdef CONFIG_SCHED_HRTICK
  912. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  913. {
  914. struct sched_entity *se = &p->se;
  915. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  916. WARN_ON(task_rq(p) != rq);
  917. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  918. u64 slice = sched_slice(cfs_rq, se);
  919. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  920. s64 delta = slice - ran;
  921. if (delta < 0) {
  922. if (rq->curr == p)
  923. resched_task(p);
  924. return;
  925. }
  926. /*
  927. * Don't schedule slices shorter than 10000ns, that just
  928. * doesn't make sense. Rely on vruntime for fairness.
  929. */
  930. if (rq->curr != p)
  931. delta = max_t(s64, 10000LL, delta);
  932. hrtick_start(rq, delta);
  933. }
  934. }
  935. /*
  936. * called from enqueue/dequeue and updates the hrtick when the
  937. * current task is from our class and nr_running is low enough
  938. * to matter.
  939. */
  940. static void hrtick_update(struct rq *rq)
  941. {
  942. struct task_struct *curr = rq->curr;
  943. if (curr->sched_class != &fair_sched_class)
  944. return;
  945. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  946. hrtick_start_fair(rq, curr);
  947. }
  948. #else /* !CONFIG_SCHED_HRTICK */
  949. static inline void
  950. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  951. {
  952. }
  953. static inline void hrtick_update(struct rq *rq)
  954. {
  955. }
  956. #endif
  957. /*
  958. * The enqueue_task method is called before nr_running is
  959. * increased. Here we update the fair scheduling stats and
  960. * then put the task into the rbtree:
  961. */
  962. static void
  963. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  964. {
  965. struct cfs_rq *cfs_rq;
  966. struct sched_entity *se = &p->se;
  967. for_each_sched_entity(se) {
  968. if (se->on_rq)
  969. break;
  970. cfs_rq = cfs_rq_of(se);
  971. enqueue_entity(cfs_rq, se, flags);
  972. flags = ENQUEUE_WAKEUP;
  973. }
  974. for_each_sched_entity(se) {
  975. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  976. update_cfs_load(cfs_rq, 0);
  977. update_cfs_shares(cfs_rq);
  978. }
  979. hrtick_update(rq);
  980. }
  981. /*
  982. * The dequeue_task method is called before nr_running is
  983. * decreased. We remove the task from the rbtree and
  984. * update the fair scheduling stats:
  985. */
  986. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  987. {
  988. struct cfs_rq *cfs_rq;
  989. struct sched_entity *se = &p->se;
  990. for_each_sched_entity(se) {
  991. cfs_rq = cfs_rq_of(se);
  992. dequeue_entity(cfs_rq, se, flags);
  993. /* Don't dequeue parent if it has other entities besides us */
  994. if (cfs_rq->load.weight)
  995. break;
  996. flags |= DEQUEUE_SLEEP;
  997. }
  998. for_each_sched_entity(se) {
  999. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1000. update_cfs_load(cfs_rq, 0);
  1001. update_cfs_shares(cfs_rq);
  1002. }
  1003. hrtick_update(rq);
  1004. }
  1005. /*
  1006. * sched_yield() support is very simple - we dequeue and enqueue.
  1007. *
  1008. * If compat_yield is turned on then we requeue to the end of the tree.
  1009. */
  1010. static void yield_task_fair(struct rq *rq)
  1011. {
  1012. struct task_struct *curr = rq->curr;
  1013. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1014. struct sched_entity *rightmost, *se = &curr->se;
  1015. /*
  1016. * Are we the only task in the tree?
  1017. */
  1018. if (unlikely(cfs_rq->nr_running == 1))
  1019. return;
  1020. clear_buddies(cfs_rq, se);
  1021. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1022. update_rq_clock(rq);
  1023. /*
  1024. * Update run-time statistics of the 'current'.
  1025. */
  1026. update_curr(cfs_rq);
  1027. return;
  1028. }
  1029. /*
  1030. * Find the rightmost entry in the rbtree:
  1031. */
  1032. rightmost = __pick_last_entity(cfs_rq);
  1033. /*
  1034. * Already in the rightmost position?
  1035. */
  1036. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1037. return;
  1038. /*
  1039. * Minimally necessary key value to be last in the tree:
  1040. * Upon rescheduling, sched_class::put_prev_task() will place
  1041. * 'current' within the tree based on its new key value.
  1042. */
  1043. se->vruntime = rightmost->vruntime + 1;
  1044. }
  1045. #ifdef CONFIG_SMP
  1046. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1047. {
  1048. struct sched_entity *se = &p->se;
  1049. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1050. se->vruntime -= cfs_rq->min_vruntime;
  1051. }
  1052. #ifdef CONFIG_FAIR_GROUP_SCHED
  1053. /*
  1054. * effective_load() calculates the load change as seen from the root_task_group
  1055. *
  1056. * Adding load to a group doesn't make a group heavier, but can cause movement
  1057. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1058. * can calculate the shift in shares.
  1059. */
  1060. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1061. {
  1062. struct sched_entity *se = tg->se[cpu];
  1063. if (!tg->parent)
  1064. return wl;
  1065. for_each_sched_entity(se) {
  1066. long S, rw, s, a, b;
  1067. S = se->my_q->tg->shares;
  1068. s = se->load.weight;
  1069. rw = se->my_q->load.weight;
  1070. a = S*(rw + wl);
  1071. b = S*rw + s*wg;
  1072. wl = s*(a-b);
  1073. if (likely(b))
  1074. wl /= b;
  1075. /*
  1076. * Assume the group is already running and will
  1077. * thus already be accounted for in the weight.
  1078. *
  1079. * That is, moving shares between CPUs, does not
  1080. * alter the group weight.
  1081. */
  1082. wg = 0;
  1083. }
  1084. return wl;
  1085. }
  1086. #else
  1087. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1088. unsigned long wl, unsigned long wg)
  1089. {
  1090. return wl;
  1091. }
  1092. #endif
  1093. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1094. {
  1095. unsigned long this_load, load;
  1096. int idx, this_cpu, prev_cpu;
  1097. unsigned long tl_per_task;
  1098. struct task_group *tg;
  1099. unsigned long weight;
  1100. int balanced;
  1101. idx = sd->wake_idx;
  1102. this_cpu = smp_processor_id();
  1103. prev_cpu = task_cpu(p);
  1104. load = source_load(prev_cpu, idx);
  1105. this_load = target_load(this_cpu, idx);
  1106. /*
  1107. * If sync wakeup then subtract the (maximum possible)
  1108. * effect of the currently running task from the load
  1109. * of the current CPU:
  1110. */
  1111. rcu_read_lock();
  1112. if (sync) {
  1113. tg = task_group(current);
  1114. weight = current->se.load.weight;
  1115. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1116. load += effective_load(tg, prev_cpu, 0, -weight);
  1117. }
  1118. tg = task_group(p);
  1119. weight = p->se.load.weight;
  1120. /*
  1121. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1122. * due to the sync cause above having dropped this_load to 0, we'll
  1123. * always have an imbalance, but there's really nothing you can do
  1124. * about that, so that's good too.
  1125. *
  1126. * Otherwise check if either cpus are near enough in load to allow this
  1127. * task to be woken on this_cpu.
  1128. */
  1129. if (this_load) {
  1130. unsigned long this_eff_load, prev_eff_load;
  1131. this_eff_load = 100;
  1132. this_eff_load *= power_of(prev_cpu);
  1133. this_eff_load *= this_load +
  1134. effective_load(tg, this_cpu, weight, weight);
  1135. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1136. prev_eff_load *= power_of(this_cpu);
  1137. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1138. balanced = this_eff_load <= prev_eff_load;
  1139. } else
  1140. balanced = true;
  1141. rcu_read_unlock();
  1142. /*
  1143. * If the currently running task will sleep within
  1144. * a reasonable amount of time then attract this newly
  1145. * woken task:
  1146. */
  1147. if (sync && balanced)
  1148. return 1;
  1149. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1150. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1151. if (balanced ||
  1152. (this_load <= load &&
  1153. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1154. /*
  1155. * This domain has SD_WAKE_AFFINE and
  1156. * p is cache cold in this domain, and
  1157. * there is no bad imbalance.
  1158. */
  1159. schedstat_inc(sd, ttwu_move_affine);
  1160. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1161. return 1;
  1162. }
  1163. return 0;
  1164. }
  1165. /*
  1166. * find_idlest_group finds and returns the least busy CPU group within the
  1167. * domain.
  1168. */
  1169. static struct sched_group *
  1170. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1171. int this_cpu, int load_idx)
  1172. {
  1173. struct sched_group *idlest = NULL, *group = sd->groups;
  1174. unsigned long min_load = ULONG_MAX, this_load = 0;
  1175. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1176. do {
  1177. unsigned long load, avg_load;
  1178. int local_group;
  1179. int i;
  1180. /* Skip over this group if it has no CPUs allowed */
  1181. if (!cpumask_intersects(sched_group_cpus(group),
  1182. &p->cpus_allowed))
  1183. continue;
  1184. local_group = cpumask_test_cpu(this_cpu,
  1185. sched_group_cpus(group));
  1186. /* Tally up the load of all CPUs in the group */
  1187. avg_load = 0;
  1188. for_each_cpu(i, sched_group_cpus(group)) {
  1189. /* Bias balancing toward cpus of our domain */
  1190. if (local_group)
  1191. load = source_load(i, load_idx);
  1192. else
  1193. load = target_load(i, load_idx);
  1194. avg_load += load;
  1195. }
  1196. /* Adjust by relative CPU power of the group */
  1197. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1198. if (local_group) {
  1199. this_load = avg_load;
  1200. } else if (avg_load < min_load) {
  1201. min_load = avg_load;
  1202. idlest = group;
  1203. }
  1204. } while (group = group->next, group != sd->groups);
  1205. if (!idlest || 100*this_load < imbalance*min_load)
  1206. return NULL;
  1207. return idlest;
  1208. }
  1209. /*
  1210. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1211. */
  1212. static int
  1213. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1214. {
  1215. unsigned long load, min_load = ULONG_MAX;
  1216. int idlest = -1;
  1217. int i;
  1218. /* Traverse only the allowed CPUs */
  1219. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1220. load = weighted_cpuload(i);
  1221. if (load < min_load || (load == min_load && i == this_cpu)) {
  1222. min_load = load;
  1223. idlest = i;
  1224. }
  1225. }
  1226. return idlest;
  1227. }
  1228. /*
  1229. * Try and locate an idle CPU in the sched_domain.
  1230. */
  1231. static int select_idle_sibling(struct task_struct *p, int target)
  1232. {
  1233. int cpu = smp_processor_id();
  1234. int prev_cpu = task_cpu(p);
  1235. struct sched_domain *sd;
  1236. int i;
  1237. /*
  1238. * If the task is going to be woken-up on this cpu and if it is
  1239. * already idle, then it is the right target.
  1240. */
  1241. if (target == cpu && idle_cpu(cpu))
  1242. return cpu;
  1243. /*
  1244. * If the task is going to be woken-up on the cpu where it previously
  1245. * ran and if it is currently idle, then it the right target.
  1246. */
  1247. if (target == prev_cpu && idle_cpu(prev_cpu))
  1248. return prev_cpu;
  1249. /*
  1250. * Otherwise, iterate the domains and find an elegible idle cpu.
  1251. */
  1252. for_each_domain(target, sd) {
  1253. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1254. break;
  1255. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1256. if (idle_cpu(i)) {
  1257. target = i;
  1258. break;
  1259. }
  1260. }
  1261. /*
  1262. * Lets stop looking for an idle sibling when we reached
  1263. * the domain that spans the current cpu and prev_cpu.
  1264. */
  1265. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1266. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1267. break;
  1268. }
  1269. return target;
  1270. }
  1271. /*
  1272. * sched_balance_self: balance the current task (running on cpu) in domains
  1273. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1274. * SD_BALANCE_EXEC.
  1275. *
  1276. * Balance, ie. select the least loaded group.
  1277. *
  1278. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1279. *
  1280. * preempt must be disabled.
  1281. */
  1282. static int
  1283. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1284. {
  1285. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1286. int cpu = smp_processor_id();
  1287. int prev_cpu = task_cpu(p);
  1288. int new_cpu = cpu;
  1289. int want_affine = 0;
  1290. int want_sd = 1;
  1291. int sync = wake_flags & WF_SYNC;
  1292. if (sd_flag & SD_BALANCE_WAKE) {
  1293. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1294. want_affine = 1;
  1295. new_cpu = prev_cpu;
  1296. }
  1297. for_each_domain(cpu, tmp) {
  1298. if (!(tmp->flags & SD_LOAD_BALANCE))
  1299. continue;
  1300. /*
  1301. * If power savings logic is enabled for a domain, see if we
  1302. * are not overloaded, if so, don't balance wider.
  1303. */
  1304. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1305. unsigned long power = 0;
  1306. unsigned long nr_running = 0;
  1307. unsigned long capacity;
  1308. int i;
  1309. for_each_cpu(i, sched_domain_span(tmp)) {
  1310. power += power_of(i);
  1311. nr_running += cpu_rq(i)->cfs.nr_running;
  1312. }
  1313. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1314. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1315. nr_running /= 2;
  1316. if (nr_running < capacity)
  1317. want_sd = 0;
  1318. }
  1319. /*
  1320. * If both cpu and prev_cpu are part of this domain,
  1321. * cpu is a valid SD_WAKE_AFFINE target.
  1322. */
  1323. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1324. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1325. affine_sd = tmp;
  1326. want_affine = 0;
  1327. }
  1328. if (!want_sd && !want_affine)
  1329. break;
  1330. if (!(tmp->flags & sd_flag))
  1331. continue;
  1332. if (want_sd)
  1333. sd = tmp;
  1334. }
  1335. if (affine_sd) {
  1336. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1337. return select_idle_sibling(p, cpu);
  1338. else
  1339. return select_idle_sibling(p, prev_cpu);
  1340. }
  1341. while (sd) {
  1342. int load_idx = sd->forkexec_idx;
  1343. struct sched_group *group;
  1344. int weight;
  1345. if (!(sd->flags & sd_flag)) {
  1346. sd = sd->child;
  1347. continue;
  1348. }
  1349. if (sd_flag & SD_BALANCE_WAKE)
  1350. load_idx = sd->wake_idx;
  1351. group = find_idlest_group(sd, p, cpu, load_idx);
  1352. if (!group) {
  1353. sd = sd->child;
  1354. continue;
  1355. }
  1356. new_cpu = find_idlest_cpu(group, p, cpu);
  1357. if (new_cpu == -1 || new_cpu == cpu) {
  1358. /* Now try balancing at a lower domain level of cpu */
  1359. sd = sd->child;
  1360. continue;
  1361. }
  1362. /* Now try balancing at a lower domain level of new_cpu */
  1363. cpu = new_cpu;
  1364. weight = sd->span_weight;
  1365. sd = NULL;
  1366. for_each_domain(cpu, tmp) {
  1367. if (weight <= tmp->span_weight)
  1368. break;
  1369. if (tmp->flags & sd_flag)
  1370. sd = tmp;
  1371. }
  1372. /* while loop will break here if sd == NULL */
  1373. }
  1374. return new_cpu;
  1375. }
  1376. #endif /* CONFIG_SMP */
  1377. static unsigned long
  1378. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1379. {
  1380. unsigned long gran = sysctl_sched_wakeup_granularity;
  1381. /*
  1382. * Since its curr running now, convert the gran from real-time
  1383. * to virtual-time in his units.
  1384. *
  1385. * By using 'se' instead of 'curr' we penalize light tasks, so
  1386. * they get preempted easier. That is, if 'se' < 'curr' then
  1387. * the resulting gran will be larger, therefore penalizing the
  1388. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1389. * be smaller, again penalizing the lighter task.
  1390. *
  1391. * This is especially important for buddies when the leftmost
  1392. * task is higher priority than the buddy.
  1393. */
  1394. if (unlikely(se->load.weight != NICE_0_LOAD))
  1395. gran = calc_delta_fair(gran, se);
  1396. return gran;
  1397. }
  1398. /*
  1399. * Should 'se' preempt 'curr'.
  1400. *
  1401. * |s1
  1402. * |s2
  1403. * |s3
  1404. * g
  1405. * |<--->|c
  1406. *
  1407. * w(c, s1) = -1
  1408. * w(c, s2) = 0
  1409. * w(c, s3) = 1
  1410. *
  1411. */
  1412. static int
  1413. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1414. {
  1415. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1416. if (vdiff <= 0)
  1417. return -1;
  1418. gran = wakeup_gran(curr, se);
  1419. if (vdiff > gran)
  1420. return 1;
  1421. return 0;
  1422. }
  1423. static void set_last_buddy(struct sched_entity *se)
  1424. {
  1425. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1426. for_each_sched_entity(se)
  1427. cfs_rq_of(se)->last = se;
  1428. }
  1429. }
  1430. static void set_next_buddy(struct sched_entity *se)
  1431. {
  1432. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1433. for_each_sched_entity(se)
  1434. cfs_rq_of(se)->next = se;
  1435. }
  1436. }
  1437. /*
  1438. * Preempt the current task with a newly woken task if needed:
  1439. */
  1440. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1441. {
  1442. struct task_struct *curr = rq->curr;
  1443. struct sched_entity *se = &curr->se, *pse = &p->se;
  1444. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1445. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1446. if (unlikely(rt_prio(p->prio)))
  1447. goto preempt;
  1448. if (unlikely(p->sched_class != &fair_sched_class))
  1449. return;
  1450. if (unlikely(se == pse))
  1451. return;
  1452. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1453. set_next_buddy(pse);
  1454. /*
  1455. * We can come here with TIF_NEED_RESCHED already set from new task
  1456. * wake up path.
  1457. */
  1458. if (test_tsk_need_resched(curr))
  1459. return;
  1460. /*
  1461. * Batch and idle tasks do not preempt (their preemption is driven by
  1462. * the tick):
  1463. */
  1464. if (unlikely(p->policy != SCHED_NORMAL))
  1465. return;
  1466. /* Idle tasks are by definition preempted by everybody. */
  1467. if (unlikely(curr->policy == SCHED_IDLE))
  1468. goto preempt;
  1469. if (!sched_feat(WAKEUP_PREEMPT))
  1470. return;
  1471. update_curr(cfs_rq);
  1472. find_matching_se(&se, &pse);
  1473. BUG_ON(!pse);
  1474. if (wakeup_preempt_entity(se, pse) == 1)
  1475. goto preempt;
  1476. return;
  1477. preempt:
  1478. resched_task(curr);
  1479. /*
  1480. * Only set the backward buddy when the current task is still
  1481. * on the rq. This can happen when a wakeup gets interleaved
  1482. * with schedule on the ->pre_schedule() or idle_balance()
  1483. * point, either of which can * drop the rq lock.
  1484. *
  1485. * Also, during early boot the idle thread is in the fair class,
  1486. * for obvious reasons its a bad idea to schedule back to it.
  1487. */
  1488. if (unlikely(!se->on_rq || curr == rq->idle))
  1489. return;
  1490. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1491. set_last_buddy(se);
  1492. }
  1493. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1494. {
  1495. struct task_struct *p;
  1496. struct cfs_rq *cfs_rq = &rq->cfs;
  1497. struct sched_entity *se;
  1498. if (!cfs_rq->nr_running)
  1499. return NULL;
  1500. do {
  1501. se = pick_next_entity(cfs_rq);
  1502. set_next_entity(cfs_rq, se);
  1503. cfs_rq = group_cfs_rq(se);
  1504. } while (cfs_rq);
  1505. p = task_of(se);
  1506. hrtick_start_fair(rq, p);
  1507. return p;
  1508. }
  1509. /*
  1510. * Account for a descheduled task:
  1511. */
  1512. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1513. {
  1514. struct sched_entity *se = &prev->se;
  1515. struct cfs_rq *cfs_rq;
  1516. for_each_sched_entity(se) {
  1517. cfs_rq = cfs_rq_of(se);
  1518. put_prev_entity(cfs_rq, se);
  1519. }
  1520. }
  1521. #ifdef CONFIG_SMP
  1522. /**************************************************
  1523. * Fair scheduling class load-balancing methods:
  1524. */
  1525. /*
  1526. * pull_task - move a task from a remote runqueue to the local runqueue.
  1527. * Both runqueues must be locked.
  1528. */
  1529. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1530. struct rq *this_rq, int this_cpu)
  1531. {
  1532. deactivate_task(src_rq, p, 0);
  1533. set_task_cpu(p, this_cpu);
  1534. activate_task(this_rq, p, 0);
  1535. check_preempt_curr(this_rq, p, 0);
  1536. /* re-arm NEWIDLE balancing when moving tasks */
  1537. src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
  1538. this_rq->idle_stamp = 0;
  1539. }
  1540. /*
  1541. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1542. */
  1543. static
  1544. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1545. struct sched_domain *sd, enum cpu_idle_type idle,
  1546. int *all_pinned)
  1547. {
  1548. int tsk_cache_hot = 0;
  1549. /*
  1550. * We do not migrate tasks that are:
  1551. * 1) running (obviously), or
  1552. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1553. * 3) are cache-hot on their current CPU.
  1554. */
  1555. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1556. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1557. return 0;
  1558. }
  1559. *all_pinned = 0;
  1560. if (task_running(rq, p)) {
  1561. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1562. return 0;
  1563. }
  1564. /*
  1565. * Aggressive migration if:
  1566. * 1) task is cache cold, or
  1567. * 2) too many balance attempts have failed.
  1568. */
  1569. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1570. if (!tsk_cache_hot ||
  1571. sd->nr_balance_failed > sd->cache_nice_tries) {
  1572. #ifdef CONFIG_SCHEDSTATS
  1573. if (tsk_cache_hot) {
  1574. schedstat_inc(sd, lb_hot_gained[idle]);
  1575. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1576. }
  1577. #endif
  1578. return 1;
  1579. }
  1580. if (tsk_cache_hot) {
  1581. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1582. return 0;
  1583. }
  1584. return 1;
  1585. }
  1586. /*
  1587. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1588. * part of active balancing operations within "domain".
  1589. * Returns 1 if successful and 0 otherwise.
  1590. *
  1591. * Called with both runqueues locked.
  1592. */
  1593. static int
  1594. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1595. struct sched_domain *sd, enum cpu_idle_type idle)
  1596. {
  1597. struct task_struct *p, *n;
  1598. struct cfs_rq *cfs_rq;
  1599. int pinned = 0;
  1600. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1601. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1602. if (!can_migrate_task(p, busiest, this_cpu,
  1603. sd, idle, &pinned))
  1604. continue;
  1605. pull_task(busiest, p, this_rq, this_cpu);
  1606. /*
  1607. * Right now, this is only the second place pull_task()
  1608. * is called, so we can safely collect pull_task()
  1609. * stats here rather than inside pull_task().
  1610. */
  1611. schedstat_inc(sd, lb_gained[idle]);
  1612. return 1;
  1613. }
  1614. }
  1615. return 0;
  1616. }
  1617. static unsigned long
  1618. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1619. unsigned long max_load_move, struct sched_domain *sd,
  1620. enum cpu_idle_type idle, int *all_pinned,
  1621. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1622. {
  1623. int loops = 0, pulled = 0, pinned = 0;
  1624. long rem_load_move = max_load_move;
  1625. struct task_struct *p, *n;
  1626. if (max_load_move == 0)
  1627. goto out;
  1628. pinned = 1;
  1629. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1630. if (loops++ > sysctl_sched_nr_migrate)
  1631. break;
  1632. if ((p->se.load.weight >> 1) > rem_load_move ||
  1633. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1634. continue;
  1635. pull_task(busiest, p, this_rq, this_cpu);
  1636. pulled++;
  1637. rem_load_move -= p->se.load.weight;
  1638. #ifdef CONFIG_PREEMPT
  1639. /*
  1640. * NEWIDLE balancing is a source of latency, so preemptible
  1641. * kernels will stop after the first task is pulled to minimize
  1642. * the critical section.
  1643. */
  1644. if (idle == CPU_NEWLY_IDLE)
  1645. break;
  1646. #endif
  1647. /*
  1648. * We only want to steal up to the prescribed amount of
  1649. * weighted load.
  1650. */
  1651. if (rem_load_move <= 0)
  1652. break;
  1653. if (p->prio < *this_best_prio)
  1654. *this_best_prio = p->prio;
  1655. }
  1656. out:
  1657. /*
  1658. * Right now, this is one of only two places pull_task() is called,
  1659. * so we can safely collect pull_task() stats here rather than
  1660. * inside pull_task().
  1661. */
  1662. schedstat_add(sd, lb_gained[idle], pulled);
  1663. if (all_pinned)
  1664. *all_pinned = pinned;
  1665. return max_load_move - rem_load_move;
  1666. }
  1667. #ifdef CONFIG_FAIR_GROUP_SCHED
  1668. /*
  1669. * update tg->load_weight by folding this cpu's load_avg
  1670. */
  1671. static int tg_shares_up(struct task_group *tg, int cpu)
  1672. {
  1673. struct cfs_rq *cfs_rq;
  1674. unsigned long flags;
  1675. struct rq *rq;
  1676. long load_avg;
  1677. if (!tg->se[cpu])
  1678. return 0;
  1679. rq = cpu_rq(cpu);
  1680. cfs_rq = tg->cfs_rq[cpu];
  1681. raw_spin_lock_irqsave(&rq->lock, flags);
  1682. update_rq_clock(rq);
  1683. update_cfs_load(cfs_rq, 1);
  1684. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  1685. load_avg -= cfs_rq->load_contribution;
  1686. atomic_add(load_avg, &tg->load_weight);
  1687. cfs_rq->load_contribution += load_avg;
  1688. /*
  1689. * We need to update shares after updating tg->load_weight in
  1690. * order to adjust the weight of groups with long running tasks.
  1691. */
  1692. update_cfs_shares(cfs_rq);
  1693. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1694. return 0;
  1695. }
  1696. static void update_shares(int cpu)
  1697. {
  1698. struct cfs_rq *cfs_rq;
  1699. struct rq *rq = cpu_rq(cpu);
  1700. rcu_read_lock();
  1701. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1702. struct task_group *tg = cfs_rq->tg;
  1703. do {
  1704. tg_shares_up(tg, cpu);
  1705. tg = tg->parent;
  1706. } while (tg);
  1707. }
  1708. rcu_read_unlock();
  1709. }
  1710. static unsigned long
  1711. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1712. unsigned long max_load_move,
  1713. struct sched_domain *sd, enum cpu_idle_type idle,
  1714. int *all_pinned, int *this_best_prio)
  1715. {
  1716. long rem_load_move = max_load_move;
  1717. int busiest_cpu = cpu_of(busiest);
  1718. struct task_group *tg;
  1719. rcu_read_lock();
  1720. update_h_load(busiest_cpu);
  1721. list_for_each_entry_rcu(tg, &task_groups, list) {
  1722. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1723. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1724. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1725. u64 rem_load, moved_load;
  1726. /*
  1727. * empty group
  1728. */
  1729. if (!busiest_cfs_rq->task_weight)
  1730. continue;
  1731. rem_load = (u64)rem_load_move * busiest_weight;
  1732. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1733. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1734. rem_load, sd, idle, all_pinned, this_best_prio,
  1735. busiest_cfs_rq);
  1736. if (!moved_load)
  1737. continue;
  1738. moved_load *= busiest_h_load;
  1739. moved_load = div_u64(moved_load, busiest_weight + 1);
  1740. rem_load_move -= moved_load;
  1741. if (rem_load_move < 0)
  1742. break;
  1743. }
  1744. rcu_read_unlock();
  1745. return max_load_move - rem_load_move;
  1746. }
  1747. #else
  1748. static inline void update_shares(int cpu)
  1749. {
  1750. }
  1751. static unsigned long
  1752. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1753. unsigned long max_load_move,
  1754. struct sched_domain *sd, enum cpu_idle_type idle,
  1755. int *all_pinned, int *this_best_prio)
  1756. {
  1757. return balance_tasks(this_rq, this_cpu, busiest,
  1758. max_load_move, sd, idle, all_pinned,
  1759. this_best_prio, &busiest->cfs);
  1760. }
  1761. #endif
  1762. /*
  1763. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1764. * this_rq, as part of a balancing operation within domain "sd".
  1765. * Returns 1 if successful and 0 otherwise.
  1766. *
  1767. * Called with both runqueues locked.
  1768. */
  1769. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1770. unsigned long max_load_move,
  1771. struct sched_domain *sd, enum cpu_idle_type idle,
  1772. int *all_pinned)
  1773. {
  1774. unsigned long total_load_moved = 0, load_moved;
  1775. int this_best_prio = this_rq->curr->prio;
  1776. do {
  1777. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1778. max_load_move - total_load_moved,
  1779. sd, idle, all_pinned, &this_best_prio);
  1780. total_load_moved += load_moved;
  1781. #ifdef CONFIG_PREEMPT
  1782. /*
  1783. * NEWIDLE balancing is a source of latency, so preemptible
  1784. * kernels will stop after the first task is pulled to minimize
  1785. * the critical section.
  1786. */
  1787. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1788. break;
  1789. if (raw_spin_is_contended(&this_rq->lock) ||
  1790. raw_spin_is_contended(&busiest->lock))
  1791. break;
  1792. #endif
  1793. } while (load_moved && max_load_move > total_load_moved);
  1794. return total_load_moved > 0;
  1795. }
  1796. /********** Helpers for find_busiest_group ************************/
  1797. /*
  1798. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1799. * during load balancing.
  1800. */
  1801. struct sd_lb_stats {
  1802. struct sched_group *busiest; /* Busiest group in this sd */
  1803. struct sched_group *this; /* Local group in this sd */
  1804. unsigned long total_load; /* Total load of all groups in sd */
  1805. unsigned long total_pwr; /* Total power of all groups in sd */
  1806. unsigned long avg_load; /* Average load across all groups in sd */
  1807. /** Statistics of this group */
  1808. unsigned long this_load;
  1809. unsigned long this_load_per_task;
  1810. unsigned long this_nr_running;
  1811. unsigned long this_has_capacity;
  1812. /* Statistics of the busiest group */
  1813. unsigned long max_load;
  1814. unsigned long busiest_load_per_task;
  1815. unsigned long busiest_nr_running;
  1816. unsigned long busiest_group_capacity;
  1817. unsigned long busiest_has_capacity;
  1818. int group_imb; /* Is there imbalance in this sd */
  1819. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1820. int power_savings_balance; /* Is powersave balance needed for this sd */
  1821. struct sched_group *group_min; /* Least loaded group in sd */
  1822. struct sched_group *group_leader; /* Group which relieves group_min */
  1823. unsigned long min_load_per_task; /* load_per_task in group_min */
  1824. unsigned long leader_nr_running; /* Nr running of group_leader */
  1825. unsigned long min_nr_running; /* Nr running of group_min */
  1826. #endif
  1827. };
  1828. /*
  1829. * sg_lb_stats - stats of a sched_group required for load_balancing
  1830. */
  1831. struct sg_lb_stats {
  1832. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1833. unsigned long group_load; /* Total load over the CPUs of the group */
  1834. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1835. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1836. unsigned long group_capacity;
  1837. int group_imb; /* Is there an imbalance in the group ? */
  1838. int group_has_capacity; /* Is there extra capacity in the group? */
  1839. };
  1840. /**
  1841. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1842. * @group: The group whose first cpu is to be returned.
  1843. */
  1844. static inline unsigned int group_first_cpu(struct sched_group *group)
  1845. {
  1846. return cpumask_first(sched_group_cpus(group));
  1847. }
  1848. /**
  1849. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1850. * @sd: The sched_domain whose load_idx is to be obtained.
  1851. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1852. */
  1853. static inline int get_sd_load_idx(struct sched_domain *sd,
  1854. enum cpu_idle_type idle)
  1855. {
  1856. int load_idx;
  1857. switch (idle) {
  1858. case CPU_NOT_IDLE:
  1859. load_idx = sd->busy_idx;
  1860. break;
  1861. case CPU_NEWLY_IDLE:
  1862. load_idx = sd->newidle_idx;
  1863. break;
  1864. default:
  1865. load_idx = sd->idle_idx;
  1866. break;
  1867. }
  1868. return load_idx;
  1869. }
  1870. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1871. /**
  1872. * init_sd_power_savings_stats - Initialize power savings statistics for
  1873. * the given sched_domain, during load balancing.
  1874. *
  1875. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1876. * @sds: Variable containing the statistics for sd.
  1877. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1878. */
  1879. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1880. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1881. {
  1882. /*
  1883. * Busy processors will not participate in power savings
  1884. * balance.
  1885. */
  1886. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1887. sds->power_savings_balance = 0;
  1888. else {
  1889. sds->power_savings_balance = 1;
  1890. sds->min_nr_running = ULONG_MAX;
  1891. sds->leader_nr_running = 0;
  1892. }
  1893. }
  1894. /**
  1895. * update_sd_power_savings_stats - Update the power saving stats for a
  1896. * sched_domain while performing load balancing.
  1897. *
  1898. * @group: sched_group belonging to the sched_domain under consideration.
  1899. * @sds: Variable containing the statistics of the sched_domain
  1900. * @local_group: Does group contain the CPU for which we're performing
  1901. * load balancing ?
  1902. * @sgs: Variable containing the statistics of the group.
  1903. */
  1904. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1905. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1906. {
  1907. if (!sds->power_savings_balance)
  1908. return;
  1909. /*
  1910. * If the local group is idle or completely loaded
  1911. * no need to do power savings balance at this domain
  1912. */
  1913. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1914. !sds->this_nr_running))
  1915. sds->power_savings_balance = 0;
  1916. /*
  1917. * If a group is already running at full capacity or idle,
  1918. * don't include that group in power savings calculations
  1919. */
  1920. if (!sds->power_savings_balance ||
  1921. sgs->sum_nr_running >= sgs->group_capacity ||
  1922. !sgs->sum_nr_running)
  1923. return;
  1924. /*
  1925. * Calculate the group which has the least non-idle load.
  1926. * This is the group from where we need to pick up the load
  1927. * for saving power
  1928. */
  1929. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1930. (sgs->sum_nr_running == sds->min_nr_running &&
  1931. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1932. sds->group_min = group;
  1933. sds->min_nr_running = sgs->sum_nr_running;
  1934. sds->min_load_per_task = sgs->sum_weighted_load /
  1935. sgs->sum_nr_running;
  1936. }
  1937. /*
  1938. * Calculate the group which is almost near its
  1939. * capacity but still has some space to pick up some load
  1940. * from other group and save more power
  1941. */
  1942. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1943. return;
  1944. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1945. (sgs->sum_nr_running == sds->leader_nr_running &&
  1946. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1947. sds->group_leader = group;
  1948. sds->leader_nr_running = sgs->sum_nr_running;
  1949. }
  1950. }
  1951. /**
  1952. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1953. * @sds: Variable containing the statistics of the sched_domain
  1954. * under consideration.
  1955. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1956. * @imbalance: Variable to store the imbalance.
  1957. *
  1958. * Description:
  1959. * Check if we have potential to perform some power-savings balance.
  1960. * If yes, set the busiest group to be the least loaded group in the
  1961. * sched_domain, so that it's CPUs can be put to idle.
  1962. *
  1963. * Returns 1 if there is potential to perform power-savings balance.
  1964. * Else returns 0.
  1965. */
  1966. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1967. int this_cpu, unsigned long *imbalance)
  1968. {
  1969. if (!sds->power_savings_balance)
  1970. return 0;
  1971. if (sds->this != sds->group_leader ||
  1972. sds->group_leader == sds->group_min)
  1973. return 0;
  1974. *imbalance = sds->min_load_per_task;
  1975. sds->busiest = sds->group_min;
  1976. return 1;
  1977. }
  1978. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1979. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1980. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1981. {
  1982. return;
  1983. }
  1984. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1985. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1986. {
  1987. return;
  1988. }
  1989. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1990. int this_cpu, unsigned long *imbalance)
  1991. {
  1992. return 0;
  1993. }
  1994. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1995. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1996. {
  1997. return SCHED_LOAD_SCALE;
  1998. }
  1999. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2000. {
  2001. return default_scale_freq_power(sd, cpu);
  2002. }
  2003. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2004. {
  2005. unsigned long weight = sd->span_weight;
  2006. unsigned long smt_gain = sd->smt_gain;
  2007. smt_gain /= weight;
  2008. return smt_gain;
  2009. }
  2010. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2011. {
  2012. return default_scale_smt_power(sd, cpu);
  2013. }
  2014. unsigned long scale_rt_power(int cpu)
  2015. {
  2016. struct rq *rq = cpu_rq(cpu);
  2017. u64 total, available;
  2018. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2019. if (unlikely(total < rq->rt_avg)) {
  2020. /* Ensures that power won't end up being negative */
  2021. available = 0;
  2022. } else {
  2023. available = total - rq->rt_avg;
  2024. }
  2025. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2026. total = SCHED_LOAD_SCALE;
  2027. total >>= SCHED_LOAD_SHIFT;
  2028. return div_u64(available, total);
  2029. }
  2030. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2031. {
  2032. unsigned long weight = sd->span_weight;
  2033. unsigned long power = SCHED_LOAD_SCALE;
  2034. struct sched_group *sdg = sd->groups;
  2035. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2036. if (sched_feat(ARCH_POWER))
  2037. power *= arch_scale_smt_power(sd, cpu);
  2038. else
  2039. power *= default_scale_smt_power(sd, cpu);
  2040. power >>= SCHED_LOAD_SHIFT;
  2041. }
  2042. sdg->cpu_power_orig = power;
  2043. if (sched_feat(ARCH_POWER))
  2044. power *= arch_scale_freq_power(sd, cpu);
  2045. else
  2046. power *= default_scale_freq_power(sd, cpu);
  2047. power >>= SCHED_LOAD_SHIFT;
  2048. power *= scale_rt_power(cpu);
  2049. power >>= SCHED_LOAD_SHIFT;
  2050. if (!power)
  2051. power = 1;
  2052. cpu_rq(cpu)->cpu_power = power;
  2053. sdg->cpu_power = power;
  2054. }
  2055. static void update_group_power(struct sched_domain *sd, int cpu)
  2056. {
  2057. struct sched_domain *child = sd->child;
  2058. struct sched_group *group, *sdg = sd->groups;
  2059. unsigned long power;
  2060. if (!child) {
  2061. update_cpu_power(sd, cpu);
  2062. return;
  2063. }
  2064. power = 0;
  2065. group = child->groups;
  2066. do {
  2067. power += group->cpu_power;
  2068. group = group->next;
  2069. } while (group != child->groups);
  2070. sdg->cpu_power = power;
  2071. }
  2072. /*
  2073. * Try and fix up capacity for tiny siblings, this is needed when
  2074. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2075. * which on its own isn't powerful enough.
  2076. *
  2077. * See update_sd_pick_busiest() and check_asym_packing().
  2078. */
  2079. static inline int
  2080. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2081. {
  2082. /*
  2083. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2084. */
  2085. if (sd->level != SD_LV_SIBLING)
  2086. return 0;
  2087. /*
  2088. * If ~90% of the cpu_power is still there, we're good.
  2089. */
  2090. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2091. return 1;
  2092. return 0;
  2093. }
  2094. /**
  2095. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2096. * @sd: The sched_domain whose statistics are to be updated.
  2097. * @group: sched_group whose statistics are to be updated.
  2098. * @this_cpu: Cpu for which load balance is currently performed.
  2099. * @idle: Idle status of this_cpu
  2100. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2101. * @sd_idle: Idle status of the sched_domain containing group.
  2102. * @local_group: Does group contain this_cpu.
  2103. * @cpus: Set of cpus considered for load balancing.
  2104. * @balance: Should we balance.
  2105. * @sgs: variable to hold the statistics for this group.
  2106. */
  2107. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2108. struct sched_group *group, int this_cpu,
  2109. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2110. int local_group, const struct cpumask *cpus,
  2111. int *balance, struct sg_lb_stats *sgs)
  2112. {
  2113. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2114. int i;
  2115. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2116. unsigned long avg_load_per_task = 0;
  2117. if (local_group)
  2118. balance_cpu = group_first_cpu(group);
  2119. /* Tally up the load of all CPUs in the group */
  2120. max_cpu_load = 0;
  2121. min_cpu_load = ~0UL;
  2122. max_nr_running = 0;
  2123. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2124. struct rq *rq = cpu_rq(i);
  2125. if (*sd_idle && rq->nr_running)
  2126. *sd_idle = 0;
  2127. /* Bias balancing toward cpus of our domain */
  2128. if (local_group) {
  2129. if (idle_cpu(i) && !first_idle_cpu) {
  2130. first_idle_cpu = 1;
  2131. balance_cpu = i;
  2132. }
  2133. load = target_load(i, load_idx);
  2134. } else {
  2135. load = source_load(i, load_idx);
  2136. if (load > max_cpu_load) {
  2137. max_cpu_load = load;
  2138. max_nr_running = rq->nr_running;
  2139. }
  2140. if (min_cpu_load > load)
  2141. min_cpu_load = load;
  2142. }
  2143. sgs->group_load += load;
  2144. sgs->sum_nr_running += rq->nr_running;
  2145. sgs->sum_weighted_load += weighted_cpuload(i);
  2146. }
  2147. /*
  2148. * First idle cpu or the first cpu(busiest) in this sched group
  2149. * is eligible for doing load balancing at this and above
  2150. * domains. In the newly idle case, we will allow all the cpu's
  2151. * to do the newly idle load balance.
  2152. */
  2153. if (idle != CPU_NEWLY_IDLE && local_group) {
  2154. if (balance_cpu != this_cpu) {
  2155. *balance = 0;
  2156. return;
  2157. }
  2158. update_group_power(sd, this_cpu);
  2159. }
  2160. /* Adjust by relative CPU power of the group */
  2161. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2162. /*
  2163. * Consider the group unbalanced when the imbalance is larger
  2164. * than the average weight of two tasks.
  2165. *
  2166. * APZ: with cgroup the avg task weight can vary wildly and
  2167. * might not be a suitable number - should we keep a
  2168. * normalized nr_running number somewhere that negates
  2169. * the hierarchy?
  2170. */
  2171. if (sgs->sum_nr_running)
  2172. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2173. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2174. sgs->group_imb = 1;
  2175. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2176. if (!sgs->group_capacity)
  2177. sgs->group_capacity = fix_small_capacity(sd, group);
  2178. if (sgs->group_capacity > sgs->sum_nr_running)
  2179. sgs->group_has_capacity = 1;
  2180. }
  2181. /**
  2182. * update_sd_pick_busiest - return 1 on busiest group
  2183. * @sd: sched_domain whose statistics are to be checked
  2184. * @sds: sched_domain statistics
  2185. * @sg: sched_group candidate to be checked for being the busiest
  2186. * @sgs: sched_group statistics
  2187. * @this_cpu: the current cpu
  2188. *
  2189. * Determine if @sg is a busier group than the previously selected
  2190. * busiest group.
  2191. */
  2192. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2193. struct sd_lb_stats *sds,
  2194. struct sched_group *sg,
  2195. struct sg_lb_stats *sgs,
  2196. int this_cpu)
  2197. {
  2198. if (sgs->avg_load <= sds->max_load)
  2199. return false;
  2200. if (sgs->sum_nr_running > sgs->group_capacity)
  2201. return true;
  2202. if (sgs->group_imb)
  2203. return true;
  2204. /*
  2205. * ASYM_PACKING needs to move all the work to the lowest
  2206. * numbered CPUs in the group, therefore mark all groups
  2207. * higher than ourself as busy.
  2208. */
  2209. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2210. this_cpu < group_first_cpu(sg)) {
  2211. if (!sds->busiest)
  2212. return true;
  2213. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2214. return true;
  2215. }
  2216. return false;
  2217. }
  2218. /**
  2219. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2220. * @sd: sched_domain whose statistics are to be updated.
  2221. * @this_cpu: Cpu for which load balance is currently performed.
  2222. * @idle: Idle status of this_cpu
  2223. * @sd_idle: Idle status of the sched_domain containing sg.
  2224. * @cpus: Set of cpus considered for load balancing.
  2225. * @balance: Should we balance.
  2226. * @sds: variable to hold the statistics for this sched_domain.
  2227. */
  2228. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2229. enum cpu_idle_type idle, int *sd_idle,
  2230. const struct cpumask *cpus, int *balance,
  2231. struct sd_lb_stats *sds)
  2232. {
  2233. struct sched_domain *child = sd->child;
  2234. struct sched_group *sg = sd->groups;
  2235. struct sg_lb_stats sgs;
  2236. int load_idx, prefer_sibling = 0;
  2237. if (child && child->flags & SD_PREFER_SIBLING)
  2238. prefer_sibling = 1;
  2239. init_sd_power_savings_stats(sd, sds, idle);
  2240. load_idx = get_sd_load_idx(sd, idle);
  2241. do {
  2242. int local_group;
  2243. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2244. memset(&sgs, 0, sizeof(sgs));
  2245. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2246. local_group, cpus, balance, &sgs);
  2247. if (local_group && !(*balance))
  2248. return;
  2249. sds->total_load += sgs.group_load;
  2250. sds->total_pwr += sg->cpu_power;
  2251. /*
  2252. * In case the child domain prefers tasks go to siblings
  2253. * first, lower the sg capacity to one so that we'll try
  2254. * and move all the excess tasks away. We lower the capacity
  2255. * of a group only if the local group has the capacity to fit
  2256. * these excess tasks, i.e. nr_running < group_capacity. The
  2257. * extra check prevents the case where you always pull from the
  2258. * heaviest group when it is already under-utilized (possible
  2259. * with a large weight task outweighs the tasks on the system).
  2260. */
  2261. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2262. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2263. if (local_group) {
  2264. sds->this_load = sgs.avg_load;
  2265. sds->this = sg;
  2266. sds->this_nr_running = sgs.sum_nr_running;
  2267. sds->this_load_per_task = sgs.sum_weighted_load;
  2268. sds->this_has_capacity = sgs.group_has_capacity;
  2269. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2270. sds->max_load = sgs.avg_load;
  2271. sds->busiest = sg;
  2272. sds->busiest_nr_running = sgs.sum_nr_running;
  2273. sds->busiest_group_capacity = sgs.group_capacity;
  2274. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2275. sds->busiest_has_capacity = sgs.group_has_capacity;
  2276. sds->group_imb = sgs.group_imb;
  2277. }
  2278. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2279. sg = sg->next;
  2280. } while (sg != sd->groups);
  2281. }
  2282. int __weak arch_sd_sibling_asym_packing(void)
  2283. {
  2284. return 0*SD_ASYM_PACKING;
  2285. }
  2286. /**
  2287. * check_asym_packing - Check to see if the group is packed into the
  2288. * sched doman.
  2289. *
  2290. * This is primarily intended to used at the sibling level. Some
  2291. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2292. * case of POWER7, it can move to lower SMT modes only when higher
  2293. * threads are idle. When in lower SMT modes, the threads will
  2294. * perform better since they share less core resources. Hence when we
  2295. * have idle threads, we want them to be the higher ones.
  2296. *
  2297. * This packing function is run on idle threads. It checks to see if
  2298. * the busiest CPU in this domain (core in the P7 case) has a higher
  2299. * CPU number than the packing function is being run on. Here we are
  2300. * assuming lower CPU number will be equivalent to lower a SMT thread
  2301. * number.
  2302. *
  2303. * Returns 1 when packing is required and a task should be moved to
  2304. * this CPU. The amount of the imbalance is returned in *imbalance.
  2305. *
  2306. * @sd: The sched_domain whose packing is to be checked.
  2307. * @sds: Statistics of the sched_domain which is to be packed
  2308. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2309. * @imbalance: returns amount of imbalanced due to packing.
  2310. */
  2311. static int check_asym_packing(struct sched_domain *sd,
  2312. struct sd_lb_stats *sds,
  2313. int this_cpu, unsigned long *imbalance)
  2314. {
  2315. int busiest_cpu;
  2316. if (!(sd->flags & SD_ASYM_PACKING))
  2317. return 0;
  2318. if (!sds->busiest)
  2319. return 0;
  2320. busiest_cpu = group_first_cpu(sds->busiest);
  2321. if (this_cpu > busiest_cpu)
  2322. return 0;
  2323. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2324. SCHED_LOAD_SCALE);
  2325. return 1;
  2326. }
  2327. /**
  2328. * fix_small_imbalance - Calculate the minor imbalance that exists
  2329. * amongst the groups of a sched_domain, during
  2330. * load balancing.
  2331. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2332. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2333. * @imbalance: Variable to store the imbalance.
  2334. */
  2335. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2336. int this_cpu, unsigned long *imbalance)
  2337. {
  2338. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2339. unsigned int imbn = 2;
  2340. unsigned long scaled_busy_load_per_task;
  2341. if (sds->this_nr_running) {
  2342. sds->this_load_per_task /= sds->this_nr_running;
  2343. if (sds->busiest_load_per_task >
  2344. sds->this_load_per_task)
  2345. imbn = 1;
  2346. } else
  2347. sds->this_load_per_task =
  2348. cpu_avg_load_per_task(this_cpu);
  2349. scaled_busy_load_per_task = sds->busiest_load_per_task
  2350. * SCHED_LOAD_SCALE;
  2351. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2352. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2353. (scaled_busy_load_per_task * imbn)) {
  2354. *imbalance = sds->busiest_load_per_task;
  2355. return;
  2356. }
  2357. /*
  2358. * OK, we don't have enough imbalance to justify moving tasks,
  2359. * however we may be able to increase total CPU power used by
  2360. * moving them.
  2361. */
  2362. pwr_now += sds->busiest->cpu_power *
  2363. min(sds->busiest_load_per_task, sds->max_load);
  2364. pwr_now += sds->this->cpu_power *
  2365. min(sds->this_load_per_task, sds->this_load);
  2366. pwr_now /= SCHED_LOAD_SCALE;
  2367. /* Amount of load we'd subtract */
  2368. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2369. sds->busiest->cpu_power;
  2370. if (sds->max_load > tmp)
  2371. pwr_move += sds->busiest->cpu_power *
  2372. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2373. /* Amount of load we'd add */
  2374. if (sds->max_load * sds->busiest->cpu_power <
  2375. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2376. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2377. sds->this->cpu_power;
  2378. else
  2379. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2380. sds->this->cpu_power;
  2381. pwr_move += sds->this->cpu_power *
  2382. min(sds->this_load_per_task, sds->this_load + tmp);
  2383. pwr_move /= SCHED_LOAD_SCALE;
  2384. /* Move if we gain throughput */
  2385. if (pwr_move > pwr_now)
  2386. *imbalance = sds->busiest_load_per_task;
  2387. }
  2388. /**
  2389. * calculate_imbalance - Calculate the amount of imbalance present within the
  2390. * groups of a given sched_domain during load balance.
  2391. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2392. * @this_cpu: Cpu for which currently load balance is being performed.
  2393. * @imbalance: The variable to store the imbalance.
  2394. */
  2395. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2396. unsigned long *imbalance)
  2397. {
  2398. unsigned long max_pull, load_above_capacity = ~0UL;
  2399. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2400. if (sds->group_imb) {
  2401. sds->busiest_load_per_task =
  2402. min(sds->busiest_load_per_task, sds->avg_load);
  2403. }
  2404. /*
  2405. * In the presence of smp nice balancing, certain scenarios can have
  2406. * max load less than avg load(as we skip the groups at or below
  2407. * its cpu_power, while calculating max_load..)
  2408. */
  2409. if (sds->max_load < sds->avg_load) {
  2410. *imbalance = 0;
  2411. return fix_small_imbalance(sds, this_cpu, imbalance);
  2412. }
  2413. if (!sds->group_imb) {
  2414. /*
  2415. * Don't want to pull so many tasks that a group would go idle.
  2416. */
  2417. load_above_capacity = (sds->busiest_nr_running -
  2418. sds->busiest_group_capacity);
  2419. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2420. load_above_capacity /= sds->busiest->cpu_power;
  2421. }
  2422. /*
  2423. * We're trying to get all the cpus to the average_load, so we don't
  2424. * want to push ourselves above the average load, nor do we wish to
  2425. * reduce the max loaded cpu below the average load. At the same time,
  2426. * we also don't want to reduce the group load below the group capacity
  2427. * (so that we can implement power-savings policies etc). Thus we look
  2428. * for the minimum possible imbalance.
  2429. * Be careful of negative numbers as they'll appear as very large values
  2430. * with unsigned longs.
  2431. */
  2432. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2433. /* How much load to actually move to equalise the imbalance */
  2434. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2435. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2436. / SCHED_LOAD_SCALE;
  2437. /*
  2438. * if *imbalance is less than the average load per runnable task
  2439. * there is no gaurantee that any tasks will be moved so we'll have
  2440. * a think about bumping its value to force at least one task to be
  2441. * moved
  2442. */
  2443. if (*imbalance < sds->busiest_load_per_task)
  2444. return fix_small_imbalance(sds, this_cpu, imbalance);
  2445. }
  2446. /******* find_busiest_group() helpers end here *********************/
  2447. /**
  2448. * find_busiest_group - Returns the busiest group within the sched_domain
  2449. * if there is an imbalance. If there isn't an imbalance, and
  2450. * the user has opted for power-savings, it returns a group whose
  2451. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2452. * such a group exists.
  2453. *
  2454. * Also calculates the amount of weighted load which should be moved
  2455. * to restore balance.
  2456. *
  2457. * @sd: The sched_domain whose busiest group is to be returned.
  2458. * @this_cpu: The cpu for which load balancing is currently being performed.
  2459. * @imbalance: Variable which stores amount of weighted load which should
  2460. * be moved to restore balance/put a group to idle.
  2461. * @idle: The idle status of this_cpu.
  2462. * @sd_idle: The idleness of sd
  2463. * @cpus: The set of CPUs under consideration for load-balancing.
  2464. * @balance: Pointer to a variable indicating if this_cpu
  2465. * is the appropriate cpu to perform load balancing at this_level.
  2466. *
  2467. * Returns: - the busiest group if imbalance exists.
  2468. * - If no imbalance and user has opted for power-savings balance,
  2469. * return the least loaded group whose CPUs can be
  2470. * put to idle by rebalancing its tasks onto our group.
  2471. */
  2472. static struct sched_group *
  2473. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2474. unsigned long *imbalance, enum cpu_idle_type idle,
  2475. int *sd_idle, const struct cpumask *cpus, int *balance)
  2476. {
  2477. struct sd_lb_stats sds;
  2478. memset(&sds, 0, sizeof(sds));
  2479. /*
  2480. * Compute the various statistics relavent for load balancing at
  2481. * this level.
  2482. */
  2483. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2484. balance, &sds);
  2485. /* Cases where imbalance does not exist from POV of this_cpu */
  2486. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2487. * at this level.
  2488. * 2) There is no busy sibling group to pull from.
  2489. * 3) This group is the busiest group.
  2490. * 4) This group is more busy than the avg busieness at this
  2491. * sched_domain.
  2492. * 5) The imbalance is within the specified limit.
  2493. *
  2494. * Note: when doing newidle balance, if the local group has excess
  2495. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2496. * does not have any capacity, we force a load balance to pull tasks
  2497. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2498. */
  2499. if (!(*balance))
  2500. goto ret;
  2501. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2502. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2503. return sds.busiest;
  2504. if (!sds.busiest || sds.busiest_nr_running == 0)
  2505. goto out_balanced;
  2506. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2507. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2508. !sds.busiest_has_capacity)
  2509. goto force_balance;
  2510. if (sds.this_load >= sds.max_load)
  2511. goto out_balanced;
  2512. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2513. if (sds.this_load >= sds.avg_load)
  2514. goto out_balanced;
  2515. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2516. goto out_balanced;
  2517. force_balance:
  2518. /* Looks like there is an imbalance. Compute it */
  2519. calculate_imbalance(&sds, this_cpu, imbalance);
  2520. return sds.busiest;
  2521. out_balanced:
  2522. /*
  2523. * There is no obvious imbalance. But check if we can do some balancing
  2524. * to save power.
  2525. */
  2526. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2527. return sds.busiest;
  2528. ret:
  2529. *imbalance = 0;
  2530. return NULL;
  2531. }
  2532. /*
  2533. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2534. */
  2535. static struct rq *
  2536. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2537. enum cpu_idle_type idle, unsigned long imbalance,
  2538. const struct cpumask *cpus)
  2539. {
  2540. struct rq *busiest = NULL, *rq;
  2541. unsigned long max_load = 0;
  2542. int i;
  2543. for_each_cpu(i, sched_group_cpus(group)) {
  2544. unsigned long power = power_of(i);
  2545. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2546. unsigned long wl;
  2547. if (!capacity)
  2548. capacity = fix_small_capacity(sd, group);
  2549. if (!cpumask_test_cpu(i, cpus))
  2550. continue;
  2551. rq = cpu_rq(i);
  2552. wl = weighted_cpuload(i);
  2553. /*
  2554. * When comparing with imbalance, use weighted_cpuload()
  2555. * which is not scaled with the cpu power.
  2556. */
  2557. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2558. continue;
  2559. /*
  2560. * For the load comparisons with the other cpu's, consider
  2561. * the weighted_cpuload() scaled with the cpu power, so that
  2562. * the load can be moved away from the cpu that is potentially
  2563. * running at a lower capacity.
  2564. */
  2565. wl = (wl * SCHED_LOAD_SCALE) / power;
  2566. if (wl > max_load) {
  2567. max_load = wl;
  2568. busiest = rq;
  2569. }
  2570. }
  2571. return busiest;
  2572. }
  2573. /*
  2574. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2575. * so long as it is large enough.
  2576. */
  2577. #define MAX_PINNED_INTERVAL 512
  2578. /* Working cpumask for load_balance and load_balance_newidle. */
  2579. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2580. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2581. int busiest_cpu, int this_cpu)
  2582. {
  2583. if (idle == CPU_NEWLY_IDLE) {
  2584. /*
  2585. * ASYM_PACKING needs to force migrate tasks from busy but
  2586. * higher numbered CPUs in order to pack all tasks in the
  2587. * lowest numbered CPUs.
  2588. */
  2589. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2590. return 1;
  2591. /*
  2592. * The only task running in a non-idle cpu can be moved to this
  2593. * cpu in an attempt to completely freeup the other CPU
  2594. * package.
  2595. *
  2596. * The package power saving logic comes from
  2597. * find_busiest_group(). If there are no imbalance, then
  2598. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2599. * f_b_g() will select a group from which a running task may be
  2600. * pulled to this cpu in order to make the other package idle.
  2601. * If there is no opportunity to make a package idle and if
  2602. * there are no imbalance, then f_b_g() will return NULL and no
  2603. * action will be taken in load_balance_newidle().
  2604. *
  2605. * Under normal task pull operation due to imbalance, there
  2606. * will be more than one task in the source run queue and
  2607. * move_tasks() will succeed. ld_moved will be true and this
  2608. * active balance code will not be triggered.
  2609. */
  2610. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2611. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2612. return 0;
  2613. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2614. return 0;
  2615. }
  2616. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2617. }
  2618. static int active_load_balance_cpu_stop(void *data);
  2619. /*
  2620. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2621. * tasks if there is an imbalance.
  2622. */
  2623. static int load_balance(int this_cpu, struct rq *this_rq,
  2624. struct sched_domain *sd, enum cpu_idle_type idle,
  2625. int *balance)
  2626. {
  2627. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2628. struct sched_group *group;
  2629. unsigned long imbalance;
  2630. struct rq *busiest;
  2631. unsigned long flags;
  2632. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2633. cpumask_copy(cpus, cpu_active_mask);
  2634. /*
  2635. * When power savings policy is enabled for the parent domain, idle
  2636. * sibling can pick up load irrespective of busy siblings. In this case,
  2637. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2638. * portraying it as CPU_NOT_IDLE.
  2639. */
  2640. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2641. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2642. sd_idle = 1;
  2643. schedstat_inc(sd, lb_count[idle]);
  2644. redo:
  2645. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2646. cpus, balance);
  2647. if (*balance == 0)
  2648. goto out_balanced;
  2649. if (!group) {
  2650. schedstat_inc(sd, lb_nobusyg[idle]);
  2651. goto out_balanced;
  2652. }
  2653. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2654. if (!busiest) {
  2655. schedstat_inc(sd, lb_nobusyq[idle]);
  2656. goto out_balanced;
  2657. }
  2658. BUG_ON(busiest == this_rq);
  2659. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2660. ld_moved = 0;
  2661. if (busiest->nr_running > 1) {
  2662. /*
  2663. * Attempt to move tasks. If find_busiest_group has found
  2664. * an imbalance but busiest->nr_running <= 1, the group is
  2665. * still unbalanced. ld_moved simply stays zero, so it is
  2666. * correctly treated as an imbalance.
  2667. */
  2668. local_irq_save(flags);
  2669. double_rq_lock(this_rq, busiest);
  2670. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2671. imbalance, sd, idle, &all_pinned);
  2672. double_rq_unlock(this_rq, busiest);
  2673. local_irq_restore(flags);
  2674. /*
  2675. * some other cpu did the load balance for us.
  2676. */
  2677. if (ld_moved && this_cpu != smp_processor_id())
  2678. resched_cpu(this_cpu);
  2679. /* All tasks on this runqueue were pinned by CPU affinity */
  2680. if (unlikely(all_pinned)) {
  2681. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2682. if (!cpumask_empty(cpus))
  2683. goto redo;
  2684. goto out_balanced;
  2685. }
  2686. }
  2687. if (!ld_moved) {
  2688. schedstat_inc(sd, lb_failed[idle]);
  2689. /*
  2690. * Increment the failure counter only on periodic balance.
  2691. * We do not want newidle balance, which can be very
  2692. * frequent, pollute the failure counter causing
  2693. * excessive cache_hot migrations and active balances.
  2694. */
  2695. if (idle != CPU_NEWLY_IDLE)
  2696. sd->nr_balance_failed++;
  2697. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2698. this_cpu)) {
  2699. raw_spin_lock_irqsave(&busiest->lock, flags);
  2700. /* don't kick the active_load_balance_cpu_stop,
  2701. * if the curr task on busiest cpu can't be
  2702. * moved to this_cpu
  2703. */
  2704. if (!cpumask_test_cpu(this_cpu,
  2705. &busiest->curr->cpus_allowed)) {
  2706. raw_spin_unlock_irqrestore(&busiest->lock,
  2707. flags);
  2708. all_pinned = 1;
  2709. goto out_one_pinned;
  2710. }
  2711. /*
  2712. * ->active_balance synchronizes accesses to
  2713. * ->active_balance_work. Once set, it's cleared
  2714. * only after active load balance is finished.
  2715. */
  2716. if (!busiest->active_balance) {
  2717. busiest->active_balance = 1;
  2718. busiest->push_cpu = this_cpu;
  2719. active_balance = 1;
  2720. }
  2721. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2722. if (active_balance)
  2723. stop_one_cpu_nowait(cpu_of(busiest),
  2724. active_load_balance_cpu_stop, busiest,
  2725. &busiest->active_balance_work);
  2726. /*
  2727. * We've kicked active balancing, reset the failure
  2728. * counter.
  2729. */
  2730. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2731. }
  2732. } else
  2733. sd->nr_balance_failed = 0;
  2734. if (likely(!active_balance)) {
  2735. /* We were unbalanced, so reset the balancing interval */
  2736. sd->balance_interval = sd->min_interval;
  2737. } else {
  2738. /*
  2739. * If we've begun active balancing, start to back off. This
  2740. * case may not be covered by the all_pinned logic if there
  2741. * is only 1 task on the busy runqueue (because we don't call
  2742. * move_tasks).
  2743. */
  2744. if (sd->balance_interval < sd->max_interval)
  2745. sd->balance_interval *= 2;
  2746. }
  2747. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2748. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2749. ld_moved = -1;
  2750. goto out;
  2751. out_balanced:
  2752. schedstat_inc(sd, lb_balanced[idle]);
  2753. sd->nr_balance_failed = 0;
  2754. out_one_pinned:
  2755. /* tune up the balancing interval */
  2756. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2757. (sd->balance_interval < sd->max_interval))
  2758. sd->balance_interval *= 2;
  2759. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2760. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2761. ld_moved = -1;
  2762. else
  2763. ld_moved = 0;
  2764. out:
  2765. return ld_moved;
  2766. }
  2767. /*
  2768. * idle_balance is called by schedule() if this_cpu is about to become
  2769. * idle. Attempts to pull tasks from other CPUs.
  2770. */
  2771. static void idle_balance(int this_cpu, struct rq *this_rq)
  2772. {
  2773. struct sched_domain *sd;
  2774. int pulled_task = 0;
  2775. unsigned long next_balance = jiffies + HZ;
  2776. this_rq->idle_stamp = this_rq->clock;
  2777. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2778. return;
  2779. /*
  2780. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2781. */
  2782. raw_spin_unlock(&this_rq->lock);
  2783. for_each_domain(this_cpu, sd) {
  2784. unsigned long interval;
  2785. int balance = 1;
  2786. if (!(sd->flags & SD_LOAD_BALANCE))
  2787. continue;
  2788. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2789. /* If we've pulled tasks over stop searching: */
  2790. pulled_task = load_balance(this_cpu, this_rq,
  2791. sd, CPU_NEWLY_IDLE, &balance);
  2792. }
  2793. interval = msecs_to_jiffies(sd->balance_interval);
  2794. if (time_after(next_balance, sd->last_balance + interval))
  2795. next_balance = sd->last_balance + interval;
  2796. if (pulled_task)
  2797. break;
  2798. }
  2799. raw_spin_lock(&this_rq->lock);
  2800. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2801. /*
  2802. * We are going idle. next_balance may be set based on
  2803. * a busy processor. So reset next_balance.
  2804. */
  2805. this_rq->next_balance = next_balance;
  2806. }
  2807. }
  2808. /*
  2809. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2810. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2811. * least 1 task to be running on each physical CPU where possible, and
  2812. * avoids physical / logical imbalances.
  2813. */
  2814. static int active_load_balance_cpu_stop(void *data)
  2815. {
  2816. struct rq *busiest_rq = data;
  2817. int busiest_cpu = cpu_of(busiest_rq);
  2818. int target_cpu = busiest_rq->push_cpu;
  2819. struct rq *target_rq = cpu_rq(target_cpu);
  2820. struct sched_domain *sd;
  2821. raw_spin_lock_irq(&busiest_rq->lock);
  2822. /* make sure the requested cpu hasn't gone down in the meantime */
  2823. if (unlikely(busiest_cpu != smp_processor_id() ||
  2824. !busiest_rq->active_balance))
  2825. goto out_unlock;
  2826. /* Is there any task to move? */
  2827. if (busiest_rq->nr_running <= 1)
  2828. goto out_unlock;
  2829. /*
  2830. * This condition is "impossible", if it occurs
  2831. * we need to fix it. Originally reported by
  2832. * Bjorn Helgaas on a 128-cpu setup.
  2833. */
  2834. BUG_ON(busiest_rq == target_rq);
  2835. /* move a task from busiest_rq to target_rq */
  2836. double_lock_balance(busiest_rq, target_rq);
  2837. /* Search for an sd spanning us and the target CPU. */
  2838. for_each_domain(target_cpu, sd) {
  2839. if ((sd->flags & SD_LOAD_BALANCE) &&
  2840. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2841. break;
  2842. }
  2843. if (likely(sd)) {
  2844. schedstat_inc(sd, alb_count);
  2845. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2846. sd, CPU_IDLE))
  2847. schedstat_inc(sd, alb_pushed);
  2848. else
  2849. schedstat_inc(sd, alb_failed);
  2850. }
  2851. double_unlock_balance(busiest_rq, target_rq);
  2852. out_unlock:
  2853. busiest_rq->active_balance = 0;
  2854. raw_spin_unlock_irq(&busiest_rq->lock);
  2855. return 0;
  2856. }
  2857. #ifdef CONFIG_NO_HZ
  2858. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2859. static void trigger_sched_softirq(void *data)
  2860. {
  2861. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2862. }
  2863. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2864. {
  2865. csd->func = trigger_sched_softirq;
  2866. csd->info = NULL;
  2867. csd->flags = 0;
  2868. csd->priv = 0;
  2869. }
  2870. /*
  2871. * idle load balancing details
  2872. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2873. * entering idle.
  2874. * - This idle load balancer CPU will also go into tickless mode when
  2875. * it is idle, just like all other idle CPUs
  2876. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2877. * needed, they will kick the idle load balancer, which then does idle
  2878. * load balancing for all the idle CPUs.
  2879. */
  2880. static struct {
  2881. atomic_t load_balancer;
  2882. atomic_t first_pick_cpu;
  2883. atomic_t second_pick_cpu;
  2884. cpumask_var_t idle_cpus_mask;
  2885. cpumask_var_t grp_idle_mask;
  2886. unsigned long next_balance; /* in jiffy units */
  2887. } nohz ____cacheline_aligned;
  2888. int get_nohz_load_balancer(void)
  2889. {
  2890. return atomic_read(&nohz.load_balancer);
  2891. }
  2892. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2893. /**
  2894. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2895. * @cpu: The cpu whose lowest level of sched domain is to
  2896. * be returned.
  2897. * @flag: The flag to check for the lowest sched_domain
  2898. * for the given cpu.
  2899. *
  2900. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2901. */
  2902. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2903. {
  2904. struct sched_domain *sd;
  2905. for_each_domain(cpu, sd)
  2906. if (sd && (sd->flags & flag))
  2907. break;
  2908. return sd;
  2909. }
  2910. /**
  2911. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2912. * @cpu: The cpu whose domains we're iterating over.
  2913. * @sd: variable holding the value of the power_savings_sd
  2914. * for cpu.
  2915. * @flag: The flag to filter the sched_domains to be iterated.
  2916. *
  2917. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2918. * set, starting from the lowest sched_domain to the highest.
  2919. */
  2920. #define for_each_flag_domain(cpu, sd, flag) \
  2921. for (sd = lowest_flag_domain(cpu, flag); \
  2922. (sd && (sd->flags & flag)); sd = sd->parent)
  2923. /**
  2924. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2925. * @ilb_group: group to be checked for semi-idleness
  2926. *
  2927. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2928. *
  2929. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2930. * and atleast one non-idle CPU. This helper function checks if the given
  2931. * sched_group is semi-idle or not.
  2932. */
  2933. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2934. {
  2935. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  2936. sched_group_cpus(ilb_group));
  2937. /*
  2938. * A sched_group is semi-idle when it has atleast one busy cpu
  2939. * and atleast one idle cpu.
  2940. */
  2941. if (cpumask_empty(nohz.grp_idle_mask))
  2942. return 0;
  2943. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  2944. return 0;
  2945. return 1;
  2946. }
  2947. /**
  2948. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2949. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2950. *
  2951. * Returns: Returns the id of the idle load balancer if it exists,
  2952. * Else, returns >= nr_cpu_ids.
  2953. *
  2954. * This algorithm picks the idle load balancer such that it belongs to a
  2955. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2956. * completely idle packages/cores just for the purpose of idle load balancing
  2957. * when there are other idle cpu's which are better suited for that job.
  2958. */
  2959. static int find_new_ilb(int cpu)
  2960. {
  2961. struct sched_domain *sd;
  2962. struct sched_group *ilb_group;
  2963. /*
  2964. * Have idle load balancer selection from semi-idle packages only
  2965. * when power-aware load balancing is enabled
  2966. */
  2967. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2968. goto out_done;
  2969. /*
  2970. * Optimize for the case when we have no idle CPUs or only one
  2971. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2972. */
  2973. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  2974. goto out_done;
  2975. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2976. ilb_group = sd->groups;
  2977. do {
  2978. if (is_semi_idle_group(ilb_group))
  2979. return cpumask_first(nohz.grp_idle_mask);
  2980. ilb_group = ilb_group->next;
  2981. } while (ilb_group != sd->groups);
  2982. }
  2983. out_done:
  2984. return nr_cpu_ids;
  2985. }
  2986. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2987. static inline int find_new_ilb(int call_cpu)
  2988. {
  2989. return nr_cpu_ids;
  2990. }
  2991. #endif
  2992. /*
  2993. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  2994. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  2995. * CPU (if there is one).
  2996. */
  2997. static void nohz_balancer_kick(int cpu)
  2998. {
  2999. int ilb_cpu;
  3000. nohz.next_balance++;
  3001. ilb_cpu = get_nohz_load_balancer();
  3002. if (ilb_cpu >= nr_cpu_ids) {
  3003. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3004. if (ilb_cpu >= nr_cpu_ids)
  3005. return;
  3006. }
  3007. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3008. struct call_single_data *cp;
  3009. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3010. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3011. __smp_call_function_single(ilb_cpu, cp, 0);
  3012. }
  3013. return;
  3014. }
  3015. /*
  3016. * This routine will try to nominate the ilb (idle load balancing)
  3017. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3018. * load balancing on behalf of all those cpus.
  3019. *
  3020. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3021. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3022. * idle load balancing by kicking one of the idle CPUs.
  3023. *
  3024. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3025. * ilb owner CPU in future (when there is a need for idle load balancing on
  3026. * behalf of all idle CPUs).
  3027. */
  3028. void select_nohz_load_balancer(int stop_tick)
  3029. {
  3030. int cpu = smp_processor_id();
  3031. if (stop_tick) {
  3032. if (!cpu_active(cpu)) {
  3033. if (atomic_read(&nohz.load_balancer) != cpu)
  3034. return;
  3035. /*
  3036. * If we are going offline and still the leader,
  3037. * give up!
  3038. */
  3039. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3040. nr_cpu_ids) != cpu)
  3041. BUG();
  3042. return;
  3043. }
  3044. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3045. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3046. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3047. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3048. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3049. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3050. int new_ilb;
  3051. /* make me the ilb owner */
  3052. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3053. cpu) != nr_cpu_ids)
  3054. return;
  3055. /*
  3056. * Check to see if there is a more power-efficient
  3057. * ilb.
  3058. */
  3059. new_ilb = find_new_ilb(cpu);
  3060. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3061. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3062. resched_cpu(new_ilb);
  3063. return;
  3064. }
  3065. return;
  3066. }
  3067. } else {
  3068. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3069. return;
  3070. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3071. if (atomic_read(&nohz.load_balancer) == cpu)
  3072. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3073. nr_cpu_ids) != cpu)
  3074. BUG();
  3075. }
  3076. return;
  3077. }
  3078. #endif
  3079. static DEFINE_SPINLOCK(balancing);
  3080. /*
  3081. * It checks each scheduling domain to see if it is due to be balanced,
  3082. * and initiates a balancing operation if so.
  3083. *
  3084. * Balancing parameters are set up in arch_init_sched_domains.
  3085. */
  3086. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3087. {
  3088. int balance = 1;
  3089. struct rq *rq = cpu_rq(cpu);
  3090. unsigned long interval;
  3091. struct sched_domain *sd;
  3092. /* Earliest time when we have to do rebalance again */
  3093. unsigned long next_balance = jiffies + 60*HZ;
  3094. int update_next_balance = 0;
  3095. int need_serialize;
  3096. update_shares(cpu);
  3097. for_each_domain(cpu, sd) {
  3098. if (!(sd->flags & SD_LOAD_BALANCE))
  3099. continue;
  3100. interval = sd->balance_interval;
  3101. if (idle != CPU_IDLE)
  3102. interval *= sd->busy_factor;
  3103. /* scale ms to jiffies */
  3104. interval = msecs_to_jiffies(interval);
  3105. if (unlikely(!interval))
  3106. interval = 1;
  3107. if (interval > HZ*NR_CPUS/10)
  3108. interval = HZ*NR_CPUS/10;
  3109. need_serialize = sd->flags & SD_SERIALIZE;
  3110. if (need_serialize) {
  3111. if (!spin_trylock(&balancing))
  3112. goto out;
  3113. }
  3114. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3115. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3116. /*
  3117. * We've pulled tasks over so either we're no
  3118. * longer idle, or one of our SMT siblings is
  3119. * not idle.
  3120. */
  3121. idle = CPU_NOT_IDLE;
  3122. }
  3123. sd->last_balance = jiffies;
  3124. }
  3125. if (need_serialize)
  3126. spin_unlock(&balancing);
  3127. out:
  3128. if (time_after(next_balance, sd->last_balance + interval)) {
  3129. next_balance = sd->last_balance + interval;
  3130. update_next_balance = 1;
  3131. }
  3132. /*
  3133. * Stop the load balance at this level. There is another
  3134. * CPU in our sched group which is doing load balancing more
  3135. * actively.
  3136. */
  3137. if (!balance)
  3138. break;
  3139. }
  3140. /*
  3141. * next_balance will be updated only when there is a need.
  3142. * When the cpu is attached to null domain for ex, it will not be
  3143. * updated.
  3144. */
  3145. if (likely(update_next_balance))
  3146. rq->next_balance = next_balance;
  3147. }
  3148. #ifdef CONFIG_NO_HZ
  3149. /*
  3150. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3151. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3152. */
  3153. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3154. {
  3155. struct rq *this_rq = cpu_rq(this_cpu);
  3156. struct rq *rq;
  3157. int balance_cpu;
  3158. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3159. return;
  3160. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3161. if (balance_cpu == this_cpu)
  3162. continue;
  3163. /*
  3164. * If this cpu gets work to do, stop the load balancing
  3165. * work being done for other cpus. Next load
  3166. * balancing owner will pick it up.
  3167. */
  3168. if (need_resched()) {
  3169. this_rq->nohz_balance_kick = 0;
  3170. break;
  3171. }
  3172. raw_spin_lock_irq(&this_rq->lock);
  3173. update_rq_clock(this_rq);
  3174. update_cpu_load(this_rq);
  3175. raw_spin_unlock_irq(&this_rq->lock);
  3176. rebalance_domains(balance_cpu, CPU_IDLE);
  3177. rq = cpu_rq(balance_cpu);
  3178. if (time_after(this_rq->next_balance, rq->next_balance))
  3179. this_rq->next_balance = rq->next_balance;
  3180. }
  3181. nohz.next_balance = this_rq->next_balance;
  3182. this_rq->nohz_balance_kick = 0;
  3183. }
  3184. /*
  3185. * Current heuristic for kicking the idle load balancer
  3186. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3187. * idle load balancer when it has more than one process active. This
  3188. * eliminates the need for idle load balancing altogether when we have
  3189. * only one running process in the system (common case).
  3190. * - If there are more than one busy CPU, idle load balancer may have
  3191. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3192. * SMT or core siblings and can run better if they move to different
  3193. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3194. * which will kick idle load balancer as soon as it has any load.
  3195. */
  3196. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3197. {
  3198. unsigned long now = jiffies;
  3199. int ret;
  3200. int first_pick_cpu, second_pick_cpu;
  3201. if (time_before(now, nohz.next_balance))
  3202. return 0;
  3203. if (rq->idle_at_tick)
  3204. return 0;
  3205. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3206. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3207. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3208. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3209. return 0;
  3210. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3211. if (ret == nr_cpu_ids || ret == cpu) {
  3212. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3213. if (rq->nr_running > 1)
  3214. return 1;
  3215. } else {
  3216. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3217. if (ret == nr_cpu_ids || ret == cpu) {
  3218. if (rq->nr_running)
  3219. return 1;
  3220. }
  3221. }
  3222. return 0;
  3223. }
  3224. #else
  3225. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3226. #endif
  3227. /*
  3228. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3229. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3230. */
  3231. static void run_rebalance_domains(struct softirq_action *h)
  3232. {
  3233. int this_cpu = smp_processor_id();
  3234. struct rq *this_rq = cpu_rq(this_cpu);
  3235. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3236. CPU_IDLE : CPU_NOT_IDLE;
  3237. rebalance_domains(this_cpu, idle);
  3238. /*
  3239. * If this cpu has a pending nohz_balance_kick, then do the
  3240. * balancing on behalf of the other idle cpus whose ticks are
  3241. * stopped.
  3242. */
  3243. nohz_idle_balance(this_cpu, idle);
  3244. }
  3245. static inline int on_null_domain(int cpu)
  3246. {
  3247. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3248. }
  3249. /*
  3250. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3251. */
  3252. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3253. {
  3254. /* Don't need to rebalance while attached to NULL domain */
  3255. if (time_after_eq(jiffies, rq->next_balance) &&
  3256. likely(!on_null_domain(cpu)))
  3257. raise_softirq(SCHED_SOFTIRQ);
  3258. #ifdef CONFIG_NO_HZ
  3259. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3260. nohz_balancer_kick(cpu);
  3261. #endif
  3262. }
  3263. static void rq_online_fair(struct rq *rq)
  3264. {
  3265. update_sysctl();
  3266. }
  3267. static void rq_offline_fair(struct rq *rq)
  3268. {
  3269. update_sysctl();
  3270. }
  3271. #else /* CONFIG_SMP */
  3272. /*
  3273. * on UP we do not need to balance between CPUs:
  3274. */
  3275. static inline void idle_balance(int cpu, struct rq *rq)
  3276. {
  3277. }
  3278. #endif /* CONFIG_SMP */
  3279. /*
  3280. * scheduler tick hitting a task of our scheduling class:
  3281. */
  3282. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3283. {
  3284. struct cfs_rq *cfs_rq;
  3285. struct sched_entity *se = &curr->se;
  3286. for_each_sched_entity(se) {
  3287. cfs_rq = cfs_rq_of(se);
  3288. entity_tick(cfs_rq, se, queued);
  3289. }
  3290. }
  3291. /*
  3292. * called on fork with the child task as argument from the parent's context
  3293. * - child not yet on the tasklist
  3294. * - preemption disabled
  3295. */
  3296. static void task_fork_fair(struct task_struct *p)
  3297. {
  3298. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3299. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3300. int this_cpu = smp_processor_id();
  3301. struct rq *rq = this_rq();
  3302. unsigned long flags;
  3303. raw_spin_lock_irqsave(&rq->lock, flags);
  3304. update_rq_clock(rq);
  3305. if (unlikely(task_cpu(p) != this_cpu)) {
  3306. rcu_read_lock();
  3307. __set_task_cpu(p, this_cpu);
  3308. rcu_read_unlock();
  3309. }
  3310. update_curr(cfs_rq);
  3311. if (curr)
  3312. se->vruntime = curr->vruntime;
  3313. place_entity(cfs_rq, se, 1);
  3314. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3315. /*
  3316. * Upon rescheduling, sched_class::put_prev_task() will place
  3317. * 'current' within the tree based on its new key value.
  3318. */
  3319. swap(curr->vruntime, se->vruntime);
  3320. resched_task(rq->curr);
  3321. }
  3322. se->vruntime -= cfs_rq->min_vruntime;
  3323. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3324. }
  3325. /*
  3326. * Priority of the task has changed. Check to see if we preempt
  3327. * the current task.
  3328. */
  3329. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3330. int oldprio, int running)
  3331. {
  3332. /*
  3333. * Reschedule if we are currently running on this runqueue and
  3334. * our priority decreased, or if we are not currently running on
  3335. * this runqueue and our priority is higher than the current's
  3336. */
  3337. if (running) {
  3338. if (p->prio > oldprio)
  3339. resched_task(rq->curr);
  3340. } else
  3341. check_preempt_curr(rq, p, 0);
  3342. }
  3343. /*
  3344. * We switched to the sched_fair class.
  3345. */
  3346. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3347. int running)
  3348. {
  3349. /*
  3350. * We were most likely switched from sched_rt, so
  3351. * kick off the schedule if running, otherwise just see
  3352. * if we can still preempt the current task.
  3353. */
  3354. if (running)
  3355. resched_task(rq->curr);
  3356. else
  3357. check_preempt_curr(rq, p, 0);
  3358. }
  3359. /* Account for a task changing its policy or group.
  3360. *
  3361. * This routine is mostly called to set cfs_rq->curr field when a task
  3362. * migrates between groups/classes.
  3363. */
  3364. static void set_curr_task_fair(struct rq *rq)
  3365. {
  3366. struct sched_entity *se = &rq->curr->se;
  3367. for_each_sched_entity(se)
  3368. set_next_entity(cfs_rq_of(se), se);
  3369. }
  3370. #ifdef CONFIG_FAIR_GROUP_SCHED
  3371. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3372. {
  3373. /*
  3374. * If the task was not on the rq at the time of this cgroup movement
  3375. * it must have been asleep, sleeping tasks keep their ->vruntime
  3376. * absolute on their old rq until wakeup (needed for the fair sleeper
  3377. * bonus in place_entity()).
  3378. *
  3379. * If it was on the rq, we've just 'preempted' it, which does convert
  3380. * ->vruntime to a relative base.
  3381. *
  3382. * Make sure both cases convert their relative position when migrating
  3383. * to another cgroup's rq. This does somewhat interfere with the
  3384. * fair sleeper stuff for the first placement, but who cares.
  3385. */
  3386. if (!on_rq)
  3387. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3388. set_task_rq(p, task_cpu(p));
  3389. if (!on_rq)
  3390. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3391. }
  3392. #endif
  3393. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3394. {
  3395. struct sched_entity *se = &task->se;
  3396. unsigned int rr_interval = 0;
  3397. /*
  3398. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3399. * idle runqueue:
  3400. */
  3401. if (rq->cfs.load.weight)
  3402. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3403. return rr_interval;
  3404. }
  3405. /*
  3406. * All the scheduling class methods:
  3407. */
  3408. static const struct sched_class fair_sched_class = {
  3409. .next = &idle_sched_class,
  3410. .enqueue_task = enqueue_task_fair,
  3411. .dequeue_task = dequeue_task_fair,
  3412. .yield_task = yield_task_fair,
  3413. .check_preempt_curr = check_preempt_wakeup,
  3414. .pick_next_task = pick_next_task_fair,
  3415. .put_prev_task = put_prev_task_fair,
  3416. #ifdef CONFIG_SMP
  3417. .select_task_rq = select_task_rq_fair,
  3418. .rq_online = rq_online_fair,
  3419. .rq_offline = rq_offline_fair,
  3420. .task_waking = task_waking_fair,
  3421. #endif
  3422. .set_curr_task = set_curr_task_fair,
  3423. .task_tick = task_tick_fair,
  3424. .task_fork = task_fork_fair,
  3425. .prio_changed = prio_changed_fair,
  3426. .switched_to = switched_to_fair,
  3427. .get_rr_interval = get_rr_interval_fair,
  3428. #ifdef CONFIG_FAIR_GROUP_SCHED
  3429. .task_move_group = task_move_group_fair,
  3430. #endif
  3431. };
  3432. #ifdef CONFIG_SCHED_DEBUG
  3433. static void print_cfs_stats(struct seq_file *m, int cpu)
  3434. {
  3435. struct cfs_rq *cfs_rq;
  3436. rcu_read_lock();
  3437. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3438. print_cfs_rq(m, cpu, cfs_rq);
  3439. rcu_read_unlock();
  3440. }
  3441. #endif