slub.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #ifdef CONFIG_SLUB_DEBUG
  108. #define SLABDEBUG 1
  109. #else
  110. #define SLABDEBUG 0
  111. #endif
  112. /*
  113. * Issues still to be resolved:
  114. *
  115. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  116. *
  117. * - Variable sizing of the per node arrays
  118. */
  119. /* Enable to test recovery from slab corruption on boot */
  120. #undef SLUB_RESILIENCY_TEST
  121. /*
  122. * Mininum number of partial slabs. These will be left on the partial
  123. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  124. */
  125. #define MIN_PARTIAL 5
  126. /*
  127. * Maximum number of desirable partial slabs.
  128. * The existence of more partial slabs makes kmem_cache_shrink
  129. * sort the partial list by the number of objects in the.
  130. */
  131. #define MAX_PARTIAL 10
  132. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  133. SLAB_POISON | SLAB_STORE_USER)
  134. /*
  135. * Debugging flags that require metadata to be stored in the slab. These get
  136. * disabled when slub_debug=O is used and a cache's min order increases with
  137. * metadata.
  138. */
  139. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  140. /*
  141. * Set of flags that will prevent slab merging
  142. */
  143. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  144. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
  145. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  146. SLAB_CACHE_DMA | SLAB_NOTRACK)
  147. #ifndef ARCH_KMALLOC_MINALIGN
  148. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  149. #endif
  150. #ifndef ARCH_SLAB_MINALIGN
  151. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #define OO_SHIFT 16
  154. #define OO_MASK ((1 << OO_SHIFT) - 1)
  155. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  156. /* Internal SLUB flags */
  157. #define __OBJECT_POISON 0x80000000 /* Poison object */
  158. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  159. static int kmem_size = sizeof(struct kmem_cache);
  160. #ifdef CONFIG_SMP
  161. static struct notifier_block slab_notifier;
  162. #endif
  163. static enum {
  164. DOWN, /* No slab functionality available */
  165. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  166. UP, /* Everything works but does not show up in sysfs */
  167. SYSFS /* Sysfs up */
  168. } slab_state = DOWN;
  169. /* A list of all slab caches on the system */
  170. static DECLARE_RWSEM(slub_lock);
  171. static LIST_HEAD(slab_caches);
  172. /*
  173. * Tracking user of a slab.
  174. */
  175. struct track {
  176. unsigned long addr; /* Called from address */
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SLUB_DEBUG
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. c->stat[si]++;
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. #ifdef CONFIG_NUMA
  211. return s->node[node];
  212. #else
  213. return &s->local_node;
  214. #endif
  215. }
  216. /* Verify that a pointer has an address that is valid within a slab page */
  217. static inline int check_valid_pointer(struct kmem_cache *s,
  218. struct page *page, const void *object)
  219. {
  220. void *base;
  221. if (!object)
  222. return 1;
  223. base = page_address(page);
  224. if (object < base || object >= base + page->objects * s->size ||
  225. (object - base) % s->size) {
  226. return 0;
  227. }
  228. return 1;
  229. }
  230. /*
  231. * Slow version of get and set free pointer.
  232. *
  233. * This version requires touching the cache lines of kmem_cache which
  234. * we avoid to do in the fast alloc free paths. There we obtain the offset
  235. * from the page struct.
  236. */
  237. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  238. {
  239. return *(void **)(object + s->offset);
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Scan freelist */
  250. #define for_each_free_object(__p, __s, __free) \
  251. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  252. /* Determine object index from a given position */
  253. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  254. {
  255. return (p - addr) / s->size;
  256. }
  257. static inline struct kmem_cache_order_objects oo_make(int order,
  258. unsigned long size)
  259. {
  260. struct kmem_cache_order_objects x = {
  261. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  262. };
  263. return x;
  264. }
  265. static inline int oo_order(struct kmem_cache_order_objects x)
  266. {
  267. return x.x >> OO_SHIFT;
  268. }
  269. static inline int oo_objects(struct kmem_cache_order_objects x)
  270. {
  271. return x.x & OO_MASK;
  272. }
  273. #ifdef CONFIG_SLUB_DEBUG
  274. /*
  275. * Debug settings:
  276. */
  277. #ifdef CONFIG_SLUB_DEBUG_ON
  278. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  279. #else
  280. static int slub_debug;
  281. #endif
  282. static char *slub_debug_slabs;
  283. static int disable_higher_order_debug;
  284. /*
  285. * Object debugging
  286. */
  287. static void print_section(char *text, u8 *addr, unsigned int length)
  288. {
  289. int i, offset;
  290. int newline = 1;
  291. char ascii[17];
  292. ascii[16] = 0;
  293. for (i = 0; i < length; i++) {
  294. if (newline) {
  295. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  296. newline = 0;
  297. }
  298. printk(KERN_CONT " %02x", addr[i]);
  299. offset = i % 16;
  300. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  301. if (offset == 15) {
  302. printk(KERN_CONT " %s\n", ascii);
  303. newline = 1;
  304. }
  305. }
  306. if (!newline) {
  307. i %= 16;
  308. while (i < 16) {
  309. printk(KERN_CONT " ");
  310. ascii[i] = ' ';
  311. i++;
  312. }
  313. printk(KERN_CONT " %s\n", ascii);
  314. }
  315. }
  316. static struct track *get_track(struct kmem_cache *s, void *object,
  317. enum track_item alloc)
  318. {
  319. struct track *p;
  320. if (s->offset)
  321. p = object + s->offset + sizeof(void *);
  322. else
  323. p = object + s->inuse;
  324. return p + alloc;
  325. }
  326. static void set_track(struct kmem_cache *s, void *object,
  327. enum track_item alloc, unsigned long addr)
  328. {
  329. struct track *p = get_track(s, object, alloc);
  330. if (addr) {
  331. p->addr = addr;
  332. p->cpu = smp_processor_id();
  333. p->pid = current->pid;
  334. p->when = jiffies;
  335. } else
  336. memset(p, 0, sizeof(struct track));
  337. }
  338. static void init_tracking(struct kmem_cache *s, void *object)
  339. {
  340. if (!(s->flags & SLAB_STORE_USER))
  341. return;
  342. set_track(s, object, TRACK_FREE, 0UL);
  343. set_track(s, object, TRACK_ALLOC, 0UL);
  344. }
  345. static void print_track(const char *s, struct track *t)
  346. {
  347. if (!t->addr)
  348. return;
  349. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  350. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  351. }
  352. static void print_tracking(struct kmem_cache *s, void *object)
  353. {
  354. if (!(s->flags & SLAB_STORE_USER))
  355. return;
  356. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  357. print_track("Freed", get_track(s, object, TRACK_FREE));
  358. }
  359. static void print_page_info(struct page *page)
  360. {
  361. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  362. page, page->objects, page->inuse, page->freelist, page->flags);
  363. }
  364. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  365. {
  366. va_list args;
  367. char buf[100];
  368. va_start(args, fmt);
  369. vsnprintf(buf, sizeof(buf), fmt, args);
  370. va_end(args);
  371. printk(KERN_ERR "========================================"
  372. "=====================================\n");
  373. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  374. printk(KERN_ERR "----------------------------------------"
  375. "-------------------------------------\n\n");
  376. }
  377. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  378. {
  379. va_list args;
  380. char buf[100];
  381. va_start(args, fmt);
  382. vsnprintf(buf, sizeof(buf), fmt, args);
  383. va_end(args);
  384. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  385. }
  386. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  387. {
  388. unsigned int off; /* Offset of last byte */
  389. u8 *addr = page_address(page);
  390. print_tracking(s, p);
  391. print_page_info(page);
  392. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  393. p, p - addr, get_freepointer(s, p));
  394. if (p > addr + 16)
  395. print_section("Bytes b4", p - 16, 16);
  396. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  397. if (s->flags & SLAB_RED_ZONE)
  398. print_section("Redzone", p + s->objsize,
  399. s->inuse - s->objsize);
  400. if (s->offset)
  401. off = s->offset + sizeof(void *);
  402. else
  403. off = s->inuse;
  404. if (s->flags & SLAB_STORE_USER)
  405. off += 2 * sizeof(struct track);
  406. if (off != s->size)
  407. /* Beginning of the filler is the free pointer */
  408. print_section("Padding", p + off, s->size - off);
  409. dump_stack();
  410. }
  411. static void object_err(struct kmem_cache *s, struct page *page,
  412. u8 *object, char *reason)
  413. {
  414. slab_bug(s, "%s", reason);
  415. print_trailer(s, page, object);
  416. }
  417. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  418. {
  419. va_list args;
  420. char buf[100];
  421. va_start(args, fmt);
  422. vsnprintf(buf, sizeof(buf), fmt, args);
  423. va_end(args);
  424. slab_bug(s, "%s", buf);
  425. print_page_info(page);
  426. dump_stack();
  427. }
  428. static void init_object(struct kmem_cache *s, void *object, int active)
  429. {
  430. u8 *p = object;
  431. if (s->flags & __OBJECT_POISON) {
  432. memset(p, POISON_FREE, s->objsize - 1);
  433. p[s->objsize - 1] = POISON_END;
  434. }
  435. if (s->flags & SLAB_RED_ZONE)
  436. memset(p + s->objsize,
  437. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  438. s->inuse - s->objsize);
  439. }
  440. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  441. {
  442. while (bytes) {
  443. if (*start != (u8)value)
  444. return start;
  445. start++;
  446. bytes--;
  447. }
  448. return NULL;
  449. }
  450. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  451. void *from, void *to)
  452. {
  453. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  454. memset(from, data, to - from);
  455. }
  456. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  457. u8 *object, char *what,
  458. u8 *start, unsigned int value, unsigned int bytes)
  459. {
  460. u8 *fault;
  461. u8 *end;
  462. fault = check_bytes(start, value, bytes);
  463. if (!fault)
  464. return 1;
  465. end = start + bytes;
  466. while (end > fault && end[-1] == value)
  467. end--;
  468. slab_bug(s, "%s overwritten", what);
  469. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  470. fault, end - 1, fault[0], value);
  471. print_trailer(s, page, object);
  472. restore_bytes(s, what, value, fault, end);
  473. return 0;
  474. }
  475. /*
  476. * Object layout:
  477. *
  478. * object address
  479. * Bytes of the object to be managed.
  480. * If the freepointer may overlay the object then the free
  481. * pointer is the first word of the object.
  482. *
  483. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  484. * 0xa5 (POISON_END)
  485. *
  486. * object + s->objsize
  487. * Padding to reach word boundary. This is also used for Redzoning.
  488. * Padding is extended by another word if Redzoning is enabled and
  489. * objsize == inuse.
  490. *
  491. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  492. * 0xcc (RED_ACTIVE) for objects in use.
  493. *
  494. * object + s->inuse
  495. * Meta data starts here.
  496. *
  497. * A. Free pointer (if we cannot overwrite object on free)
  498. * B. Tracking data for SLAB_STORE_USER
  499. * C. Padding to reach required alignment boundary or at mininum
  500. * one word if debugging is on to be able to detect writes
  501. * before the word boundary.
  502. *
  503. * Padding is done using 0x5a (POISON_INUSE)
  504. *
  505. * object + s->size
  506. * Nothing is used beyond s->size.
  507. *
  508. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  509. * ignored. And therefore no slab options that rely on these boundaries
  510. * may be used with merged slabcaches.
  511. */
  512. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  513. {
  514. unsigned long off = s->inuse; /* The end of info */
  515. if (s->offset)
  516. /* Freepointer is placed after the object. */
  517. off += sizeof(void *);
  518. if (s->flags & SLAB_STORE_USER)
  519. /* We also have user information there */
  520. off += 2 * sizeof(struct track);
  521. if (s->size == off)
  522. return 1;
  523. return check_bytes_and_report(s, page, p, "Object padding",
  524. p + off, POISON_INUSE, s->size - off);
  525. }
  526. /* Check the pad bytes at the end of a slab page */
  527. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  528. {
  529. u8 *start;
  530. u8 *fault;
  531. u8 *end;
  532. int length;
  533. int remainder;
  534. if (!(s->flags & SLAB_POISON))
  535. return 1;
  536. start = page_address(page);
  537. length = (PAGE_SIZE << compound_order(page));
  538. end = start + length;
  539. remainder = length % s->size;
  540. if (!remainder)
  541. return 1;
  542. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  543. if (!fault)
  544. return 1;
  545. while (end > fault && end[-1] == POISON_INUSE)
  546. end--;
  547. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  548. print_section("Padding", end - remainder, remainder);
  549. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  550. return 0;
  551. }
  552. static int check_object(struct kmem_cache *s, struct page *page,
  553. void *object, int active)
  554. {
  555. u8 *p = object;
  556. u8 *endobject = object + s->objsize;
  557. if (s->flags & SLAB_RED_ZONE) {
  558. unsigned int red =
  559. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  560. if (!check_bytes_and_report(s, page, object, "Redzone",
  561. endobject, red, s->inuse - s->objsize))
  562. return 0;
  563. } else {
  564. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  565. check_bytes_and_report(s, page, p, "Alignment padding",
  566. endobject, POISON_INUSE, s->inuse - s->objsize);
  567. }
  568. }
  569. if (s->flags & SLAB_POISON) {
  570. if (!active && (s->flags & __OBJECT_POISON) &&
  571. (!check_bytes_and_report(s, page, p, "Poison", p,
  572. POISON_FREE, s->objsize - 1) ||
  573. !check_bytes_and_report(s, page, p, "Poison",
  574. p + s->objsize - 1, POISON_END, 1)))
  575. return 0;
  576. /*
  577. * check_pad_bytes cleans up on its own.
  578. */
  579. check_pad_bytes(s, page, p);
  580. }
  581. if (!s->offset && active)
  582. /*
  583. * Object and freepointer overlap. Cannot check
  584. * freepointer while object is allocated.
  585. */
  586. return 1;
  587. /* Check free pointer validity */
  588. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  589. object_err(s, page, p, "Freepointer corrupt");
  590. /*
  591. * No choice but to zap it and thus lose the remainder
  592. * of the free objects in this slab. May cause
  593. * another error because the object count is now wrong.
  594. */
  595. set_freepointer(s, p, NULL);
  596. return 0;
  597. }
  598. return 1;
  599. }
  600. static int check_slab(struct kmem_cache *s, struct page *page)
  601. {
  602. int maxobj;
  603. VM_BUG_ON(!irqs_disabled());
  604. if (!PageSlab(page)) {
  605. slab_err(s, page, "Not a valid slab page");
  606. return 0;
  607. }
  608. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  609. if (page->objects > maxobj) {
  610. slab_err(s, page, "objects %u > max %u",
  611. s->name, page->objects, maxobj);
  612. return 0;
  613. }
  614. if (page->inuse > page->objects) {
  615. slab_err(s, page, "inuse %u > max %u",
  616. s->name, page->inuse, page->objects);
  617. return 0;
  618. }
  619. /* Slab_pad_check fixes things up after itself */
  620. slab_pad_check(s, page);
  621. return 1;
  622. }
  623. /*
  624. * Determine if a certain object on a page is on the freelist. Must hold the
  625. * slab lock to guarantee that the chains are in a consistent state.
  626. */
  627. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  628. {
  629. int nr = 0;
  630. void *fp = page->freelist;
  631. void *object = NULL;
  632. unsigned long max_objects;
  633. while (fp && nr <= page->objects) {
  634. if (fp == search)
  635. return 1;
  636. if (!check_valid_pointer(s, page, fp)) {
  637. if (object) {
  638. object_err(s, page, object,
  639. "Freechain corrupt");
  640. set_freepointer(s, object, NULL);
  641. break;
  642. } else {
  643. slab_err(s, page, "Freepointer corrupt");
  644. page->freelist = NULL;
  645. page->inuse = page->objects;
  646. slab_fix(s, "Freelist cleared");
  647. return 0;
  648. }
  649. break;
  650. }
  651. object = fp;
  652. fp = get_freepointer(s, object);
  653. nr++;
  654. }
  655. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  656. if (max_objects > MAX_OBJS_PER_PAGE)
  657. max_objects = MAX_OBJS_PER_PAGE;
  658. if (page->objects != max_objects) {
  659. slab_err(s, page, "Wrong number of objects. Found %d but "
  660. "should be %d", page->objects, max_objects);
  661. page->objects = max_objects;
  662. slab_fix(s, "Number of objects adjusted.");
  663. }
  664. if (page->inuse != page->objects - nr) {
  665. slab_err(s, page, "Wrong object count. Counter is %d but "
  666. "counted were %d", page->inuse, page->objects - nr);
  667. page->inuse = page->objects - nr;
  668. slab_fix(s, "Object count adjusted.");
  669. }
  670. return search == NULL;
  671. }
  672. static void trace(struct kmem_cache *s, struct page *page, void *object,
  673. int alloc)
  674. {
  675. if (s->flags & SLAB_TRACE) {
  676. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  677. s->name,
  678. alloc ? "alloc" : "free",
  679. object, page->inuse,
  680. page->freelist);
  681. if (!alloc)
  682. print_section("Object", (void *)object, s->objsize);
  683. dump_stack();
  684. }
  685. }
  686. /*
  687. * Tracking of fully allocated slabs for debugging purposes.
  688. */
  689. static void add_full(struct kmem_cache_node *n, struct page *page)
  690. {
  691. spin_lock(&n->list_lock);
  692. list_add(&page->lru, &n->full);
  693. spin_unlock(&n->list_lock);
  694. }
  695. static void remove_full(struct kmem_cache *s, struct page *page)
  696. {
  697. struct kmem_cache_node *n;
  698. if (!(s->flags & SLAB_STORE_USER))
  699. return;
  700. n = get_node(s, page_to_nid(page));
  701. spin_lock(&n->list_lock);
  702. list_del(&page->lru);
  703. spin_unlock(&n->list_lock);
  704. }
  705. /* Tracking of the number of slabs for debugging purposes */
  706. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  707. {
  708. struct kmem_cache_node *n = get_node(s, node);
  709. return atomic_long_read(&n->nr_slabs);
  710. }
  711. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  712. {
  713. return atomic_long_read(&n->nr_slabs);
  714. }
  715. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  716. {
  717. struct kmem_cache_node *n = get_node(s, node);
  718. /*
  719. * May be called early in order to allocate a slab for the
  720. * kmem_cache_node structure. Solve the chicken-egg
  721. * dilemma by deferring the increment of the count during
  722. * bootstrap (see early_kmem_cache_node_alloc).
  723. */
  724. if (!NUMA_BUILD || n) {
  725. atomic_long_inc(&n->nr_slabs);
  726. atomic_long_add(objects, &n->total_objects);
  727. }
  728. }
  729. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  730. {
  731. struct kmem_cache_node *n = get_node(s, node);
  732. atomic_long_dec(&n->nr_slabs);
  733. atomic_long_sub(objects, &n->total_objects);
  734. }
  735. /* Object debug checks for alloc/free paths */
  736. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  737. void *object)
  738. {
  739. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  740. return;
  741. init_object(s, object, 0);
  742. init_tracking(s, object);
  743. }
  744. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  745. void *object, unsigned long addr)
  746. {
  747. if (!check_slab(s, page))
  748. goto bad;
  749. if (!on_freelist(s, page, object)) {
  750. object_err(s, page, object, "Object already allocated");
  751. goto bad;
  752. }
  753. if (!check_valid_pointer(s, page, object)) {
  754. object_err(s, page, object, "Freelist Pointer check fails");
  755. goto bad;
  756. }
  757. if (!check_object(s, page, object, 0))
  758. goto bad;
  759. /* Success perform special debug activities for allocs */
  760. if (s->flags & SLAB_STORE_USER)
  761. set_track(s, object, TRACK_ALLOC, addr);
  762. trace(s, page, object, 1);
  763. init_object(s, object, 1);
  764. return 1;
  765. bad:
  766. if (PageSlab(page)) {
  767. /*
  768. * If this is a slab page then lets do the best we can
  769. * to avoid issues in the future. Marking all objects
  770. * as used avoids touching the remaining objects.
  771. */
  772. slab_fix(s, "Marking all objects used");
  773. page->inuse = page->objects;
  774. page->freelist = NULL;
  775. }
  776. return 0;
  777. }
  778. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  779. void *object, unsigned long addr)
  780. {
  781. if (!check_slab(s, page))
  782. goto fail;
  783. if (!check_valid_pointer(s, page, object)) {
  784. slab_err(s, page, "Invalid object pointer 0x%p", object);
  785. goto fail;
  786. }
  787. if (on_freelist(s, page, object)) {
  788. object_err(s, page, object, "Object already free");
  789. goto fail;
  790. }
  791. if (!check_object(s, page, object, 1))
  792. return 0;
  793. if (unlikely(s != page->slab)) {
  794. if (!PageSlab(page)) {
  795. slab_err(s, page, "Attempt to free object(0x%p) "
  796. "outside of slab", object);
  797. } else if (!page->slab) {
  798. printk(KERN_ERR
  799. "SLUB <none>: no slab for object 0x%p.\n",
  800. object);
  801. dump_stack();
  802. } else
  803. object_err(s, page, object,
  804. "page slab pointer corrupt.");
  805. goto fail;
  806. }
  807. /* Special debug activities for freeing objects */
  808. if (!PageSlubFrozen(page) && !page->freelist)
  809. remove_full(s, page);
  810. if (s->flags & SLAB_STORE_USER)
  811. set_track(s, object, TRACK_FREE, addr);
  812. trace(s, page, object, 0);
  813. init_object(s, object, 0);
  814. return 1;
  815. fail:
  816. slab_fix(s, "Object at 0x%p not freed", object);
  817. return 0;
  818. }
  819. static int __init setup_slub_debug(char *str)
  820. {
  821. slub_debug = DEBUG_DEFAULT_FLAGS;
  822. if (*str++ != '=' || !*str)
  823. /*
  824. * No options specified. Switch on full debugging.
  825. */
  826. goto out;
  827. if (*str == ',')
  828. /*
  829. * No options but restriction on slabs. This means full
  830. * debugging for slabs matching a pattern.
  831. */
  832. goto check_slabs;
  833. if (tolower(*str) == 'o') {
  834. /*
  835. * Avoid enabling debugging on caches if its minimum order
  836. * would increase as a result.
  837. */
  838. disable_higher_order_debug = 1;
  839. goto out;
  840. }
  841. slub_debug = 0;
  842. if (*str == '-')
  843. /*
  844. * Switch off all debugging measures.
  845. */
  846. goto out;
  847. /*
  848. * Determine which debug features should be switched on
  849. */
  850. for (; *str && *str != ','; str++) {
  851. switch (tolower(*str)) {
  852. case 'f':
  853. slub_debug |= SLAB_DEBUG_FREE;
  854. break;
  855. case 'z':
  856. slub_debug |= SLAB_RED_ZONE;
  857. break;
  858. case 'p':
  859. slub_debug |= SLAB_POISON;
  860. break;
  861. case 'u':
  862. slub_debug |= SLAB_STORE_USER;
  863. break;
  864. case 't':
  865. slub_debug |= SLAB_TRACE;
  866. break;
  867. default:
  868. printk(KERN_ERR "slub_debug option '%c' "
  869. "unknown. skipped\n", *str);
  870. }
  871. }
  872. check_slabs:
  873. if (*str == ',')
  874. slub_debug_slabs = str + 1;
  875. out:
  876. return 1;
  877. }
  878. __setup("slub_debug", setup_slub_debug);
  879. static unsigned long kmem_cache_flags(unsigned long objsize,
  880. unsigned long flags, const char *name,
  881. void (*ctor)(void *))
  882. {
  883. /*
  884. * Enable debugging if selected on the kernel commandline.
  885. */
  886. if (slub_debug && (!slub_debug_slabs ||
  887. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  888. flags |= slub_debug;
  889. return flags;
  890. }
  891. #else
  892. static inline void setup_object_debug(struct kmem_cache *s,
  893. struct page *page, void *object) {}
  894. static inline int alloc_debug_processing(struct kmem_cache *s,
  895. struct page *page, void *object, unsigned long addr) { return 0; }
  896. static inline int free_debug_processing(struct kmem_cache *s,
  897. struct page *page, void *object, unsigned long addr) { return 0; }
  898. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  899. { return 1; }
  900. static inline int check_object(struct kmem_cache *s, struct page *page,
  901. void *object, int active) { return 1; }
  902. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  903. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  904. unsigned long flags, const char *name,
  905. void (*ctor)(void *))
  906. {
  907. return flags;
  908. }
  909. #define slub_debug 0
  910. #define disable_higher_order_debug 0
  911. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  912. { return 0; }
  913. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  914. { return 0; }
  915. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  916. int objects) {}
  917. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  918. int objects) {}
  919. #endif
  920. /*
  921. * Slab allocation and freeing
  922. */
  923. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  924. struct kmem_cache_order_objects oo)
  925. {
  926. int order = oo_order(oo);
  927. flags |= __GFP_NOTRACK;
  928. if (node == -1)
  929. return alloc_pages(flags, order);
  930. else
  931. return alloc_pages_node(node, flags, order);
  932. }
  933. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  934. {
  935. struct page *page;
  936. struct kmem_cache_order_objects oo = s->oo;
  937. gfp_t alloc_gfp;
  938. flags |= s->allocflags;
  939. /*
  940. * Let the initial higher-order allocation fail under memory pressure
  941. * so we fall-back to the minimum order allocation.
  942. */
  943. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  944. page = alloc_slab_page(alloc_gfp, node, oo);
  945. if (unlikely(!page)) {
  946. oo = s->min;
  947. /*
  948. * Allocation may have failed due to fragmentation.
  949. * Try a lower order alloc if possible
  950. */
  951. page = alloc_slab_page(flags, node, oo);
  952. if (!page)
  953. return NULL;
  954. stat(this_cpu_ptr(s->cpu_slab), ORDER_FALLBACK);
  955. }
  956. if (kmemcheck_enabled
  957. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  958. int pages = 1 << oo_order(oo);
  959. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  960. /*
  961. * Objects from caches that have a constructor don't get
  962. * cleared when they're allocated, so we need to do it here.
  963. */
  964. if (s->ctor)
  965. kmemcheck_mark_uninitialized_pages(page, pages);
  966. else
  967. kmemcheck_mark_unallocated_pages(page, pages);
  968. }
  969. page->objects = oo_objects(oo);
  970. mod_zone_page_state(page_zone(page),
  971. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  972. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  973. 1 << oo_order(oo));
  974. return page;
  975. }
  976. static void setup_object(struct kmem_cache *s, struct page *page,
  977. void *object)
  978. {
  979. setup_object_debug(s, page, object);
  980. if (unlikely(s->ctor))
  981. s->ctor(object);
  982. }
  983. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  984. {
  985. struct page *page;
  986. void *start;
  987. void *last;
  988. void *p;
  989. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  990. page = allocate_slab(s,
  991. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  992. if (!page)
  993. goto out;
  994. inc_slabs_node(s, page_to_nid(page), page->objects);
  995. page->slab = s;
  996. page->flags |= 1 << PG_slab;
  997. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  998. SLAB_STORE_USER | SLAB_TRACE))
  999. __SetPageSlubDebug(page);
  1000. start = page_address(page);
  1001. if (unlikely(s->flags & SLAB_POISON))
  1002. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1003. last = start;
  1004. for_each_object(p, s, start, page->objects) {
  1005. setup_object(s, page, last);
  1006. set_freepointer(s, last, p);
  1007. last = p;
  1008. }
  1009. setup_object(s, page, last);
  1010. set_freepointer(s, last, NULL);
  1011. page->freelist = start;
  1012. page->inuse = 0;
  1013. out:
  1014. return page;
  1015. }
  1016. static void __free_slab(struct kmem_cache *s, struct page *page)
  1017. {
  1018. int order = compound_order(page);
  1019. int pages = 1 << order;
  1020. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1021. void *p;
  1022. slab_pad_check(s, page);
  1023. for_each_object(p, s, page_address(page),
  1024. page->objects)
  1025. check_object(s, page, p, 0);
  1026. __ClearPageSlubDebug(page);
  1027. }
  1028. kmemcheck_free_shadow(page, compound_order(page));
  1029. mod_zone_page_state(page_zone(page),
  1030. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1031. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1032. -pages);
  1033. __ClearPageSlab(page);
  1034. reset_page_mapcount(page);
  1035. if (current->reclaim_state)
  1036. current->reclaim_state->reclaimed_slab += pages;
  1037. __free_pages(page, order);
  1038. }
  1039. static void rcu_free_slab(struct rcu_head *h)
  1040. {
  1041. struct page *page;
  1042. page = container_of((struct list_head *)h, struct page, lru);
  1043. __free_slab(page->slab, page);
  1044. }
  1045. static void free_slab(struct kmem_cache *s, struct page *page)
  1046. {
  1047. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1048. /*
  1049. * RCU free overloads the RCU head over the LRU
  1050. */
  1051. struct rcu_head *head = (void *)&page->lru;
  1052. call_rcu(head, rcu_free_slab);
  1053. } else
  1054. __free_slab(s, page);
  1055. }
  1056. static void discard_slab(struct kmem_cache *s, struct page *page)
  1057. {
  1058. dec_slabs_node(s, page_to_nid(page), page->objects);
  1059. free_slab(s, page);
  1060. }
  1061. /*
  1062. * Per slab locking using the pagelock
  1063. */
  1064. static __always_inline void slab_lock(struct page *page)
  1065. {
  1066. bit_spin_lock(PG_locked, &page->flags);
  1067. }
  1068. static __always_inline void slab_unlock(struct page *page)
  1069. {
  1070. __bit_spin_unlock(PG_locked, &page->flags);
  1071. }
  1072. static __always_inline int slab_trylock(struct page *page)
  1073. {
  1074. int rc = 1;
  1075. rc = bit_spin_trylock(PG_locked, &page->flags);
  1076. return rc;
  1077. }
  1078. /*
  1079. * Management of partially allocated slabs
  1080. */
  1081. static void add_partial(struct kmem_cache_node *n,
  1082. struct page *page, int tail)
  1083. {
  1084. spin_lock(&n->list_lock);
  1085. n->nr_partial++;
  1086. if (tail)
  1087. list_add_tail(&page->lru, &n->partial);
  1088. else
  1089. list_add(&page->lru, &n->partial);
  1090. spin_unlock(&n->list_lock);
  1091. }
  1092. static void remove_partial(struct kmem_cache *s, struct page *page)
  1093. {
  1094. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1095. spin_lock(&n->list_lock);
  1096. list_del(&page->lru);
  1097. n->nr_partial--;
  1098. spin_unlock(&n->list_lock);
  1099. }
  1100. /*
  1101. * Lock slab and remove from the partial list.
  1102. *
  1103. * Must hold list_lock.
  1104. */
  1105. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1106. struct page *page)
  1107. {
  1108. if (slab_trylock(page)) {
  1109. list_del(&page->lru);
  1110. n->nr_partial--;
  1111. __SetPageSlubFrozen(page);
  1112. return 1;
  1113. }
  1114. return 0;
  1115. }
  1116. /*
  1117. * Try to allocate a partial slab from a specific node.
  1118. */
  1119. static struct page *get_partial_node(struct kmem_cache_node *n)
  1120. {
  1121. struct page *page;
  1122. /*
  1123. * Racy check. If we mistakenly see no partial slabs then we
  1124. * just allocate an empty slab. If we mistakenly try to get a
  1125. * partial slab and there is none available then get_partials()
  1126. * will return NULL.
  1127. */
  1128. if (!n || !n->nr_partial)
  1129. return NULL;
  1130. spin_lock(&n->list_lock);
  1131. list_for_each_entry(page, &n->partial, lru)
  1132. if (lock_and_freeze_slab(n, page))
  1133. goto out;
  1134. page = NULL;
  1135. out:
  1136. spin_unlock(&n->list_lock);
  1137. return page;
  1138. }
  1139. /*
  1140. * Get a page from somewhere. Search in increasing NUMA distances.
  1141. */
  1142. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1143. {
  1144. #ifdef CONFIG_NUMA
  1145. struct zonelist *zonelist;
  1146. struct zoneref *z;
  1147. struct zone *zone;
  1148. enum zone_type high_zoneidx = gfp_zone(flags);
  1149. struct page *page;
  1150. /*
  1151. * The defrag ratio allows a configuration of the tradeoffs between
  1152. * inter node defragmentation and node local allocations. A lower
  1153. * defrag_ratio increases the tendency to do local allocations
  1154. * instead of attempting to obtain partial slabs from other nodes.
  1155. *
  1156. * If the defrag_ratio is set to 0 then kmalloc() always
  1157. * returns node local objects. If the ratio is higher then kmalloc()
  1158. * may return off node objects because partial slabs are obtained
  1159. * from other nodes and filled up.
  1160. *
  1161. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1162. * defrag_ratio = 1000) then every (well almost) allocation will
  1163. * first attempt to defrag slab caches on other nodes. This means
  1164. * scanning over all nodes to look for partial slabs which may be
  1165. * expensive if we do it every time we are trying to find a slab
  1166. * with available objects.
  1167. */
  1168. if (!s->remote_node_defrag_ratio ||
  1169. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1170. return NULL;
  1171. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1172. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1173. struct kmem_cache_node *n;
  1174. n = get_node(s, zone_to_nid(zone));
  1175. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1176. n->nr_partial > s->min_partial) {
  1177. page = get_partial_node(n);
  1178. if (page)
  1179. return page;
  1180. }
  1181. }
  1182. #endif
  1183. return NULL;
  1184. }
  1185. /*
  1186. * Get a partial page, lock it and return it.
  1187. */
  1188. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1189. {
  1190. struct page *page;
  1191. int searchnode = (node == -1) ? numa_node_id() : node;
  1192. page = get_partial_node(get_node(s, searchnode));
  1193. if (page || (flags & __GFP_THISNODE))
  1194. return page;
  1195. return get_any_partial(s, flags);
  1196. }
  1197. /*
  1198. * Move a page back to the lists.
  1199. *
  1200. * Must be called with the slab lock held.
  1201. *
  1202. * On exit the slab lock will have been dropped.
  1203. */
  1204. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1205. {
  1206. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1207. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1208. __ClearPageSlubFrozen(page);
  1209. if (page->inuse) {
  1210. if (page->freelist) {
  1211. add_partial(n, page, tail);
  1212. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1213. } else {
  1214. stat(c, DEACTIVATE_FULL);
  1215. if (SLABDEBUG && PageSlubDebug(page) &&
  1216. (s->flags & SLAB_STORE_USER))
  1217. add_full(n, page);
  1218. }
  1219. slab_unlock(page);
  1220. } else {
  1221. stat(c, DEACTIVATE_EMPTY);
  1222. if (n->nr_partial < s->min_partial) {
  1223. /*
  1224. * Adding an empty slab to the partial slabs in order
  1225. * to avoid page allocator overhead. This slab needs
  1226. * to come after the other slabs with objects in
  1227. * so that the others get filled first. That way the
  1228. * size of the partial list stays small.
  1229. *
  1230. * kmem_cache_shrink can reclaim any empty slabs from
  1231. * the partial list.
  1232. */
  1233. add_partial(n, page, 1);
  1234. slab_unlock(page);
  1235. } else {
  1236. slab_unlock(page);
  1237. stat(__this_cpu_ptr(s->cpu_slab), FREE_SLAB);
  1238. discard_slab(s, page);
  1239. }
  1240. }
  1241. }
  1242. /*
  1243. * Remove the cpu slab
  1244. */
  1245. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1246. {
  1247. struct page *page = c->page;
  1248. int tail = 1;
  1249. if (page->freelist)
  1250. stat(c, DEACTIVATE_REMOTE_FREES);
  1251. /*
  1252. * Merge cpu freelist into slab freelist. Typically we get here
  1253. * because both freelists are empty. So this is unlikely
  1254. * to occur.
  1255. */
  1256. while (unlikely(c->freelist)) {
  1257. void **object;
  1258. tail = 0; /* Hot objects. Put the slab first */
  1259. /* Retrieve object from cpu_freelist */
  1260. object = c->freelist;
  1261. c->freelist = c->freelist[c->offset];
  1262. /* And put onto the regular freelist */
  1263. object[c->offset] = page->freelist;
  1264. page->freelist = object;
  1265. page->inuse--;
  1266. }
  1267. c->page = NULL;
  1268. unfreeze_slab(s, page, tail);
  1269. }
  1270. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1271. {
  1272. stat(c, CPUSLAB_FLUSH);
  1273. slab_lock(c->page);
  1274. deactivate_slab(s, c);
  1275. }
  1276. /*
  1277. * Flush cpu slab.
  1278. *
  1279. * Called from IPI handler with interrupts disabled.
  1280. */
  1281. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1282. {
  1283. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1284. if (likely(c && c->page))
  1285. flush_slab(s, c);
  1286. }
  1287. static void flush_cpu_slab(void *d)
  1288. {
  1289. struct kmem_cache *s = d;
  1290. __flush_cpu_slab(s, smp_processor_id());
  1291. }
  1292. static void flush_all(struct kmem_cache *s)
  1293. {
  1294. on_each_cpu(flush_cpu_slab, s, 1);
  1295. }
  1296. /*
  1297. * Check if the objects in a per cpu structure fit numa
  1298. * locality expectations.
  1299. */
  1300. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1301. {
  1302. #ifdef CONFIG_NUMA
  1303. if (node != -1 && c->node != node)
  1304. return 0;
  1305. #endif
  1306. return 1;
  1307. }
  1308. static int count_free(struct page *page)
  1309. {
  1310. return page->objects - page->inuse;
  1311. }
  1312. static unsigned long count_partial(struct kmem_cache_node *n,
  1313. int (*get_count)(struct page *))
  1314. {
  1315. unsigned long flags;
  1316. unsigned long x = 0;
  1317. struct page *page;
  1318. spin_lock_irqsave(&n->list_lock, flags);
  1319. list_for_each_entry(page, &n->partial, lru)
  1320. x += get_count(page);
  1321. spin_unlock_irqrestore(&n->list_lock, flags);
  1322. return x;
  1323. }
  1324. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1325. {
  1326. #ifdef CONFIG_SLUB_DEBUG
  1327. return atomic_long_read(&n->total_objects);
  1328. #else
  1329. return 0;
  1330. #endif
  1331. }
  1332. static noinline void
  1333. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1334. {
  1335. int node;
  1336. printk(KERN_WARNING
  1337. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1338. nid, gfpflags);
  1339. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1340. "default order: %d, min order: %d\n", s->name, s->objsize,
  1341. s->size, oo_order(s->oo), oo_order(s->min));
  1342. if (oo_order(s->min) > get_order(s->objsize))
  1343. printk(KERN_WARNING " %s debugging increased min order, use "
  1344. "slub_debug=O to disable.\n", s->name);
  1345. for_each_online_node(node) {
  1346. struct kmem_cache_node *n = get_node(s, node);
  1347. unsigned long nr_slabs;
  1348. unsigned long nr_objs;
  1349. unsigned long nr_free;
  1350. if (!n)
  1351. continue;
  1352. nr_free = count_partial(n, count_free);
  1353. nr_slabs = node_nr_slabs(n);
  1354. nr_objs = node_nr_objs(n);
  1355. printk(KERN_WARNING
  1356. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1357. node, nr_slabs, nr_objs, nr_free);
  1358. }
  1359. }
  1360. /*
  1361. * Slow path. The lockless freelist is empty or we need to perform
  1362. * debugging duties.
  1363. *
  1364. * Interrupts are disabled.
  1365. *
  1366. * Processing is still very fast if new objects have been freed to the
  1367. * regular freelist. In that case we simply take over the regular freelist
  1368. * as the lockless freelist and zap the regular freelist.
  1369. *
  1370. * If that is not working then we fall back to the partial lists. We take the
  1371. * first element of the freelist as the object to allocate now and move the
  1372. * rest of the freelist to the lockless freelist.
  1373. *
  1374. * And if we were unable to get a new slab from the partial slab lists then
  1375. * we need to allocate a new slab. This is the slowest path since it involves
  1376. * a call to the page allocator and the setup of a new slab.
  1377. */
  1378. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1379. unsigned long addr, struct kmem_cache_cpu *c)
  1380. {
  1381. void **object;
  1382. struct page *new;
  1383. /* We handle __GFP_ZERO in the caller */
  1384. gfpflags &= ~__GFP_ZERO;
  1385. if (!c->page)
  1386. goto new_slab;
  1387. slab_lock(c->page);
  1388. if (unlikely(!node_match(c, node)))
  1389. goto another_slab;
  1390. stat(c, ALLOC_REFILL);
  1391. load_freelist:
  1392. object = c->page->freelist;
  1393. if (unlikely(!object))
  1394. goto another_slab;
  1395. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1396. goto debug;
  1397. c->freelist = object[c->offset];
  1398. c->page->inuse = c->page->objects;
  1399. c->page->freelist = NULL;
  1400. c->node = page_to_nid(c->page);
  1401. unlock_out:
  1402. slab_unlock(c->page);
  1403. stat(c, ALLOC_SLOWPATH);
  1404. return object;
  1405. another_slab:
  1406. deactivate_slab(s, c);
  1407. new_slab:
  1408. new = get_partial(s, gfpflags, node);
  1409. if (new) {
  1410. c->page = new;
  1411. stat(c, ALLOC_FROM_PARTIAL);
  1412. goto load_freelist;
  1413. }
  1414. if (gfpflags & __GFP_WAIT)
  1415. local_irq_enable();
  1416. new = new_slab(s, gfpflags, node);
  1417. if (gfpflags & __GFP_WAIT)
  1418. local_irq_disable();
  1419. if (new) {
  1420. c = __this_cpu_ptr(s->cpu_slab);
  1421. stat(c, ALLOC_SLAB);
  1422. if (c->page)
  1423. flush_slab(s, c);
  1424. slab_lock(new);
  1425. __SetPageSlubFrozen(new);
  1426. c->page = new;
  1427. goto load_freelist;
  1428. }
  1429. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1430. slab_out_of_memory(s, gfpflags, node);
  1431. return NULL;
  1432. debug:
  1433. if (!alloc_debug_processing(s, c->page, object, addr))
  1434. goto another_slab;
  1435. c->page->inuse++;
  1436. c->page->freelist = object[c->offset];
  1437. c->node = -1;
  1438. goto unlock_out;
  1439. }
  1440. /*
  1441. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1442. * have the fastpath folded into their functions. So no function call
  1443. * overhead for requests that can be satisfied on the fastpath.
  1444. *
  1445. * The fastpath works by first checking if the lockless freelist can be used.
  1446. * If not then __slab_alloc is called for slow processing.
  1447. *
  1448. * Otherwise we can simply pick the next object from the lockless free list.
  1449. */
  1450. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1451. gfp_t gfpflags, int node, unsigned long addr)
  1452. {
  1453. void **object;
  1454. struct kmem_cache_cpu *c;
  1455. unsigned long flags;
  1456. unsigned long objsize;
  1457. gfpflags &= gfp_allowed_mask;
  1458. lockdep_trace_alloc(gfpflags);
  1459. might_sleep_if(gfpflags & __GFP_WAIT);
  1460. if (should_failslab(s->objsize, gfpflags))
  1461. return NULL;
  1462. local_irq_save(flags);
  1463. c = __this_cpu_ptr(s->cpu_slab);
  1464. object = c->freelist;
  1465. objsize = c->objsize;
  1466. if (unlikely(!object || !node_match(c, node)))
  1467. object = __slab_alloc(s, gfpflags, node, addr, c);
  1468. else {
  1469. c->freelist = object[c->offset];
  1470. stat(c, ALLOC_FASTPATH);
  1471. }
  1472. local_irq_restore(flags);
  1473. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1474. memset(object, 0, objsize);
  1475. kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
  1476. kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
  1477. return object;
  1478. }
  1479. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1480. {
  1481. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1482. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1483. return ret;
  1484. }
  1485. EXPORT_SYMBOL(kmem_cache_alloc);
  1486. #ifdef CONFIG_TRACING
  1487. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1488. {
  1489. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1490. }
  1491. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1492. #endif
  1493. #ifdef CONFIG_NUMA
  1494. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1495. {
  1496. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1497. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1498. s->objsize, s->size, gfpflags, node);
  1499. return ret;
  1500. }
  1501. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1502. #endif
  1503. #ifdef CONFIG_TRACING
  1504. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1505. gfp_t gfpflags,
  1506. int node)
  1507. {
  1508. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1509. }
  1510. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1511. #endif
  1512. /*
  1513. * Slow patch handling. This may still be called frequently since objects
  1514. * have a longer lifetime than the cpu slabs in most processing loads.
  1515. *
  1516. * So we still attempt to reduce cache line usage. Just take the slab
  1517. * lock and free the item. If there is no additional partial page
  1518. * handling required then we can return immediately.
  1519. */
  1520. static void __slab_free(struct kmem_cache *s, struct page *page,
  1521. void *x, unsigned long addr, unsigned int offset)
  1522. {
  1523. void *prior;
  1524. void **object = (void *)x;
  1525. struct kmem_cache_cpu *c;
  1526. c = __this_cpu_ptr(s->cpu_slab);
  1527. stat(c, FREE_SLOWPATH);
  1528. slab_lock(page);
  1529. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1530. goto debug;
  1531. checks_ok:
  1532. prior = object[offset] = page->freelist;
  1533. page->freelist = object;
  1534. page->inuse--;
  1535. if (unlikely(PageSlubFrozen(page))) {
  1536. stat(c, FREE_FROZEN);
  1537. goto out_unlock;
  1538. }
  1539. if (unlikely(!page->inuse))
  1540. goto slab_empty;
  1541. /*
  1542. * Objects left in the slab. If it was not on the partial list before
  1543. * then add it.
  1544. */
  1545. if (unlikely(!prior)) {
  1546. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1547. stat(c, FREE_ADD_PARTIAL);
  1548. }
  1549. out_unlock:
  1550. slab_unlock(page);
  1551. return;
  1552. slab_empty:
  1553. if (prior) {
  1554. /*
  1555. * Slab still on the partial list.
  1556. */
  1557. remove_partial(s, page);
  1558. stat(c, FREE_REMOVE_PARTIAL);
  1559. }
  1560. slab_unlock(page);
  1561. stat(c, FREE_SLAB);
  1562. discard_slab(s, page);
  1563. return;
  1564. debug:
  1565. if (!free_debug_processing(s, page, x, addr))
  1566. goto out_unlock;
  1567. goto checks_ok;
  1568. }
  1569. /*
  1570. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1571. * can perform fastpath freeing without additional function calls.
  1572. *
  1573. * The fastpath is only possible if we are freeing to the current cpu slab
  1574. * of this processor. This typically the case if we have just allocated
  1575. * the item before.
  1576. *
  1577. * If fastpath is not possible then fall back to __slab_free where we deal
  1578. * with all sorts of special processing.
  1579. */
  1580. static __always_inline void slab_free(struct kmem_cache *s,
  1581. struct page *page, void *x, unsigned long addr)
  1582. {
  1583. void **object = (void *)x;
  1584. struct kmem_cache_cpu *c;
  1585. unsigned long flags;
  1586. kmemleak_free_recursive(x, s->flags);
  1587. local_irq_save(flags);
  1588. c = __this_cpu_ptr(s->cpu_slab);
  1589. kmemcheck_slab_free(s, object, c->objsize);
  1590. debug_check_no_locks_freed(object, c->objsize);
  1591. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1592. debug_check_no_obj_freed(object, c->objsize);
  1593. if (likely(page == c->page && c->node >= 0)) {
  1594. object[c->offset] = c->freelist;
  1595. c->freelist = object;
  1596. stat(c, FREE_FASTPATH);
  1597. } else
  1598. __slab_free(s, page, x, addr, c->offset);
  1599. local_irq_restore(flags);
  1600. }
  1601. void kmem_cache_free(struct kmem_cache *s, void *x)
  1602. {
  1603. struct page *page;
  1604. page = virt_to_head_page(x);
  1605. slab_free(s, page, x, _RET_IP_);
  1606. trace_kmem_cache_free(_RET_IP_, x);
  1607. }
  1608. EXPORT_SYMBOL(kmem_cache_free);
  1609. /* Figure out on which slab page the object resides */
  1610. static struct page *get_object_page(const void *x)
  1611. {
  1612. struct page *page = virt_to_head_page(x);
  1613. if (!PageSlab(page))
  1614. return NULL;
  1615. return page;
  1616. }
  1617. /*
  1618. * Object placement in a slab is made very easy because we always start at
  1619. * offset 0. If we tune the size of the object to the alignment then we can
  1620. * get the required alignment by putting one properly sized object after
  1621. * another.
  1622. *
  1623. * Notice that the allocation order determines the sizes of the per cpu
  1624. * caches. Each processor has always one slab available for allocations.
  1625. * Increasing the allocation order reduces the number of times that slabs
  1626. * must be moved on and off the partial lists and is therefore a factor in
  1627. * locking overhead.
  1628. */
  1629. /*
  1630. * Mininum / Maximum order of slab pages. This influences locking overhead
  1631. * and slab fragmentation. A higher order reduces the number of partial slabs
  1632. * and increases the number of allocations possible without having to
  1633. * take the list_lock.
  1634. */
  1635. static int slub_min_order;
  1636. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1637. static int slub_min_objects;
  1638. /*
  1639. * Merge control. If this is set then no merging of slab caches will occur.
  1640. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1641. */
  1642. static int slub_nomerge;
  1643. /*
  1644. * Calculate the order of allocation given an slab object size.
  1645. *
  1646. * The order of allocation has significant impact on performance and other
  1647. * system components. Generally order 0 allocations should be preferred since
  1648. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1649. * be problematic to put into order 0 slabs because there may be too much
  1650. * unused space left. We go to a higher order if more than 1/16th of the slab
  1651. * would be wasted.
  1652. *
  1653. * In order to reach satisfactory performance we must ensure that a minimum
  1654. * number of objects is in one slab. Otherwise we may generate too much
  1655. * activity on the partial lists which requires taking the list_lock. This is
  1656. * less a concern for large slabs though which are rarely used.
  1657. *
  1658. * slub_max_order specifies the order where we begin to stop considering the
  1659. * number of objects in a slab as critical. If we reach slub_max_order then
  1660. * we try to keep the page order as low as possible. So we accept more waste
  1661. * of space in favor of a small page order.
  1662. *
  1663. * Higher order allocations also allow the placement of more objects in a
  1664. * slab and thereby reduce object handling overhead. If the user has
  1665. * requested a higher mininum order then we start with that one instead of
  1666. * the smallest order which will fit the object.
  1667. */
  1668. static inline int slab_order(int size, int min_objects,
  1669. int max_order, int fract_leftover)
  1670. {
  1671. int order;
  1672. int rem;
  1673. int min_order = slub_min_order;
  1674. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1675. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1676. for (order = max(min_order,
  1677. fls(min_objects * size - 1) - PAGE_SHIFT);
  1678. order <= max_order; order++) {
  1679. unsigned long slab_size = PAGE_SIZE << order;
  1680. if (slab_size < min_objects * size)
  1681. continue;
  1682. rem = slab_size % size;
  1683. if (rem <= slab_size / fract_leftover)
  1684. break;
  1685. }
  1686. return order;
  1687. }
  1688. static inline int calculate_order(int size)
  1689. {
  1690. int order;
  1691. int min_objects;
  1692. int fraction;
  1693. int max_objects;
  1694. /*
  1695. * Attempt to find best configuration for a slab. This
  1696. * works by first attempting to generate a layout with
  1697. * the best configuration and backing off gradually.
  1698. *
  1699. * First we reduce the acceptable waste in a slab. Then
  1700. * we reduce the minimum objects required in a slab.
  1701. */
  1702. min_objects = slub_min_objects;
  1703. if (!min_objects)
  1704. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1705. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1706. min_objects = min(min_objects, max_objects);
  1707. while (min_objects > 1) {
  1708. fraction = 16;
  1709. while (fraction >= 4) {
  1710. order = slab_order(size, min_objects,
  1711. slub_max_order, fraction);
  1712. if (order <= slub_max_order)
  1713. return order;
  1714. fraction /= 2;
  1715. }
  1716. min_objects--;
  1717. }
  1718. /*
  1719. * We were unable to place multiple objects in a slab. Now
  1720. * lets see if we can place a single object there.
  1721. */
  1722. order = slab_order(size, 1, slub_max_order, 1);
  1723. if (order <= slub_max_order)
  1724. return order;
  1725. /*
  1726. * Doh this slab cannot be placed using slub_max_order.
  1727. */
  1728. order = slab_order(size, 1, MAX_ORDER, 1);
  1729. if (order < MAX_ORDER)
  1730. return order;
  1731. return -ENOSYS;
  1732. }
  1733. /*
  1734. * Figure out what the alignment of the objects will be.
  1735. */
  1736. static unsigned long calculate_alignment(unsigned long flags,
  1737. unsigned long align, unsigned long size)
  1738. {
  1739. /*
  1740. * If the user wants hardware cache aligned objects then follow that
  1741. * suggestion if the object is sufficiently large.
  1742. *
  1743. * The hardware cache alignment cannot override the specified
  1744. * alignment though. If that is greater then use it.
  1745. */
  1746. if (flags & SLAB_HWCACHE_ALIGN) {
  1747. unsigned long ralign = cache_line_size();
  1748. while (size <= ralign / 2)
  1749. ralign /= 2;
  1750. align = max(align, ralign);
  1751. }
  1752. if (align < ARCH_SLAB_MINALIGN)
  1753. align = ARCH_SLAB_MINALIGN;
  1754. return ALIGN(align, sizeof(void *));
  1755. }
  1756. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1757. struct kmem_cache_cpu *c)
  1758. {
  1759. c->page = NULL;
  1760. c->freelist = NULL;
  1761. c->node = 0;
  1762. c->offset = s->offset / sizeof(void *);
  1763. c->objsize = s->objsize;
  1764. #ifdef CONFIG_SLUB_STATS
  1765. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1766. #endif
  1767. }
  1768. static void
  1769. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1770. {
  1771. n->nr_partial = 0;
  1772. spin_lock_init(&n->list_lock);
  1773. INIT_LIST_HEAD(&n->partial);
  1774. #ifdef CONFIG_SLUB_DEBUG
  1775. atomic_long_set(&n->nr_slabs, 0);
  1776. atomic_long_set(&n->total_objects, 0);
  1777. INIT_LIST_HEAD(&n->full);
  1778. #endif
  1779. }
  1780. static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[SLUB_PAGE_SHIFT]);
  1781. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1782. {
  1783. int cpu;
  1784. if (s < kmalloc_caches + SLUB_PAGE_SHIFT && s >= kmalloc_caches)
  1785. /*
  1786. * Boot time creation of the kmalloc array. Use static per cpu data
  1787. * since the per cpu allocator is not available yet.
  1788. */
  1789. s->cpu_slab = per_cpu_var(kmalloc_percpu) + (s - kmalloc_caches);
  1790. else
  1791. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1792. if (!s->cpu_slab)
  1793. return 0;
  1794. for_each_possible_cpu(cpu)
  1795. init_kmem_cache_cpu(s, per_cpu_ptr(s->cpu_slab, cpu));
  1796. return 1;
  1797. }
  1798. #ifdef CONFIG_NUMA
  1799. /*
  1800. * No kmalloc_node yet so do it by hand. We know that this is the first
  1801. * slab on the node for this slabcache. There are no concurrent accesses
  1802. * possible.
  1803. *
  1804. * Note that this function only works on the kmalloc_node_cache
  1805. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1806. * memory on a fresh node that has no slab structures yet.
  1807. */
  1808. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1809. {
  1810. struct page *page;
  1811. struct kmem_cache_node *n;
  1812. unsigned long flags;
  1813. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1814. page = new_slab(kmalloc_caches, gfpflags, node);
  1815. BUG_ON(!page);
  1816. if (page_to_nid(page) != node) {
  1817. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1818. "node %d\n", node);
  1819. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1820. "in order to be able to continue\n");
  1821. }
  1822. n = page->freelist;
  1823. BUG_ON(!n);
  1824. page->freelist = get_freepointer(kmalloc_caches, n);
  1825. page->inuse++;
  1826. kmalloc_caches->node[node] = n;
  1827. #ifdef CONFIG_SLUB_DEBUG
  1828. init_object(kmalloc_caches, n, 1);
  1829. init_tracking(kmalloc_caches, n);
  1830. #endif
  1831. init_kmem_cache_node(n, kmalloc_caches);
  1832. inc_slabs_node(kmalloc_caches, node, page->objects);
  1833. /*
  1834. * lockdep requires consistent irq usage for each lock
  1835. * so even though there cannot be a race this early in
  1836. * the boot sequence, we still disable irqs.
  1837. */
  1838. local_irq_save(flags);
  1839. add_partial(n, page, 0);
  1840. local_irq_restore(flags);
  1841. }
  1842. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1843. {
  1844. int node;
  1845. for_each_node_state(node, N_NORMAL_MEMORY) {
  1846. struct kmem_cache_node *n = s->node[node];
  1847. if (n && n != &s->local_node)
  1848. kmem_cache_free(kmalloc_caches, n);
  1849. s->node[node] = NULL;
  1850. }
  1851. }
  1852. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1853. {
  1854. int node;
  1855. int local_node;
  1856. if (slab_state >= UP)
  1857. local_node = page_to_nid(virt_to_page(s));
  1858. else
  1859. local_node = 0;
  1860. for_each_node_state(node, N_NORMAL_MEMORY) {
  1861. struct kmem_cache_node *n;
  1862. if (local_node == node)
  1863. n = &s->local_node;
  1864. else {
  1865. if (slab_state == DOWN) {
  1866. early_kmem_cache_node_alloc(gfpflags, node);
  1867. continue;
  1868. }
  1869. n = kmem_cache_alloc_node(kmalloc_caches,
  1870. gfpflags, node);
  1871. if (!n) {
  1872. free_kmem_cache_nodes(s);
  1873. return 0;
  1874. }
  1875. }
  1876. s->node[node] = n;
  1877. init_kmem_cache_node(n, s);
  1878. }
  1879. return 1;
  1880. }
  1881. #else
  1882. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1883. {
  1884. }
  1885. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1886. {
  1887. init_kmem_cache_node(&s->local_node, s);
  1888. return 1;
  1889. }
  1890. #endif
  1891. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1892. {
  1893. if (min < MIN_PARTIAL)
  1894. min = MIN_PARTIAL;
  1895. else if (min > MAX_PARTIAL)
  1896. min = MAX_PARTIAL;
  1897. s->min_partial = min;
  1898. }
  1899. /*
  1900. * calculate_sizes() determines the order and the distribution of data within
  1901. * a slab object.
  1902. */
  1903. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1904. {
  1905. unsigned long flags = s->flags;
  1906. unsigned long size = s->objsize;
  1907. unsigned long align = s->align;
  1908. int order;
  1909. /*
  1910. * Round up object size to the next word boundary. We can only
  1911. * place the free pointer at word boundaries and this determines
  1912. * the possible location of the free pointer.
  1913. */
  1914. size = ALIGN(size, sizeof(void *));
  1915. #ifdef CONFIG_SLUB_DEBUG
  1916. /*
  1917. * Determine if we can poison the object itself. If the user of
  1918. * the slab may touch the object after free or before allocation
  1919. * then we should never poison the object itself.
  1920. */
  1921. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1922. !s->ctor)
  1923. s->flags |= __OBJECT_POISON;
  1924. else
  1925. s->flags &= ~__OBJECT_POISON;
  1926. /*
  1927. * If we are Redzoning then check if there is some space between the
  1928. * end of the object and the free pointer. If not then add an
  1929. * additional word to have some bytes to store Redzone information.
  1930. */
  1931. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1932. size += sizeof(void *);
  1933. #endif
  1934. /*
  1935. * With that we have determined the number of bytes in actual use
  1936. * by the object. This is the potential offset to the free pointer.
  1937. */
  1938. s->inuse = size;
  1939. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1940. s->ctor)) {
  1941. /*
  1942. * Relocate free pointer after the object if it is not
  1943. * permitted to overwrite the first word of the object on
  1944. * kmem_cache_free.
  1945. *
  1946. * This is the case if we do RCU, have a constructor or
  1947. * destructor or are poisoning the objects.
  1948. */
  1949. s->offset = size;
  1950. size += sizeof(void *);
  1951. }
  1952. #ifdef CONFIG_SLUB_DEBUG
  1953. if (flags & SLAB_STORE_USER)
  1954. /*
  1955. * Need to store information about allocs and frees after
  1956. * the object.
  1957. */
  1958. size += 2 * sizeof(struct track);
  1959. if (flags & SLAB_RED_ZONE)
  1960. /*
  1961. * Add some empty padding so that we can catch
  1962. * overwrites from earlier objects rather than let
  1963. * tracking information or the free pointer be
  1964. * corrupted if a user writes before the start
  1965. * of the object.
  1966. */
  1967. size += sizeof(void *);
  1968. #endif
  1969. /*
  1970. * Determine the alignment based on various parameters that the
  1971. * user specified and the dynamic determination of cache line size
  1972. * on bootup.
  1973. */
  1974. align = calculate_alignment(flags, align, s->objsize);
  1975. s->align = align;
  1976. /*
  1977. * SLUB stores one object immediately after another beginning from
  1978. * offset 0. In order to align the objects we have to simply size
  1979. * each object to conform to the alignment.
  1980. */
  1981. size = ALIGN(size, align);
  1982. s->size = size;
  1983. if (forced_order >= 0)
  1984. order = forced_order;
  1985. else
  1986. order = calculate_order(size);
  1987. if (order < 0)
  1988. return 0;
  1989. s->allocflags = 0;
  1990. if (order)
  1991. s->allocflags |= __GFP_COMP;
  1992. if (s->flags & SLAB_CACHE_DMA)
  1993. s->allocflags |= SLUB_DMA;
  1994. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1995. s->allocflags |= __GFP_RECLAIMABLE;
  1996. /*
  1997. * Determine the number of objects per slab
  1998. */
  1999. s->oo = oo_make(order, size);
  2000. s->min = oo_make(get_order(size), size);
  2001. if (oo_objects(s->oo) > oo_objects(s->max))
  2002. s->max = s->oo;
  2003. return !!oo_objects(s->oo);
  2004. }
  2005. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  2006. const char *name, size_t size,
  2007. size_t align, unsigned long flags,
  2008. void (*ctor)(void *))
  2009. {
  2010. memset(s, 0, kmem_size);
  2011. s->name = name;
  2012. s->ctor = ctor;
  2013. s->objsize = size;
  2014. s->align = align;
  2015. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2016. if (!calculate_sizes(s, -1))
  2017. goto error;
  2018. if (disable_higher_order_debug) {
  2019. /*
  2020. * Disable debugging flags that store metadata if the min slab
  2021. * order increased.
  2022. */
  2023. if (get_order(s->size) > get_order(s->objsize)) {
  2024. s->flags &= ~DEBUG_METADATA_FLAGS;
  2025. s->offset = 0;
  2026. if (!calculate_sizes(s, -1))
  2027. goto error;
  2028. }
  2029. }
  2030. /*
  2031. * The larger the object size is, the more pages we want on the partial
  2032. * list to avoid pounding the page allocator excessively.
  2033. */
  2034. set_min_partial(s, ilog2(s->size));
  2035. s->refcount = 1;
  2036. #ifdef CONFIG_NUMA
  2037. s->remote_node_defrag_ratio = 1000;
  2038. #endif
  2039. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2040. goto error;
  2041. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2042. return 1;
  2043. free_kmem_cache_nodes(s);
  2044. error:
  2045. if (flags & SLAB_PANIC)
  2046. panic("Cannot create slab %s size=%lu realsize=%u "
  2047. "order=%u offset=%u flags=%lx\n",
  2048. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2049. s->offset, flags);
  2050. return 0;
  2051. }
  2052. /*
  2053. * Check if a given pointer is valid
  2054. */
  2055. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2056. {
  2057. struct page *page;
  2058. page = get_object_page(object);
  2059. if (!page || s != page->slab)
  2060. /* No slab or wrong slab */
  2061. return 0;
  2062. if (!check_valid_pointer(s, page, object))
  2063. return 0;
  2064. /*
  2065. * We could also check if the object is on the slabs freelist.
  2066. * But this would be too expensive and it seems that the main
  2067. * purpose of kmem_ptr_valid() is to check if the object belongs
  2068. * to a certain slab.
  2069. */
  2070. return 1;
  2071. }
  2072. EXPORT_SYMBOL(kmem_ptr_validate);
  2073. /*
  2074. * Determine the size of a slab object
  2075. */
  2076. unsigned int kmem_cache_size(struct kmem_cache *s)
  2077. {
  2078. return s->objsize;
  2079. }
  2080. EXPORT_SYMBOL(kmem_cache_size);
  2081. const char *kmem_cache_name(struct kmem_cache *s)
  2082. {
  2083. return s->name;
  2084. }
  2085. EXPORT_SYMBOL(kmem_cache_name);
  2086. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2087. const char *text)
  2088. {
  2089. #ifdef CONFIG_SLUB_DEBUG
  2090. void *addr = page_address(page);
  2091. void *p;
  2092. DECLARE_BITMAP(map, page->objects);
  2093. bitmap_zero(map, page->objects);
  2094. slab_err(s, page, "%s", text);
  2095. slab_lock(page);
  2096. for_each_free_object(p, s, page->freelist)
  2097. set_bit(slab_index(p, s, addr), map);
  2098. for_each_object(p, s, addr, page->objects) {
  2099. if (!test_bit(slab_index(p, s, addr), map)) {
  2100. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2101. p, p - addr);
  2102. print_tracking(s, p);
  2103. }
  2104. }
  2105. slab_unlock(page);
  2106. #endif
  2107. }
  2108. /*
  2109. * Attempt to free all partial slabs on a node.
  2110. */
  2111. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2112. {
  2113. unsigned long flags;
  2114. struct page *page, *h;
  2115. spin_lock_irqsave(&n->list_lock, flags);
  2116. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2117. if (!page->inuse) {
  2118. list_del(&page->lru);
  2119. discard_slab(s, page);
  2120. n->nr_partial--;
  2121. } else {
  2122. list_slab_objects(s, page,
  2123. "Objects remaining on kmem_cache_close()");
  2124. }
  2125. }
  2126. spin_unlock_irqrestore(&n->list_lock, flags);
  2127. }
  2128. /*
  2129. * Release all resources used by a slab cache.
  2130. */
  2131. static inline int kmem_cache_close(struct kmem_cache *s)
  2132. {
  2133. int node;
  2134. flush_all(s);
  2135. free_percpu(s->cpu_slab);
  2136. /* Attempt to free all objects */
  2137. for_each_node_state(node, N_NORMAL_MEMORY) {
  2138. struct kmem_cache_node *n = get_node(s, node);
  2139. free_partial(s, n);
  2140. if (n->nr_partial || slabs_node(s, node))
  2141. return 1;
  2142. }
  2143. free_kmem_cache_nodes(s);
  2144. return 0;
  2145. }
  2146. /*
  2147. * Close a cache and release the kmem_cache structure
  2148. * (must be used for caches created using kmem_cache_create)
  2149. */
  2150. void kmem_cache_destroy(struct kmem_cache *s)
  2151. {
  2152. down_write(&slub_lock);
  2153. s->refcount--;
  2154. if (!s->refcount) {
  2155. list_del(&s->list);
  2156. up_write(&slub_lock);
  2157. if (kmem_cache_close(s)) {
  2158. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2159. "still has objects.\n", s->name, __func__);
  2160. dump_stack();
  2161. }
  2162. if (s->flags & SLAB_DESTROY_BY_RCU)
  2163. rcu_barrier();
  2164. sysfs_slab_remove(s);
  2165. } else
  2166. up_write(&slub_lock);
  2167. }
  2168. EXPORT_SYMBOL(kmem_cache_destroy);
  2169. /********************************************************************
  2170. * Kmalloc subsystem
  2171. *******************************************************************/
  2172. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2173. EXPORT_SYMBOL(kmalloc_caches);
  2174. static int __init setup_slub_min_order(char *str)
  2175. {
  2176. get_option(&str, &slub_min_order);
  2177. return 1;
  2178. }
  2179. __setup("slub_min_order=", setup_slub_min_order);
  2180. static int __init setup_slub_max_order(char *str)
  2181. {
  2182. get_option(&str, &slub_max_order);
  2183. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2184. return 1;
  2185. }
  2186. __setup("slub_max_order=", setup_slub_max_order);
  2187. static int __init setup_slub_min_objects(char *str)
  2188. {
  2189. get_option(&str, &slub_min_objects);
  2190. return 1;
  2191. }
  2192. __setup("slub_min_objects=", setup_slub_min_objects);
  2193. static int __init setup_slub_nomerge(char *str)
  2194. {
  2195. slub_nomerge = 1;
  2196. return 1;
  2197. }
  2198. __setup("slub_nomerge", setup_slub_nomerge);
  2199. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2200. const char *name, int size, gfp_t gfp_flags)
  2201. {
  2202. unsigned int flags = 0;
  2203. if (gfp_flags & SLUB_DMA)
  2204. flags = SLAB_CACHE_DMA;
  2205. /*
  2206. * This function is called with IRQs disabled during early-boot on
  2207. * single CPU so there's no need to take slub_lock here.
  2208. */
  2209. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2210. flags, NULL))
  2211. goto panic;
  2212. list_add(&s->list, &slab_caches);
  2213. if (sysfs_slab_add(s))
  2214. goto panic;
  2215. return s;
  2216. panic:
  2217. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2218. }
  2219. #ifdef CONFIG_ZONE_DMA
  2220. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2221. static void sysfs_add_func(struct work_struct *w)
  2222. {
  2223. struct kmem_cache *s;
  2224. down_write(&slub_lock);
  2225. list_for_each_entry(s, &slab_caches, list) {
  2226. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2227. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2228. sysfs_slab_add(s);
  2229. }
  2230. }
  2231. up_write(&slub_lock);
  2232. }
  2233. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2234. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2235. {
  2236. struct kmem_cache *s;
  2237. char *text;
  2238. size_t realsize;
  2239. unsigned long slabflags;
  2240. s = kmalloc_caches_dma[index];
  2241. if (s)
  2242. return s;
  2243. /* Dynamically create dma cache */
  2244. if (flags & __GFP_WAIT)
  2245. down_write(&slub_lock);
  2246. else {
  2247. if (!down_write_trylock(&slub_lock))
  2248. goto out;
  2249. }
  2250. if (kmalloc_caches_dma[index])
  2251. goto unlock_out;
  2252. realsize = kmalloc_caches[index].objsize;
  2253. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2254. (unsigned int)realsize);
  2255. if (flags & __GFP_WAIT)
  2256. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2257. else {
  2258. int i;
  2259. s = NULL;
  2260. for (i = 0; i < SLUB_PAGE_SHIFT; i++)
  2261. if (kmalloc_caches[i].size) {
  2262. s = kmalloc_caches + i;
  2263. break;
  2264. }
  2265. }
  2266. /*
  2267. * Must defer sysfs creation to a workqueue because we don't know
  2268. * what context we are called from. Before sysfs comes up, we don't
  2269. * need to do anything because our sysfs initcall will start by
  2270. * adding all existing slabs to sysfs.
  2271. */
  2272. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2273. if (slab_state >= SYSFS)
  2274. slabflags |= __SYSFS_ADD_DEFERRED;
  2275. if (!s || !text || !kmem_cache_open(s, flags, text,
  2276. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2277. kfree(s);
  2278. kfree(text);
  2279. goto unlock_out;
  2280. }
  2281. list_add(&s->list, &slab_caches);
  2282. kmalloc_caches_dma[index] = s;
  2283. if (slab_state >= SYSFS)
  2284. schedule_work(&sysfs_add_work);
  2285. unlock_out:
  2286. up_write(&slub_lock);
  2287. out:
  2288. return kmalloc_caches_dma[index];
  2289. }
  2290. #endif
  2291. /*
  2292. * Conversion table for small slabs sizes / 8 to the index in the
  2293. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2294. * of two cache sizes there. The size of larger slabs can be determined using
  2295. * fls.
  2296. */
  2297. static s8 size_index[24] = {
  2298. 3, /* 8 */
  2299. 4, /* 16 */
  2300. 5, /* 24 */
  2301. 5, /* 32 */
  2302. 6, /* 40 */
  2303. 6, /* 48 */
  2304. 6, /* 56 */
  2305. 6, /* 64 */
  2306. 1, /* 72 */
  2307. 1, /* 80 */
  2308. 1, /* 88 */
  2309. 1, /* 96 */
  2310. 7, /* 104 */
  2311. 7, /* 112 */
  2312. 7, /* 120 */
  2313. 7, /* 128 */
  2314. 2, /* 136 */
  2315. 2, /* 144 */
  2316. 2, /* 152 */
  2317. 2, /* 160 */
  2318. 2, /* 168 */
  2319. 2, /* 176 */
  2320. 2, /* 184 */
  2321. 2 /* 192 */
  2322. };
  2323. static inline int size_index_elem(size_t bytes)
  2324. {
  2325. return (bytes - 1) / 8;
  2326. }
  2327. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2328. {
  2329. int index;
  2330. if (size <= 192) {
  2331. if (!size)
  2332. return ZERO_SIZE_PTR;
  2333. index = size_index[size_index_elem(size)];
  2334. } else
  2335. index = fls(size - 1);
  2336. #ifdef CONFIG_ZONE_DMA
  2337. if (unlikely((flags & SLUB_DMA)))
  2338. return dma_kmalloc_cache(index, flags);
  2339. #endif
  2340. return &kmalloc_caches[index];
  2341. }
  2342. void *__kmalloc(size_t size, gfp_t flags)
  2343. {
  2344. struct kmem_cache *s;
  2345. void *ret;
  2346. if (unlikely(size > SLUB_MAX_SIZE))
  2347. return kmalloc_large(size, flags);
  2348. s = get_slab(size, flags);
  2349. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2350. return s;
  2351. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2352. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2353. return ret;
  2354. }
  2355. EXPORT_SYMBOL(__kmalloc);
  2356. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2357. {
  2358. struct page *page;
  2359. void *ptr = NULL;
  2360. flags |= __GFP_COMP | __GFP_NOTRACK;
  2361. page = alloc_pages_node(node, flags, get_order(size));
  2362. if (page)
  2363. ptr = page_address(page);
  2364. kmemleak_alloc(ptr, size, 1, flags);
  2365. return ptr;
  2366. }
  2367. #ifdef CONFIG_NUMA
  2368. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2369. {
  2370. struct kmem_cache *s;
  2371. void *ret;
  2372. if (unlikely(size > SLUB_MAX_SIZE)) {
  2373. ret = kmalloc_large_node(size, flags, node);
  2374. trace_kmalloc_node(_RET_IP_, ret,
  2375. size, PAGE_SIZE << get_order(size),
  2376. flags, node);
  2377. return ret;
  2378. }
  2379. s = get_slab(size, flags);
  2380. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2381. return s;
  2382. ret = slab_alloc(s, flags, node, _RET_IP_);
  2383. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2384. return ret;
  2385. }
  2386. EXPORT_SYMBOL(__kmalloc_node);
  2387. #endif
  2388. size_t ksize(const void *object)
  2389. {
  2390. struct page *page;
  2391. struct kmem_cache *s;
  2392. if (unlikely(object == ZERO_SIZE_PTR))
  2393. return 0;
  2394. page = virt_to_head_page(object);
  2395. if (unlikely(!PageSlab(page))) {
  2396. WARN_ON(!PageCompound(page));
  2397. return PAGE_SIZE << compound_order(page);
  2398. }
  2399. s = page->slab;
  2400. #ifdef CONFIG_SLUB_DEBUG
  2401. /*
  2402. * Debugging requires use of the padding between object
  2403. * and whatever may come after it.
  2404. */
  2405. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2406. return s->objsize;
  2407. #endif
  2408. /*
  2409. * If we have the need to store the freelist pointer
  2410. * back there or track user information then we can
  2411. * only use the space before that information.
  2412. */
  2413. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2414. return s->inuse;
  2415. /*
  2416. * Else we can use all the padding etc for the allocation
  2417. */
  2418. return s->size;
  2419. }
  2420. EXPORT_SYMBOL(ksize);
  2421. void kfree(const void *x)
  2422. {
  2423. struct page *page;
  2424. void *object = (void *)x;
  2425. trace_kfree(_RET_IP_, x);
  2426. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2427. return;
  2428. page = virt_to_head_page(x);
  2429. if (unlikely(!PageSlab(page))) {
  2430. BUG_ON(!PageCompound(page));
  2431. kmemleak_free(x);
  2432. put_page(page);
  2433. return;
  2434. }
  2435. slab_free(page->slab, page, object, _RET_IP_);
  2436. }
  2437. EXPORT_SYMBOL(kfree);
  2438. /*
  2439. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2440. * the remaining slabs by the number of items in use. The slabs with the
  2441. * most items in use come first. New allocations will then fill those up
  2442. * and thus they can be removed from the partial lists.
  2443. *
  2444. * The slabs with the least items are placed last. This results in them
  2445. * being allocated from last increasing the chance that the last objects
  2446. * are freed in them.
  2447. */
  2448. int kmem_cache_shrink(struct kmem_cache *s)
  2449. {
  2450. int node;
  2451. int i;
  2452. struct kmem_cache_node *n;
  2453. struct page *page;
  2454. struct page *t;
  2455. int objects = oo_objects(s->max);
  2456. struct list_head *slabs_by_inuse =
  2457. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2458. unsigned long flags;
  2459. if (!slabs_by_inuse)
  2460. return -ENOMEM;
  2461. flush_all(s);
  2462. for_each_node_state(node, N_NORMAL_MEMORY) {
  2463. n = get_node(s, node);
  2464. if (!n->nr_partial)
  2465. continue;
  2466. for (i = 0; i < objects; i++)
  2467. INIT_LIST_HEAD(slabs_by_inuse + i);
  2468. spin_lock_irqsave(&n->list_lock, flags);
  2469. /*
  2470. * Build lists indexed by the items in use in each slab.
  2471. *
  2472. * Note that concurrent frees may occur while we hold the
  2473. * list_lock. page->inuse here is the upper limit.
  2474. */
  2475. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2476. if (!page->inuse && slab_trylock(page)) {
  2477. /*
  2478. * Must hold slab lock here because slab_free
  2479. * may have freed the last object and be
  2480. * waiting to release the slab.
  2481. */
  2482. list_del(&page->lru);
  2483. n->nr_partial--;
  2484. slab_unlock(page);
  2485. discard_slab(s, page);
  2486. } else {
  2487. list_move(&page->lru,
  2488. slabs_by_inuse + page->inuse);
  2489. }
  2490. }
  2491. /*
  2492. * Rebuild the partial list with the slabs filled up most
  2493. * first and the least used slabs at the end.
  2494. */
  2495. for (i = objects - 1; i >= 0; i--)
  2496. list_splice(slabs_by_inuse + i, n->partial.prev);
  2497. spin_unlock_irqrestore(&n->list_lock, flags);
  2498. }
  2499. kfree(slabs_by_inuse);
  2500. return 0;
  2501. }
  2502. EXPORT_SYMBOL(kmem_cache_shrink);
  2503. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2504. static int slab_mem_going_offline_callback(void *arg)
  2505. {
  2506. struct kmem_cache *s;
  2507. down_read(&slub_lock);
  2508. list_for_each_entry(s, &slab_caches, list)
  2509. kmem_cache_shrink(s);
  2510. up_read(&slub_lock);
  2511. return 0;
  2512. }
  2513. static void slab_mem_offline_callback(void *arg)
  2514. {
  2515. struct kmem_cache_node *n;
  2516. struct kmem_cache *s;
  2517. struct memory_notify *marg = arg;
  2518. int offline_node;
  2519. offline_node = marg->status_change_nid;
  2520. /*
  2521. * If the node still has available memory. we need kmem_cache_node
  2522. * for it yet.
  2523. */
  2524. if (offline_node < 0)
  2525. return;
  2526. down_read(&slub_lock);
  2527. list_for_each_entry(s, &slab_caches, list) {
  2528. n = get_node(s, offline_node);
  2529. if (n) {
  2530. /*
  2531. * if n->nr_slabs > 0, slabs still exist on the node
  2532. * that is going down. We were unable to free them,
  2533. * and offline_pages() function shoudn't call this
  2534. * callback. So, we must fail.
  2535. */
  2536. BUG_ON(slabs_node(s, offline_node));
  2537. s->node[offline_node] = NULL;
  2538. kmem_cache_free(kmalloc_caches, n);
  2539. }
  2540. }
  2541. up_read(&slub_lock);
  2542. }
  2543. static int slab_mem_going_online_callback(void *arg)
  2544. {
  2545. struct kmem_cache_node *n;
  2546. struct kmem_cache *s;
  2547. struct memory_notify *marg = arg;
  2548. int nid = marg->status_change_nid;
  2549. int ret = 0;
  2550. /*
  2551. * If the node's memory is already available, then kmem_cache_node is
  2552. * already created. Nothing to do.
  2553. */
  2554. if (nid < 0)
  2555. return 0;
  2556. /*
  2557. * We are bringing a node online. No memory is available yet. We must
  2558. * allocate a kmem_cache_node structure in order to bring the node
  2559. * online.
  2560. */
  2561. down_read(&slub_lock);
  2562. list_for_each_entry(s, &slab_caches, list) {
  2563. /*
  2564. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2565. * since memory is not yet available from the node that
  2566. * is brought up.
  2567. */
  2568. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2569. if (!n) {
  2570. ret = -ENOMEM;
  2571. goto out;
  2572. }
  2573. init_kmem_cache_node(n, s);
  2574. s->node[nid] = n;
  2575. }
  2576. out:
  2577. up_read(&slub_lock);
  2578. return ret;
  2579. }
  2580. static int slab_memory_callback(struct notifier_block *self,
  2581. unsigned long action, void *arg)
  2582. {
  2583. int ret = 0;
  2584. switch (action) {
  2585. case MEM_GOING_ONLINE:
  2586. ret = slab_mem_going_online_callback(arg);
  2587. break;
  2588. case MEM_GOING_OFFLINE:
  2589. ret = slab_mem_going_offline_callback(arg);
  2590. break;
  2591. case MEM_OFFLINE:
  2592. case MEM_CANCEL_ONLINE:
  2593. slab_mem_offline_callback(arg);
  2594. break;
  2595. case MEM_ONLINE:
  2596. case MEM_CANCEL_OFFLINE:
  2597. break;
  2598. }
  2599. if (ret)
  2600. ret = notifier_from_errno(ret);
  2601. else
  2602. ret = NOTIFY_OK;
  2603. return ret;
  2604. }
  2605. #endif /* CONFIG_MEMORY_HOTPLUG */
  2606. /********************************************************************
  2607. * Basic setup of slabs
  2608. *******************************************************************/
  2609. void __init kmem_cache_init(void)
  2610. {
  2611. int i;
  2612. int caches = 0;
  2613. #ifdef CONFIG_NUMA
  2614. /*
  2615. * Must first have the slab cache available for the allocations of the
  2616. * struct kmem_cache_node's. There is special bootstrap code in
  2617. * kmem_cache_open for slab_state == DOWN.
  2618. */
  2619. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2620. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2621. kmalloc_caches[0].refcount = -1;
  2622. caches++;
  2623. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2624. #endif
  2625. /* Able to allocate the per node structures */
  2626. slab_state = PARTIAL;
  2627. /* Caches that are not of the two-to-the-power-of size */
  2628. if (KMALLOC_MIN_SIZE <= 32) {
  2629. create_kmalloc_cache(&kmalloc_caches[1],
  2630. "kmalloc-96", 96, GFP_NOWAIT);
  2631. caches++;
  2632. }
  2633. if (KMALLOC_MIN_SIZE <= 64) {
  2634. create_kmalloc_cache(&kmalloc_caches[2],
  2635. "kmalloc-192", 192, GFP_NOWAIT);
  2636. caches++;
  2637. }
  2638. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2639. create_kmalloc_cache(&kmalloc_caches[i],
  2640. "kmalloc", 1 << i, GFP_NOWAIT);
  2641. caches++;
  2642. }
  2643. /*
  2644. * Patch up the size_index table if we have strange large alignment
  2645. * requirements for the kmalloc array. This is only the case for
  2646. * MIPS it seems. The standard arches will not generate any code here.
  2647. *
  2648. * Largest permitted alignment is 256 bytes due to the way we
  2649. * handle the index determination for the smaller caches.
  2650. *
  2651. * Make sure that nothing crazy happens if someone starts tinkering
  2652. * around with ARCH_KMALLOC_MINALIGN
  2653. */
  2654. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2655. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2656. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2657. int elem = size_index_elem(i);
  2658. if (elem >= ARRAY_SIZE(size_index))
  2659. break;
  2660. size_index[elem] = KMALLOC_SHIFT_LOW;
  2661. }
  2662. if (KMALLOC_MIN_SIZE == 64) {
  2663. /*
  2664. * The 96 byte size cache is not used if the alignment
  2665. * is 64 byte.
  2666. */
  2667. for (i = 64 + 8; i <= 96; i += 8)
  2668. size_index[size_index_elem(i)] = 7;
  2669. } else if (KMALLOC_MIN_SIZE == 128) {
  2670. /*
  2671. * The 192 byte sized cache is not used if the alignment
  2672. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2673. * instead.
  2674. */
  2675. for (i = 128 + 8; i <= 192; i += 8)
  2676. size_index[size_index_elem(i)] = 8;
  2677. }
  2678. slab_state = UP;
  2679. /* Provide the correct kmalloc names now that the caches are up */
  2680. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2681. kmalloc_caches[i]. name =
  2682. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2683. #ifdef CONFIG_SMP
  2684. register_cpu_notifier(&slab_notifier);
  2685. #endif
  2686. #ifdef CONFIG_NUMA
  2687. kmem_size = offsetof(struct kmem_cache, node) +
  2688. nr_node_ids * sizeof(struct kmem_cache_node *);
  2689. #else
  2690. kmem_size = sizeof(struct kmem_cache);
  2691. #endif
  2692. printk(KERN_INFO
  2693. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2694. " CPUs=%d, Nodes=%d\n",
  2695. caches, cache_line_size(),
  2696. slub_min_order, slub_max_order, slub_min_objects,
  2697. nr_cpu_ids, nr_node_ids);
  2698. }
  2699. void __init kmem_cache_init_late(void)
  2700. {
  2701. }
  2702. /*
  2703. * Find a mergeable slab cache
  2704. */
  2705. static int slab_unmergeable(struct kmem_cache *s)
  2706. {
  2707. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2708. return 1;
  2709. if (s->ctor)
  2710. return 1;
  2711. /*
  2712. * We may have set a slab to be unmergeable during bootstrap.
  2713. */
  2714. if (s->refcount < 0)
  2715. return 1;
  2716. return 0;
  2717. }
  2718. static struct kmem_cache *find_mergeable(size_t size,
  2719. size_t align, unsigned long flags, const char *name,
  2720. void (*ctor)(void *))
  2721. {
  2722. struct kmem_cache *s;
  2723. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2724. return NULL;
  2725. if (ctor)
  2726. return NULL;
  2727. size = ALIGN(size, sizeof(void *));
  2728. align = calculate_alignment(flags, align, size);
  2729. size = ALIGN(size, align);
  2730. flags = kmem_cache_flags(size, flags, name, NULL);
  2731. list_for_each_entry(s, &slab_caches, list) {
  2732. if (slab_unmergeable(s))
  2733. continue;
  2734. if (size > s->size)
  2735. continue;
  2736. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2737. continue;
  2738. /*
  2739. * Check if alignment is compatible.
  2740. * Courtesy of Adrian Drzewiecki
  2741. */
  2742. if ((s->size & ~(align - 1)) != s->size)
  2743. continue;
  2744. if (s->size - size >= sizeof(void *))
  2745. continue;
  2746. return s;
  2747. }
  2748. return NULL;
  2749. }
  2750. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2751. size_t align, unsigned long flags, void (*ctor)(void *))
  2752. {
  2753. struct kmem_cache *s;
  2754. if (WARN_ON(!name))
  2755. return NULL;
  2756. down_write(&slub_lock);
  2757. s = find_mergeable(size, align, flags, name, ctor);
  2758. if (s) {
  2759. int cpu;
  2760. s->refcount++;
  2761. /*
  2762. * Adjust the object sizes so that we clear
  2763. * the complete object on kzalloc.
  2764. */
  2765. s->objsize = max(s->objsize, (int)size);
  2766. /*
  2767. * And then we need to update the object size in the
  2768. * per cpu structures
  2769. */
  2770. for_each_online_cpu(cpu)
  2771. per_cpu_ptr(s->cpu_slab, cpu)->objsize = s->objsize;
  2772. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2773. up_write(&slub_lock);
  2774. if (sysfs_slab_alias(s, name)) {
  2775. down_write(&slub_lock);
  2776. s->refcount--;
  2777. up_write(&slub_lock);
  2778. goto err;
  2779. }
  2780. return s;
  2781. }
  2782. s = kmalloc(kmem_size, GFP_KERNEL);
  2783. if (s) {
  2784. if (kmem_cache_open(s, GFP_KERNEL, name,
  2785. size, align, flags, ctor)) {
  2786. list_add(&s->list, &slab_caches);
  2787. up_write(&slub_lock);
  2788. if (sysfs_slab_add(s)) {
  2789. down_write(&slub_lock);
  2790. list_del(&s->list);
  2791. up_write(&slub_lock);
  2792. kfree(s);
  2793. goto err;
  2794. }
  2795. return s;
  2796. }
  2797. kfree(s);
  2798. }
  2799. up_write(&slub_lock);
  2800. err:
  2801. if (flags & SLAB_PANIC)
  2802. panic("Cannot create slabcache %s\n", name);
  2803. else
  2804. s = NULL;
  2805. return s;
  2806. }
  2807. EXPORT_SYMBOL(kmem_cache_create);
  2808. #ifdef CONFIG_SMP
  2809. /*
  2810. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2811. * necessary.
  2812. */
  2813. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2814. unsigned long action, void *hcpu)
  2815. {
  2816. long cpu = (long)hcpu;
  2817. struct kmem_cache *s;
  2818. unsigned long flags;
  2819. switch (action) {
  2820. case CPU_UP_PREPARE:
  2821. case CPU_UP_PREPARE_FROZEN:
  2822. down_read(&slub_lock);
  2823. list_for_each_entry(s, &slab_caches, list)
  2824. init_kmem_cache_cpu(s, per_cpu_ptr(s->cpu_slab, cpu));
  2825. up_read(&slub_lock);
  2826. break;
  2827. case CPU_UP_CANCELED:
  2828. case CPU_UP_CANCELED_FROZEN:
  2829. case CPU_DEAD:
  2830. case CPU_DEAD_FROZEN:
  2831. down_read(&slub_lock);
  2832. list_for_each_entry(s, &slab_caches, list) {
  2833. local_irq_save(flags);
  2834. __flush_cpu_slab(s, cpu);
  2835. local_irq_restore(flags);
  2836. }
  2837. up_read(&slub_lock);
  2838. break;
  2839. default:
  2840. break;
  2841. }
  2842. return NOTIFY_OK;
  2843. }
  2844. static struct notifier_block __cpuinitdata slab_notifier = {
  2845. .notifier_call = slab_cpuup_callback
  2846. };
  2847. #endif
  2848. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2849. {
  2850. struct kmem_cache *s;
  2851. void *ret;
  2852. if (unlikely(size > SLUB_MAX_SIZE))
  2853. return kmalloc_large(size, gfpflags);
  2854. s = get_slab(size, gfpflags);
  2855. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2856. return s;
  2857. ret = slab_alloc(s, gfpflags, -1, caller);
  2858. /* Honor the call site pointer we recieved. */
  2859. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2860. return ret;
  2861. }
  2862. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2863. int node, unsigned long caller)
  2864. {
  2865. struct kmem_cache *s;
  2866. void *ret;
  2867. if (unlikely(size > SLUB_MAX_SIZE))
  2868. return kmalloc_large_node(size, gfpflags, node);
  2869. s = get_slab(size, gfpflags);
  2870. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2871. return s;
  2872. ret = slab_alloc(s, gfpflags, node, caller);
  2873. /* Honor the call site pointer we recieved. */
  2874. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2875. return ret;
  2876. }
  2877. #ifdef CONFIG_SLUB_DEBUG
  2878. static int count_inuse(struct page *page)
  2879. {
  2880. return page->inuse;
  2881. }
  2882. static int count_total(struct page *page)
  2883. {
  2884. return page->objects;
  2885. }
  2886. static int validate_slab(struct kmem_cache *s, struct page *page,
  2887. unsigned long *map)
  2888. {
  2889. void *p;
  2890. void *addr = page_address(page);
  2891. if (!check_slab(s, page) ||
  2892. !on_freelist(s, page, NULL))
  2893. return 0;
  2894. /* Now we know that a valid freelist exists */
  2895. bitmap_zero(map, page->objects);
  2896. for_each_free_object(p, s, page->freelist) {
  2897. set_bit(slab_index(p, s, addr), map);
  2898. if (!check_object(s, page, p, 0))
  2899. return 0;
  2900. }
  2901. for_each_object(p, s, addr, page->objects)
  2902. if (!test_bit(slab_index(p, s, addr), map))
  2903. if (!check_object(s, page, p, 1))
  2904. return 0;
  2905. return 1;
  2906. }
  2907. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2908. unsigned long *map)
  2909. {
  2910. if (slab_trylock(page)) {
  2911. validate_slab(s, page, map);
  2912. slab_unlock(page);
  2913. } else
  2914. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2915. s->name, page);
  2916. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2917. if (!PageSlubDebug(page))
  2918. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2919. "on slab 0x%p\n", s->name, page);
  2920. } else {
  2921. if (PageSlubDebug(page))
  2922. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2923. "slab 0x%p\n", s->name, page);
  2924. }
  2925. }
  2926. static int validate_slab_node(struct kmem_cache *s,
  2927. struct kmem_cache_node *n, unsigned long *map)
  2928. {
  2929. unsigned long count = 0;
  2930. struct page *page;
  2931. unsigned long flags;
  2932. spin_lock_irqsave(&n->list_lock, flags);
  2933. list_for_each_entry(page, &n->partial, lru) {
  2934. validate_slab_slab(s, page, map);
  2935. count++;
  2936. }
  2937. if (count != n->nr_partial)
  2938. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2939. "counter=%ld\n", s->name, count, n->nr_partial);
  2940. if (!(s->flags & SLAB_STORE_USER))
  2941. goto out;
  2942. list_for_each_entry(page, &n->full, lru) {
  2943. validate_slab_slab(s, page, map);
  2944. count++;
  2945. }
  2946. if (count != atomic_long_read(&n->nr_slabs))
  2947. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2948. "counter=%ld\n", s->name, count,
  2949. atomic_long_read(&n->nr_slabs));
  2950. out:
  2951. spin_unlock_irqrestore(&n->list_lock, flags);
  2952. return count;
  2953. }
  2954. static long validate_slab_cache(struct kmem_cache *s)
  2955. {
  2956. int node;
  2957. unsigned long count = 0;
  2958. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2959. sizeof(unsigned long), GFP_KERNEL);
  2960. if (!map)
  2961. return -ENOMEM;
  2962. flush_all(s);
  2963. for_each_node_state(node, N_NORMAL_MEMORY) {
  2964. struct kmem_cache_node *n = get_node(s, node);
  2965. count += validate_slab_node(s, n, map);
  2966. }
  2967. kfree(map);
  2968. return count;
  2969. }
  2970. #ifdef SLUB_RESILIENCY_TEST
  2971. static void resiliency_test(void)
  2972. {
  2973. u8 *p;
  2974. printk(KERN_ERR "SLUB resiliency testing\n");
  2975. printk(KERN_ERR "-----------------------\n");
  2976. printk(KERN_ERR "A. Corruption after allocation\n");
  2977. p = kzalloc(16, GFP_KERNEL);
  2978. p[16] = 0x12;
  2979. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2980. " 0x12->0x%p\n\n", p + 16);
  2981. validate_slab_cache(kmalloc_caches + 4);
  2982. /* Hmmm... The next two are dangerous */
  2983. p = kzalloc(32, GFP_KERNEL);
  2984. p[32 + sizeof(void *)] = 0x34;
  2985. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2986. " 0x34 -> -0x%p\n", p);
  2987. printk(KERN_ERR
  2988. "If allocated object is overwritten then not detectable\n\n");
  2989. validate_slab_cache(kmalloc_caches + 5);
  2990. p = kzalloc(64, GFP_KERNEL);
  2991. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2992. *p = 0x56;
  2993. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2994. p);
  2995. printk(KERN_ERR
  2996. "If allocated object is overwritten then not detectable\n\n");
  2997. validate_slab_cache(kmalloc_caches + 6);
  2998. printk(KERN_ERR "\nB. Corruption after free\n");
  2999. p = kzalloc(128, GFP_KERNEL);
  3000. kfree(p);
  3001. *p = 0x78;
  3002. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3003. validate_slab_cache(kmalloc_caches + 7);
  3004. p = kzalloc(256, GFP_KERNEL);
  3005. kfree(p);
  3006. p[50] = 0x9a;
  3007. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3008. p);
  3009. validate_slab_cache(kmalloc_caches + 8);
  3010. p = kzalloc(512, GFP_KERNEL);
  3011. kfree(p);
  3012. p[512] = 0xab;
  3013. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3014. validate_slab_cache(kmalloc_caches + 9);
  3015. }
  3016. #else
  3017. static void resiliency_test(void) {};
  3018. #endif
  3019. /*
  3020. * Generate lists of code addresses where slabcache objects are allocated
  3021. * and freed.
  3022. */
  3023. struct location {
  3024. unsigned long count;
  3025. unsigned long addr;
  3026. long long sum_time;
  3027. long min_time;
  3028. long max_time;
  3029. long min_pid;
  3030. long max_pid;
  3031. DECLARE_BITMAP(cpus, NR_CPUS);
  3032. nodemask_t nodes;
  3033. };
  3034. struct loc_track {
  3035. unsigned long max;
  3036. unsigned long count;
  3037. struct location *loc;
  3038. };
  3039. static void free_loc_track(struct loc_track *t)
  3040. {
  3041. if (t->max)
  3042. free_pages((unsigned long)t->loc,
  3043. get_order(sizeof(struct location) * t->max));
  3044. }
  3045. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3046. {
  3047. struct location *l;
  3048. int order;
  3049. order = get_order(sizeof(struct location) * max);
  3050. l = (void *)__get_free_pages(flags, order);
  3051. if (!l)
  3052. return 0;
  3053. if (t->count) {
  3054. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3055. free_loc_track(t);
  3056. }
  3057. t->max = max;
  3058. t->loc = l;
  3059. return 1;
  3060. }
  3061. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3062. const struct track *track)
  3063. {
  3064. long start, end, pos;
  3065. struct location *l;
  3066. unsigned long caddr;
  3067. unsigned long age = jiffies - track->when;
  3068. start = -1;
  3069. end = t->count;
  3070. for ( ; ; ) {
  3071. pos = start + (end - start + 1) / 2;
  3072. /*
  3073. * There is nothing at "end". If we end up there
  3074. * we need to add something to before end.
  3075. */
  3076. if (pos == end)
  3077. break;
  3078. caddr = t->loc[pos].addr;
  3079. if (track->addr == caddr) {
  3080. l = &t->loc[pos];
  3081. l->count++;
  3082. if (track->when) {
  3083. l->sum_time += age;
  3084. if (age < l->min_time)
  3085. l->min_time = age;
  3086. if (age > l->max_time)
  3087. l->max_time = age;
  3088. if (track->pid < l->min_pid)
  3089. l->min_pid = track->pid;
  3090. if (track->pid > l->max_pid)
  3091. l->max_pid = track->pid;
  3092. cpumask_set_cpu(track->cpu,
  3093. to_cpumask(l->cpus));
  3094. }
  3095. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3096. return 1;
  3097. }
  3098. if (track->addr < caddr)
  3099. end = pos;
  3100. else
  3101. start = pos;
  3102. }
  3103. /*
  3104. * Not found. Insert new tracking element.
  3105. */
  3106. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3107. return 0;
  3108. l = t->loc + pos;
  3109. if (pos < t->count)
  3110. memmove(l + 1, l,
  3111. (t->count - pos) * sizeof(struct location));
  3112. t->count++;
  3113. l->count = 1;
  3114. l->addr = track->addr;
  3115. l->sum_time = age;
  3116. l->min_time = age;
  3117. l->max_time = age;
  3118. l->min_pid = track->pid;
  3119. l->max_pid = track->pid;
  3120. cpumask_clear(to_cpumask(l->cpus));
  3121. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3122. nodes_clear(l->nodes);
  3123. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3124. return 1;
  3125. }
  3126. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3127. struct page *page, enum track_item alloc)
  3128. {
  3129. void *addr = page_address(page);
  3130. DECLARE_BITMAP(map, page->objects);
  3131. void *p;
  3132. bitmap_zero(map, page->objects);
  3133. for_each_free_object(p, s, page->freelist)
  3134. set_bit(slab_index(p, s, addr), map);
  3135. for_each_object(p, s, addr, page->objects)
  3136. if (!test_bit(slab_index(p, s, addr), map))
  3137. add_location(t, s, get_track(s, p, alloc));
  3138. }
  3139. static int list_locations(struct kmem_cache *s, char *buf,
  3140. enum track_item alloc)
  3141. {
  3142. int len = 0;
  3143. unsigned long i;
  3144. struct loc_track t = { 0, 0, NULL };
  3145. int node;
  3146. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3147. GFP_TEMPORARY))
  3148. return sprintf(buf, "Out of memory\n");
  3149. /* Push back cpu slabs */
  3150. flush_all(s);
  3151. for_each_node_state(node, N_NORMAL_MEMORY) {
  3152. struct kmem_cache_node *n = get_node(s, node);
  3153. unsigned long flags;
  3154. struct page *page;
  3155. if (!atomic_long_read(&n->nr_slabs))
  3156. continue;
  3157. spin_lock_irqsave(&n->list_lock, flags);
  3158. list_for_each_entry(page, &n->partial, lru)
  3159. process_slab(&t, s, page, alloc);
  3160. list_for_each_entry(page, &n->full, lru)
  3161. process_slab(&t, s, page, alloc);
  3162. spin_unlock_irqrestore(&n->list_lock, flags);
  3163. }
  3164. for (i = 0; i < t.count; i++) {
  3165. struct location *l = &t.loc[i];
  3166. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3167. break;
  3168. len += sprintf(buf + len, "%7ld ", l->count);
  3169. if (l->addr)
  3170. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3171. else
  3172. len += sprintf(buf + len, "<not-available>");
  3173. if (l->sum_time != l->min_time) {
  3174. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3175. l->min_time,
  3176. (long)div_u64(l->sum_time, l->count),
  3177. l->max_time);
  3178. } else
  3179. len += sprintf(buf + len, " age=%ld",
  3180. l->min_time);
  3181. if (l->min_pid != l->max_pid)
  3182. len += sprintf(buf + len, " pid=%ld-%ld",
  3183. l->min_pid, l->max_pid);
  3184. else
  3185. len += sprintf(buf + len, " pid=%ld",
  3186. l->min_pid);
  3187. if (num_online_cpus() > 1 &&
  3188. !cpumask_empty(to_cpumask(l->cpus)) &&
  3189. len < PAGE_SIZE - 60) {
  3190. len += sprintf(buf + len, " cpus=");
  3191. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3192. to_cpumask(l->cpus));
  3193. }
  3194. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3195. len < PAGE_SIZE - 60) {
  3196. len += sprintf(buf + len, " nodes=");
  3197. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3198. l->nodes);
  3199. }
  3200. len += sprintf(buf + len, "\n");
  3201. }
  3202. free_loc_track(&t);
  3203. if (!t.count)
  3204. len += sprintf(buf, "No data\n");
  3205. return len;
  3206. }
  3207. enum slab_stat_type {
  3208. SL_ALL, /* All slabs */
  3209. SL_PARTIAL, /* Only partially allocated slabs */
  3210. SL_CPU, /* Only slabs used for cpu caches */
  3211. SL_OBJECTS, /* Determine allocated objects not slabs */
  3212. SL_TOTAL /* Determine object capacity not slabs */
  3213. };
  3214. #define SO_ALL (1 << SL_ALL)
  3215. #define SO_PARTIAL (1 << SL_PARTIAL)
  3216. #define SO_CPU (1 << SL_CPU)
  3217. #define SO_OBJECTS (1 << SL_OBJECTS)
  3218. #define SO_TOTAL (1 << SL_TOTAL)
  3219. static ssize_t show_slab_objects(struct kmem_cache *s,
  3220. char *buf, unsigned long flags)
  3221. {
  3222. unsigned long total = 0;
  3223. int node;
  3224. int x;
  3225. unsigned long *nodes;
  3226. unsigned long *per_cpu;
  3227. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3228. if (!nodes)
  3229. return -ENOMEM;
  3230. per_cpu = nodes + nr_node_ids;
  3231. if (flags & SO_CPU) {
  3232. int cpu;
  3233. for_each_possible_cpu(cpu) {
  3234. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3235. if (!c || c->node < 0)
  3236. continue;
  3237. if (c->page) {
  3238. if (flags & SO_TOTAL)
  3239. x = c->page->objects;
  3240. else if (flags & SO_OBJECTS)
  3241. x = c->page->inuse;
  3242. else
  3243. x = 1;
  3244. total += x;
  3245. nodes[c->node] += x;
  3246. }
  3247. per_cpu[c->node]++;
  3248. }
  3249. }
  3250. if (flags & SO_ALL) {
  3251. for_each_node_state(node, N_NORMAL_MEMORY) {
  3252. struct kmem_cache_node *n = get_node(s, node);
  3253. if (flags & SO_TOTAL)
  3254. x = atomic_long_read(&n->total_objects);
  3255. else if (flags & SO_OBJECTS)
  3256. x = atomic_long_read(&n->total_objects) -
  3257. count_partial(n, count_free);
  3258. else
  3259. x = atomic_long_read(&n->nr_slabs);
  3260. total += x;
  3261. nodes[node] += x;
  3262. }
  3263. } else if (flags & SO_PARTIAL) {
  3264. for_each_node_state(node, N_NORMAL_MEMORY) {
  3265. struct kmem_cache_node *n = get_node(s, node);
  3266. if (flags & SO_TOTAL)
  3267. x = count_partial(n, count_total);
  3268. else if (flags & SO_OBJECTS)
  3269. x = count_partial(n, count_inuse);
  3270. else
  3271. x = n->nr_partial;
  3272. total += x;
  3273. nodes[node] += x;
  3274. }
  3275. }
  3276. x = sprintf(buf, "%lu", total);
  3277. #ifdef CONFIG_NUMA
  3278. for_each_node_state(node, N_NORMAL_MEMORY)
  3279. if (nodes[node])
  3280. x += sprintf(buf + x, " N%d=%lu",
  3281. node, nodes[node]);
  3282. #endif
  3283. kfree(nodes);
  3284. return x + sprintf(buf + x, "\n");
  3285. }
  3286. static int any_slab_objects(struct kmem_cache *s)
  3287. {
  3288. int node;
  3289. for_each_online_node(node) {
  3290. struct kmem_cache_node *n = get_node(s, node);
  3291. if (!n)
  3292. continue;
  3293. if (atomic_long_read(&n->total_objects))
  3294. return 1;
  3295. }
  3296. return 0;
  3297. }
  3298. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3299. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3300. struct slab_attribute {
  3301. struct attribute attr;
  3302. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3303. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3304. };
  3305. #define SLAB_ATTR_RO(_name) \
  3306. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3307. #define SLAB_ATTR(_name) \
  3308. static struct slab_attribute _name##_attr = \
  3309. __ATTR(_name, 0644, _name##_show, _name##_store)
  3310. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3311. {
  3312. return sprintf(buf, "%d\n", s->size);
  3313. }
  3314. SLAB_ATTR_RO(slab_size);
  3315. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3316. {
  3317. return sprintf(buf, "%d\n", s->align);
  3318. }
  3319. SLAB_ATTR_RO(align);
  3320. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3321. {
  3322. return sprintf(buf, "%d\n", s->objsize);
  3323. }
  3324. SLAB_ATTR_RO(object_size);
  3325. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3326. {
  3327. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3328. }
  3329. SLAB_ATTR_RO(objs_per_slab);
  3330. static ssize_t order_store(struct kmem_cache *s,
  3331. const char *buf, size_t length)
  3332. {
  3333. unsigned long order;
  3334. int err;
  3335. err = strict_strtoul(buf, 10, &order);
  3336. if (err)
  3337. return err;
  3338. if (order > slub_max_order || order < slub_min_order)
  3339. return -EINVAL;
  3340. calculate_sizes(s, order);
  3341. return length;
  3342. }
  3343. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. return sprintf(buf, "%d\n", oo_order(s->oo));
  3346. }
  3347. SLAB_ATTR(order);
  3348. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return sprintf(buf, "%lu\n", s->min_partial);
  3351. }
  3352. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3353. size_t length)
  3354. {
  3355. unsigned long min;
  3356. int err;
  3357. err = strict_strtoul(buf, 10, &min);
  3358. if (err)
  3359. return err;
  3360. set_min_partial(s, min);
  3361. return length;
  3362. }
  3363. SLAB_ATTR(min_partial);
  3364. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3365. {
  3366. if (s->ctor) {
  3367. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3368. return n + sprintf(buf + n, "\n");
  3369. }
  3370. return 0;
  3371. }
  3372. SLAB_ATTR_RO(ctor);
  3373. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3374. {
  3375. return sprintf(buf, "%d\n", s->refcount - 1);
  3376. }
  3377. SLAB_ATTR_RO(aliases);
  3378. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3379. {
  3380. return show_slab_objects(s, buf, SO_ALL);
  3381. }
  3382. SLAB_ATTR_RO(slabs);
  3383. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3384. {
  3385. return show_slab_objects(s, buf, SO_PARTIAL);
  3386. }
  3387. SLAB_ATTR_RO(partial);
  3388. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3389. {
  3390. return show_slab_objects(s, buf, SO_CPU);
  3391. }
  3392. SLAB_ATTR_RO(cpu_slabs);
  3393. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3394. {
  3395. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3396. }
  3397. SLAB_ATTR_RO(objects);
  3398. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3399. {
  3400. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3401. }
  3402. SLAB_ATTR_RO(objects_partial);
  3403. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3404. {
  3405. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3406. }
  3407. SLAB_ATTR_RO(total_objects);
  3408. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3409. {
  3410. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3411. }
  3412. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3413. const char *buf, size_t length)
  3414. {
  3415. s->flags &= ~SLAB_DEBUG_FREE;
  3416. if (buf[0] == '1')
  3417. s->flags |= SLAB_DEBUG_FREE;
  3418. return length;
  3419. }
  3420. SLAB_ATTR(sanity_checks);
  3421. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3422. {
  3423. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3424. }
  3425. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3426. size_t length)
  3427. {
  3428. s->flags &= ~SLAB_TRACE;
  3429. if (buf[0] == '1')
  3430. s->flags |= SLAB_TRACE;
  3431. return length;
  3432. }
  3433. SLAB_ATTR(trace);
  3434. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3435. {
  3436. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3437. }
  3438. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3439. const char *buf, size_t length)
  3440. {
  3441. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3442. if (buf[0] == '1')
  3443. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3444. return length;
  3445. }
  3446. SLAB_ATTR(reclaim_account);
  3447. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3448. {
  3449. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3450. }
  3451. SLAB_ATTR_RO(hwcache_align);
  3452. #ifdef CONFIG_ZONE_DMA
  3453. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3454. {
  3455. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3456. }
  3457. SLAB_ATTR_RO(cache_dma);
  3458. #endif
  3459. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3460. {
  3461. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3462. }
  3463. SLAB_ATTR_RO(destroy_by_rcu);
  3464. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3465. {
  3466. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3467. }
  3468. static ssize_t red_zone_store(struct kmem_cache *s,
  3469. const char *buf, size_t length)
  3470. {
  3471. if (any_slab_objects(s))
  3472. return -EBUSY;
  3473. s->flags &= ~SLAB_RED_ZONE;
  3474. if (buf[0] == '1')
  3475. s->flags |= SLAB_RED_ZONE;
  3476. calculate_sizes(s, -1);
  3477. return length;
  3478. }
  3479. SLAB_ATTR(red_zone);
  3480. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3481. {
  3482. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3483. }
  3484. static ssize_t poison_store(struct kmem_cache *s,
  3485. const char *buf, size_t length)
  3486. {
  3487. if (any_slab_objects(s))
  3488. return -EBUSY;
  3489. s->flags &= ~SLAB_POISON;
  3490. if (buf[0] == '1')
  3491. s->flags |= SLAB_POISON;
  3492. calculate_sizes(s, -1);
  3493. return length;
  3494. }
  3495. SLAB_ATTR(poison);
  3496. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3497. {
  3498. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3499. }
  3500. static ssize_t store_user_store(struct kmem_cache *s,
  3501. const char *buf, size_t length)
  3502. {
  3503. if (any_slab_objects(s))
  3504. return -EBUSY;
  3505. s->flags &= ~SLAB_STORE_USER;
  3506. if (buf[0] == '1')
  3507. s->flags |= SLAB_STORE_USER;
  3508. calculate_sizes(s, -1);
  3509. return length;
  3510. }
  3511. SLAB_ATTR(store_user);
  3512. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3513. {
  3514. return 0;
  3515. }
  3516. static ssize_t validate_store(struct kmem_cache *s,
  3517. const char *buf, size_t length)
  3518. {
  3519. int ret = -EINVAL;
  3520. if (buf[0] == '1') {
  3521. ret = validate_slab_cache(s);
  3522. if (ret >= 0)
  3523. ret = length;
  3524. }
  3525. return ret;
  3526. }
  3527. SLAB_ATTR(validate);
  3528. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3529. {
  3530. return 0;
  3531. }
  3532. static ssize_t shrink_store(struct kmem_cache *s,
  3533. const char *buf, size_t length)
  3534. {
  3535. if (buf[0] == '1') {
  3536. int rc = kmem_cache_shrink(s);
  3537. if (rc)
  3538. return rc;
  3539. } else
  3540. return -EINVAL;
  3541. return length;
  3542. }
  3543. SLAB_ATTR(shrink);
  3544. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3545. {
  3546. if (!(s->flags & SLAB_STORE_USER))
  3547. return -ENOSYS;
  3548. return list_locations(s, buf, TRACK_ALLOC);
  3549. }
  3550. SLAB_ATTR_RO(alloc_calls);
  3551. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3552. {
  3553. if (!(s->flags & SLAB_STORE_USER))
  3554. return -ENOSYS;
  3555. return list_locations(s, buf, TRACK_FREE);
  3556. }
  3557. SLAB_ATTR_RO(free_calls);
  3558. #ifdef CONFIG_NUMA
  3559. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3560. {
  3561. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3562. }
  3563. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3564. const char *buf, size_t length)
  3565. {
  3566. unsigned long ratio;
  3567. int err;
  3568. err = strict_strtoul(buf, 10, &ratio);
  3569. if (err)
  3570. return err;
  3571. if (ratio <= 100)
  3572. s->remote_node_defrag_ratio = ratio * 10;
  3573. return length;
  3574. }
  3575. SLAB_ATTR(remote_node_defrag_ratio);
  3576. #endif
  3577. #ifdef CONFIG_SLUB_STATS
  3578. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3579. {
  3580. unsigned long sum = 0;
  3581. int cpu;
  3582. int len;
  3583. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3584. if (!data)
  3585. return -ENOMEM;
  3586. for_each_online_cpu(cpu) {
  3587. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3588. data[cpu] = x;
  3589. sum += x;
  3590. }
  3591. len = sprintf(buf, "%lu", sum);
  3592. #ifdef CONFIG_SMP
  3593. for_each_online_cpu(cpu) {
  3594. if (data[cpu] && len < PAGE_SIZE - 20)
  3595. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3596. }
  3597. #endif
  3598. kfree(data);
  3599. return len + sprintf(buf + len, "\n");
  3600. }
  3601. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3602. {
  3603. int cpu;
  3604. for_each_online_cpu(cpu)
  3605. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3606. }
  3607. #define STAT_ATTR(si, text) \
  3608. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3609. { \
  3610. return show_stat(s, buf, si); \
  3611. } \
  3612. static ssize_t text##_store(struct kmem_cache *s, \
  3613. const char *buf, size_t length) \
  3614. { \
  3615. if (buf[0] != '0') \
  3616. return -EINVAL; \
  3617. clear_stat(s, si); \
  3618. return length; \
  3619. } \
  3620. SLAB_ATTR(text); \
  3621. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3622. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3623. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3624. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3625. STAT_ATTR(FREE_FROZEN, free_frozen);
  3626. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3627. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3628. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3629. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3630. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3631. STAT_ATTR(FREE_SLAB, free_slab);
  3632. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3633. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3634. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3635. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3636. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3637. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3638. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3639. #endif
  3640. static struct attribute *slab_attrs[] = {
  3641. &slab_size_attr.attr,
  3642. &object_size_attr.attr,
  3643. &objs_per_slab_attr.attr,
  3644. &order_attr.attr,
  3645. &min_partial_attr.attr,
  3646. &objects_attr.attr,
  3647. &objects_partial_attr.attr,
  3648. &total_objects_attr.attr,
  3649. &slabs_attr.attr,
  3650. &partial_attr.attr,
  3651. &cpu_slabs_attr.attr,
  3652. &ctor_attr.attr,
  3653. &aliases_attr.attr,
  3654. &align_attr.attr,
  3655. &sanity_checks_attr.attr,
  3656. &trace_attr.attr,
  3657. &hwcache_align_attr.attr,
  3658. &reclaim_account_attr.attr,
  3659. &destroy_by_rcu_attr.attr,
  3660. &red_zone_attr.attr,
  3661. &poison_attr.attr,
  3662. &store_user_attr.attr,
  3663. &validate_attr.attr,
  3664. &shrink_attr.attr,
  3665. &alloc_calls_attr.attr,
  3666. &free_calls_attr.attr,
  3667. #ifdef CONFIG_ZONE_DMA
  3668. &cache_dma_attr.attr,
  3669. #endif
  3670. #ifdef CONFIG_NUMA
  3671. &remote_node_defrag_ratio_attr.attr,
  3672. #endif
  3673. #ifdef CONFIG_SLUB_STATS
  3674. &alloc_fastpath_attr.attr,
  3675. &alloc_slowpath_attr.attr,
  3676. &free_fastpath_attr.attr,
  3677. &free_slowpath_attr.attr,
  3678. &free_frozen_attr.attr,
  3679. &free_add_partial_attr.attr,
  3680. &free_remove_partial_attr.attr,
  3681. &alloc_from_partial_attr.attr,
  3682. &alloc_slab_attr.attr,
  3683. &alloc_refill_attr.attr,
  3684. &free_slab_attr.attr,
  3685. &cpuslab_flush_attr.attr,
  3686. &deactivate_full_attr.attr,
  3687. &deactivate_empty_attr.attr,
  3688. &deactivate_to_head_attr.attr,
  3689. &deactivate_to_tail_attr.attr,
  3690. &deactivate_remote_frees_attr.attr,
  3691. &order_fallback_attr.attr,
  3692. #endif
  3693. NULL
  3694. };
  3695. static struct attribute_group slab_attr_group = {
  3696. .attrs = slab_attrs,
  3697. };
  3698. static ssize_t slab_attr_show(struct kobject *kobj,
  3699. struct attribute *attr,
  3700. char *buf)
  3701. {
  3702. struct slab_attribute *attribute;
  3703. struct kmem_cache *s;
  3704. int err;
  3705. attribute = to_slab_attr(attr);
  3706. s = to_slab(kobj);
  3707. if (!attribute->show)
  3708. return -EIO;
  3709. err = attribute->show(s, buf);
  3710. return err;
  3711. }
  3712. static ssize_t slab_attr_store(struct kobject *kobj,
  3713. struct attribute *attr,
  3714. const char *buf, size_t len)
  3715. {
  3716. struct slab_attribute *attribute;
  3717. struct kmem_cache *s;
  3718. int err;
  3719. attribute = to_slab_attr(attr);
  3720. s = to_slab(kobj);
  3721. if (!attribute->store)
  3722. return -EIO;
  3723. err = attribute->store(s, buf, len);
  3724. return err;
  3725. }
  3726. static void kmem_cache_release(struct kobject *kobj)
  3727. {
  3728. struct kmem_cache *s = to_slab(kobj);
  3729. kfree(s);
  3730. }
  3731. static struct sysfs_ops slab_sysfs_ops = {
  3732. .show = slab_attr_show,
  3733. .store = slab_attr_store,
  3734. };
  3735. static struct kobj_type slab_ktype = {
  3736. .sysfs_ops = &slab_sysfs_ops,
  3737. .release = kmem_cache_release
  3738. };
  3739. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3740. {
  3741. struct kobj_type *ktype = get_ktype(kobj);
  3742. if (ktype == &slab_ktype)
  3743. return 1;
  3744. return 0;
  3745. }
  3746. static struct kset_uevent_ops slab_uevent_ops = {
  3747. .filter = uevent_filter,
  3748. };
  3749. static struct kset *slab_kset;
  3750. #define ID_STR_LENGTH 64
  3751. /* Create a unique string id for a slab cache:
  3752. *
  3753. * Format :[flags-]size
  3754. */
  3755. static char *create_unique_id(struct kmem_cache *s)
  3756. {
  3757. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3758. char *p = name;
  3759. BUG_ON(!name);
  3760. *p++ = ':';
  3761. /*
  3762. * First flags affecting slabcache operations. We will only
  3763. * get here for aliasable slabs so we do not need to support
  3764. * too many flags. The flags here must cover all flags that
  3765. * are matched during merging to guarantee that the id is
  3766. * unique.
  3767. */
  3768. if (s->flags & SLAB_CACHE_DMA)
  3769. *p++ = 'd';
  3770. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3771. *p++ = 'a';
  3772. if (s->flags & SLAB_DEBUG_FREE)
  3773. *p++ = 'F';
  3774. if (!(s->flags & SLAB_NOTRACK))
  3775. *p++ = 't';
  3776. if (p != name + 1)
  3777. *p++ = '-';
  3778. p += sprintf(p, "%07d", s->size);
  3779. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3780. return name;
  3781. }
  3782. static int sysfs_slab_add(struct kmem_cache *s)
  3783. {
  3784. int err;
  3785. const char *name;
  3786. int unmergeable;
  3787. if (slab_state < SYSFS)
  3788. /* Defer until later */
  3789. return 0;
  3790. unmergeable = slab_unmergeable(s);
  3791. if (unmergeable) {
  3792. /*
  3793. * Slabcache can never be merged so we can use the name proper.
  3794. * This is typically the case for debug situations. In that
  3795. * case we can catch duplicate names easily.
  3796. */
  3797. sysfs_remove_link(&slab_kset->kobj, s->name);
  3798. name = s->name;
  3799. } else {
  3800. /*
  3801. * Create a unique name for the slab as a target
  3802. * for the symlinks.
  3803. */
  3804. name = create_unique_id(s);
  3805. }
  3806. s->kobj.kset = slab_kset;
  3807. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3808. if (err) {
  3809. kobject_put(&s->kobj);
  3810. return err;
  3811. }
  3812. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3813. if (err) {
  3814. kobject_del(&s->kobj);
  3815. kobject_put(&s->kobj);
  3816. return err;
  3817. }
  3818. kobject_uevent(&s->kobj, KOBJ_ADD);
  3819. if (!unmergeable) {
  3820. /* Setup first alias */
  3821. sysfs_slab_alias(s, s->name);
  3822. kfree(name);
  3823. }
  3824. return 0;
  3825. }
  3826. static void sysfs_slab_remove(struct kmem_cache *s)
  3827. {
  3828. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3829. kobject_del(&s->kobj);
  3830. kobject_put(&s->kobj);
  3831. }
  3832. /*
  3833. * Need to buffer aliases during bootup until sysfs becomes
  3834. * available lest we lose that information.
  3835. */
  3836. struct saved_alias {
  3837. struct kmem_cache *s;
  3838. const char *name;
  3839. struct saved_alias *next;
  3840. };
  3841. static struct saved_alias *alias_list;
  3842. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3843. {
  3844. struct saved_alias *al;
  3845. if (slab_state == SYSFS) {
  3846. /*
  3847. * If we have a leftover link then remove it.
  3848. */
  3849. sysfs_remove_link(&slab_kset->kobj, name);
  3850. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3851. }
  3852. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3853. if (!al)
  3854. return -ENOMEM;
  3855. al->s = s;
  3856. al->name = name;
  3857. al->next = alias_list;
  3858. alias_list = al;
  3859. return 0;
  3860. }
  3861. static int __init slab_sysfs_init(void)
  3862. {
  3863. struct kmem_cache *s;
  3864. int err;
  3865. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3866. if (!slab_kset) {
  3867. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3868. return -ENOSYS;
  3869. }
  3870. slab_state = SYSFS;
  3871. list_for_each_entry(s, &slab_caches, list) {
  3872. err = sysfs_slab_add(s);
  3873. if (err)
  3874. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3875. " to sysfs\n", s->name);
  3876. }
  3877. while (alias_list) {
  3878. struct saved_alias *al = alias_list;
  3879. alias_list = alias_list->next;
  3880. err = sysfs_slab_alias(al->s, al->name);
  3881. if (err)
  3882. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3883. " %s to sysfs\n", s->name);
  3884. kfree(al);
  3885. }
  3886. resiliency_test();
  3887. return 0;
  3888. }
  3889. __initcall(slab_sysfs_init);
  3890. #endif
  3891. /*
  3892. * The /proc/slabinfo ABI
  3893. */
  3894. #ifdef CONFIG_SLABINFO
  3895. static void print_slabinfo_header(struct seq_file *m)
  3896. {
  3897. seq_puts(m, "slabinfo - version: 2.1\n");
  3898. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3899. "<objperslab> <pagesperslab>");
  3900. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3901. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3902. seq_putc(m, '\n');
  3903. }
  3904. static void *s_start(struct seq_file *m, loff_t *pos)
  3905. {
  3906. loff_t n = *pos;
  3907. down_read(&slub_lock);
  3908. if (!n)
  3909. print_slabinfo_header(m);
  3910. return seq_list_start(&slab_caches, *pos);
  3911. }
  3912. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3913. {
  3914. return seq_list_next(p, &slab_caches, pos);
  3915. }
  3916. static void s_stop(struct seq_file *m, void *p)
  3917. {
  3918. up_read(&slub_lock);
  3919. }
  3920. static int s_show(struct seq_file *m, void *p)
  3921. {
  3922. unsigned long nr_partials = 0;
  3923. unsigned long nr_slabs = 0;
  3924. unsigned long nr_inuse = 0;
  3925. unsigned long nr_objs = 0;
  3926. unsigned long nr_free = 0;
  3927. struct kmem_cache *s;
  3928. int node;
  3929. s = list_entry(p, struct kmem_cache, list);
  3930. for_each_online_node(node) {
  3931. struct kmem_cache_node *n = get_node(s, node);
  3932. if (!n)
  3933. continue;
  3934. nr_partials += n->nr_partial;
  3935. nr_slabs += atomic_long_read(&n->nr_slabs);
  3936. nr_objs += atomic_long_read(&n->total_objects);
  3937. nr_free += count_partial(n, count_free);
  3938. }
  3939. nr_inuse = nr_objs - nr_free;
  3940. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3941. nr_objs, s->size, oo_objects(s->oo),
  3942. (1 << oo_order(s->oo)));
  3943. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3944. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3945. 0UL);
  3946. seq_putc(m, '\n');
  3947. return 0;
  3948. }
  3949. static const struct seq_operations slabinfo_op = {
  3950. .start = s_start,
  3951. .next = s_next,
  3952. .stop = s_stop,
  3953. .show = s_show,
  3954. };
  3955. static int slabinfo_open(struct inode *inode, struct file *file)
  3956. {
  3957. return seq_open(file, &slabinfo_op);
  3958. }
  3959. static const struct file_operations proc_slabinfo_operations = {
  3960. .open = slabinfo_open,
  3961. .read = seq_read,
  3962. .llseek = seq_lseek,
  3963. .release = seq_release,
  3964. };
  3965. static int __init slab_proc_init(void)
  3966. {
  3967. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3968. return 0;
  3969. }
  3970. module_init(slab_proc_init);
  3971. #endif /* CONFIG_SLABINFO */