process_32.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/random.h>
  33. #include <linux/personality.h>
  34. #include <linux/tick.h>
  35. #include <linux/percpu.h>
  36. #include <linux/prctl.h>
  37. #include <linux/dmi.h>
  38. #include <linux/ftrace.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/system.h>
  42. #include <asm/io.h>
  43. #include <asm/ldt.h>
  44. #include <asm/processor.h>
  45. #include <asm/i387.h>
  46. #include <asm/desc.h>
  47. #ifdef CONFIG_MATH_EMULATION
  48. #include <asm/math_emu.h>
  49. #endif
  50. #include <linux/err.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/cpu.h>
  53. #include <asm/kdebug.h>
  54. #include <asm/idle.h>
  55. #include <asm/syscalls.h>
  56. #include <asm/smp.h>
  57. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  58. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  59. EXPORT_PER_CPU_SYMBOL(current_task);
  60. DEFINE_PER_CPU(int, cpu_number);
  61. EXPORT_PER_CPU_SYMBOL(cpu_number);
  62. /*
  63. * Return saved PC of a blocked thread.
  64. */
  65. unsigned long thread_saved_pc(struct task_struct *tsk)
  66. {
  67. return ((unsigned long *)tsk->thread.sp)[3];
  68. }
  69. #ifndef CONFIG_SMP
  70. static inline void play_dead(void)
  71. {
  72. BUG();
  73. }
  74. #endif
  75. /*
  76. * The idle thread. There's no useful work to be
  77. * done, so just try to conserve power and have a
  78. * low exit latency (ie sit in a loop waiting for
  79. * somebody to say that they'd like to reschedule)
  80. */
  81. void cpu_idle(void)
  82. {
  83. int cpu = smp_processor_id();
  84. current_thread_info()->status |= TS_POLLING;
  85. /* endless idle loop with no priority at all */
  86. while (1) {
  87. tick_nohz_stop_sched_tick(1);
  88. while (!need_resched()) {
  89. check_pgt_cache();
  90. rmb();
  91. if (rcu_pending(cpu))
  92. rcu_check_callbacks(cpu, 0);
  93. if (cpu_is_offline(cpu))
  94. play_dead();
  95. local_irq_disable();
  96. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  97. /* Don't trace irqs off for idle */
  98. stop_critical_timings();
  99. pm_idle();
  100. start_critical_timings();
  101. }
  102. tick_nohz_restart_sched_tick();
  103. preempt_enable_no_resched();
  104. schedule();
  105. preempt_disable();
  106. }
  107. }
  108. void __show_regs(struct pt_regs *regs, int all)
  109. {
  110. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  111. unsigned long d0, d1, d2, d3, d6, d7;
  112. unsigned long sp;
  113. unsigned short ss, gs;
  114. const char *board;
  115. if (user_mode_vm(regs)) {
  116. sp = regs->sp;
  117. ss = regs->ss & 0xffff;
  118. savesegment(gs, gs);
  119. } else {
  120. sp = (unsigned long) (&regs->sp);
  121. savesegment(ss, ss);
  122. savesegment(gs, gs);
  123. }
  124. printk("\n");
  125. board = dmi_get_system_info(DMI_PRODUCT_NAME);
  126. if (!board)
  127. board = "";
  128. printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
  129. task_pid_nr(current), current->comm,
  130. print_tainted(), init_utsname()->release,
  131. (int)strcspn(init_utsname()->version, " "),
  132. init_utsname()->version, board);
  133. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  134. (u16)regs->cs, regs->ip, regs->flags,
  135. smp_processor_id());
  136. print_symbol("EIP is at %s\n", regs->ip);
  137. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  138. regs->ax, regs->bx, regs->cx, regs->dx);
  139. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  140. regs->si, regs->di, regs->bp, sp);
  141. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  142. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  143. if (!all)
  144. return;
  145. cr0 = read_cr0();
  146. cr2 = read_cr2();
  147. cr3 = read_cr3();
  148. cr4 = read_cr4_safe();
  149. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  150. cr0, cr2, cr3, cr4);
  151. get_debugreg(d0, 0);
  152. get_debugreg(d1, 1);
  153. get_debugreg(d2, 2);
  154. get_debugreg(d3, 3);
  155. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  156. d0, d1, d2, d3);
  157. get_debugreg(d6, 6);
  158. get_debugreg(d7, 7);
  159. printk("DR6: %08lx DR7: %08lx\n",
  160. d6, d7);
  161. }
  162. void show_regs(struct pt_regs *regs)
  163. {
  164. __show_regs(regs, 1);
  165. show_trace(NULL, regs, &regs->sp, regs->bp);
  166. }
  167. /*
  168. * This gets run with %bx containing the
  169. * function to call, and %dx containing
  170. * the "args".
  171. */
  172. extern void kernel_thread_helper(void);
  173. /*
  174. * Create a kernel thread
  175. */
  176. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  177. {
  178. struct pt_regs regs;
  179. memset(&regs, 0, sizeof(regs));
  180. regs.bx = (unsigned long) fn;
  181. regs.dx = (unsigned long) arg;
  182. regs.ds = __USER_DS;
  183. regs.es = __USER_DS;
  184. regs.fs = __KERNEL_PERCPU;
  185. regs.orig_ax = -1;
  186. regs.ip = (unsigned long) kernel_thread_helper;
  187. regs.cs = __KERNEL_CS | get_kernel_rpl();
  188. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  189. /* Ok, create the new process.. */
  190. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  191. }
  192. EXPORT_SYMBOL(kernel_thread);
  193. /*
  194. * Free current thread data structures etc..
  195. */
  196. void exit_thread(void)
  197. {
  198. /* The process may have allocated an io port bitmap... nuke it. */
  199. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  200. struct task_struct *tsk = current;
  201. struct thread_struct *t = &tsk->thread;
  202. int cpu = get_cpu();
  203. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  204. kfree(t->io_bitmap_ptr);
  205. t->io_bitmap_ptr = NULL;
  206. clear_thread_flag(TIF_IO_BITMAP);
  207. /*
  208. * Careful, clear this in the TSS too:
  209. */
  210. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  211. t->io_bitmap_max = 0;
  212. tss->io_bitmap_owner = NULL;
  213. tss->io_bitmap_max = 0;
  214. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  215. put_cpu();
  216. }
  217. #ifdef CONFIG_X86_DS
  218. /* Free any BTS tracers that have not been properly released. */
  219. if (unlikely(current->bts)) {
  220. ds_release_bts(current->bts);
  221. current->bts = NULL;
  222. kfree(current->bts_buffer);
  223. current->bts_buffer = NULL;
  224. current->bts_size = 0;
  225. }
  226. #endif /* CONFIG_X86_DS */
  227. }
  228. void flush_thread(void)
  229. {
  230. struct task_struct *tsk = current;
  231. tsk->thread.debugreg0 = 0;
  232. tsk->thread.debugreg1 = 0;
  233. tsk->thread.debugreg2 = 0;
  234. tsk->thread.debugreg3 = 0;
  235. tsk->thread.debugreg6 = 0;
  236. tsk->thread.debugreg7 = 0;
  237. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  238. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  239. /*
  240. * Forget coprocessor state..
  241. */
  242. tsk->fpu_counter = 0;
  243. clear_fpu(tsk);
  244. clear_used_math();
  245. }
  246. void release_thread(struct task_struct *dead_task)
  247. {
  248. BUG_ON(dead_task->mm);
  249. release_vm86_irqs(dead_task);
  250. }
  251. /*
  252. * This gets called before we allocate a new thread and copy
  253. * the current task into it.
  254. */
  255. void prepare_to_copy(struct task_struct *tsk)
  256. {
  257. unlazy_fpu(tsk);
  258. }
  259. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  260. unsigned long unused,
  261. struct task_struct * p, struct pt_regs * regs)
  262. {
  263. struct pt_regs * childregs;
  264. struct task_struct *tsk;
  265. int err;
  266. childregs = task_pt_regs(p);
  267. *childregs = *regs;
  268. childregs->ax = 0;
  269. childregs->sp = sp;
  270. p->thread.sp = (unsigned long) childregs;
  271. p->thread.sp0 = (unsigned long) (childregs+1);
  272. p->thread.ip = (unsigned long) ret_from_fork;
  273. savesegment(gs, p->thread.gs);
  274. tsk = current;
  275. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  276. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  277. IO_BITMAP_BYTES, GFP_KERNEL);
  278. if (!p->thread.io_bitmap_ptr) {
  279. p->thread.io_bitmap_max = 0;
  280. return -ENOMEM;
  281. }
  282. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  283. }
  284. err = 0;
  285. /*
  286. * Set a new TLS for the child thread?
  287. */
  288. if (clone_flags & CLONE_SETTLS)
  289. err = do_set_thread_area(p, -1,
  290. (struct user_desc __user *)childregs->si, 0);
  291. if (err && p->thread.io_bitmap_ptr) {
  292. kfree(p->thread.io_bitmap_ptr);
  293. p->thread.io_bitmap_max = 0;
  294. }
  295. return err;
  296. }
  297. void
  298. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  299. {
  300. __asm__("movl %0, %%gs" :: "r"(0));
  301. regs->fs = 0;
  302. set_fs(USER_DS);
  303. regs->ds = __USER_DS;
  304. regs->es = __USER_DS;
  305. regs->ss = __USER_DS;
  306. regs->cs = __USER_CS;
  307. regs->ip = new_ip;
  308. regs->sp = new_sp;
  309. /*
  310. * Free the old FP and other extended state
  311. */
  312. free_thread_xstate(current);
  313. }
  314. EXPORT_SYMBOL_GPL(start_thread);
  315. static void hard_disable_TSC(void)
  316. {
  317. write_cr4(read_cr4() | X86_CR4_TSD);
  318. }
  319. void disable_TSC(void)
  320. {
  321. preempt_disable();
  322. if (!test_and_set_thread_flag(TIF_NOTSC))
  323. /*
  324. * Must flip the CPU state synchronously with
  325. * TIF_NOTSC in the current running context.
  326. */
  327. hard_disable_TSC();
  328. preempt_enable();
  329. }
  330. static void hard_enable_TSC(void)
  331. {
  332. write_cr4(read_cr4() & ~X86_CR4_TSD);
  333. }
  334. static void enable_TSC(void)
  335. {
  336. preempt_disable();
  337. if (test_and_clear_thread_flag(TIF_NOTSC))
  338. /*
  339. * Must flip the CPU state synchronously with
  340. * TIF_NOTSC in the current running context.
  341. */
  342. hard_enable_TSC();
  343. preempt_enable();
  344. }
  345. int get_tsc_mode(unsigned long adr)
  346. {
  347. unsigned int val;
  348. if (test_thread_flag(TIF_NOTSC))
  349. val = PR_TSC_SIGSEGV;
  350. else
  351. val = PR_TSC_ENABLE;
  352. return put_user(val, (unsigned int __user *)adr);
  353. }
  354. int set_tsc_mode(unsigned int val)
  355. {
  356. if (val == PR_TSC_SIGSEGV)
  357. disable_TSC();
  358. else if (val == PR_TSC_ENABLE)
  359. enable_TSC();
  360. else
  361. return -EINVAL;
  362. return 0;
  363. }
  364. static noinline void
  365. __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  366. struct tss_struct *tss)
  367. {
  368. struct thread_struct *prev, *next;
  369. prev = &prev_p->thread;
  370. next = &next_p->thread;
  371. if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
  372. test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
  373. ds_switch_to(prev_p, next_p);
  374. else if (next->debugctlmsr != prev->debugctlmsr)
  375. update_debugctlmsr(next->debugctlmsr);
  376. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  377. set_debugreg(next->debugreg0, 0);
  378. set_debugreg(next->debugreg1, 1);
  379. set_debugreg(next->debugreg2, 2);
  380. set_debugreg(next->debugreg3, 3);
  381. /* no 4 and 5 */
  382. set_debugreg(next->debugreg6, 6);
  383. set_debugreg(next->debugreg7, 7);
  384. }
  385. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  386. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  387. /* prev and next are different */
  388. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  389. hard_disable_TSC();
  390. else
  391. hard_enable_TSC();
  392. }
  393. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  394. /*
  395. * Disable the bitmap via an invalid offset. We still cache
  396. * the previous bitmap owner and the IO bitmap contents:
  397. */
  398. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  399. return;
  400. }
  401. if (likely(next == tss->io_bitmap_owner)) {
  402. /*
  403. * Previous owner of the bitmap (hence the bitmap content)
  404. * matches the next task, we dont have to do anything but
  405. * to set a valid offset in the TSS:
  406. */
  407. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  408. return;
  409. }
  410. /*
  411. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  412. * and we let the task to get a GPF in case an I/O instruction
  413. * is performed. The handler of the GPF will verify that the
  414. * faulting task has a valid I/O bitmap and, it true, does the
  415. * real copy and restart the instruction. This will save us
  416. * redundant copies when the currently switched task does not
  417. * perform any I/O during its timeslice.
  418. */
  419. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  420. }
  421. /*
  422. * switch_to(x,yn) should switch tasks from x to y.
  423. *
  424. * We fsave/fwait so that an exception goes off at the right time
  425. * (as a call from the fsave or fwait in effect) rather than to
  426. * the wrong process. Lazy FP saving no longer makes any sense
  427. * with modern CPU's, and this simplifies a lot of things (SMP
  428. * and UP become the same).
  429. *
  430. * NOTE! We used to use the x86 hardware context switching. The
  431. * reason for not using it any more becomes apparent when you
  432. * try to recover gracefully from saved state that is no longer
  433. * valid (stale segment register values in particular). With the
  434. * hardware task-switch, there is no way to fix up bad state in
  435. * a reasonable manner.
  436. *
  437. * The fact that Intel documents the hardware task-switching to
  438. * be slow is a fairly red herring - this code is not noticeably
  439. * faster. However, there _is_ some room for improvement here,
  440. * so the performance issues may eventually be a valid point.
  441. * More important, however, is the fact that this allows us much
  442. * more flexibility.
  443. *
  444. * The return value (in %ax) will be the "prev" task after
  445. * the task-switch, and shows up in ret_from_fork in entry.S,
  446. * for example.
  447. */
  448. __notrace_funcgraph struct task_struct *
  449. __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  450. {
  451. struct thread_struct *prev = &prev_p->thread,
  452. *next = &next_p->thread;
  453. int cpu = smp_processor_id();
  454. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  455. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  456. __unlazy_fpu(prev_p);
  457. /* we're going to use this soon, after a few expensive things */
  458. if (next_p->fpu_counter > 5)
  459. prefetch(next->xstate);
  460. /*
  461. * Reload esp0.
  462. */
  463. load_sp0(tss, next);
  464. /*
  465. * Save away %gs. No need to save %fs, as it was saved on the
  466. * stack on entry. No need to save %es and %ds, as those are
  467. * always kernel segments while inside the kernel. Doing this
  468. * before setting the new TLS descriptors avoids the situation
  469. * where we temporarily have non-reloadable segments in %fs
  470. * and %gs. This could be an issue if the NMI handler ever
  471. * used %fs or %gs (it does not today), or if the kernel is
  472. * running inside of a hypervisor layer.
  473. */
  474. savesegment(gs, prev->gs);
  475. /*
  476. * Load the per-thread Thread-Local Storage descriptor.
  477. */
  478. load_TLS(next, cpu);
  479. /*
  480. * Restore IOPL if needed. In normal use, the flags restore
  481. * in the switch assembly will handle this. But if the kernel
  482. * is running virtualized at a non-zero CPL, the popf will
  483. * not restore flags, so it must be done in a separate step.
  484. */
  485. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  486. set_iopl_mask(next->iopl);
  487. /*
  488. * Now maybe handle debug registers and/or IO bitmaps
  489. */
  490. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  491. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  492. __switch_to_xtra(prev_p, next_p, tss);
  493. /*
  494. * Leave lazy mode, flushing any hypercalls made here.
  495. * This must be done before restoring TLS segments so
  496. * the GDT and LDT are properly updated, and must be
  497. * done before math_state_restore, so the TS bit is up
  498. * to date.
  499. */
  500. arch_leave_lazy_cpu_mode();
  501. /* If the task has used fpu the last 5 timeslices, just do a full
  502. * restore of the math state immediately to avoid the trap; the
  503. * chances of needing FPU soon are obviously high now
  504. *
  505. * tsk_used_math() checks prevent calling math_state_restore(),
  506. * which can sleep in the case of !tsk_used_math()
  507. */
  508. if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
  509. math_state_restore();
  510. /*
  511. * Restore %gs if needed (which is common)
  512. */
  513. if (prev->gs | next->gs)
  514. loadsegment(gs, next->gs);
  515. x86_write_percpu(current_task, next_p);
  516. return prev_p;
  517. }
  518. asmlinkage int sys_fork(struct pt_regs regs)
  519. {
  520. return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  521. }
  522. asmlinkage int sys_clone(struct pt_regs regs)
  523. {
  524. unsigned long clone_flags;
  525. unsigned long newsp;
  526. int __user *parent_tidptr, *child_tidptr;
  527. clone_flags = regs.bx;
  528. newsp = regs.cx;
  529. parent_tidptr = (int __user *)regs.dx;
  530. child_tidptr = (int __user *)regs.di;
  531. if (!newsp)
  532. newsp = regs.sp;
  533. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  534. }
  535. /*
  536. * This is trivial, and on the face of it looks like it
  537. * could equally well be done in user mode.
  538. *
  539. * Not so, for quite unobvious reasons - register pressure.
  540. * In user mode vfork() cannot have a stack frame, and if
  541. * done by calling the "clone()" system call directly, you
  542. * do not have enough call-clobbered registers to hold all
  543. * the information you need.
  544. */
  545. asmlinkage int sys_vfork(struct pt_regs regs)
  546. {
  547. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  548. }
  549. /*
  550. * sys_execve() executes a new program.
  551. */
  552. asmlinkage int sys_execve(struct pt_regs regs)
  553. {
  554. int error;
  555. char * filename;
  556. filename = getname((char __user *) regs.bx);
  557. error = PTR_ERR(filename);
  558. if (IS_ERR(filename))
  559. goto out;
  560. error = do_execve(filename,
  561. (char __user * __user *) regs.cx,
  562. (char __user * __user *) regs.dx,
  563. &regs);
  564. if (error == 0) {
  565. /* Make sure we don't return using sysenter.. */
  566. set_thread_flag(TIF_IRET);
  567. }
  568. putname(filename);
  569. out:
  570. return error;
  571. }
  572. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  573. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  574. unsigned long get_wchan(struct task_struct *p)
  575. {
  576. unsigned long bp, sp, ip;
  577. unsigned long stack_page;
  578. int count = 0;
  579. if (!p || p == current || p->state == TASK_RUNNING)
  580. return 0;
  581. stack_page = (unsigned long)task_stack_page(p);
  582. sp = p->thread.sp;
  583. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  584. return 0;
  585. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  586. bp = *(unsigned long *) sp;
  587. do {
  588. if (bp < stack_page || bp > top_ebp+stack_page)
  589. return 0;
  590. ip = *(unsigned long *) (bp+4);
  591. if (!in_sched_functions(ip))
  592. return ip;
  593. bp = *(unsigned long *) bp;
  594. } while (count++ < 16);
  595. return 0;
  596. }
  597. unsigned long arch_align_stack(unsigned long sp)
  598. {
  599. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  600. sp -= get_random_int() % 8192;
  601. return sp & ~0xf;
  602. }
  603. unsigned long arch_randomize_brk(struct mm_struct *mm)
  604. {
  605. unsigned long range_end = mm->brk + 0x02000000;
  606. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  607. }