intel_dp.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. /**
  55. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  56. * @intel_dp: DP struct
  57. *
  58. * If a CPU or PCH DP output is attached to an eDP panel, this function
  59. * will return true, and false otherwise.
  60. */
  61. static bool is_edp(struct intel_dp *intel_dp)
  62. {
  63. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  64. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  65. }
  66. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  67. {
  68. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  69. return intel_dig_port->base.base.dev;
  70. }
  71. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  72. {
  73. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  74. }
  75. static void intel_dp_link_down(struct intel_dp *intel_dp);
  76. static int
  77. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  78. {
  79. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  80. switch (max_link_bw) {
  81. case DP_LINK_BW_1_62:
  82. case DP_LINK_BW_2_7:
  83. break;
  84. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  85. max_link_bw = DP_LINK_BW_2_7;
  86. break;
  87. default:
  88. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  89. max_link_bw);
  90. max_link_bw = DP_LINK_BW_1_62;
  91. break;
  92. }
  93. return max_link_bw;
  94. }
  95. /*
  96. * The units on the numbers in the next two are... bizarre. Examples will
  97. * make it clearer; this one parallels an example in the eDP spec.
  98. *
  99. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  100. *
  101. * 270000 * 1 * 8 / 10 == 216000
  102. *
  103. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  104. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  105. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  106. * 119000. At 18bpp that's 2142000 kilobits per second.
  107. *
  108. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  109. * get the result in decakilobits instead of kilobits.
  110. */
  111. static int
  112. intel_dp_link_required(int pixel_clock, int bpp)
  113. {
  114. return (pixel_clock * bpp + 9) / 10;
  115. }
  116. static int
  117. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  118. {
  119. return (max_link_clock * max_lanes * 8) / 10;
  120. }
  121. static int
  122. intel_dp_mode_valid(struct drm_connector *connector,
  123. struct drm_display_mode *mode)
  124. {
  125. struct intel_dp *intel_dp = intel_attached_dp(connector);
  126. struct intel_connector *intel_connector = to_intel_connector(connector);
  127. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  128. int target_clock = mode->clock;
  129. int max_rate, mode_rate, max_lanes, max_link_clock;
  130. if (is_edp(intel_dp) && fixed_mode) {
  131. if (mode->hdisplay > fixed_mode->hdisplay)
  132. return MODE_PANEL;
  133. if (mode->vdisplay > fixed_mode->vdisplay)
  134. return MODE_PANEL;
  135. target_clock = fixed_mode->clock;
  136. }
  137. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  138. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  139. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  140. mode_rate = intel_dp_link_required(target_clock, 18);
  141. if (mode_rate > max_rate)
  142. return MODE_CLOCK_HIGH;
  143. if (mode->clock < 10000)
  144. return MODE_CLOCK_LOW;
  145. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  146. return MODE_H_ILLEGAL;
  147. return MODE_OK;
  148. }
  149. static uint32_t
  150. pack_aux(uint8_t *src, int src_bytes)
  151. {
  152. int i;
  153. uint32_t v = 0;
  154. if (src_bytes > 4)
  155. src_bytes = 4;
  156. for (i = 0; i < src_bytes; i++)
  157. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  158. return v;
  159. }
  160. static void
  161. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  162. {
  163. int i;
  164. if (dst_bytes > 4)
  165. dst_bytes = 4;
  166. for (i = 0; i < dst_bytes; i++)
  167. dst[i] = src >> ((3-i) * 8);
  168. }
  169. /* hrawclock is 1/4 the FSB frequency */
  170. static int
  171. intel_hrawclk(struct drm_device *dev)
  172. {
  173. struct drm_i915_private *dev_priv = dev->dev_private;
  174. uint32_t clkcfg;
  175. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  176. if (IS_VALLEYVIEW(dev))
  177. return 200;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  201. {
  202. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  203. struct drm_i915_private *dev_priv = dev->dev_private;
  204. u32 pp_stat_reg;
  205. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  206. return (I915_READ(pp_stat_reg) & PP_ON) != 0;
  207. }
  208. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  209. {
  210. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  211. struct drm_i915_private *dev_priv = dev->dev_private;
  212. u32 pp_ctrl_reg;
  213. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  214. return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
  215. }
  216. static void
  217. intel_dp_check_edp(struct intel_dp *intel_dp)
  218. {
  219. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. u32 pp_stat_reg, pp_ctrl_reg;
  222. if (!is_edp(intel_dp))
  223. return;
  224. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  225. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  226. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  227. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  228. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  229. I915_READ(pp_stat_reg),
  230. I915_READ(pp_ctrl_reg));
  231. }
  232. }
  233. static uint32_t
  234. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  235. {
  236. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  237. struct drm_device *dev = intel_dig_port->base.base.dev;
  238. struct drm_i915_private *dev_priv = dev->dev_private;
  239. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  240. uint32_t status;
  241. bool done;
  242. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  243. if (has_aux_irq)
  244. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  245. msecs_to_jiffies_timeout(10));
  246. else
  247. done = wait_for_atomic(C, 10) == 0;
  248. if (!done)
  249. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  250. has_aux_irq);
  251. #undef C
  252. return status;
  253. }
  254. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
  255. int index)
  256. {
  257. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  258. struct drm_device *dev = intel_dig_port->base.base.dev;
  259. struct drm_i915_private *dev_priv = dev->dev_private;
  260. /* The clock divider is based off the hrawclk,
  261. * and would like to run at 2MHz. So, take the
  262. * hrawclk value and divide by 2 and use that
  263. *
  264. * Note that PCH attached eDP panels should use a 125MHz input
  265. * clock divider.
  266. */
  267. if (IS_VALLEYVIEW(dev)) {
  268. return index ? 0 : 100;
  269. } else if (intel_dig_port->port == PORT_A) {
  270. if (index)
  271. return 0;
  272. if (HAS_DDI(dev))
  273. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  274. else if (IS_GEN6(dev) || IS_GEN7(dev))
  275. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  276. else
  277. return 225; /* eDP input clock at 450Mhz */
  278. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  279. /* Workaround for non-ULT HSW */
  280. switch (index) {
  281. case 0: return 63;
  282. case 1: return 72;
  283. default: return 0;
  284. }
  285. } else if (HAS_PCH_SPLIT(dev)) {
  286. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  287. } else {
  288. return index ? 0 :intel_hrawclk(dev) / 2;
  289. }
  290. }
  291. static int
  292. intel_dp_aux_ch(struct intel_dp *intel_dp,
  293. uint8_t *send, int send_bytes,
  294. uint8_t *recv, int recv_size)
  295. {
  296. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  297. struct drm_device *dev = intel_dig_port->base.base.dev;
  298. struct drm_i915_private *dev_priv = dev->dev_private;
  299. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  300. uint32_t ch_data = ch_ctl + 4;
  301. uint32_t aux_clock_divider;
  302. int i, ret, recv_bytes;
  303. uint32_t status;
  304. int try, precharge, clock = 0;
  305. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  306. /* dp aux is extremely sensitive to irq latency, hence request the
  307. * lowest possible wakeup latency and so prevent the cpu from going into
  308. * deep sleep states.
  309. */
  310. pm_qos_update_request(&dev_priv->pm_qos, 0);
  311. intel_dp_check_edp(intel_dp);
  312. if (IS_GEN6(dev))
  313. precharge = 3;
  314. else
  315. precharge = 5;
  316. intel_aux_display_runtime_get(dev_priv);
  317. /* Try to wait for any previous AUX channel activity */
  318. for (try = 0; try < 3; try++) {
  319. status = I915_READ_NOTRACE(ch_ctl);
  320. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  321. break;
  322. msleep(1);
  323. }
  324. if (try == 3) {
  325. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  326. I915_READ(ch_ctl));
  327. ret = -EBUSY;
  328. goto out;
  329. }
  330. while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
  331. /* Must try at least 3 times according to DP spec */
  332. for (try = 0; try < 5; try++) {
  333. /* Load the send data into the aux channel data registers */
  334. for (i = 0; i < send_bytes; i += 4)
  335. I915_WRITE(ch_data + i,
  336. pack_aux(send + i, send_bytes - i));
  337. /* Send the command and wait for it to complete */
  338. I915_WRITE(ch_ctl,
  339. DP_AUX_CH_CTL_SEND_BUSY |
  340. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  341. DP_AUX_CH_CTL_TIME_OUT_400us |
  342. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  343. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  344. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  345. DP_AUX_CH_CTL_DONE |
  346. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  347. DP_AUX_CH_CTL_RECEIVE_ERROR);
  348. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  349. /* Clear done status and any errors */
  350. I915_WRITE(ch_ctl,
  351. status |
  352. DP_AUX_CH_CTL_DONE |
  353. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  354. DP_AUX_CH_CTL_RECEIVE_ERROR);
  355. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  356. DP_AUX_CH_CTL_RECEIVE_ERROR))
  357. continue;
  358. if (status & DP_AUX_CH_CTL_DONE)
  359. break;
  360. }
  361. if (status & DP_AUX_CH_CTL_DONE)
  362. break;
  363. }
  364. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  365. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  366. ret = -EBUSY;
  367. goto out;
  368. }
  369. /* Check for timeout or receive error.
  370. * Timeouts occur when the sink is not connected
  371. */
  372. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  373. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  374. ret = -EIO;
  375. goto out;
  376. }
  377. /* Timeouts occur when the device isn't connected, so they're
  378. * "normal" -- don't fill the kernel log with these */
  379. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  380. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  381. ret = -ETIMEDOUT;
  382. goto out;
  383. }
  384. /* Unload any bytes sent back from the other side */
  385. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  386. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  387. if (recv_bytes > recv_size)
  388. recv_bytes = recv_size;
  389. for (i = 0; i < recv_bytes; i += 4)
  390. unpack_aux(I915_READ(ch_data + i),
  391. recv + i, recv_bytes - i);
  392. ret = recv_bytes;
  393. out:
  394. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  395. intel_aux_display_runtime_put(dev_priv);
  396. return ret;
  397. }
  398. /* Write data to the aux channel in native mode */
  399. static int
  400. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  401. uint16_t address, uint8_t *send, int send_bytes)
  402. {
  403. int ret;
  404. uint8_t msg[20];
  405. int msg_bytes;
  406. uint8_t ack;
  407. intel_dp_check_edp(intel_dp);
  408. if (send_bytes > 16)
  409. return -1;
  410. msg[0] = AUX_NATIVE_WRITE << 4;
  411. msg[1] = address >> 8;
  412. msg[2] = address & 0xff;
  413. msg[3] = send_bytes - 1;
  414. memcpy(&msg[4], send, send_bytes);
  415. msg_bytes = send_bytes + 4;
  416. for (;;) {
  417. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  418. if (ret < 0)
  419. return ret;
  420. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  421. break;
  422. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  423. udelay(100);
  424. else
  425. return -EIO;
  426. }
  427. return send_bytes;
  428. }
  429. /* Write a single byte to the aux channel in native mode */
  430. static int
  431. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  432. uint16_t address, uint8_t byte)
  433. {
  434. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  435. }
  436. /* read bytes from a native aux channel */
  437. static int
  438. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  439. uint16_t address, uint8_t *recv, int recv_bytes)
  440. {
  441. uint8_t msg[4];
  442. int msg_bytes;
  443. uint8_t reply[20];
  444. int reply_bytes;
  445. uint8_t ack;
  446. int ret;
  447. intel_dp_check_edp(intel_dp);
  448. msg[0] = AUX_NATIVE_READ << 4;
  449. msg[1] = address >> 8;
  450. msg[2] = address & 0xff;
  451. msg[3] = recv_bytes - 1;
  452. msg_bytes = 4;
  453. reply_bytes = recv_bytes + 1;
  454. for (;;) {
  455. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  456. reply, reply_bytes);
  457. if (ret == 0)
  458. return -EPROTO;
  459. if (ret < 0)
  460. return ret;
  461. ack = reply[0];
  462. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  463. memcpy(recv, reply + 1, ret - 1);
  464. return ret - 1;
  465. }
  466. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  467. udelay(100);
  468. else
  469. return -EIO;
  470. }
  471. }
  472. static int
  473. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  474. uint8_t write_byte, uint8_t *read_byte)
  475. {
  476. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  477. struct intel_dp *intel_dp = container_of(adapter,
  478. struct intel_dp,
  479. adapter);
  480. uint16_t address = algo_data->address;
  481. uint8_t msg[5];
  482. uint8_t reply[2];
  483. unsigned retry;
  484. int msg_bytes;
  485. int reply_bytes;
  486. int ret;
  487. intel_dp_check_edp(intel_dp);
  488. /* Set up the command byte */
  489. if (mode & MODE_I2C_READ)
  490. msg[0] = AUX_I2C_READ << 4;
  491. else
  492. msg[0] = AUX_I2C_WRITE << 4;
  493. if (!(mode & MODE_I2C_STOP))
  494. msg[0] |= AUX_I2C_MOT << 4;
  495. msg[1] = address >> 8;
  496. msg[2] = address;
  497. switch (mode) {
  498. case MODE_I2C_WRITE:
  499. msg[3] = 0;
  500. msg[4] = write_byte;
  501. msg_bytes = 5;
  502. reply_bytes = 1;
  503. break;
  504. case MODE_I2C_READ:
  505. msg[3] = 0;
  506. msg_bytes = 4;
  507. reply_bytes = 2;
  508. break;
  509. default:
  510. msg_bytes = 3;
  511. reply_bytes = 1;
  512. break;
  513. }
  514. for (retry = 0; retry < 5; retry++) {
  515. ret = intel_dp_aux_ch(intel_dp,
  516. msg, msg_bytes,
  517. reply, reply_bytes);
  518. if (ret < 0) {
  519. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  520. return ret;
  521. }
  522. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  523. case AUX_NATIVE_REPLY_ACK:
  524. /* I2C-over-AUX Reply field is only valid
  525. * when paired with AUX ACK.
  526. */
  527. break;
  528. case AUX_NATIVE_REPLY_NACK:
  529. DRM_DEBUG_KMS("aux_ch native nack\n");
  530. return -EREMOTEIO;
  531. case AUX_NATIVE_REPLY_DEFER:
  532. udelay(100);
  533. continue;
  534. default:
  535. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  536. reply[0]);
  537. return -EREMOTEIO;
  538. }
  539. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  540. case AUX_I2C_REPLY_ACK:
  541. if (mode == MODE_I2C_READ) {
  542. *read_byte = reply[1];
  543. }
  544. return reply_bytes - 1;
  545. case AUX_I2C_REPLY_NACK:
  546. DRM_DEBUG_KMS("aux_i2c nack\n");
  547. return -EREMOTEIO;
  548. case AUX_I2C_REPLY_DEFER:
  549. DRM_DEBUG_KMS("aux_i2c defer\n");
  550. udelay(100);
  551. break;
  552. default:
  553. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  554. return -EREMOTEIO;
  555. }
  556. }
  557. DRM_ERROR("too many retries, giving up\n");
  558. return -EREMOTEIO;
  559. }
  560. static int
  561. intel_dp_i2c_init(struct intel_dp *intel_dp,
  562. struct intel_connector *intel_connector, const char *name)
  563. {
  564. int ret;
  565. DRM_DEBUG_KMS("i2c_init %s\n", name);
  566. intel_dp->algo.running = false;
  567. intel_dp->algo.address = 0;
  568. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  569. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  570. intel_dp->adapter.owner = THIS_MODULE;
  571. intel_dp->adapter.class = I2C_CLASS_DDC;
  572. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  573. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  574. intel_dp->adapter.algo_data = &intel_dp->algo;
  575. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  576. ironlake_edp_panel_vdd_on(intel_dp);
  577. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  578. ironlake_edp_panel_vdd_off(intel_dp, false);
  579. return ret;
  580. }
  581. static void
  582. intel_dp_set_clock(struct intel_encoder *encoder,
  583. struct intel_crtc_config *pipe_config, int link_bw)
  584. {
  585. struct drm_device *dev = encoder->base.dev;
  586. const struct dp_link_dpll *divisor = NULL;
  587. int i, count = 0;
  588. if (IS_G4X(dev)) {
  589. divisor = gen4_dpll;
  590. count = ARRAY_SIZE(gen4_dpll);
  591. } else if (IS_HASWELL(dev)) {
  592. /* Haswell has special-purpose DP DDI clocks. */
  593. } else if (HAS_PCH_SPLIT(dev)) {
  594. divisor = pch_dpll;
  595. count = ARRAY_SIZE(pch_dpll);
  596. } else if (IS_VALLEYVIEW(dev)) {
  597. /* FIXME: Need to figure out optimized DP clocks for vlv. */
  598. }
  599. if (divisor && count) {
  600. for (i = 0; i < count; i++) {
  601. if (link_bw == divisor[i].link_bw) {
  602. pipe_config->dpll = divisor[i].dpll;
  603. pipe_config->clock_set = true;
  604. break;
  605. }
  606. }
  607. }
  608. }
  609. bool
  610. intel_dp_compute_config(struct intel_encoder *encoder,
  611. struct intel_crtc_config *pipe_config)
  612. {
  613. struct drm_device *dev = encoder->base.dev;
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  616. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  617. enum port port = dp_to_dig_port(intel_dp)->port;
  618. struct intel_crtc *intel_crtc = encoder->new_crtc;
  619. struct intel_connector *intel_connector = intel_dp->attached_connector;
  620. int lane_count, clock;
  621. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  622. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  623. int bpp, mode_rate;
  624. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  625. int link_avail, link_clock;
  626. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  627. pipe_config->has_pch_encoder = true;
  628. pipe_config->has_dp_encoder = true;
  629. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  630. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  631. adjusted_mode);
  632. if (!HAS_PCH_SPLIT(dev))
  633. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  634. intel_connector->panel.fitting_mode);
  635. else
  636. intel_pch_panel_fitting(intel_crtc, pipe_config,
  637. intel_connector->panel.fitting_mode);
  638. }
  639. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  640. return false;
  641. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  642. "max bw %02x pixel clock %iKHz\n",
  643. max_lane_count, bws[max_clock], adjusted_mode->clock);
  644. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  645. * bpc in between. */
  646. bpp = pipe_config->pipe_bpp;
  647. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
  648. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  649. dev_priv->vbt.edp_bpp);
  650. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  651. }
  652. for (; bpp >= 6*3; bpp -= 2*3) {
  653. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  654. for (clock = 0; clock <= max_clock; clock++) {
  655. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  656. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  657. link_avail = intel_dp_max_data_rate(link_clock,
  658. lane_count);
  659. if (mode_rate <= link_avail) {
  660. goto found;
  661. }
  662. }
  663. }
  664. }
  665. return false;
  666. found:
  667. if (intel_dp->color_range_auto) {
  668. /*
  669. * See:
  670. * CEA-861-E - 5.1 Default Encoding Parameters
  671. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  672. */
  673. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  674. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  675. else
  676. intel_dp->color_range = 0;
  677. }
  678. if (intel_dp->color_range)
  679. pipe_config->limited_color_range = true;
  680. intel_dp->link_bw = bws[clock];
  681. intel_dp->lane_count = lane_count;
  682. pipe_config->pipe_bpp = bpp;
  683. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  684. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  685. intel_dp->link_bw, intel_dp->lane_count,
  686. pipe_config->port_clock, bpp);
  687. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  688. mode_rate, link_avail);
  689. intel_link_compute_m_n(bpp, lane_count,
  690. adjusted_mode->clock, pipe_config->port_clock,
  691. &pipe_config->dp_m_n);
  692. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  693. return true;
  694. }
  695. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  696. {
  697. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  698. intel_dp->link_configuration[0] = intel_dp->link_bw;
  699. intel_dp->link_configuration[1] = intel_dp->lane_count;
  700. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  701. /*
  702. * Check for DPCD version > 1.1 and enhanced framing support
  703. */
  704. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  705. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  706. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  707. }
  708. }
  709. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  710. {
  711. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  712. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  713. struct drm_device *dev = crtc->base.dev;
  714. struct drm_i915_private *dev_priv = dev->dev_private;
  715. u32 dpa_ctl;
  716. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  717. dpa_ctl = I915_READ(DP_A);
  718. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  719. if (crtc->config.port_clock == 162000) {
  720. /* For a long time we've carried around a ILK-DevA w/a for the
  721. * 160MHz clock. If we're really unlucky, it's still required.
  722. */
  723. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  724. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  725. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  726. } else {
  727. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  728. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  729. }
  730. I915_WRITE(DP_A, dpa_ctl);
  731. POSTING_READ(DP_A);
  732. udelay(500);
  733. }
  734. static void intel_dp_mode_set(struct intel_encoder *encoder)
  735. {
  736. struct drm_device *dev = encoder->base.dev;
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  739. enum port port = dp_to_dig_port(intel_dp)->port;
  740. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  741. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  742. /*
  743. * There are four kinds of DP registers:
  744. *
  745. * IBX PCH
  746. * SNB CPU
  747. * IVB CPU
  748. * CPT PCH
  749. *
  750. * IBX PCH and CPU are the same for almost everything,
  751. * except that the CPU DP PLL is configured in this
  752. * register
  753. *
  754. * CPT PCH is quite different, having many bits moved
  755. * to the TRANS_DP_CTL register instead. That
  756. * configuration happens (oddly) in ironlake_pch_enable
  757. */
  758. /* Preserve the BIOS-computed detected bit. This is
  759. * supposed to be read-only.
  760. */
  761. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  762. /* Handle DP bits in common between all three register formats */
  763. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  764. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  765. if (intel_dp->has_audio) {
  766. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  767. pipe_name(crtc->pipe));
  768. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  769. intel_write_eld(&encoder->base, adjusted_mode);
  770. }
  771. intel_dp_init_link_config(intel_dp);
  772. /* Split out the IBX/CPU vs CPT settings */
  773. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  774. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  775. intel_dp->DP |= DP_SYNC_HS_HIGH;
  776. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  777. intel_dp->DP |= DP_SYNC_VS_HIGH;
  778. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  779. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  780. intel_dp->DP |= DP_ENHANCED_FRAMING;
  781. intel_dp->DP |= crtc->pipe << 29;
  782. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  783. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  784. intel_dp->DP |= intel_dp->color_range;
  785. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  786. intel_dp->DP |= DP_SYNC_HS_HIGH;
  787. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  788. intel_dp->DP |= DP_SYNC_VS_HIGH;
  789. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  790. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  791. intel_dp->DP |= DP_ENHANCED_FRAMING;
  792. if (crtc->pipe == 1)
  793. intel_dp->DP |= DP_PIPEB_SELECT;
  794. } else {
  795. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  796. }
  797. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  798. ironlake_set_pll_cpu_edp(intel_dp);
  799. }
  800. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  801. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  802. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  803. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  804. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  805. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  806. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  807. u32 mask,
  808. u32 value)
  809. {
  810. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  811. struct drm_i915_private *dev_priv = dev->dev_private;
  812. u32 pp_stat_reg, pp_ctrl_reg;
  813. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  814. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  815. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  816. mask, value,
  817. I915_READ(pp_stat_reg),
  818. I915_READ(pp_ctrl_reg));
  819. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  820. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  821. I915_READ(pp_stat_reg),
  822. I915_READ(pp_ctrl_reg));
  823. }
  824. }
  825. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  826. {
  827. DRM_DEBUG_KMS("Wait for panel power on\n");
  828. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  829. }
  830. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  831. {
  832. DRM_DEBUG_KMS("Wait for panel power off time\n");
  833. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  834. }
  835. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  836. {
  837. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  838. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  839. }
  840. /* Read the current pp_control value, unlocking the register if it
  841. * is locked
  842. */
  843. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  844. {
  845. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u32 control;
  848. u32 pp_ctrl_reg;
  849. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  850. control = I915_READ(pp_ctrl_reg);
  851. control &= ~PANEL_UNLOCK_MASK;
  852. control |= PANEL_UNLOCK_REGS;
  853. return control;
  854. }
  855. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  856. {
  857. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  858. struct drm_i915_private *dev_priv = dev->dev_private;
  859. u32 pp;
  860. u32 pp_stat_reg, pp_ctrl_reg;
  861. if (!is_edp(intel_dp))
  862. return;
  863. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  864. WARN(intel_dp->want_panel_vdd,
  865. "eDP VDD already requested on\n");
  866. intel_dp->want_panel_vdd = true;
  867. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  868. DRM_DEBUG_KMS("eDP VDD already on\n");
  869. return;
  870. }
  871. if (!ironlake_edp_have_panel_power(intel_dp))
  872. ironlake_wait_panel_power_cycle(intel_dp);
  873. pp = ironlake_get_pp_control(intel_dp);
  874. pp |= EDP_FORCE_VDD;
  875. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  876. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  877. I915_WRITE(pp_ctrl_reg, pp);
  878. POSTING_READ(pp_ctrl_reg);
  879. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  880. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  881. /*
  882. * If the panel wasn't on, delay before accessing aux channel
  883. */
  884. if (!ironlake_edp_have_panel_power(intel_dp)) {
  885. DRM_DEBUG_KMS("eDP was not running\n");
  886. msleep(intel_dp->panel_power_up_delay);
  887. }
  888. }
  889. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  890. {
  891. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  892. struct drm_i915_private *dev_priv = dev->dev_private;
  893. u32 pp;
  894. u32 pp_stat_reg, pp_ctrl_reg;
  895. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  896. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  897. pp = ironlake_get_pp_control(intel_dp);
  898. pp &= ~EDP_FORCE_VDD;
  899. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  900. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  901. I915_WRITE(pp_ctrl_reg, pp);
  902. POSTING_READ(pp_ctrl_reg);
  903. /* Make sure sequencer is idle before allowing subsequent activity */
  904. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  905. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  906. msleep(intel_dp->panel_power_down_delay);
  907. }
  908. }
  909. static void ironlake_panel_vdd_work(struct work_struct *__work)
  910. {
  911. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  912. struct intel_dp, panel_vdd_work);
  913. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  914. mutex_lock(&dev->mode_config.mutex);
  915. ironlake_panel_vdd_off_sync(intel_dp);
  916. mutex_unlock(&dev->mode_config.mutex);
  917. }
  918. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  919. {
  920. if (!is_edp(intel_dp))
  921. return;
  922. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  923. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  924. intel_dp->want_panel_vdd = false;
  925. if (sync) {
  926. ironlake_panel_vdd_off_sync(intel_dp);
  927. } else {
  928. /*
  929. * Queue the timer to fire a long
  930. * time from now (relative to the power down delay)
  931. * to keep the panel power up across a sequence of operations
  932. */
  933. schedule_delayed_work(&intel_dp->panel_vdd_work,
  934. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  935. }
  936. }
  937. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  938. {
  939. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  940. struct drm_i915_private *dev_priv = dev->dev_private;
  941. u32 pp;
  942. u32 pp_ctrl_reg;
  943. if (!is_edp(intel_dp))
  944. return;
  945. DRM_DEBUG_KMS("Turn eDP power on\n");
  946. if (ironlake_edp_have_panel_power(intel_dp)) {
  947. DRM_DEBUG_KMS("eDP power already on\n");
  948. return;
  949. }
  950. ironlake_wait_panel_power_cycle(intel_dp);
  951. pp = ironlake_get_pp_control(intel_dp);
  952. if (IS_GEN5(dev)) {
  953. /* ILK workaround: disable reset around power sequence */
  954. pp &= ~PANEL_POWER_RESET;
  955. I915_WRITE(PCH_PP_CONTROL, pp);
  956. POSTING_READ(PCH_PP_CONTROL);
  957. }
  958. pp |= POWER_TARGET_ON;
  959. if (!IS_GEN5(dev))
  960. pp |= PANEL_POWER_RESET;
  961. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  962. I915_WRITE(pp_ctrl_reg, pp);
  963. POSTING_READ(pp_ctrl_reg);
  964. ironlake_wait_panel_on(intel_dp);
  965. if (IS_GEN5(dev)) {
  966. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  967. I915_WRITE(PCH_PP_CONTROL, pp);
  968. POSTING_READ(PCH_PP_CONTROL);
  969. }
  970. }
  971. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  972. {
  973. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. u32 pp;
  976. u32 pp_ctrl_reg;
  977. if (!is_edp(intel_dp))
  978. return;
  979. DRM_DEBUG_KMS("Turn eDP power off\n");
  980. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  981. pp = ironlake_get_pp_control(intel_dp);
  982. /* We need to switch off panel power _and_ force vdd, for otherwise some
  983. * panels get very unhappy and cease to work. */
  984. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  985. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  986. I915_WRITE(pp_ctrl_reg, pp);
  987. POSTING_READ(pp_ctrl_reg);
  988. intel_dp->want_panel_vdd = false;
  989. ironlake_wait_panel_off(intel_dp);
  990. }
  991. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  992. {
  993. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  994. struct drm_device *dev = intel_dig_port->base.base.dev;
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  997. u32 pp;
  998. u32 pp_ctrl_reg;
  999. if (!is_edp(intel_dp))
  1000. return;
  1001. DRM_DEBUG_KMS("\n");
  1002. /*
  1003. * If we enable the backlight right away following a panel power
  1004. * on, we may see slight flicker as the panel syncs with the eDP
  1005. * link. So delay a bit to make sure the image is solid before
  1006. * allowing it to appear.
  1007. */
  1008. msleep(intel_dp->backlight_on_delay);
  1009. pp = ironlake_get_pp_control(intel_dp);
  1010. pp |= EDP_BLC_ENABLE;
  1011. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1012. I915_WRITE(pp_ctrl_reg, pp);
  1013. POSTING_READ(pp_ctrl_reg);
  1014. intel_panel_enable_backlight(dev, pipe);
  1015. }
  1016. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1017. {
  1018. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1019. struct drm_i915_private *dev_priv = dev->dev_private;
  1020. u32 pp;
  1021. u32 pp_ctrl_reg;
  1022. if (!is_edp(intel_dp))
  1023. return;
  1024. intel_panel_disable_backlight(dev);
  1025. DRM_DEBUG_KMS("\n");
  1026. pp = ironlake_get_pp_control(intel_dp);
  1027. pp &= ~EDP_BLC_ENABLE;
  1028. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1029. I915_WRITE(pp_ctrl_reg, pp);
  1030. POSTING_READ(pp_ctrl_reg);
  1031. msleep(intel_dp->backlight_off_delay);
  1032. }
  1033. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1034. {
  1035. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1036. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1037. struct drm_device *dev = crtc->dev;
  1038. struct drm_i915_private *dev_priv = dev->dev_private;
  1039. u32 dpa_ctl;
  1040. assert_pipe_disabled(dev_priv,
  1041. to_intel_crtc(crtc)->pipe);
  1042. DRM_DEBUG_KMS("\n");
  1043. dpa_ctl = I915_READ(DP_A);
  1044. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1045. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1046. /* We don't adjust intel_dp->DP while tearing down the link, to
  1047. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1048. * enable bits here to ensure that we don't enable too much. */
  1049. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1050. intel_dp->DP |= DP_PLL_ENABLE;
  1051. I915_WRITE(DP_A, intel_dp->DP);
  1052. POSTING_READ(DP_A);
  1053. udelay(200);
  1054. }
  1055. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1056. {
  1057. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1058. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1059. struct drm_device *dev = crtc->dev;
  1060. struct drm_i915_private *dev_priv = dev->dev_private;
  1061. u32 dpa_ctl;
  1062. assert_pipe_disabled(dev_priv,
  1063. to_intel_crtc(crtc)->pipe);
  1064. dpa_ctl = I915_READ(DP_A);
  1065. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1066. "dp pll off, should be on\n");
  1067. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1068. /* We can't rely on the value tracked for the DP register in
  1069. * intel_dp->DP because link_down must not change that (otherwise link
  1070. * re-training will fail. */
  1071. dpa_ctl &= ~DP_PLL_ENABLE;
  1072. I915_WRITE(DP_A, dpa_ctl);
  1073. POSTING_READ(DP_A);
  1074. udelay(200);
  1075. }
  1076. /* If the sink supports it, try to set the power state appropriately */
  1077. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1078. {
  1079. int ret, i;
  1080. /* Should have a valid DPCD by this point */
  1081. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1082. return;
  1083. if (mode != DRM_MODE_DPMS_ON) {
  1084. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1085. DP_SET_POWER_D3);
  1086. if (ret != 1)
  1087. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1088. } else {
  1089. /*
  1090. * When turning on, we need to retry for 1ms to give the sink
  1091. * time to wake up.
  1092. */
  1093. for (i = 0; i < 3; i++) {
  1094. ret = intel_dp_aux_native_write_1(intel_dp,
  1095. DP_SET_POWER,
  1096. DP_SET_POWER_D0);
  1097. if (ret == 1)
  1098. break;
  1099. msleep(1);
  1100. }
  1101. }
  1102. }
  1103. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1104. enum pipe *pipe)
  1105. {
  1106. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1107. enum port port = dp_to_dig_port(intel_dp)->port;
  1108. struct drm_device *dev = encoder->base.dev;
  1109. struct drm_i915_private *dev_priv = dev->dev_private;
  1110. u32 tmp = I915_READ(intel_dp->output_reg);
  1111. if (!(tmp & DP_PORT_EN))
  1112. return false;
  1113. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1114. *pipe = PORT_TO_PIPE_CPT(tmp);
  1115. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1116. *pipe = PORT_TO_PIPE(tmp);
  1117. } else {
  1118. u32 trans_sel;
  1119. u32 trans_dp;
  1120. int i;
  1121. switch (intel_dp->output_reg) {
  1122. case PCH_DP_B:
  1123. trans_sel = TRANS_DP_PORT_SEL_B;
  1124. break;
  1125. case PCH_DP_C:
  1126. trans_sel = TRANS_DP_PORT_SEL_C;
  1127. break;
  1128. case PCH_DP_D:
  1129. trans_sel = TRANS_DP_PORT_SEL_D;
  1130. break;
  1131. default:
  1132. return true;
  1133. }
  1134. for_each_pipe(i) {
  1135. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1136. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1137. *pipe = i;
  1138. return true;
  1139. }
  1140. }
  1141. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1142. intel_dp->output_reg);
  1143. }
  1144. return true;
  1145. }
  1146. static void intel_dp_get_config(struct intel_encoder *encoder,
  1147. struct intel_crtc_config *pipe_config)
  1148. {
  1149. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1150. u32 tmp, flags = 0;
  1151. struct drm_device *dev = encoder->base.dev;
  1152. struct drm_i915_private *dev_priv = dev->dev_private;
  1153. enum port port = dp_to_dig_port(intel_dp)->port;
  1154. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1155. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1156. tmp = I915_READ(intel_dp->output_reg);
  1157. if (tmp & DP_SYNC_HS_HIGH)
  1158. flags |= DRM_MODE_FLAG_PHSYNC;
  1159. else
  1160. flags |= DRM_MODE_FLAG_NHSYNC;
  1161. if (tmp & DP_SYNC_VS_HIGH)
  1162. flags |= DRM_MODE_FLAG_PVSYNC;
  1163. else
  1164. flags |= DRM_MODE_FLAG_NVSYNC;
  1165. } else {
  1166. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1167. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1168. flags |= DRM_MODE_FLAG_PHSYNC;
  1169. else
  1170. flags |= DRM_MODE_FLAG_NHSYNC;
  1171. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1172. flags |= DRM_MODE_FLAG_PVSYNC;
  1173. else
  1174. flags |= DRM_MODE_FLAG_NVSYNC;
  1175. }
  1176. pipe_config->adjusted_mode.flags |= flags;
  1177. if (dp_to_dig_port(intel_dp)->port == PORT_A) {
  1178. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1179. pipe_config->port_clock = 162000;
  1180. else
  1181. pipe_config->port_clock = 270000;
  1182. }
  1183. }
  1184. static bool is_edp_psr(struct intel_dp *intel_dp)
  1185. {
  1186. return is_edp(intel_dp) &&
  1187. intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1188. }
  1189. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1190. {
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. if (!IS_HASWELL(dev))
  1193. return false;
  1194. return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  1195. }
  1196. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1197. struct edp_vsc_psr *vsc_psr)
  1198. {
  1199. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1200. struct drm_device *dev = dig_port->base.base.dev;
  1201. struct drm_i915_private *dev_priv = dev->dev_private;
  1202. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1203. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1204. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1205. uint32_t *data = (uint32_t *) vsc_psr;
  1206. unsigned int i;
  1207. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1208. the video DIP being updated before program video DIP data buffer
  1209. registers for DIP being updated. */
  1210. I915_WRITE(ctl_reg, 0);
  1211. POSTING_READ(ctl_reg);
  1212. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1213. if (i < sizeof(struct edp_vsc_psr))
  1214. I915_WRITE(data_reg + i, *data++);
  1215. else
  1216. I915_WRITE(data_reg + i, 0);
  1217. }
  1218. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1219. POSTING_READ(ctl_reg);
  1220. }
  1221. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1222. {
  1223. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1224. struct drm_i915_private *dev_priv = dev->dev_private;
  1225. struct edp_vsc_psr psr_vsc;
  1226. if (intel_dp->psr_setup_done)
  1227. return;
  1228. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1229. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1230. psr_vsc.sdp_header.HB0 = 0;
  1231. psr_vsc.sdp_header.HB1 = 0x7;
  1232. psr_vsc.sdp_header.HB2 = 0x2;
  1233. psr_vsc.sdp_header.HB3 = 0x8;
  1234. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1235. /* Avoid continuous PSR exit by masking memup and hpd */
  1236. I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
  1237. EDP_PSR_DEBUG_MASK_HPD);
  1238. intel_dp->psr_setup_done = true;
  1239. }
  1240. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1241. {
  1242. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1243. struct drm_i915_private *dev_priv = dev->dev_private;
  1244. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
  1245. int precharge = 0x3;
  1246. int msg_size = 5; /* Header(4) + Message(1) */
  1247. /* Enable PSR in sink */
  1248. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1249. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1250. DP_PSR_ENABLE &
  1251. ~DP_PSR_MAIN_LINK_ACTIVE);
  1252. else
  1253. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1254. DP_PSR_ENABLE |
  1255. DP_PSR_MAIN_LINK_ACTIVE);
  1256. /* Setup AUX registers */
  1257. I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
  1258. I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
  1259. I915_WRITE(EDP_PSR_AUX_CTL,
  1260. DP_AUX_CH_CTL_TIME_OUT_400us |
  1261. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1262. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1263. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1264. }
  1265. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1266. {
  1267. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1268. struct drm_i915_private *dev_priv = dev->dev_private;
  1269. uint32_t max_sleep_time = 0x1f;
  1270. uint32_t idle_frames = 1;
  1271. uint32_t val = 0x0;
  1272. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1273. val |= EDP_PSR_LINK_STANDBY;
  1274. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1275. val |= EDP_PSR_TP1_TIME_0us;
  1276. val |= EDP_PSR_SKIP_AUX_EXIT;
  1277. } else
  1278. val |= EDP_PSR_LINK_DISABLE;
  1279. I915_WRITE(EDP_PSR_CTL, val |
  1280. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1281. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1282. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1283. EDP_PSR_ENABLE);
  1284. }
  1285. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1286. {
  1287. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1288. struct drm_device *dev = dig_port->base.base.dev;
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1291. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1292. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1293. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1294. if (!IS_HASWELL(dev)) {
  1295. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1296. dev_priv->no_psr_reason = PSR_NO_SOURCE;
  1297. return false;
  1298. }
  1299. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1300. (dig_port->port != PORT_A)) {
  1301. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1302. dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
  1303. return false;
  1304. }
  1305. if (!is_edp_psr(intel_dp)) {
  1306. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1307. dev_priv->no_psr_reason = PSR_NO_SINK;
  1308. return false;
  1309. }
  1310. if (!i915_enable_psr) {
  1311. DRM_DEBUG_KMS("PSR disable by flag\n");
  1312. dev_priv->no_psr_reason = PSR_MODULE_PARAM;
  1313. return false;
  1314. }
  1315. crtc = dig_port->base.base.crtc;
  1316. if (crtc == NULL) {
  1317. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1318. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1319. return false;
  1320. }
  1321. intel_crtc = to_intel_crtc(crtc);
  1322. if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
  1323. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1324. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1325. return false;
  1326. }
  1327. obj = to_intel_framebuffer(crtc->fb)->obj;
  1328. if (obj->tiling_mode != I915_TILING_X ||
  1329. obj->fence_reg == I915_FENCE_REG_NONE) {
  1330. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1331. dev_priv->no_psr_reason = PSR_NOT_TILED;
  1332. return false;
  1333. }
  1334. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1335. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1336. dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
  1337. return false;
  1338. }
  1339. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1340. S3D_ENABLE) {
  1341. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1342. dev_priv->no_psr_reason = PSR_S3D_ENABLED;
  1343. return false;
  1344. }
  1345. if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1346. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1347. dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
  1348. return false;
  1349. }
  1350. return true;
  1351. }
  1352. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1353. {
  1354. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1355. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1356. intel_edp_is_psr_enabled(dev))
  1357. return;
  1358. /* Setup PSR once */
  1359. intel_edp_psr_setup(intel_dp);
  1360. /* Enable PSR on the panel */
  1361. intel_edp_psr_enable_sink(intel_dp);
  1362. /* Enable PSR on the host */
  1363. intel_edp_psr_enable_source(intel_dp);
  1364. }
  1365. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1366. {
  1367. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1368. if (intel_edp_psr_match_conditions(intel_dp) &&
  1369. !intel_edp_is_psr_enabled(dev))
  1370. intel_edp_psr_do_enable(intel_dp);
  1371. }
  1372. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1373. {
  1374. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1375. struct drm_i915_private *dev_priv = dev->dev_private;
  1376. if (!intel_edp_is_psr_enabled(dev))
  1377. return;
  1378. I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
  1379. /* Wait till PSR is idle */
  1380. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
  1381. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1382. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1383. }
  1384. void intel_edp_psr_update(struct drm_device *dev)
  1385. {
  1386. struct intel_encoder *encoder;
  1387. struct intel_dp *intel_dp = NULL;
  1388. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1389. if (encoder->type == INTEL_OUTPUT_EDP) {
  1390. intel_dp = enc_to_intel_dp(&encoder->base);
  1391. if (!is_edp_psr(intel_dp))
  1392. return;
  1393. if (!intel_edp_psr_match_conditions(intel_dp))
  1394. intel_edp_psr_disable(intel_dp);
  1395. else
  1396. if (!intel_edp_is_psr_enabled(dev))
  1397. intel_edp_psr_do_enable(intel_dp);
  1398. }
  1399. }
  1400. static void intel_disable_dp(struct intel_encoder *encoder)
  1401. {
  1402. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1403. enum port port = dp_to_dig_port(intel_dp)->port;
  1404. struct drm_device *dev = encoder->base.dev;
  1405. /* Make sure the panel is off before trying to change the mode. But also
  1406. * ensure that we have vdd while we switch off the panel. */
  1407. ironlake_edp_panel_vdd_on(intel_dp);
  1408. ironlake_edp_backlight_off(intel_dp);
  1409. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1410. ironlake_edp_panel_off(intel_dp);
  1411. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1412. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1413. intel_dp_link_down(intel_dp);
  1414. }
  1415. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1416. {
  1417. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1418. enum port port = dp_to_dig_port(intel_dp)->port;
  1419. struct drm_device *dev = encoder->base.dev;
  1420. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1421. intel_dp_link_down(intel_dp);
  1422. if (!IS_VALLEYVIEW(dev))
  1423. ironlake_edp_pll_off(intel_dp);
  1424. }
  1425. }
  1426. static void intel_enable_dp(struct intel_encoder *encoder)
  1427. {
  1428. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1429. struct drm_device *dev = encoder->base.dev;
  1430. struct drm_i915_private *dev_priv = dev->dev_private;
  1431. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1432. if (WARN_ON(dp_reg & DP_PORT_EN))
  1433. return;
  1434. ironlake_edp_panel_vdd_on(intel_dp);
  1435. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1436. intel_dp_start_link_train(intel_dp);
  1437. ironlake_edp_panel_on(intel_dp);
  1438. ironlake_edp_panel_vdd_off(intel_dp, true);
  1439. intel_dp_complete_link_train(intel_dp);
  1440. intel_dp_stop_link_train(intel_dp);
  1441. ironlake_edp_backlight_on(intel_dp);
  1442. }
  1443. static void vlv_enable_dp(struct intel_encoder *encoder)
  1444. {
  1445. }
  1446. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1447. {
  1448. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1449. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1450. if (dport->port == PORT_A)
  1451. ironlake_edp_pll_on(intel_dp);
  1452. }
  1453. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1454. {
  1455. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1456. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1457. struct drm_device *dev = encoder->base.dev;
  1458. struct drm_i915_private *dev_priv = dev->dev_private;
  1459. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1460. int port = vlv_dport_to_channel(dport);
  1461. int pipe = intel_crtc->pipe;
  1462. u32 val;
  1463. mutex_lock(&dev_priv->dpio_lock);
  1464. val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
  1465. val = 0;
  1466. if (pipe)
  1467. val |= (1<<21);
  1468. else
  1469. val &= ~(1<<21);
  1470. val |= 0x001000c4;
  1471. vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
  1472. vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
  1473. vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
  1474. mutex_unlock(&dev_priv->dpio_lock);
  1475. intel_enable_dp(encoder);
  1476. vlv_wait_port_ready(dev_priv, port);
  1477. }
  1478. static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
  1479. {
  1480. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1481. struct drm_device *dev = encoder->base.dev;
  1482. struct drm_i915_private *dev_priv = dev->dev_private;
  1483. int port = vlv_dport_to_channel(dport);
  1484. if (!IS_VALLEYVIEW(dev))
  1485. return;
  1486. /* Program Tx lane resets to default */
  1487. mutex_lock(&dev_priv->dpio_lock);
  1488. vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
  1489. DPIO_PCS_TX_LANE2_RESET |
  1490. DPIO_PCS_TX_LANE1_RESET);
  1491. vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
  1492. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1493. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1494. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1495. DPIO_PCS_CLK_SOFT_RESET);
  1496. /* Fix up inter-pair skew failure */
  1497. vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1498. vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
  1499. vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
  1500. mutex_unlock(&dev_priv->dpio_lock);
  1501. }
  1502. /*
  1503. * Native read with retry for link status and receiver capability reads for
  1504. * cases where the sink may still be asleep.
  1505. */
  1506. static bool
  1507. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1508. uint8_t *recv, int recv_bytes)
  1509. {
  1510. int ret, i;
  1511. /*
  1512. * Sinks are *supposed* to come up within 1ms from an off state,
  1513. * but we're also supposed to retry 3 times per the spec.
  1514. */
  1515. for (i = 0; i < 3; i++) {
  1516. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1517. recv_bytes);
  1518. if (ret == recv_bytes)
  1519. return true;
  1520. msleep(1);
  1521. }
  1522. return false;
  1523. }
  1524. /*
  1525. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1526. * link status information
  1527. */
  1528. static bool
  1529. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1530. {
  1531. return intel_dp_aux_native_read_retry(intel_dp,
  1532. DP_LANE0_1_STATUS,
  1533. link_status,
  1534. DP_LINK_STATUS_SIZE);
  1535. }
  1536. #if 0
  1537. static char *voltage_names[] = {
  1538. "0.4V", "0.6V", "0.8V", "1.2V"
  1539. };
  1540. static char *pre_emph_names[] = {
  1541. "0dB", "3.5dB", "6dB", "9.5dB"
  1542. };
  1543. static char *link_train_names[] = {
  1544. "pattern 1", "pattern 2", "idle", "off"
  1545. };
  1546. #endif
  1547. /*
  1548. * These are source-specific values; current Intel hardware supports
  1549. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1550. */
  1551. static uint8_t
  1552. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1553. {
  1554. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1555. enum port port = dp_to_dig_port(intel_dp)->port;
  1556. if (IS_VALLEYVIEW(dev))
  1557. return DP_TRAIN_VOLTAGE_SWING_1200;
  1558. else if (IS_GEN7(dev) && port == PORT_A)
  1559. return DP_TRAIN_VOLTAGE_SWING_800;
  1560. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1561. return DP_TRAIN_VOLTAGE_SWING_1200;
  1562. else
  1563. return DP_TRAIN_VOLTAGE_SWING_800;
  1564. }
  1565. static uint8_t
  1566. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1567. {
  1568. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1569. enum port port = dp_to_dig_port(intel_dp)->port;
  1570. if (HAS_DDI(dev)) {
  1571. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1572. case DP_TRAIN_VOLTAGE_SWING_400:
  1573. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1574. case DP_TRAIN_VOLTAGE_SWING_600:
  1575. return DP_TRAIN_PRE_EMPHASIS_6;
  1576. case DP_TRAIN_VOLTAGE_SWING_800:
  1577. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1578. case DP_TRAIN_VOLTAGE_SWING_1200:
  1579. default:
  1580. return DP_TRAIN_PRE_EMPHASIS_0;
  1581. }
  1582. } else if (IS_VALLEYVIEW(dev)) {
  1583. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1584. case DP_TRAIN_VOLTAGE_SWING_400:
  1585. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1586. case DP_TRAIN_VOLTAGE_SWING_600:
  1587. return DP_TRAIN_PRE_EMPHASIS_6;
  1588. case DP_TRAIN_VOLTAGE_SWING_800:
  1589. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1590. case DP_TRAIN_VOLTAGE_SWING_1200:
  1591. default:
  1592. return DP_TRAIN_PRE_EMPHASIS_0;
  1593. }
  1594. } else if (IS_GEN7(dev) && port == PORT_A) {
  1595. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1596. case DP_TRAIN_VOLTAGE_SWING_400:
  1597. return DP_TRAIN_PRE_EMPHASIS_6;
  1598. case DP_TRAIN_VOLTAGE_SWING_600:
  1599. case DP_TRAIN_VOLTAGE_SWING_800:
  1600. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1601. default:
  1602. return DP_TRAIN_PRE_EMPHASIS_0;
  1603. }
  1604. } else {
  1605. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1606. case DP_TRAIN_VOLTAGE_SWING_400:
  1607. return DP_TRAIN_PRE_EMPHASIS_6;
  1608. case DP_TRAIN_VOLTAGE_SWING_600:
  1609. return DP_TRAIN_PRE_EMPHASIS_6;
  1610. case DP_TRAIN_VOLTAGE_SWING_800:
  1611. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1612. case DP_TRAIN_VOLTAGE_SWING_1200:
  1613. default:
  1614. return DP_TRAIN_PRE_EMPHASIS_0;
  1615. }
  1616. }
  1617. }
  1618. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1619. {
  1620. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1621. struct drm_i915_private *dev_priv = dev->dev_private;
  1622. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1623. unsigned long demph_reg_value, preemph_reg_value,
  1624. uniqtranscale_reg_value;
  1625. uint8_t train_set = intel_dp->train_set[0];
  1626. int port = vlv_dport_to_channel(dport);
  1627. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1628. case DP_TRAIN_PRE_EMPHASIS_0:
  1629. preemph_reg_value = 0x0004000;
  1630. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1631. case DP_TRAIN_VOLTAGE_SWING_400:
  1632. demph_reg_value = 0x2B405555;
  1633. uniqtranscale_reg_value = 0x552AB83A;
  1634. break;
  1635. case DP_TRAIN_VOLTAGE_SWING_600:
  1636. demph_reg_value = 0x2B404040;
  1637. uniqtranscale_reg_value = 0x5548B83A;
  1638. break;
  1639. case DP_TRAIN_VOLTAGE_SWING_800:
  1640. demph_reg_value = 0x2B245555;
  1641. uniqtranscale_reg_value = 0x5560B83A;
  1642. break;
  1643. case DP_TRAIN_VOLTAGE_SWING_1200:
  1644. demph_reg_value = 0x2B405555;
  1645. uniqtranscale_reg_value = 0x5598DA3A;
  1646. break;
  1647. default:
  1648. return 0;
  1649. }
  1650. break;
  1651. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1652. preemph_reg_value = 0x0002000;
  1653. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1654. case DP_TRAIN_VOLTAGE_SWING_400:
  1655. demph_reg_value = 0x2B404040;
  1656. uniqtranscale_reg_value = 0x5552B83A;
  1657. break;
  1658. case DP_TRAIN_VOLTAGE_SWING_600:
  1659. demph_reg_value = 0x2B404848;
  1660. uniqtranscale_reg_value = 0x5580B83A;
  1661. break;
  1662. case DP_TRAIN_VOLTAGE_SWING_800:
  1663. demph_reg_value = 0x2B404040;
  1664. uniqtranscale_reg_value = 0x55ADDA3A;
  1665. break;
  1666. default:
  1667. return 0;
  1668. }
  1669. break;
  1670. case DP_TRAIN_PRE_EMPHASIS_6:
  1671. preemph_reg_value = 0x0000000;
  1672. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1673. case DP_TRAIN_VOLTAGE_SWING_400:
  1674. demph_reg_value = 0x2B305555;
  1675. uniqtranscale_reg_value = 0x5570B83A;
  1676. break;
  1677. case DP_TRAIN_VOLTAGE_SWING_600:
  1678. demph_reg_value = 0x2B2B4040;
  1679. uniqtranscale_reg_value = 0x55ADDA3A;
  1680. break;
  1681. default:
  1682. return 0;
  1683. }
  1684. break;
  1685. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1686. preemph_reg_value = 0x0006000;
  1687. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1688. case DP_TRAIN_VOLTAGE_SWING_400:
  1689. demph_reg_value = 0x1B405555;
  1690. uniqtranscale_reg_value = 0x55ADDA3A;
  1691. break;
  1692. default:
  1693. return 0;
  1694. }
  1695. break;
  1696. default:
  1697. return 0;
  1698. }
  1699. mutex_lock(&dev_priv->dpio_lock);
  1700. vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
  1701. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1702. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
  1703. uniqtranscale_reg_value);
  1704. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1705. vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
  1706. vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1707. vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
  1708. mutex_unlock(&dev_priv->dpio_lock);
  1709. return 0;
  1710. }
  1711. static void
  1712. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1713. {
  1714. uint8_t v = 0;
  1715. uint8_t p = 0;
  1716. int lane;
  1717. uint8_t voltage_max;
  1718. uint8_t preemph_max;
  1719. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1720. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1721. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1722. if (this_v > v)
  1723. v = this_v;
  1724. if (this_p > p)
  1725. p = this_p;
  1726. }
  1727. voltage_max = intel_dp_voltage_max(intel_dp);
  1728. if (v >= voltage_max)
  1729. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1730. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1731. if (p >= preemph_max)
  1732. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1733. for (lane = 0; lane < 4; lane++)
  1734. intel_dp->train_set[lane] = v | p;
  1735. }
  1736. static uint32_t
  1737. intel_gen4_signal_levels(uint8_t train_set)
  1738. {
  1739. uint32_t signal_levels = 0;
  1740. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1741. case DP_TRAIN_VOLTAGE_SWING_400:
  1742. default:
  1743. signal_levels |= DP_VOLTAGE_0_4;
  1744. break;
  1745. case DP_TRAIN_VOLTAGE_SWING_600:
  1746. signal_levels |= DP_VOLTAGE_0_6;
  1747. break;
  1748. case DP_TRAIN_VOLTAGE_SWING_800:
  1749. signal_levels |= DP_VOLTAGE_0_8;
  1750. break;
  1751. case DP_TRAIN_VOLTAGE_SWING_1200:
  1752. signal_levels |= DP_VOLTAGE_1_2;
  1753. break;
  1754. }
  1755. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1756. case DP_TRAIN_PRE_EMPHASIS_0:
  1757. default:
  1758. signal_levels |= DP_PRE_EMPHASIS_0;
  1759. break;
  1760. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1761. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1762. break;
  1763. case DP_TRAIN_PRE_EMPHASIS_6:
  1764. signal_levels |= DP_PRE_EMPHASIS_6;
  1765. break;
  1766. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1767. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1768. break;
  1769. }
  1770. return signal_levels;
  1771. }
  1772. /* Gen6's DP voltage swing and pre-emphasis control */
  1773. static uint32_t
  1774. intel_gen6_edp_signal_levels(uint8_t train_set)
  1775. {
  1776. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1777. DP_TRAIN_PRE_EMPHASIS_MASK);
  1778. switch (signal_levels) {
  1779. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1780. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1781. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1782. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1783. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1784. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1785. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1786. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1787. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1788. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1789. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1790. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1791. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1792. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1793. default:
  1794. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1795. "0x%x\n", signal_levels);
  1796. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1797. }
  1798. }
  1799. /* Gen7's DP voltage swing and pre-emphasis control */
  1800. static uint32_t
  1801. intel_gen7_edp_signal_levels(uint8_t train_set)
  1802. {
  1803. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1804. DP_TRAIN_PRE_EMPHASIS_MASK);
  1805. switch (signal_levels) {
  1806. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1807. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1808. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1809. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1810. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1811. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1812. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1813. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1814. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1815. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1816. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1817. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1818. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1819. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1820. default:
  1821. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1822. "0x%x\n", signal_levels);
  1823. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1824. }
  1825. }
  1826. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1827. static uint32_t
  1828. intel_hsw_signal_levels(uint8_t train_set)
  1829. {
  1830. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1831. DP_TRAIN_PRE_EMPHASIS_MASK);
  1832. switch (signal_levels) {
  1833. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1834. return DDI_BUF_EMP_400MV_0DB_HSW;
  1835. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1836. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1837. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1838. return DDI_BUF_EMP_400MV_6DB_HSW;
  1839. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1840. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1841. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1842. return DDI_BUF_EMP_600MV_0DB_HSW;
  1843. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1844. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1845. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1846. return DDI_BUF_EMP_600MV_6DB_HSW;
  1847. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1848. return DDI_BUF_EMP_800MV_0DB_HSW;
  1849. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1850. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1851. default:
  1852. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1853. "0x%x\n", signal_levels);
  1854. return DDI_BUF_EMP_400MV_0DB_HSW;
  1855. }
  1856. }
  1857. /* Properly updates "DP" with the correct signal levels. */
  1858. static void
  1859. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1860. {
  1861. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1862. enum port port = intel_dig_port->port;
  1863. struct drm_device *dev = intel_dig_port->base.base.dev;
  1864. uint32_t signal_levels, mask;
  1865. uint8_t train_set = intel_dp->train_set[0];
  1866. if (HAS_DDI(dev)) {
  1867. signal_levels = intel_hsw_signal_levels(train_set);
  1868. mask = DDI_BUF_EMP_MASK;
  1869. } else if (IS_VALLEYVIEW(dev)) {
  1870. signal_levels = intel_vlv_signal_levels(intel_dp);
  1871. mask = 0;
  1872. } else if (IS_GEN7(dev) && port == PORT_A) {
  1873. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1874. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1875. } else if (IS_GEN6(dev) && port == PORT_A) {
  1876. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1877. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1878. } else {
  1879. signal_levels = intel_gen4_signal_levels(train_set);
  1880. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1881. }
  1882. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1883. *DP = (*DP & ~mask) | signal_levels;
  1884. }
  1885. static bool
  1886. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1887. uint32_t dp_reg_value,
  1888. uint8_t dp_train_pat)
  1889. {
  1890. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1891. struct drm_device *dev = intel_dig_port->base.base.dev;
  1892. struct drm_i915_private *dev_priv = dev->dev_private;
  1893. enum port port = intel_dig_port->port;
  1894. int ret;
  1895. if (HAS_DDI(dev)) {
  1896. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1897. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1898. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1899. else
  1900. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1901. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1902. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1903. case DP_TRAINING_PATTERN_DISABLE:
  1904. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1905. break;
  1906. case DP_TRAINING_PATTERN_1:
  1907. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1908. break;
  1909. case DP_TRAINING_PATTERN_2:
  1910. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1911. break;
  1912. case DP_TRAINING_PATTERN_3:
  1913. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1914. break;
  1915. }
  1916. I915_WRITE(DP_TP_CTL(port), temp);
  1917. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  1918. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1919. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1920. case DP_TRAINING_PATTERN_DISABLE:
  1921. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1922. break;
  1923. case DP_TRAINING_PATTERN_1:
  1924. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1925. break;
  1926. case DP_TRAINING_PATTERN_2:
  1927. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1928. break;
  1929. case DP_TRAINING_PATTERN_3:
  1930. DRM_ERROR("DP training pattern 3 not supported\n");
  1931. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1932. break;
  1933. }
  1934. } else {
  1935. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1936. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1937. case DP_TRAINING_PATTERN_DISABLE:
  1938. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1939. break;
  1940. case DP_TRAINING_PATTERN_1:
  1941. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1942. break;
  1943. case DP_TRAINING_PATTERN_2:
  1944. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1945. break;
  1946. case DP_TRAINING_PATTERN_3:
  1947. DRM_ERROR("DP training pattern 3 not supported\n");
  1948. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1949. break;
  1950. }
  1951. }
  1952. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1953. POSTING_READ(intel_dp->output_reg);
  1954. intel_dp_aux_native_write_1(intel_dp,
  1955. DP_TRAINING_PATTERN_SET,
  1956. dp_train_pat);
  1957. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1958. DP_TRAINING_PATTERN_DISABLE) {
  1959. ret = intel_dp_aux_native_write(intel_dp,
  1960. DP_TRAINING_LANE0_SET,
  1961. intel_dp->train_set,
  1962. intel_dp->lane_count);
  1963. if (ret != intel_dp->lane_count)
  1964. return false;
  1965. }
  1966. return true;
  1967. }
  1968. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  1969. {
  1970. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1971. struct drm_device *dev = intel_dig_port->base.base.dev;
  1972. struct drm_i915_private *dev_priv = dev->dev_private;
  1973. enum port port = intel_dig_port->port;
  1974. uint32_t val;
  1975. if (!HAS_DDI(dev))
  1976. return;
  1977. val = I915_READ(DP_TP_CTL(port));
  1978. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1979. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1980. I915_WRITE(DP_TP_CTL(port), val);
  1981. /*
  1982. * On PORT_A we can have only eDP in SST mode. There the only reason
  1983. * we need to set idle transmission mode is to work around a HW issue
  1984. * where we enable the pipe while not in idle link-training mode.
  1985. * In this case there is requirement to wait for a minimum number of
  1986. * idle patterns to be sent.
  1987. */
  1988. if (port == PORT_A)
  1989. return;
  1990. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  1991. 1))
  1992. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1993. }
  1994. /* Enable corresponding port and start training pattern 1 */
  1995. void
  1996. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1997. {
  1998. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1999. struct drm_device *dev = encoder->dev;
  2000. int i;
  2001. uint8_t voltage;
  2002. int voltage_tries, loop_tries;
  2003. uint32_t DP = intel_dp->DP;
  2004. if (HAS_DDI(dev))
  2005. intel_ddi_prepare_link_retrain(encoder);
  2006. /* Write the link configuration data */
  2007. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  2008. intel_dp->link_configuration,
  2009. DP_LINK_CONFIGURATION_SIZE);
  2010. DP |= DP_PORT_EN;
  2011. memset(intel_dp->train_set, 0, 4);
  2012. voltage = 0xff;
  2013. voltage_tries = 0;
  2014. loop_tries = 0;
  2015. for (;;) {
  2016. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  2017. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2018. intel_dp_set_signal_levels(intel_dp, &DP);
  2019. /* Set training pattern 1 */
  2020. if (!intel_dp_set_link_train(intel_dp, DP,
  2021. DP_TRAINING_PATTERN_1 |
  2022. DP_LINK_SCRAMBLING_DISABLE))
  2023. break;
  2024. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2025. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2026. DRM_ERROR("failed to get link status\n");
  2027. break;
  2028. }
  2029. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2030. DRM_DEBUG_KMS("clock recovery OK\n");
  2031. break;
  2032. }
  2033. /* Check to see if we've tried the max voltage */
  2034. for (i = 0; i < intel_dp->lane_count; i++)
  2035. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2036. break;
  2037. if (i == intel_dp->lane_count) {
  2038. ++loop_tries;
  2039. if (loop_tries == 5) {
  2040. DRM_DEBUG_KMS("too many full retries, give up\n");
  2041. break;
  2042. }
  2043. memset(intel_dp->train_set, 0, 4);
  2044. voltage_tries = 0;
  2045. continue;
  2046. }
  2047. /* Check to see if we've tried the same voltage 5 times */
  2048. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2049. ++voltage_tries;
  2050. if (voltage_tries == 5) {
  2051. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  2052. break;
  2053. }
  2054. } else
  2055. voltage_tries = 0;
  2056. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2057. /* Compute new intel_dp->train_set as requested by target */
  2058. intel_get_adjust_train(intel_dp, link_status);
  2059. }
  2060. intel_dp->DP = DP;
  2061. }
  2062. void
  2063. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2064. {
  2065. bool channel_eq = false;
  2066. int tries, cr_tries;
  2067. uint32_t DP = intel_dp->DP;
  2068. /* channel equalization */
  2069. tries = 0;
  2070. cr_tries = 0;
  2071. channel_eq = false;
  2072. for (;;) {
  2073. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2074. if (cr_tries > 5) {
  2075. DRM_ERROR("failed to train DP, aborting\n");
  2076. intel_dp_link_down(intel_dp);
  2077. break;
  2078. }
  2079. intel_dp_set_signal_levels(intel_dp, &DP);
  2080. /* channel eq pattern */
  2081. if (!intel_dp_set_link_train(intel_dp, DP,
  2082. DP_TRAINING_PATTERN_2 |
  2083. DP_LINK_SCRAMBLING_DISABLE))
  2084. break;
  2085. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2086. if (!intel_dp_get_link_status(intel_dp, link_status))
  2087. break;
  2088. /* Make sure clock is still ok */
  2089. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2090. intel_dp_start_link_train(intel_dp);
  2091. cr_tries++;
  2092. continue;
  2093. }
  2094. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2095. channel_eq = true;
  2096. break;
  2097. }
  2098. /* Try 5 times, then try clock recovery if that fails */
  2099. if (tries > 5) {
  2100. intel_dp_link_down(intel_dp);
  2101. intel_dp_start_link_train(intel_dp);
  2102. tries = 0;
  2103. cr_tries++;
  2104. continue;
  2105. }
  2106. /* Compute new intel_dp->train_set as requested by target */
  2107. intel_get_adjust_train(intel_dp, link_status);
  2108. ++tries;
  2109. }
  2110. intel_dp_set_idle_link_train(intel_dp);
  2111. intel_dp->DP = DP;
  2112. if (channel_eq)
  2113. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2114. }
  2115. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2116. {
  2117. intel_dp_set_link_train(intel_dp, intel_dp->DP,
  2118. DP_TRAINING_PATTERN_DISABLE);
  2119. }
  2120. static void
  2121. intel_dp_link_down(struct intel_dp *intel_dp)
  2122. {
  2123. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2124. enum port port = intel_dig_port->port;
  2125. struct drm_device *dev = intel_dig_port->base.base.dev;
  2126. struct drm_i915_private *dev_priv = dev->dev_private;
  2127. struct intel_crtc *intel_crtc =
  2128. to_intel_crtc(intel_dig_port->base.base.crtc);
  2129. uint32_t DP = intel_dp->DP;
  2130. /*
  2131. * DDI code has a strict mode set sequence and we should try to respect
  2132. * it, otherwise we might hang the machine in many different ways. So we
  2133. * really should be disabling the port only on a complete crtc_disable
  2134. * sequence. This function is just called under two conditions on DDI
  2135. * code:
  2136. * - Link train failed while doing crtc_enable, and on this case we
  2137. * really should respect the mode set sequence and wait for a
  2138. * crtc_disable.
  2139. * - Someone turned the monitor off and intel_dp_check_link_status
  2140. * called us. We don't need to disable the whole port on this case, so
  2141. * when someone turns the monitor on again,
  2142. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2143. * train.
  2144. */
  2145. if (HAS_DDI(dev))
  2146. return;
  2147. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2148. return;
  2149. DRM_DEBUG_KMS("\n");
  2150. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2151. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2152. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2153. } else {
  2154. DP &= ~DP_LINK_TRAIN_MASK;
  2155. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2156. }
  2157. POSTING_READ(intel_dp->output_reg);
  2158. /* We don't really know why we're doing this */
  2159. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2160. if (HAS_PCH_IBX(dev) &&
  2161. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2162. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2163. /* Hardware workaround: leaving our transcoder select
  2164. * set to transcoder B while it's off will prevent the
  2165. * corresponding HDMI output on transcoder A.
  2166. *
  2167. * Combine this with another hardware workaround:
  2168. * transcoder select bit can only be cleared while the
  2169. * port is enabled.
  2170. */
  2171. DP &= ~DP_PIPEB_SELECT;
  2172. I915_WRITE(intel_dp->output_reg, DP);
  2173. /* Changes to enable or select take place the vblank
  2174. * after being written.
  2175. */
  2176. if (WARN_ON(crtc == NULL)) {
  2177. /* We should never try to disable a port without a crtc
  2178. * attached. For paranoia keep the code around for a
  2179. * bit. */
  2180. POSTING_READ(intel_dp->output_reg);
  2181. msleep(50);
  2182. } else
  2183. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2184. }
  2185. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2186. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2187. POSTING_READ(intel_dp->output_reg);
  2188. msleep(intel_dp->panel_power_down_delay);
  2189. }
  2190. static bool
  2191. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2192. {
  2193. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2194. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2195. sizeof(intel_dp->dpcd)) == 0)
  2196. return false; /* aux transfer failed */
  2197. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2198. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2199. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2200. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2201. return false; /* DPCD not present */
  2202. /* Check if the panel supports PSR */
  2203. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2204. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2205. intel_dp->psr_dpcd,
  2206. sizeof(intel_dp->psr_dpcd));
  2207. if (is_edp_psr(intel_dp))
  2208. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2209. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2210. DP_DWN_STRM_PORT_PRESENT))
  2211. return true; /* native DP sink */
  2212. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2213. return true; /* no per-port downstream info */
  2214. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2215. intel_dp->downstream_ports,
  2216. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2217. return false; /* downstream port status fetch failed */
  2218. return true;
  2219. }
  2220. static void
  2221. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2222. {
  2223. u8 buf[3];
  2224. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2225. return;
  2226. ironlake_edp_panel_vdd_on(intel_dp);
  2227. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2228. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2229. buf[0], buf[1], buf[2]);
  2230. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2231. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2232. buf[0], buf[1], buf[2]);
  2233. ironlake_edp_panel_vdd_off(intel_dp, false);
  2234. }
  2235. static bool
  2236. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2237. {
  2238. int ret;
  2239. ret = intel_dp_aux_native_read_retry(intel_dp,
  2240. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2241. sink_irq_vector, 1);
  2242. if (!ret)
  2243. return false;
  2244. return true;
  2245. }
  2246. static void
  2247. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2248. {
  2249. /* NAK by default */
  2250. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2251. }
  2252. /*
  2253. * According to DP spec
  2254. * 5.1.2:
  2255. * 1. Read DPCD
  2256. * 2. Configure link according to Receiver Capabilities
  2257. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2258. * 4. Check link status on receipt of hot-plug interrupt
  2259. */
  2260. void
  2261. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2262. {
  2263. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2264. u8 sink_irq_vector;
  2265. u8 link_status[DP_LINK_STATUS_SIZE];
  2266. if (!intel_encoder->connectors_active)
  2267. return;
  2268. if (WARN_ON(!intel_encoder->base.crtc))
  2269. return;
  2270. /* Try to read receiver status if the link appears to be up */
  2271. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2272. intel_dp_link_down(intel_dp);
  2273. return;
  2274. }
  2275. /* Now read the DPCD to see if it's actually running */
  2276. if (!intel_dp_get_dpcd(intel_dp)) {
  2277. intel_dp_link_down(intel_dp);
  2278. return;
  2279. }
  2280. /* Try to read the source of the interrupt */
  2281. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2282. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2283. /* Clear interrupt source */
  2284. intel_dp_aux_native_write_1(intel_dp,
  2285. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2286. sink_irq_vector);
  2287. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2288. intel_dp_handle_test_request(intel_dp);
  2289. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2290. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2291. }
  2292. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2293. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2294. drm_get_encoder_name(&intel_encoder->base));
  2295. intel_dp_start_link_train(intel_dp);
  2296. intel_dp_complete_link_train(intel_dp);
  2297. intel_dp_stop_link_train(intel_dp);
  2298. }
  2299. }
  2300. /* XXX this is probably wrong for multiple downstream ports */
  2301. static enum drm_connector_status
  2302. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2303. {
  2304. uint8_t *dpcd = intel_dp->dpcd;
  2305. bool hpd;
  2306. uint8_t type;
  2307. if (!intel_dp_get_dpcd(intel_dp))
  2308. return connector_status_disconnected;
  2309. /* if there's no downstream port, we're done */
  2310. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2311. return connector_status_connected;
  2312. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2313. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2314. if (hpd) {
  2315. uint8_t reg;
  2316. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2317. &reg, 1))
  2318. return connector_status_unknown;
  2319. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2320. : connector_status_disconnected;
  2321. }
  2322. /* If no HPD, poke DDC gently */
  2323. if (drm_probe_ddc(&intel_dp->adapter))
  2324. return connector_status_connected;
  2325. /* Well we tried, say unknown for unreliable port types */
  2326. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2327. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2328. return connector_status_unknown;
  2329. /* Anything else is out of spec, warn and ignore */
  2330. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2331. return connector_status_disconnected;
  2332. }
  2333. static enum drm_connector_status
  2334. ironlake_dp_detect(struct intel_dp *intel_dp)
  2335. {
  2336. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2337. struct drm_i915_private *dev_priv = dev->dev_private;
  2338. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2339. enum drm_connector_status status;
  2340. /* Can't disconnect eDP, but you can close the lid... */
  2341. if (is_edp(intel_dp)) {
  2342. status = intel_panel_detect(dev);
  2343. if (status == connector_status_unknown)
  2344. status = connector_status_connected;
  2345. return status;
  2346. }
  2347. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2348. return connector_status_disconnected;
  2349. return intel_dp_detect_dpcd(intel_dp);
  2350. }
  2351. static enum drm_connector_status
  2352. g4x_dp_detect(struct intel_dp *intel_dp)
  2353. {
  2354. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2355. struct drm_i915_private *dev_priv = dev->dev_private;
  2356. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2357. uint32_t bit;
  2358. /* Can't disconnect eDP, but you can close the lid... */
  2359. if (is_edp(intel_dp)) {
  2360. enum drm_connector_status status;
  2361. status = intel_panel_detect(dev);
  2362. if (status == connector_status_unknown)
  2363. status = connector_status_connected;
  2364. return status;
  2365. }
  2366. switch (intel_dig_port->port) {
  2367. case PORT_B:
  2368. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2369. break;
  2370. case PORT_C:
  2371. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2372. break;
  2373. case PORT_D:
  2374. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2375. break;
  2376. default:
  2377. return connector_status_unknown;
  2378. }
  2379. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2380. return connector_status_disconnected;
  2381. return intel_dp_detect_dpcd(intel_dp);
  2382. }
  2383. static struct edid *
  2384. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2385. {
  2386. struct intel_connector *intel_connector = to_intel_connector(connector);
  2387. /* use cached edid if we have one */
  2388. if (intel_connector->edid) {
  2389. struct edid *edid;
  2390. int size;
  2391. /* invalid edid */
  2392. if (IS_ERR(intel_connector->edid))
  2393. return NULL;
  2394. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2395. edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
  2396. if (!edid)
  2397. return NULL;
  2398. return edid;
  2399. }
  2400. return drm_get_edid(connector, adapter);
  2401. }
  2402. static int
  2403. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2404. {
  2405. struct intel_connector *intel_connector = to_intel_connector(connector);
  2406. /* use cached edid if we have one */
  2407. if (intel_connector->edid) {
  2408. /* invalid edid */
  2409. if (IS_ERR(intel_connector->edid))
  2410. return 0;
  2411. return intel_connector_update_modes(connector,
  2412. intel_connector->edid);
  2413. }
  2414. return intel_ddc_get_modes(connector, adapter);
  2415. }
  2416. static enum drm_connector_status
  2417. intel_dp_detect(struct drm_connector *connector, bool force)
  2418. {
  2419. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2420. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2421. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2422. struct drm_device *dev = connector->dev;
  2423. enum drm_connector_status status;
  2424. struct edid *edid = NULL;
  2425. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2426. connector->base.id, drm_get_connector_name(connector));
  2427. intel_dp->has_audio = false;
  2428. if (HAS_PCH_SPLIT(dev))
  2429. status = ironlake_dp_detect(intel_dp);
  2430. else
  2431. status = g4x_dp_detect(intel_dp);
  2432. if (status != connector_status_connected)
  2433. return status;
  2434. intel_dp_probe_oui(intel_dp);
  2435. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2436. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2437. } else {
  2438. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2439. if (edid) {
  2440. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2441. kfree(edid);
  2442. }
  2443. }
  2444. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2445. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2446. return connector_status_connected;
  2447. }
  2448. static int intel_dp_get_modes(struct drm_connector *connector)
  2449. {
  2450. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2451. struct intel_connector *intel_connector = to_intel_connector(connector);
  2452. struct drm_device *dev = connector->dev;
  2453. int ret;
  2454. /* We should parse the EDID data and find out if it has an audio sink
  2455. */
  2456. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2457. if (ret)
  2458. return ret;
  2459. /* if eDP has no EDID, fall back to fixed mode */
  2460. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2461. struct drm_display_mode *mode;
  2462. mode = drm_mode_duplicate(dev,
  2463. intel_connector->panel.fixed_mode);
  2464. if (mode) {
  2465. drm_mode_probed_add(connector, mode);
  2466. return 1;
  2467. }
  2468. }
  2469. return 0;
  2470. }
  2471. static bool
  2472. intel_dp_detect_audio(struct drm_connector *connector)
  2473. {
  2474. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2475. struct edid *edid;
  2476. bool has_audio = false;
  2477. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2478. if (edid) {
  2479. has_audio = drm_detect_monitor_audio(edid);
  2480. kfree(edid);
  2481. }
  2482. return has_audio;
  2483. }
  2484. static int
  2485. intel_dp_set_property(struct drm_connector *connector,
  2486. struct drm_property *property,
  2487. uint64_t val)
  2488. {
  2489. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2490. struct intel_connector *intel_connector = to_intel_connector(connector);
  2491. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2492. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2493. int ret;
  2494. ret = drm_object_property_set_value(&connector->base, property, val);
  2495. if (ret)
  2496. return ret;
  2497. if (property == dev_priv->force_audio_property) {
  2498. int i = val;
  2499. bool has_audio;
  2500. if (i == intel_dp->force_audio)
  2501. return 0;
  2502. intel_dp->force_audio = i;
  2503. if (i == HDMI_AUDIO_AUTO)
  2504. has_audio = intel_dp_detect_audio(connector);
  2505. else
  2506. has_audio = (i == HDMI_AUDIO_ON);
  2507. if (has_audio == intel_dp->has_audio)
  2508. return 0;
  2509. intel_dp->has_audio = has_audio;
  2510. goto done;
  2511. }
  2512. if (property == dev_priv->broadcast_rgb_property) {
  2513. bool old_auto = intel_dp->color_range_auto;
  2514. uint32_t old_range = intel_dp->color_range;
  2515. switch (val) {
  2516. case INTEL_BROADCAST_RGB_AUTO:
  2517. intel_dp->color_range_auto = true;
  2518. break;
  2519. case INTEL_BROADCAST_RGB_FULL:
  2520. intel_dp->color_range_auto = false;
  2521. intel_dp->color_range = 0;
  2522. break;
  2523. case INTEL_BROADCAST_RGB_LIMITED:
  2524. intel_dp->color_range_auto = false;
  2525. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2526. break;
  2527. default:
  2528. return -EINVAL;
  2529. }
  2530. if (old_auto == intel_dp->color_range_auto &&
  2531. old_range == intel_dp->color_range)
  2532. return 0;
  2533. goto done;
  2534. }
  2535. if (is_edp(intel_dp) &&
  2536. property == connector->dev->mode_config.scaling_mode_property) {
  2537. if (val == DRM_MODE_SCALE_NONE) {
  2538. DRM_DEBUG_KMS("no scaling not supported\n");
  2539. return -EINVAL;
  2540. }
  2541. if (intel_connector->panel.fitting_mode == val) {
  2542. /* the eDP scaling property is not changed */
  2543. return 0;
  2544. }
  2545. intel_connector->panel.fitting_mode = val;
  2546. goto done;
  2547. }
  2548. return -EINVAL;
  2549. done:
  2550. if (intel_encoder->base.crtc)
  2551. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2552. return 0;
  2553. }
  2554. static void
  2555. intel_dp_connector_destroy(struct drm_connector *connector)
  2556. {
  2557. struct intel_connector *intel_connector = to_intel_connector(connector);
  2558. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2559. kfree(intel_connector->edid);
  2560. /* Can't call is_edp() since the encoder may have been destroyed
  2561. * already. */
  2562. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2563. intel_panel_fini(&intel_connector->panel);
  2564. drm_sysfs_connector_remove(connector);
  2565. drm_connector_cleanup(connector);
  2566. kfree(connector);
  2567. }
  2568. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2569. {
  2570. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2571. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2572. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2573. i2c_del_adapter(&intel_dp->adapter);
  2574. drm_encoder_cleanup(encoder);
  2575. if (is_edp(intel_dp)) {
  2576. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2577. mutex_lock(&dev->mode_config.mutex);
  2578. ironlake_panel_vdd_off_sync(intel_dp);
  2579. mutex_unlock(&dev->mode_config.mutex);
  2580. }
  2581. kfree(intel_dig_port);
  2582. }
  2583. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2584. .dpms = intel_connector_dpms,
  2585. .detect = intel_dp_detect,
  2586. .fill_modes = drm_helper_probe_single_connector_modes,
  2587. .set_property = intel_dp_set_property,
  2588. .destroy = intel_dp_connector_destroy,
  2589. };
  2590. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2591. .get_modes = intel_dp_get_modes,
  2592. .mode_valid = intel_dp_mode_valid,
  2593. .best_encoder = intel_best_encoder,
  2594. };
  2595. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2596. .destroy = intel_dp_encoder_destroy,
  2597. };
  2598. static void
  2599. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2600. {
  2601. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2602. intel_dp_check_link_status(intel_dp);
  2603. }
  2604. /* Return which DP Port should be selected for Transcoder DP control */
  2605. int
  2606. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2607. {
  2608. struct drm_device *dev = crtc->dev;
  2609. struct intel_encoder *intel_encoder;
  2610. struct intel_dp *intel_dp;
  2611. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2612. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2613. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2614. intel_encoder->type == INTEL_OUTPUT_EDP)
  2615. return intel_dp->output_reg;
  2616. }
  2617. return -1;
  2618. }
  2619. /* check the VBT to see whether the eDP is on DP-D port */
  2620. bool intel_dpd_is_edp(struct drm_device *dev)
  2621. {
  2622. struct drm_i915_private *dev_priv = dev->dev_private;
  2623. struct child_device_config *p_child;
  2624. int i;
  2625. if (!dev_priv->vbt.child_dev_num)
  2626. return false;
  2627. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2628. p_child = dev_priv->vbt.child_dev + i;
  2629. if (p_child->dvo_port == PORT_IDPD &&
  2630. p_child->device_type == DEVICE_TYPE_eDP)
  2631. return true;
  2632. }
  2633. return false;
  2634. }
  2635. static void
  2636. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2637. {
  2638. struct intel_connector *intel_connector = to_intel_connector(connector);
  2639. intel_attach_force_audio_property(connector);
  2640. intel_attach_broadcast_rgb_property(connector);
  2641. intel_dp->color_range_auto = true;
  2642. if (is_edp(intel_dp)) {
  2643. drm_mode_create_scaling_mode_property(connector->dev);
  2644. drm_object_attach_property(
  2645. &connector->base,
  2646. connector->dev->mode_config.scaling_mode_property,
  2647. DRM_MODE_SCALE_ASPECT);
  2648. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2649. }
  2650. }
  2651. static void
  2652. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2653. struct intel_dp *intel_dp,
  2654. struct edp_power_seq *out)
  2655. {
  2656. struct drm_i915_private *dev_priv = dev->dev_private;
  2657. struct edp_power_seq cur, vbt, spec, final;
  2658. u32 pp_on, pp_off, pp_div, pp;
  2659. int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2660. if (HAS_PCH_SPLIT(dev)) {
  2661. pp_control_reg = PCH_PP_CONTROL;
  2662. pp_on_reg = PCH_PP_ON_DELAYS;
  2663. pp_off_reg = PCH_PP_OFF_DELAYS;
  2664. pp_div_reg = PCH_PP_DIVISOR;
  2665. } else {
  2666. pp_control_reg = PIPEA_PP_CONTROL;
  2667. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2668. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2669. pp_div_reg = PIPEA_PP_DIVISOR;
  2670. }
  2671. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2672. * the very first thing. */
  2673. pp = ironlake_get_pp_control(intel_dp);
  2674. I915_WRITE(pp_control_reg, pp);
  2675. pp_on = I915_READ(pp_on_reg);
  2676. pp_off = I915_READ(pp_off_reg);
  2677. pp_div = I915_READ(pp_div_reg);
  2678. /* Pull timing values out of registers */
  2679. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2680. PANEL_POWER_UP_DELAY_SHIFT;
  2681. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2682. PANEL_LIGHT_ON_DELAY_SHIFT;
  2683. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2684. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2685. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2686. PANEL_POWER_DOWN_DELAY_SHIFT;
  2687. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2688. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2689. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2690. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2691. vbt = dev_priv->vbt.edp_pps;
  2692. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2693. * our hw here, which are all in 100usec. */
  2694. spec.t1_t3 = 210 * 10;
  2695. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2696. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2697. spec.t10 = 500 * 10;
  2698. /* This one is special and actually in units of 100ms, but zero
  2699. * based in the hw (so we need to add 100 ms). But the sw vbt
  2700. * table multiplies it with 1000 to make it in units of 100usec,
  2701. * too. */
  2702. spec.t11_t12 = (510 + 100) * 10;
  2703. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2704. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2705. /* Use the max of the register settings and vbt. If both are
  2706. * unset, fall back to the spec limits. */
  2707. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2708. spec.field : \
  2709. max(cur.field, vbt.field))
  2710. assign_final(t1_t3);
  2711. assign_final(t8);
  2712. assign_final(t9);
  2713. assign_final(t10);
  2714. assign_final(t11_t12);
  2715. #undef assign_final
  2716. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2717. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2718. intel_dp->backlight_on_delay = get_delay(t8);
  2719. intel_dp->backlight_off_delay = get_delay(t9);
  2720. intel_dp->panel_power_down_delay = get_delay(t10);
  2721. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2722. #undef get_delay
  2723. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2724. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2725. intel_dp->panel_power_cycle_delay);
  2726. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2727. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2728. if (out)
  2729. *out = final;
  2730. }
  2731. static void
  2732. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2733. struct intel_dp *intel_dp,
  2734. struct edp_power_seq *seq)
  2735. {
  2736. struct drm_i915_private *dev_priv = dev->dev_private;
  2737. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2738. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2739. int pp_on_reg, pp_off_reg, pp_div_reg;
  2740. if (HAS_PCH_SPLIT(dev)) {
  2741. pp_on_reg = PCH_PP_ON_DELAYS;
  2742. pp_off_reg = PCH_PP_OFF_DELAYS;
  2743. pp_div_reg = PCH_PP_DIVISOR;
  2744. } else {
  2745. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2746. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2747. pp_div_reg = PIPEA_PP_DIVISOR;
  2748. }
  2749. /* And finally store the new values in the power sequencer. */
  2750. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2751. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2752. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2753. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2754. /* Compute the divisor for the pp clock, simply match the Bspec
  2755. * formula. */
  2756. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2757. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2758. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2759. /* Haswell doesn't have any port selection bits for the panel
  2760. * power sequencer any more. */
  2761. if (IS_VALLEYVIEW(dev)) {
  2762. port_sel = I915_READ(pp_on_reg) & 0xc0000000;
  2763. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2764. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2765. port_sel = PANEL_POWER_PORT_DP_A;
  2766. else
  2767. port_sel = PANEL_POWER_PORT_DP_D;
  2768. }
  2769. pp_on |= port_sel;
  2770. I915_WRITE(pp_on_reg, pp_on);
  2771. I915_WRITE(pp_off_reg, pp_off);
  2772. I915_WRITE(pp_div_reg, pp_div);
  2773. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2774. I915_READ(pp_on_reg),
  2775. I915_READ(pp_off_reg),
  2776. I915_READ(pp_div_reg));
  2777. }
  2778. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2779. struct intel_connector *intel_connector)
  2780. {
  2781. struct drm_connector *connector = &intel_connector->base;
  2782. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2783. struct drm_device *dev = intel_dig_port->base.base.dev;
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. struct drm_display_mode *fixed_mode = NULL;
  2786. struct edp_power_seq power_seq = { 0 };
  2787. bool has_dpcd;
  2788. struct drm_display_mode *scan;
  2789. struct edid *edid;
  2790. if (!is_edp(intel_dp))
  2791. return true;
  2792. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2793. /* Cache DPCD and EDID for edp. */
  2794. ironlake_edp_panel_vdd_on(intel_dp);
  2795. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2796. ironlake_edp_panel_vdd_off(intel_dp, false);
  2797. if (has_dpcd) {
  2798. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2799. dev_priv->no_aux_handshake =
  2800. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2801. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2802. } else {
  2803. /* if this fails, presume the device is a ghost */
  2804. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2805. return false;
  2806. }
  2807. /* We now know it's not a ghost, init power sequence regs. */
  2808. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2809. &power_seq);
  2810. ironlake_edp_panel_vdd_on(intel_dp);
  2811. edid = drm_get_edid(connector, &intel_dp->adapter);
  2812. if (edid) {
  2813. if (drm_add_edid_modes(connector, edid)) {
  2814. drm_mode_connector_update_edid_property(connector,
  2815. edid);
  2816. drm_edid_to_eld(connector, edid);
  2817. } else {
  2818. kfree(edid);
  2819. edid = ERR_PTR(-EINVAL);
  2820. }
  2821. } else {
  2822. edid = ERR_PTR(-ENOENT);
  2823. }
  2824. intel_connector->edid = edid;
  2825. /* prefer fixed mode from EDID if available */
  2826. list_for_each_entry(scan, &connector->probed_modes, head) {
  2827. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2828. fixed_mode = drm_mode_duplicate(dev, scan);
  2829. break;
  2830. }
  2831. }
  2832. /* fallback to VBT if available for eDP */
  2833. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2834. fixed_mode = drm_mode_duplicate(dev,
  2835. dev_priv->vbt.lfp_lvds_vbt_mode);
  2836. if (fixed_mode)
  2837. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2838. }
  2839. ironlake_edp_panel_vdd_off(intel_dp, false);
  2840. intel_panel_init(&intel_connector->panel, fixed_mode);
  2841. intel_panel_setup_backlight(connector);
  2842. return true;
  2843. }
  2844. bool
  2845. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2846. struct intel_connector *intel_connector)
  2847. {
  2848. struct drm_connector *connector = &intel_connector->base;
  2849. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2850. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2851. struct drm_device *dev = intel_encoder->base.dev;
  2852. struct drm_i915_private *dev_priv = dev->dev_private;
  2853. enum port port = intel_dig_port->port;
  2854. const char *name = NULL;
  2855. int type, error;
  2856. /* Preserve the current hw state. */
  2857. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2858. intel_dp->attached_connector = intel_connector;
  2859. type = DRM_MODE_CONNECTOR_DisplayPort;
  2860. /*
  2861. * FIXME : We need to initialize built-in panels before external panels.
  2862. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2863. */
  2864. switch (port) {
  2865. case PORT_A:
  2866. type = DRM_MODE_CONNECTOR_eDP;
  2867. break;
  2868. case PORT_C:
  2869. if (IS_VALLEYVIEW(dev))
  2870. type = DRM_MODE_CONNECTOR_eDP;
  2871. break;
  2872. case PORT_D:
  2873. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  2874. type = DRM_MODE_CONNECTOR_eDP;
  2875. break;
  2876. default: /* silence GCC warning */
  2877. break;
  2878. }
  2879. /*
  2880. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  2881. * for DP the encoder type can be set by the caller to
  2882. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  2883. */
  2884. if (type == DRM_MODE_CONNECTOR_eDP)
  2885. intel_encoder->type = INTEL_OUTPUT_EDP;
  2886. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  2887. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  2888. port_name(port));
  2889. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2890. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2891. connector->interlace_allowed = true;
  2892. connector->doublescan_allowed = 0;
  2893. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2894. ironlake_panel_vdd_work);
  2895. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2896. drm_sysfs_connector_add(connector);
  2897. if (HAS_DDI(dev))
  2898. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2899. else
  2900. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2901. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  2902. if (HAS_DDI(dev)) {
  2903. switch (intel_dig_port->port) {
  2904. case PORT_A:
  2905. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  2906. break;
  2907. case PORT_B:
  2908. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  2909. break;
  2910. case PORT_C:
  2911. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  2912. break;
  2913. case PORT_D:
  2914. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  2915. break;
  2916. default:
  2917. BUG();
  2918. }
  2919. }
  2920. /* Set up the DDC bus. */
  2921. switch (port) {
  2922. case PORT_A:
  2923. intel_encoder->hpd_pin = HPD_PORT_A;
  2924. name = "DPDDC-A";
  2925. break;
  2926. case PORT_B:
  2927. intel_encoder->hpd_pin = HPD_PORT_B;
  2928. name = "DPDDC-B";
  2929. break;
  2930. case PORT_C:
  2931. intel_encoder->hpd_pin = HPD_PORT_C;
  2932. name = "DPDDC-C";
  2933. break;
  2934. case PORT_D:
  2935. intel_encoder->hpd_pin = HPD_PORT_D;
  2936. name = "DPDDC-D";
  2937. break;
  2938. default:
  2939. BUG();
  2940. }
  2941. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  2942. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  2943. error, port_name(port));
  2944. intel_dp->psr_setup_done = false;
  2945. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  2946. i2c_del_adapter(&intel_dp->adapter);
  2947. if (is_edp(intel_dp)) {
  2948. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2949. mutex_lock(&dev->mode_config.mutex);
  2950. ironlake_panel_vdd_off_sync(intel_dp);
  2951. mutex_unlock(&dev->mode_config.mutex);
  2952. }
  2953. drm_sysfs_connector_remove(connector);
  2954. drm_connector_cleanup(connector);
  2955. return false;
  2956. }
  2957. intel_dp_add_properties(intel_dp, connector);
  2958. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2959. * 0xd. Failure to do so will result in spurious interrupts being
  2960. * generated on the port when a cable is not attached.
  2961. */
  2962. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2963. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2964. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2965. }
  2966. return true;
  2967. }
  2968. void
  2969. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2970. {
  2971. struct intel_digital_port *intel_dig_port;
  2972. struct intel_encoder *intel_encoder;
  2973. struct drm_encoder *encoder;
  2974. struct intel_connector *intel_connector;
  2975. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2976. if (!intel_dig_port)
  2977. return;
  2978. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2979. if (!intel_connector) {
  2980. kfree(intel_dig_port);
  2981. return;
  2982. }
  2983. intel_encoder = &intel_dig_port->base;
  2984. encoder = &intel_encoder->base;
  2985. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2986. DRM_MODE_ENCODER_TMDS);
  2987. intel_encoder->compute_config = intel_dp_compute_config;
  2988. intel_encoder->mode_set = intel_dp_mode_set;
  2989. intel_encoder->disable = intel_disable_dp;
  2990. intel_encoder->post_disable = intel_post_disable_dp;
  2991. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2992. intel_encoder->get_config = intel_dp_get_config;
  2993. if (IS_VALLEYVIEW(dev)) {
  2994. intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
  2995. intel_encoder->pre_enable = vlv_pre_enable_dp;
  2996. intel_encoder->enable = vlv_enable_dp;
  2997. } else {
  2998. intel_encoder->pre_enable = intel_pre_enable_dp;
  2999. intel_encoder->enable = intel_enable_dp;
  3000. }
  3001. intel_dig_port->port = port;
  3002. intel_dig_port->dp.output_reg = output_reg;
  3003. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3004. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3005. intel_encoder->cloneable = false;
  3006. intel_encoder->hot_plug = intel_dp_hot_plug;
  3007. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3008. drm_encoder_cleanup(encoder);
  3009. kfree(intel_dig_port);
  3010. kfree(intel_connector);
  3011. }
  3012. }