time.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. /*
  2. * linux/arch/arm/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994-2001 Russell King
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This file contains the ARM-specific time handling details:
  12. * reading the RTC at bootup, etc...
  13. *
  14. * 1994-07-02 Alan Modra
  15. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  16. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  17. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/smp.h>
  25. #include <linux/timex.h>
  26. #include <linux/errno.h>
  27. #include <linux/profile.h>
  28. #include <linux/sysdev.h>
  29. #include <linux/timer.h>
  30. #include <linux/irq.h>
  31. #include <linux/mc146818rtc.h>
  32. #include <asm/leds.h>
  33. #include <asm/thread_info.h>
  34. #include <asm/mach/time.h>
  35. /*
  36. * Our system timer.
  37. */
  38. struct sys_timer *system_timer;
  39. #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE)
  40. /* this needs a better home */
  41. DEFINE_SPINLOCK(rtc_lock);
  42. #ifdef CONFIG_RTC_DRV_CMOS_MODULE
  43. EXPORT_SYMBOL(rtc_lock);
  44. #endif
  45. #endif /* pc-style 'CMOS' RTC support */
  46. /* change this if you have some constant time drift */
  47. #define USECS_PER_JIFFY (1000000/HZ)
  48. #ifdef CONFIG_SMP
  49. unsigned long profile_pc(struct pt_regs *regs)
  50. {
  51. unsigned long fp, pc = instruction_pointer(regs);
  52. if (in_lock_functions(pc)) {
  53. fp = regs->ARM_fp;
  54. pc = pc_pointer(((unsigned long *)fp)[-1]);
  55. }
  56. return pc;
  57. }
  58. EXPORT_SYMBOL(profile_pc);
  59. #endif
  60. /*
  61. * hook for setting the RTC's idea of the current time.
  62. */
  63. int (*set_rtc)(void);
  64. #ifndef CONFIG_GENERIC_TIME
  65. static unsigned long dummy_gettimeoffset(void)
  66. {
  67. return 0;
  68. }
  69. #endif
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is the default implementation. Sub-architecture
  73. * implementations can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (1000000000 / HZ);
  78. }
  79. /*
  80. * An implementation of printk_clock() independent from
  81. * sched_clock(). This avoids non-bootable kernels when
  82. * printk_clock is enabled.
  83. */
  84. unsigned long long printk_clock(void)
  85. {
  86. return (unsigned long long)(jiffies - INITIAL_JIFFIES) *
  87. (1000000000 / HZ);
  88. }
  89. static unsigned long next_rtc_update;
  90. /*
  91. * If we have an externally synchronized linux clock, then update
  92. * CMOS clock accordingly every ~11 minutes. set_rtc() has to be
  93. * called as close as possible to 500 ms before the new second
  94. * starts.
  95. */
  96. static inline void do_set_rtc(void)
  97. {
  98. if (!ntp_synced() || set_rtc == NULL)
  99. return;
  100. if (next_rtc_update &&
  101. time_before((unsigned long)xtime.tv_sec, next_rtc_update))
  102. return;
  103. if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
  104. xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
  105. return;
  106. if (set_rtc())
  107. /*
  108. * rtc update failed. Try again in 60s
  109. */
  110. next_rtc_update = xtime.tv_sec + 60;
  111. else
  112. next_rtc_update = xtime.tv_sec + 660;
  113. }
  114. #ifdef CONFIG_LEDS
  115. static void dummy_leds_event(led_event_t evt)
  116. {
  117. }
  118. void (*leds_event)(led_event_t) = dummy_leds_event;
  119. struct leds_evt_name {
  120. const char name[8];
  121. int on;
  122. int off;
  123. };
  124. static const struct leds_evt_name evt_names[] = {
  125. { "amber", led_amber_on, led_amber_off },
  126. { "blue", led_blue_on, led_blue_off },
  127. { "green", led_green_on, led_green_off },
  128. { "red", led_red_on, led_red_off },
  129. };
  130. static ssize_t leds_store(struct sys_device *dev, const char *buf, size_t size)
  131. {
  132. int ret = -EINVAL, len = strcspn(buf, " ");
  133. if (len > 0 && buf[len] == '\0')
  134. len--;
  135. if (strncmp(buf, "claim", len) == 0) {
  136. leds_event(led_claim);
  137. ret = size;
  138. } else if (strncmp(buf, "release", len) == 0) {
  139. leds_event(led_release);
  140. ret = size;
  141. } else {
  142. int i;
  143. for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
  144. if (strlen(evt_names[i].name) != len ||
  145. strncmp(buf, evt_names[i].name, len) != 0)
  146. continue;
  147. if (strncmp(buf+len, " on", 3) == 0) {
  148. leds_event(evt_names[i].on);
  149. ret = size;
  150. } else if (strncmp(buf+len, " off", 4) == 0) {
  151. leds_event(evt_names[i].off);
  152. ret = size;
  153. }
  154. break;
  155. }
  156. }
  157. return ret;
  158. }
  159. static SYSDEV_ATTR(event, 0200, NULL, leds_store);
  160. static int leds_suspend(struct sys_device *dev, pm_message_t state)
  161. {
  162. leds_event(led_stop);
  163. return 0;
  164. }
  165. static int leds_resume(struct sys_device *dev)
  166. {
  167. leds_event(led_start);
  168. return 0;
  169. }
  170. static int leds_shutdown(struct sys_device *dev)
  171. {
  172. leds_event(led_halted);
  173. return 0;
  174. }
  175. static struct sysdev_class leds_sysclass = {
  176. set_kset_name("leds"),
  177. .shutdown = leds_shutdown,
  178. .suspend = leds_suspend,
  179. .resume = leds_resume,
  180. };
  181. static struct sys_device leds_device = {
  182. .id = 0,
  183. .cls = &leds_sysclass,
  184. };
  185. static int __init leds_init(void)
  186. {
  187. int ret;
  188. ret = sysdev_class_register(&leds_sysclass);
  189. if (ret == 0)
  190. ret = sysdev_register(&leds_device);
  191. if (ret == 0)
  192. ret = sysdev_create_file(&leds_device, &attr_event);
  193. return ret;
  194. }
  195. device_initcall(leds_init);
  196. EXPORT_SYMBOL(leds_event);
  197. #endif
  198. #ifdef CONFIG_LEDS_TIMER
  199. static inline void do_leds(void)
  200. {
  201. static unsigned int count = HZ/2;
  202. if (--count == 0) {
  203. count = HZ/2;
  204. leds_event(led_timer);
  205. }
  206. }
  207. #else
  208. #define do_leds()
  209. #endif
  210. #ifndef CONFIG_GENERIC_TIME
  211. void do_gettimeofday(struct timeval *tv)
  212. {
  213. unsigned long flags;
  214. unsigned long seq;
  215. unsigned long usec, sec;
  216. do {
  217. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  218. usec = system_timer->offset();
  219. sec = xtime.tv_sec;
  220. usec += xtime.tv_nsec / 1000;
  221. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  222. /* usec may have gone up a lot: be safe */
  223. while (usec >= 1000000) {
  224. usec -= 1000000;
  225. sec++;
  226. }
  227. tv->tv_sec = sec;
  228. tv->tv_usec = usec;
  229. }
  230. EXPORT_SYMBOL(do_gettimeofday);
  231. int do_settimeofday(struct timespec *tv)
  232. {
  233. time_t wtm_sec, sec = tv->tv_sec;
  234. long wtm_nsec, nsec = tv->tv_nsec;
  235. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  236. return -EINVAL;
  237. write_seqlock_irq(&xtime_lock);
  238. /*
  239. * This is revolting. We need to set "xtime" correctly. However, the
  240. * value in this location is the value at the most recent update of
  241. * wall time. Discover what correction gettimeofday() would have
  242. * done, and then undo it!
  243. */
  244. nsec -= system_timer->offset() * NSEC_PER_USEC;
  245. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  246. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  247. set_normalized_timespec(&xtime, sec, nsec);
  248. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  249. ntp_clear();
  250. write_sequnlock_irq(&xtime_lock);
  251. clock_was_set();
  252. return 0;
  253. }
  254. EXPORT_SYMBOL(do_settimeofday);
  255. #endif /* !CONFIG_GENERIC_TIME */
  256. /**
  257. * save_time_delta - Save the offset between system time and RTC time
  258. * @delta: pointer to timespec to store delta
  259. * @rtc: pointer to timespec for current RTC time
  260. *
  261. * Return a delta between the system time and the RTC time, such
  262. * that system time can be restored later with restore_time_delta()
  263. */
  264. void save_time_delta(struct timespec *delta, struct timespec *rtc)
  265. {
  266. set_normalized_timespec(delta,
  267. xtime.tv_sec - rtc->tv_sec,
  268. xtime.tv_nsec - rtc->tv_nsec);
  269. }
  270. EXPORT_SYMBOL(save_time_delta);
  271. /**
  272. * restore_time_delta - Restore the current system time
  273. * @delta: delta returned by save_time_delta()
  274. * @rtc: pointer to timespec for current RTC time
  275. */
  276. void restore_time_delta(struct timespec *delta, struct timespec *rtc)
  277. {
  278. struct timespec ts;
  279. set_normalized_timespec(&ts,
  280. delta->tv_sec + rtc->tv_sec,
  281. delta->tv_nsec + rtc->tv_nsec);
  282. do_settimeofday(&ts);
  283. }
  284. EXPORT_SYMBOL(restore_time_delta);
  285. /*
  286. * Kernel system timer support.
  287. */
  288. void timer_tick(void)
  289. {
  290. profile_tick(CPU_PROFILING);
  291. do_leds();
  292. do_set_rtc();
  293. do_timer(1);
  294. #ifndef CONFIG_SMP
  295. update_process_times(user_mode(get_irq_regs()));
  296. #endif
  297. }
  298. #ifdef CONFIG_PM
  299. static int timer_suspend(struct sys_device *dev, pm_message_t state)
  300. {
  301. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  302. if (timer->suspend != NULL)
  303. timer->suspend();
  304. return 0;
  305. }
  306. static int timer_resume(struct sys_device *dev)
  307. {
  308. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  309. if (timer->resume != NULL)
  310. timer->resume();
  311. return 0;
  312. }
  313. #else
  314. #define timer_suspend NULL
  315. #define timer_resume NULL
  316. #endif
  317. static struct sysdev_class timer_sysclass = {
  318. set_kset_name("timer"),
  319. .suspend = timer_suspend,
  320. .resume = timer_resume,
  321. };
  322. #ifdef CONFIG_NO_IDLE_HZ
  323. static int timer_dyn_tick_enable(void)
  324. {
  325. struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
  326. unsigned long flags;
  327. int ret = -ENODEV;
  328. if (dyn_tick) {
  329. spin_lock_irqsave(&dyn_tick->lock, flags);
  330. ret = 0;
  331. if (!(dyn_tick->state & DYN_TICK_ENABLED)) {
  332. ret = dyn_tick->enable();
  333. if (ret == 0)
  334. dyn_tick->state |= DYN_TICK_ENABLED;
  335. }
  336. spin_unlock_irqrestore(&dyn_tick->lock, flags);
  337. }
  338. return ret;
  339. }
  340. static int timer_dyn_tick_disable(void)
  341. {
  342. struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
  343. unsigned long flags;
  344. int ret = -ENODEV;
  345. if (dyn_tick) {
  346. spin_lock_irqsave(&dyn_tick->lock, flags);
  347. ret = 0;
  348. if (dyn_tick->state & DYN_TICK_ENABLED) {
  349. ret = dyn_tick->disable();
  350. if (ret == 0)
  351. dyn_tick->state &= ~DYN_TICK_ENABLED;
  352. }
  353. spin_unlock_irqrestore(&dyn_tick->lock, flags);
  354. }
  355. return ret;
  356. }
  357. /*
  358. * Reprogram the system timer for at least the calculated time interval.
  359. * This function should be called from the idle thread with IRQs disabled,
  360. * immediately before sleeping.
  361. */
  362. void timer_dyn_reprogram(void)
  363. {
  364. struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
  365. unsigned long next, seq, flags;
  366. if (!dyn_tick)
  367. return;
  368. spin_lock_irqsave(&dyn_tick->lock, flags);
  369. if (dyn_tick->state & DYN_TICK_ENABLED) {
  370. next = next_timer_interrupt();
  371. do {
  372. seq = read_seqbegin(&xtime_lock);
  373. dyn_tick->reprogram(next - jiffies);
  374. } while (read_seqretry(&xtime_lock, seq));
  375. }
  376. spin_unlock_irqrestore(&dyn_tick->lock, flags);
  377. }
  378. static ssize_t timer_show_dyn_tick(struct sys_device *dev, char *buf)
  379. {
  380. return sprintf(buf, "%i\n",
  381. (system_timer->dyn_tick->state & DYN_TICK_ENABLED) >> 1);
  382. }
  383. static ssize_t timer_set_dyn_tick(struct sys_device *dev, const char *buf,
  384. size_t count)
  385. {
  386. unsigned int enable = simple_strtoul(buf, NULL, 2);
  387. if (enable)
  388. timer_dyn_tick_enable();
  389. else
  390. timer_dyn_tick_disable();
  391. return count;
  392. }
  393. static SYSDEV_ATTR(dyn_tick, 0644, timer_show_dyn_tick, timer_set_dyn_tick);
  394. /*
  395. * dyntick=enable|disable
  396. */
  397. static char dyntick_str[4] __initdata = "";
  398. static int __init dyntick_setup(char *str)
  399. {
  400. if (str)
  401. strlcpy(dyntick_str, str, sizeof(dyntick_str));
  402. return 1;
  403. }
  404. __setup("dyntick=", dyntick_setup);
  405. #endif
  406. static int __init timer_init_sysfs(void)
  407. {
  408. int ret = sysdev_class_register(&timer_sysclass);
  409. if (ret == 0) {
  410. system_timer->dev.cls = &timer_sysclass;
  411. ret = sysdev_register(&system_timer->dev);
  412. }
  413. #ifdef CONFIG_NO_IDLE_HZ
  414. if (ret == 0 && system_timer->dyn_tick) {
  415. ret = sysdev_create_file(&system_timer->dev, &attr_dyn_tick);
  416. /*
  417. * Turn on dynamic tick after calibrate delay
  418. * for correct bogomips
  419. */
  420. if (ret == 0 && dyntick_str[0] == 'e')
  421. ret = timer_dyn_tick_enable();
  422. }
  423. #endif
  424. return ret;
  425. }
  426. device_initcall(timer_init_sysfs);
  427. void __init time_init(void)
  428. {
  429. #ifndef CONFIG_GENERIC_TIME
  430. if (system_timer->offset == NULL)
  431. system_timer->offset = dummy_gettimeoffset;
  432. #endif
  433. system_timer->init();
  434. #ifdef CONFIG_NO_IDLE_HZ
  435. if (system_timer->dyn_tick)
  436. system_timer->dyn_tick->lock = SPIN_LOCK_UNLOCKED;
  437. #endif
  438. }