brd.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548
  1. /*
  2. * Ram backed block device driver.
  3. *
  4. * Copyright (C) 2007 Nick Piggin
  5. * Copyright (C) 2007 Novell Inc.
  6. *
  7. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8. * of their respective owners.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/major.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/bio.h>
  16. #include <linux/highmem.h>
  17. #include <linux/gfp.h>
  18. #include <linux/radix-tree.h>
  19. #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
  20. #include <asm/uaccess.h>
  21. #define SECTOR_SHIFT 9
  22. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  23. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  24. /*
  25. * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  26. * the pages containing the block device's contents. A brd page's ->index is
  27. * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  28. * with, the kernel's pagecache or buffer cache (which sit above our block
  29. * device).
  30. */
  31. struct brd_device {
  32. int brd_number;
  33. int brd_refcnt;
  34. loff_t brd_offset;
  35. loff_t brd_sizelimit;
  36. unsigned brd_blocksize;
  37. struct request_queue *brd_queue;
  38. struct gendisk *brd_disk;
  39. struct list_head brd_list;
  40. /*
  41. * Backing store of pages and lock to protect it. This is the contents
  42. * of the block device.
  43. */
  44. spinlock_t brd_lock;
  45. struct radix_tree_root brd_pages;
  46. };
  47. /*
  48. * Look up and return a brd's page for a given sector.
  49. */
  50. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  51. {
  52. pgoff_t idx;
  53. struct page *page;
  54. /*
  55. * The page lifetime is protected by the fact that we have opened the
  56. * device node -- brd pages will never be deleted under us, so we
  57. * don't need any further locking or refcounting.
  58. *
  59. * This is strictly true for the radix-tree nodes as well (ie. we
  60. * don't actually need the rcu_read_lock()), however that is not a
  61. * documented feature of the radix-tree API so it is better to be
  62. * safe here (we don't have total exclusion from radix tree updates
  63. * here, only deletes).
  64. */
  65. rcu_read_lock();
  66. idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  67. page = radix_tree_lookup(&brd->brd_pages, idx);
  68. rcu_read_unlock();
  69. BUG_ON(page && page->index != idx);
  70. return page;
  71. }
  72. /*
  73. * Look up and return a brd's page for a given sector.
  74. * If one does not exist, allocate an empty page, and insert that. Then
  75. * return it.
  76. */
  77. static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  78. {
  79. pgoff_t idx;
  80. struct page *page;
  81. page = brd_lookup_page(brd, sector);
  82. if (page)
  83. return page;
  84. /*
  85. * Must use NOIO because we don't want to recurse back into the
  86. * block or filesystem layers from page reclaim.
  87. */
  88. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM | __GFP_ZERO);
  89. if (!page)
  90. return NULL;
  91. if (radix_tree_preload(GFP_NOIO)) {
  92. __free_page(page);
  93. return NULL;
  94. }
  95. spin_lock(&brd->brd_lock);
  96. idx = sector >> PAGE_SECTORS_SHIFT;
  97. if (radix_tree_insert(&brd->brd_pages, idx, page)) {
  98. __free_page(page);
  99. page = radix_tree_lookup(&brd->brd_pages, idx);
  100. BUG_ON(!page);
  101. BUG_ON(page->index != idx);
  102. } else
  103. page->index = idx;
  104. spin_unlock(&brd->brd_lock);
  105. radix_tree_preload_end();
  106. return page;
  107. }
  108. /*
  109. * Free all backing store pages and radix tree. This must only be called when
  110. * there are no other users of the device.
  111. */
  112. #define FREE_BATCH 16
  113. static void brd_free_pages(struct brd_device *brd)
  114. {
  115. unsigned long pos = 0;
  116. struct page *pages[FREE_BATCH];
  117. int nr_pages;
  118. do {
  119. int i;
  120. nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
  121. (void **)pages, pos, FREE_BATCH);
  122. for (i = 0; i < nr_pages; i++) {
  123. void *ret;
  124. BUG_ON(pages[i]->index < pos);
  125. pos = pages[i]->index;
  126. ret = radix_tree_delete(&brd->brd_pages, pos);
  127. BUG_ON(!ret || ret != pages[i]);
  128. __free_page(pages[i]);
  129. }
  130. pos++;
  131. /*
  132. * This assumes radix_tree_gang_lookup always returns as
  133. * many pages as possible. If the radix-tree code changes,
  134. * so will this have to.
  135. */
  136. } while (nr_pages == FREE_BATCH);
  137. }
  138. /*
  139. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  140. */
  141. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
  142. {
  143. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  144. size_t copy;
  145. copy = min_t(size_t, n, PAGE_SIZE - offset);
  146. if (!brd_insert_page(brd, sector))
  147. return -ENOMEM;
  148. if (copy < n) {
  149. sector += copy >> SECTOR_SHIFT;
  150. if (!brd_insert_page(brd, sector))
  151. return -ENOMEM;
  152. }
  153. return 0;
  154. }
  155. /*
  156. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  157. */
  158. static void copy_to_brd(struct brd_device *brd, const void *src,
  159. sector_t sector, size_t n)
  160. {
  161. struct page *page;
  162. void *dst;
  163. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  164. size_t copy;
  165. copy = min_t(size_t, n, PAGE_SIZE - offset);
  166. page = brd_lookup_page(brd, sector);
  167. BUG_ON(!page);
  168. dst = kmap_atomic(page, KM_USER1);
  169. memcpy(dst + offset, src, copy);
  170. kunmap_atomic(dst, KM_USER1);
  171. if (copy < n) {
  172. src += copy;
  173. sector += copy >> SECTOR_SHIFT;
  174. copy = n - copy;
  175. page = brd_lookup_page(brd, sector);
  176. BUG_ON(!page);
  177. dst = kmap_atomic(page, KM_USER1);
  178. memcpy(dst, src, copy);
  179. kunmap_atomic(dst, KM_USER1);
  180. }
  181. }
  182. /*
  183. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  184. */
  185. static void copy_from_brd(void *dst, struct brd_device *brd,
  186. sector_t sector, size_t n)
  187. {
  188. struct page *page;
  189. void *src;
  190. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  191. size_t copy;
  192. copy = min_t(size_t, n, PAGE_SIZE - offset);
  193. page = brd_lookup_page(brd, sector);
  194. if (page) {
  195. src = kmap_atomic(page, KM_USER1);
  196. memcpy(dst, src + offset, copy);
  197. kunmap_atomic(src, KM_USER1);
  198. } else
  199. memset(dst, 0, copy);
  200. if (copy < n) {
  201. dst += copy;
  202. sector += copy >> SECTOR_SHIFT;
  203. copy = n - copy;
  204. page = brd_lookup_page(brd, sector);
  205. if (page) {
  206. src = kmap_atomic(page, KM_USER1);
  207. memcpy(dst, src, copy);
  208. kunmap_atomic(src, KM_USER1);
  209. } else
  210. memset(dst, 0, copy);
  211. }
  212. }
  213. /*
  214. * Process a single bvec of a bio.
  215. */
  216. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  217. unsigned int len, unsigned int off, int rw,
  218. sector_t sector)
  219. {
  220. void *mem;
  221. int err = 0;
  222. if (rw != READ) {
  223. err = copy_to_brd_setup(brd, sector, len);
  224. if (err)
  225. goto out;
  226. }
  227. mem = kmap_atomic(page, KM_USER0);
  228. if (rw == READ) {
  229. copy_from_brd(mem + off, brd, sector, len);
  230. flush_dcache_page(page);
  231. } else
  232. copy_to_brd(brd, mem + off, sector, len);
  233. kunmap_atomic(mem, KM_USER0);
  234. out:
  235. return err;
  236. }
  237. static int brd_make_request(struct request_queue *q, struct bio *bio)
  238. {
  239. struct block_device *bdev = bio->bi_bdev;
  240. struct brd_device *brd = bdev->bd_disk->private_data;
  241. int rw;
  242. struct bio_vec *bvec;
  243. sector_t sector;
  244. int i;
  245. int err = -EIO;
  246. sector = bio->bi_sector;
  247. if (sector + (bio->bi_size >> SECTOR_SHIFT) >
  248. get_capacity(bdev->bd_disk))
  249. goto out;
  250. rw = bio_rw(bio);
  251. if (rw == READA)
  252. rw = READ;
  253. bio_for_each_segment(bvec, bio, i) {
  254. unsigned int len = bvec->bv_len;
  255. err = brd_do_bvec(brd, bvec->bv_page, len,
  256. bvec->bv_offset, rw, sector);
  257. if (err)
  258. break;
  259. sector += len >> SECTOR_SHIFT;
  260. }
  261. out:
  262. bio_endio(bio, err);
  263. return 0;
  264. }
  265. static int brd_ioctl(struct inode *inode, struct file *file,
  266. unsigned int cmd, unsigned long arg)
  267. {
  268. int error;
  269. struct block_device *bdev = inode->i_bdev;
  270. struct brd_device *brd = bdev->bd_disk->private_data;
  271. if (cmd != BLKFLSBUF)
  272. return -ENOTTY;
  273. /*
  274. * ram device BLKFLSBUF has special semantics, we want to actually
  275. * release and destroy the ramdisk data.
  276. */
  277. mutex_lock(&bdev->bd_mutex);
  278. error = -EBUSY;
  279. if (bdev->bd_openers <= 1) {
  280. /*
  281. * Invalidate the cache first, so it isn't written
  282. * back to the device.
  283. *
  284. * Another thread might instantiate more buffercache here,
  285. * but there is not much we can do to close that race.
  286. */
  287. invalidate_bh_lrus();
  288. truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
  289. brd_free_pages(brd);
  290. error = 0;
  291. }
  292. mutex_unlock(&bdev->bd_mutex);
  293. return error;
  294. }
  295. static struct block_device_operations brd_fops = {
  296. .owner = THIS_MODULE,
  297. .ioctl = brd_ioctl,
  298. };
  299. /*
  300. * And now the modules code and kernel interface.
  301. */
  302. static int rd_nr;
  303. int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  304. module_param(rd_nr, int, 0);
  305. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  306. module_param(rd_size, int, 0);
  307. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  308. MODULE_LICENSE("GPL");
  309. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  310. #ifndef MODULE
  311. /* Legacy boot options - nonmodular */
  312. static int __init ramdisk_size(char *str)
  313. {
  314. rd_size = simple_strtol(str, NULL, 0);
  315. return 1;
  316. }
  317. static int __init ramdisk_size2(char *str)
  318. {
  319. return ramdisk_size(str);
  320. }
  321. __setup("ramdisk=", ramdisk_size);
  322. __setup("ramdisk_size=", ramdisk_size2);
  323. #endif
  324. /*
  325. * The device scheme is derived from loop.c. Keep them in synch where possible
  326. * (should share code eventually).
  327. */
  328. static LIST_HEAD(brd_devices);
  329. static DEFINE_MUTEX(brd_devices_mutex);
  330. static struct brd_device *brd_alloc(int i)
  331. {
  332. struct brd_device *brd;
  333. struct gendisk *disk;
  334. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  335. if (!brd)
  336. goto out;
  337. brd->brd_number = i;
  338. spin_lock_init(&brd->brd_lock);
  339. INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
  340. brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
  341. if (!brd->brd_queue)
  342. goto out_free_dev;
  343. blk_queue_make_request(brd->brd_queue, brd_make_request);
  344. blk_queue_max_sectors(brd->brd_queue, 1024);
  345. blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
  346. disk = brd->brd_disk = alloc_disk(1);
  347. if (!disk)
  348. goto out_free_queue;
  349. disk->major = RAMDISK_MAJOR;
  350. disk->first_minor = i;
  351. disk->fops = &brd_fops;
  352. disk->private_data = brd;
  353. disk->queue = brd->brd_queue;
  354. sprintf(disk->disk_name, "ram%d", i);
  355. set_capacity(disk, rd_size * 2);
  356. return brd;
  357. out_free_queue:
  358. blk_cleanup_queue(brd->brd_queue);
  359. out_free_dev:
  360. kfree(brd);
  361. out:
  362. return NULL;
  363. }
  364. static void brd_free(struct brd_device *brd)
  365. {
  366. put_disk(brd->brd_disk);
  367. blk_cleanup_queue(brd->brd_queue);
  368. brd_free_pages(brd);
  369. kfree(brd);
  370. }
  371. static struct brd_device *brd_init_one(int i)
  372. {
  373. struct brd_device *brd;
  374. list_for_each_entry(brd, &brd_devices, brd_list) {
  375. if (brd->brd_number == i)
  376. goto out;
  377. }
  378. brd = brd_alloc(i);
  379. if (brd) {
  380. add_disk(brd->brd_disk);
  381. list_add_tail(&brd->brd_list, &brd_devices);
  382. }
  383. out:
  384. return brd;
  385. }
  386. static void brd_del_one(struct brd_device *brd)
  387. {
  388. list_del(&brd->brd_list);
  389. del_gendisk(brd->brd_disk);
  390. brd_free(brd);
  391. }
  392. static struct kobject *brd_probe(dev_t dev, int *part, void *data)
  393. {
  394. struct brd_device *brd;
  395. struct kobject *kobj;
  396. mutex_lock(&brd_devices_mutex);
  397. brd = brd_init_one(dev & MINORMASK);
  398. kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
  399. mutex_unlock(&brd_devices_mutex);
  400. *part = 0;
  401. return kobj;
  402. }
  403. static int __init brd_init(void)
  404. {
  405. int i, nr;
  406. unsigned long range;
  407. struct brd_device *brd, *next;
  408. /*
  409. * brd module now has a feature to instantiate underlying device
  410. * structure on-demand, provided that there is an access dev node.
  411. * However, this will not work well with user space tool that doesn't
  412. * know about such "feature". In order to not break any existing
  413. * tool, we do the following:
  414. *
  415. * (1) if rd_nr is specified, create that many upfront, and this
  416. * also becomes a hard limit.
  417. * (2) if rd_nr is not specified, create 1 rd device on module
  418. * load, user can further extend brd device by create dev node
  419. * themselves and have kernel automatically instantiate actual
  420. * device on-demand.
  421. */
  422. if (rd_nr > 1UL << MINORBITS)
  423. return -EINVAL;
  424. if (rd_nr) {
  425. nr = rd_nr;
  426. range = rd_nr;
  427. } else {
  428. nr = CONFIG_BLK_DEV_RAM_COUNT;
  429. range = 1UL << MINORBITS;
  430. }
  431. if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
  432. return -EIO;
  433. for (i = 0; i < nr; i++) {
  434. brd = brd_alloc(i);
  435. if (!brd)
  436. goto out_free;
  437. list_add_tail(&brd->brd_list, &brd_devices);
  438. }
  439. /* point of no return */
  440. list_for_each_entry(brd, &brd_devices, brd_list)
  441. add_disk(brd->brd_disk);
  442. blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
  443. THIS_MODULE, brd_probe, NULL, NULL);
  444. printk(KERN_INFO "brd: module loaded\n");
  445. return 0;
  446. out_free:
  447. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  448. list_del(&brd->brd_list);
  449. brd_free(brd);
  450. }
  451. unregister_blkdev(RAMDISK_MAJOR, "brd");
  452. return -ENOMEM;
  453. }
  454. static void __exit brd_exit(void)
  455. {
  456. unsigned long range;
  457. struct brd_device *brd, *next;
  458. range = rd_nr ? rd_nr : 1UL << MINORBITS;
  459. list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
  460. brd_del_one(brd);
  461. blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
  462. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  463. }
  464. module_init(brd_init);
  465. module_exit(brd_exit);