ieee80211_sta.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <net/iw_handler.h>
  27. #include <asm/types.h>
  28. #include <net/mac80211.h>
  29. #include "ieee80211_i.h"
  30. #include "ieee80211_rate.h"
  31. #include "ieee80211_led.h"
  32. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  33. #define IEEE80211_AUTH_MAX_TRIES 3
  34. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  35. #define IEEE80211_ASSOC_MAX_TRIES 3
  36. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  37. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  38. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  39. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  40. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  41. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  42. #define IEEE80211_PROBE_DELAY (HZ / 33)
  43. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  44. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  45. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  46. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  47. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  48. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  49. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  50. #define ERP_INFO_USE_PROTECTION BIT(1)
  51. /* mgmt header + 1 byte action code */
  52. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  53. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  54. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  55. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  56. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  57. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  58. /* next values represent the buffer size for A-MPDU frame.
  59. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  60. #define IEEE80211_MIN_AMPDU_BUF 0x8
  61. #define IEEE80211_MAX_AMPDU_BUF 0x40
  62. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  63. u8 *ssid, size_t ssid_len);
  64. static struct ieee80211_sta_bss *
  65. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  66. u8 *ssid, u8 ssid_len);
  67. static void ieee80211_rx_bss_put(struct net_device *dev,
  68. struct ieee80211_sta_bss *bss);
  69. static int ieee80211_sta_find_ibss(struct net_device *dev,
  70. struct ieee80211_if_sta *ifsta);
  71. static int ieee80211_sta_wep_configured(struct net_device *dev);
  72. static int ieee80211_sta_start_scan(struct net_device *dev,
  73. u8 *ssid, size_t ssid_len);
  74. static int ieee80211_sta_config_auth(struct net_device *dev,
  75. struct ieee80211_if_sta *ifsta);
  76. /* Parsed Information Elements */
  77. struct ieee802_11_elems {
  78. /* pointers to IEs */
  79. u8 *ssid;
  80. u8 *supp_rates;
  81. u8 *fh_params;
  82. u8 *ds_params;
  83. u8 *cf_params;
  84. u8 *tim;
  85. u8 *ibss_params;
  86. u8 *challenge;
  87. u8 *wpa;
  88. u8 *rsn;
  89. u8 *erp_info;
  90. u8 *ext_supp_rates;
  91. u8 *wmm_info;
  92. u8 *wmm_param;
  93. u8 *ht_cap_elem;
  94. u8 *ht_info_elem;
  95. /* length of them, respectively */
  96. u8 ssid_len;
  97. u8 supp_rates_len;
  98. u8 fh_params_len;
  99. u8 ds_params_len;
  100. u8 cf_params_len;
  101. u8 tim_len;
  102. u8 ibss_params_len;
  103. u8 challenge_len;
  104. u8 wpa_len;
  105. u8 rsn_len;
  106. u8 erp_info_len;
  107. u8 ext_supp_rates_len;
  108. u8 wmm_info_len;
  109. u8 wmm_param_len;
  110. u8 ht_cap_elem_len;
  111. u8 ht_info_elem_len;
  112. };
  113. static void ieee802_11_parse_elems(u8 *start, size_t len,
  114. struct ieee802_11_elems *elems)
  115. {
  116. size_t left = len;
  117. u8 *pos = start;
  118. memset(elems, 0, sizeof(*elems));
  119. while (left >= 2) {
  120. u8 id, elen;
  121. id = *pos++;
  122. elen = *pos++;
  123. left -= 2;
  124. if (elen > left)
  125. return;
  126. switch (id) {
  127. case WLAN_EID_SSID:
  128. elems->ssid = pos;
  129. elems->ssid_len = elen;
  130. break;
  131. case WLAN_EID_SUPP_RATES:
  132. elems->supp_rates = pos;
  133. elems->supp_rates_len = elen;
  134. break;
  135. case WLAN_EID_FH_PARAMS:
  136. elems->fh_params = pos;
  137. elems->fh_params_len = elen;
  138. break;
  139. case WLAN_EID_DS_PARAMS:
  140. elems->ds_params = pos;
  141. elems->ds_params_len = elen;
  142. break;
  143. case WLAN_EID_CF_PARAMS:
  144. elems->cf_params = pos;
  145. elems->cf_params_len = elen;
  146. break;
  147. case WLAN_EID_TIM:
  148. elems->tim = pos;
  149. elems->tim_len = elen;
  150. break;
  151. case WLAN_EID_IBSS_PARAMS:
  152. elems->ibss_params = pos;
  153. elems->ibss_params_len = elen;
  154. break;
  155. case WLAN_EID_CHALLENGE:
  156. elems->challenge = pos;
  157. elems->challenge_len = elen;
  158. break;
  159. case WLAN_EID_WPA:
  160. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  161. pos[2] == 0xf2) {
  162. /* Microsoft OUI (00:50:F2) */
  163. if (pos[3] == 1) {
  164. /* OUI Type 1 - WPA IE */
  165. elems->wpa = pos;
  166. elems->wpa_len = elen;
  167. } else if (elen >= 5 && pos[3] == 2) {
  168. if (pos[4] == 0) {
  169. elems->wmm_info = pos;
  170. elems->wmm_info_len = elen;
  171. } else if (pos[4] == 1) {
  172. elems->wmm_param = pos;
  173. elems->wmm_param_len = elen;
  174. }
  175. }
  176. }
  177. break;
  178. case WLAN_EID_RSN:
  179. elems->rsn = pos;
  180. elems->rsn_len = elen;
  181. break;
  182. case WLAN_EID_ERP_INFO:
  183. elems->erp_info = pos;
  184. elems->erp_info_len = elen;
  185. break;
  186. case WLAN_EID_EXT_SUPP_RATES:
  187. elems->ext_supp_rates = pos;
  188. elems->ext_supp_rates_len = elen;
  189. break;
  190. case WLAN_EID_HT_CAPABILITY:
  191. elems->ht_cap_elem = pos;
  192. elems->ht_cap_elem_len = elen;
  193. break;
  194. case WLAN_EID_HT_EXTRA_INFO:
  195. elems->ht_info_elem = pos;
  196. elems->ht_info_elem_len = elen;
  197. break;
  198. default:
  199. break;
  200. }
  201. left -= elen;
  202. pos += elen;
  203. }
  204. }
  205. static int ecw2cw(int ecw)
  206. {
  207. return (1 << ecw) - 1;
  208. }
  209. static void ieee80211_sta_wmm_params(struct net_device *dev,
  210. struct ieee80211_if_sta *ifsta,
  211. u8 *wmm_param, size_t wmm_param_len)
  212. {
  213. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  214. struct ieee80211_tx_queue_params params;
  215. size_t left;
  216. int count;
  217. u8 *pos;
  218. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  219. return;
  220. count = wmm_param[6] & 0x0f;
  221. if (count == ifsta->wmm_last_param_set)
  222. return;
  223. ifsta->wmm_last_param_set = count;
  224. pos = wmm_param + 8;
  225. left = wmm_param_len - 8;
  226. memset(&params, 0, sizeof(params));
  227. if (!local->ops->conf_tx)
  228. return;
  229. local->wmm_acm = 0;
  230. for (; left >= 4; left -= 4, pos += 4) {
  231. int aci = (pos[0] >> 5) & 0x03;
  232. int acm = (pos[0] >> 4) & 0x01;
  233. int queue;
  234. switch (aci) {
  235. case 1:
  236. queue = IEEE80211_TX_QUEUE_DATA3;
  237. if (acm) {
  238. local->wmm_acm |= BIT(0) | BIT(3);
  239. }
  240. break;
  241. case 2:
  242. queue = IEEE80211_TX_QUEUE_DATA1;
  243. if (acm) {
  244. local->wmm_acm |= BIT(4) | BIT(5);
  245. }
  246. break;
  247. case 3:
  248. queue = IEEE80211_TX_QUEUE_DATA0;
  249. if (acm) {
  250. local->wmm_acm |= BIT(6) | BIT(7);
  251. }
  252. break;
  253. case 0:
  254. default:
  255. queue = IEEE80211_TX_QUEUE_DATA2;
  256. if (acm) {
  257. local->wmm_acm |= BIT(1) | BIT(2);
  258. }
  259. break;
  260. }
  261. params.aifs = pos[0] & 0x0f;
  262. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  263. params.cw_min = ecw2cw(pos[1] & 0x0f);
  264. params.txop = pos[2] | (pos[3] << 8);
  265. #ifdef CONFIG_MAC80211_DEBUG
  266. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  267. "cWmin=%d cWmax=%d txop=%d\n",
  268. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  269. params.cw_max, params.txop);
  270. #endif
  271. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  272. * AC for now) */
  273. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  274. printk(KERN_DEBUG "%s: failed to set TX queue "
  275. "parameters for queue %d\n", dev->name, queue);
  276. }
  277. }
  278. }
  279. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  280. u8 erp_value)
  281. {
  282. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  283. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  284. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  285. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  286. DECLARE_MAC_BUF(mac);
  287. u32 changed = 0;
  288. if (use_protection != bss_conf->use_cts_prot) {
  289. if (net_ratelimit()) {
  290. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  291. "%s)\n",
  292. sdata->dev->name,
  293. use_protection ? "enabled" : "disabled",
  294. print_mac(mac, ifsta->bssid));
  295. }
  296. bss_conf->use_cts_prot = use_protection;
  297. changed |= BSS_CHANGED_ERP_CTS_PROT;
  298. }
  299. if (preamble_mode != bss_conf->use_short_preamble) {
  300. if (net_ratelimit()) {
  301. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  302. " (BSSID=%s)\n",
  303. sdata->dev->name,
  304. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  305. "short" : "long",
  306. print_mac(mac, ifsta->bssid));
  307. }
  308. bss_conf->use_short_preamble = preamble_mode;
  309. changed |= BSS_CHANGED_ERP_PREAMBLE;
  310. }
  311. return changed;
  312. }
  313. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  314. struct ieee80211_ht_info *ht_info)
  315. {
  316. if (ht_info == NULL)
  317. return -EINVAL;
  318. memset(ht_info, 0, sizeof(*ht_info));
  319. if (ht_cap_ie) {
  320. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  321. ht_info->ht_supported = 1;
  322. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  323. ht_info->ampdu_factor =
  324. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  325. ht_info->ampdu_density =
  326. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  327. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  328. } else
  329. ht_info->ht_supported = 0;
  330. return 0;
  331. }
  332. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  333. struct ieee80211_ht_addt_info *ht_add_info_ie,
  334. struct ieee80211_ht_bss_info *bss_info)
  335. {
  336. if (bss_info == NULL)
  337. return -EINVAL;
  338. memset(bss_info, 0, sizeof(*bss_info));
  339. if (ht_add_info_ie) {
  340. u16 op_mode;
  341. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  342. bss_info->primary_channel = ht_add_info_ie->control_chan;
  343. bss_info->bss_cap = ht_add_info_ie->ht_param;
  344. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  345. }
  346. return 0;
  347. }
  348. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  349. struct ieee80211_if_sta *ifsta)
  350. {
  351. char *buf;
  352. size_t len;
  353. int i;
  354. union iwreq_data wrqu;
  355. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  356. return;
  357. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  358. ifsta->assocresp_ies_len), GFP_KERNEL);
  359. if (!buf)
  360. return;
  361. len = sprintf(buf, "ASSOCINFO(");
  362. if (ifsta->assocreq_ies) {
  363. len += sprintf(buf + len, "ReqIEs=");
  364. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  365. len += sprintf(buf + len, "%02x",
  366. ifsta->assocreq_ies[i]);
  367. }
  368. }
  369. if (ifsta->assocresp_ies) {
  370. if (ifsta->assocreq_ies)
  371. len += sprintf(buf + len, " ");
  372. len += sprintf(buf + len, "RespIEs=");
  373. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  374. len += sprintf(buf + len, "%02x",
  375. ifsta->assocresp_ies[i]);
  376. }
  377. }
  378. len += sprintf(buf + len, ")");
  379. if (len > IW_CUSTOM_MAX) {
  380. len = sprintf(buf, "ASSOCRESPIE=");
  381. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  382. len += sprintf(buf + len, "%02x",
  383. ifsta->assocresp_ies[i]);
  384. }
  385. }
  386. memset(&wrqu, 0, sizeof(wrqu));
  387. wrqu.data.length = len;
  388. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  389. kfree(buf);
  390. }
  391. static void ieee80211_set_associated(struct net_device *dev,
  392. struct ieee80211_if_sta *ifsta,
  393. bool assoc)
  394. {
  395. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  396. struct ieee80211_local *local = sdata->local;
  397. union iwreq_data wrqu;
  398. u32 changed = BSS_CHANGED_ASSOC;
  399. if (assoc) {
  400. struct ieee80211_sta_bss *bss;
  401. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  402. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  403. return;
  404. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  405. local->hw.conf.channel->center_freq,
  406. ifsta->ssid, ifsta->ssid_len);
  407. if (bss) {
  408. if (bss->has_erp_value)
  409. changed |= ieee80211_handle_erp_ie(
  410. sdata, bss->erp_value);
  411. ieee80211_rx_bss_put(dev, bss);
  412. }
  413. netif_carrier_on(dev);
  414. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  415. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  416. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  417. ieee80211_sta_send_associnfo(dev, ifsta);
  418. } else {
  419. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  420. netif_carrier_off(dev);
  421. ieee80211_reset_erp_info(dev);
  422. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  423. }
  424. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  425. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  426. ifsta->last_probe = jiffies;
  427. ieee80211_led_assoc(local, assoc);
  428. sdata->bss_conf.assoc = assoc;
  429. ieee80211_bss_info_change_notify(sdata, changed);
  430. }
  431. static void ieee80211_set_disassoc(struct net_device *dev,
  432. struct ieee80211_if_sta *ifsta, int deauth)
  433. {
  434. if (deauth)
  435. ifsta->auth_tries = 0;
  436. ifsta->assoc_tries = 0;
  437. ieee80211_set_associated(dev, ifsta, 0);
  438. }
  439. static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  440. int encrypt)
  441. {
  442. struct ieee80211_sub_if_data *sdata;
  443. struct ieee80211_tx_packet_data *pkt_data;
  444. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  445. skb->dev = sdata->local->mdev;
  446. skb_set_mac_header(skb, 0);
  447. skb_set_network_header(skb, 0);
  448. skb_set_transport_header(skb, 0);
  449. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  450. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  451. pkt_data->ifindex = sdata->dev->ifindex;
  452. if (!encrypt)
  453. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  454. dev_queue_xmit(skb);
  455. }
  456. static void ieee80211_send_auth(struct net_device *dev,
  457. struct ieee80211_if_sta *ifsta,
  458. int transaction, u8 *extra, size_t extra_len,
  459. int encrypt)
  460. {
  461. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  462. struct sk_buff *skb;
  463. struct ieee80211_mgmt *mgmt;
  464. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  465. sizeof(*mgmt) + 6 + extra_len);
  466. if (!skb) {
  467. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  468. "frame\n", dev->name);
  469. return;
  470. }
  471. skb_reserve(skb, local->hw.extra_tx_headroom);
  472. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  473. memset(mgmt, 0, 24 + 6);
  474. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  475. IEEE80211_STYPE_AUTH);
  476. if (encrypt)
  477. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  478. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  479. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  480. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  481. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  482. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  483. ifsta->auth_transaction = transaction + 1;
  484. mgmt->u.auth.status_code = cpu_to_le16(0);
  485. if (extra)
  486. memcpy(skb_put(skb, extra_len), extra, extra_len);
  487. ieee80211_sta_tx(dev, skb, encrypt);
  488. }
  489. static void ieee80211_authenticate(struct net_device *dev,
  490. struct ieee80211_if_sta *ifsta)
  491. {
  492. DECLARE_MAC_BUF(mac);
  493. ifsta->auth_tries++;
  494. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  495. printk(KERN_DEBUG "%s: authentication with AP %s"
  496. " timed out\n",
  497. dev->name, print_mac(mac, ifsta->bssid));
  498. ifsta->state = IEEE80211_DISABLED;
  499. return;
  500. }
  501. ifsta->state = IEEE80211_AUTHENTICATE;
  502. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  503. dev->name, print_mac(mac, ifsta->bssid));
  504. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  505. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  506. }
  507. static void ieee80211_send_assoc(struct net_device *dev,
  508. struct ieee80211_if_sta *ifsta)
  509. {
  510. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  511. struct sk_buff *skb;
  512. struct ieee80211_mgmt *mgmt;
  513. u8 *pos, *ies;
  514. int i, len;
  515. u16 capab;
  516. struct ieee80211_sta_bss *bss;
  517. int wmm = 0;
  518. struct ieee80211_supported_band *sband;
  519. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  520. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  521. ifsta->ssid_len);
  522. if (!skb) {
  523. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  524. "frame\n", dev->name);
  525. return;
  526. }
  527. skb_reserve(skb, local->hw.extra_tx_headroom);
  528. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  529. capab = ifsta->capab;
  530. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  531. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  532. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  533. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  534. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  535. }
  536. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  537. local->hw.conf.channel->center_freq,
  538. ifsta->ssid, ifsta->ssid_len);
  539. if (bss) {
  540. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  541. capab |= WLAN_CAPABILITY_PRIVACY;
  542. if (bss->wmm_ie) {
  543. wmm = 1;
  544. }
  545. ieee80211_rx_bss_put(dev, bss);
  546. }
  547. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  548. memset(mgmt, 0, 24);
  549. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  550. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  551. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  552. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  553. skb_put(skb, 10);
  554. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  555. IEEE80211_STYPE_REASSOC_REQ);
  556. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  557. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  558. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  559. ETH_ALEN);
  560. } else {
  561. skb_put(skb, 4);
  562. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  563. IEEE80211_STYPE_ASSOC_REQ);
  564. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  565. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  566. }
  567. /* SSID */
  568. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  569. *pos++ = WLAN_EID_SSID;
  570. *pos++ = ifsta->ssid_len;
  571. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  572. len = sband->n_bitrates;
  573. if (len > 8)
  574. len = 8;
  575. pos = skb_put(skb, len + 2);
  576. *pos++ = WLAN_EID_SUPP_RATES;
  577. *pos++ = len;
  578. for (i = 0; i < len; i++) {
  579. int rate = sband->bitrates[i].bitrate;
  580. *pos++ = (u8) (rate / 5);
  581. }
  582. if (sband->n_bitrates > len) {
  583. pos = skb_put(skb, sband->n_bitrates - len + 2);
  584. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  585. *pos++ = sband->n_bitrates - len;
  586. for (i = len; i < sband->n_bitrates; i++) {
  587. int rate = sband->bitrates[i].bitrate;
  588. *pos++ = (u8) (rate / 5);
  589. }
  590. }
  591. if (ifsta->extra_ie) {
  592. pos = skb_put(skb, ifsta->extra_ie_len);
  593. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  594. }
  595. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  596. pos = skb_put(skb, 9);
  597. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  598. *pos++ = 7; /* len */
  599. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  600. *pos++ = 0x50;
  601. *pos++ = 0xf2;
  602. *pos++ = 2; /* WME */
  603. *pos++ = 0; /* WME info */
  604. *pos++ = 1; /* WME ver */
  605. *pos++ = 0;
  606. }
  607. /* wmm support is a must to HT */
  608. if (wmm && sband->ht_info.ht_supported) {
  609. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  610. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  611. *pos++ = WLAN_EID_HT_CAPABILITY;
  612. *pos++ = sizeof(struct ieee80211_ht_cap);
  613. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  614. memcpy(pos, &tmp, sizeof(u16));
  615. pos += sizeof(u16);
  616. /* TODO: needs a define here for << 2 */
  617. *pos++ = sband->ht_info.ampdu_factor |
  618. (sband->ht_info.ampdu_density << 2);
  619. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  620. }
  621. kfree(ifsta->assocreq_ies);
  622. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  623. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  624. if (ifsta->assocreq_ies)
  625. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  626. ieee80211_sta_tx(dev, skb, 0);
  627. }
  628. static void ieee80211_send_deauth(struct net_device *dev,
  629. struct ieee80211_if_sta *ifsta, u16 reason)
  630. {
  631. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  632. struct sk_buff *skb;
  633. struct ieee80211_mgmt *mgmt;
  634. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  635. if (!skb) {
  636. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  637. "frame\n", dev->name);
  638. return;
  639. }
  640. skb_reserve(skb, local->hw.extra_tx_headroom);
  641. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  642. memset(mgmt, 0, 24);
  643. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  644. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  645. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  646. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  647. IEEE80211_STYPE_DEAUTH);
  648. skb_put(skb, 2);
  649. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  650. ieee80211_sta_tx(dev, skb, 0);
  651. }
  652. static void ieee80211_send_disassoc(struct net_device *dev,
  653. struct ieee80211_if_sta *ifsta, u16 reason)
  654. {
  655. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  656. struct sk_buff *skb;
  657. struct ieee80211_mgmt *mgmt;
  658. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  659. if (!skb) {
  660. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  661. "frame\n", dev->name);
  662. return;
  663. }
  664. skb_reserve(skb, local->hw.extra_tx_headroom);
  665. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  666. memset(mgmt, 0, 24);
  667. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  668. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  669. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  670. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  671. IEEE80211_STYPE_DISASSOC);
  672. skb_put(skb, 2);
  673. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  674. ieee80211_sta_tx(dev, skb, 0);
  675. }
  676. static int ieee80211_privacy_mismatch(struct net_device *dev,
  677. struct ieee80211_if_sta *ifsta)
  678. {
  679. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  680. struct ieee80211_sta_bss *bss;
  681. int bss_privacy;
  682. int wep_privacy;
  683. int privacy_invoked;
  684. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  685. return 0;
  686. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  687. local->hw.conf.channel->center_freq,
  688. ifsta->ssid, ifsta->ssid_len);
  689. if (!bss)
  690. return 0;
  691. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  692. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  693. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  694. ieee80211_rx_bss_put(dev, bss);
  695. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  696. return 0;
  697. return 1;
  698. }
  699. static void ieee80211_associate(struct net_device *dev,
  700. struct ieee80211_if_sta *ifsta)
  701. {
  702. DECLARE_MAC_BUF(mac);
  703. ifsta->assoc_tries++;
  704. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  705. printk(KERN_DEBUG "%s: association with AP %s"
  706. " timed out\n",
  707. dev->name, print_mac(mac, ifsta->bssid));
  708. ifsta->state = IEEE80211_DISABLED;
  709. return;
  710. }
  711. ifsta->state = IEEE80211_ASSOCIATE;
  712. printk(KERN_DEBUG "%s: associate with AP %s\n",
  713. dev->name, print_mac(mac, ifsta->bssid));
  714. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  715. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  716. "mixed-cell disabled - abort association\n", dev->name);
  717. ifsta->state = IEEE80211_DISABLED;
  718. return;
  719. }
  720. ieee80211_send_assoc(dev, ifsta);
  721. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  722. }
  723. static void ieee80211_associated(struct net_device *dev,
  724. struct ieee80211_if_sta *ifsta)
  725. {
  726. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  727. struct sta_info *sta;
  728. int disassoc;
  729. DECLARE_MAC_BUF(mac);
  730. /* TODO: start monitoring current AP signal quality and number of
  731. * missed beacons. Scan other channels every now and then and search
  732. * for better APs. */
  733. /* TODO: remove expired BSSes */
  734. ifsta->state = IEEE80211_ASSOCIATED;
  735. sta = sta_info_get(local, ifsta->bssid);
  736. if (!sta) {
  737. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  738. dev->name, print_mac(mac, ifsta->bssid));
  739. disassoc = 1;
  740. } else {
  741. disassoc = 0;
  742. if (time_after(jiffies,
  743. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  744. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  745. printk(KERN_DEBUG "%s: No ProbeResp from "
  746. "current AP %s - assume out of "
  747. "range\n",
  748. dev->name, print_mac(mac, ifsta->bssid));
  749. disassoc = 1;
  750. sta_info_free(sta);
  751. } else
  752. ieee80211_send_probe_req(dev, ifsta->bssid,
  753. local->scan_ssid,
  754. local->scan_ssid_len);
  755. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  756. } else {
  757. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  758. if (time_after(jiffies, ifsta->last_probe +
  759. IEEE80211_PROBE_INTERVAL)) {
  760. ifsta->last_probe = jiffies;
  761. ieee80211_send_probe_req(dev, ifsta->bssid,
  762. ifsta->ssid,
  763. ifsta->ssid_len);
  764. }
  765. }
  766. sta_info_put(sta);
  767. }
  768. if (disassoc) {
  769. ifsta->state = IEEE80211_DISABLED;
  770. ieee80211_set_associated(dev, ifsta, 0);
  771. } else {
  772. mod_timer(&ifsta->timer, jiffies +
  773. IEEE80211_MONITORING_INTERVAL);
  774. }
  775. }
  776. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  777. u8 *ssid, size_t ssid_len)
  778. {
  779. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  780. struct ieee80211_supported_band *sband;
  781. struct sk_buff *skb;
  782. struct ieee80211_mgmt *mgmt;
  783. u8 *pos, *supp_rates, *esupp_rates = NULL;
  784. int i;
  785. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  786. if (!skb) {
  787. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  788. "request\n", dev->name);
  789. return;
  790. }
  791. skb_reserve(skb, local->hw.extra_tx_headroom);
  792. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  793. memset(mgmt, 0, 24);
  794. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  795. IEEE80211_STYPE_PROBE_REQ);
  796. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  797. if (dst) {
  798. memcpy(mgmt->da, dst, ETH_ALEN);
  799. memcpy(mgmt->bssid, dst, ETH_ALEN);
  800. } else {
  801. memset(mgmt->da, 0xff, ETH_ALEN);
  802. memset(mgmt->bssid, 0xff, ETH_ALEN);
  803. }
  804. pos = skb_put(skb, 2 + ssid_len);
  805. *pos++ = WLAN_EID_SSID;
  806. *pos++ = ssid_len;
  807. memcpy(pos, ssid, ssid_len);
  808. supp_rates = skb_put(skb, 2);
  809. supp_rates[0] = WLAN_EID_SUPP_RATES;
  810. supp_rates[1] = 0;
  811. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  812. for (i = 0; i < sband->n_bitrates; i++) {
  813. struct ieee80211_rate *rate = &sband->bitrates[i];
  814. if (esupp_rates) {
  815. pos = skb_put(skb, 1);
  816. esupp_rates[1]++;
  817. } else if (supp_rates[1] == 8) {
  818. esupp_rates = skb_put(skb, 3);
  819. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  820. esupp_rates[1] = 1;
  821. pos = &esupp_rates[2];
  822. } else {
  823. pos = skb_put(skb, 1);
  824. supp_rates[1]++;
  825. }
  826. *pos = rate->bitrate / 5;
  827. }
  828. ieee80211_sta_tx(dev, skb, 0);
  829. }
  830. static int ieee80211_sta_wep_configured(struct net_device *dev)
  831. {
  832. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  833. if (!sdata || !sdata->default_key ||
  834. sdata->default_key->conf.alg != ALG_WEP)
  835. return 0;
  836. return 1;
  837. }
  838. static void ieee80211_auth_completed(struct net_device *dev,
  839. struct ieee80211_if_sta *ifsta)
  840. {
  841. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  842. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  843. ieee80211_associate(dev, ifsta);
  844. }
  845. static void ieee80211_auth_challenge(struct net_device *dev,
  846. struct ieee80211_if_sta *ifsta,
  847. struct ieee80211_mgmt *mgmt,
  848. size_t len)
  849. {
  850. u8 *pos;
  851. struct ieee802_11_elems elems;
  852. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  853. pos = mgmt->u.auth.variable;
  854. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  855. if (!elems.challenge) {
  856. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  857. "frame\n", dev->name);
  858. return;
  859. }
  860. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  861. elems.challenge_len + 2, 1);
  862. }
  863. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  864. u8 dialog_token, u16 status, u16 policy,
  865. u16 buf_size, u16 timeout)
  866. {
  867. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  868. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  869. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  870. struct sk_buff *skb;
  871. struct ieee80211_mgmt *mgmt;
  872. u16 capab;
  873. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  874. sizeof(mgmt->u.action.u.addba_resp));
  875. if (!skb) {
  876. printk(KERN_DEBUG "%s: failed to allocate buffer "
  877. "for addba resp frame\n", dev->name);
  878. return;
  879. }
  880. skb_reserve(skb, local->hw.extra_tx_headroom);
  881. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  882. memset(mgmt, 0, 24);
  883. memcpy(mgmt->da, da, ETH_ALEN);
  884. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  885. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  886. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  887. else
  888. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  889. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  890. IEEE80211_STYPE_ACTION);
  891. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  892. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  893. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  894. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  895. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  896. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  897. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  898. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  899. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  900. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  901. ieee80211_sta_tx(dev, skb, 0);
  902. return;
  903. }
  904. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  905. u16 tid, u8 dialog_token, u16 start_seq_num,
  906. u16 agg_size, u16 timeout)
  907. {
  908. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  909. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  910. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  911. struct sk_buff *skb;
  912. struct ieee80211_mgmt *mgmt;
  913. u16 capab;
  914. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  915. sizeof(mgmt->u.action.u.addba_req));
  916. if (!skb) {
  917. printk(KERN_ERR "%s: failed to allocate buffer "
  918. "for addba request frame\n", dev->name);
  919. return;
  920. }
  921. skb_reserve(skb, local->hw.extra_tx_headroom);
  922. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  923. memset(mgmt, 0, 24);
  924. memcpy(mgmt->da, da, ETH_ALEN);
  925. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  926. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  927. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  928. else
  929. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  930. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  931. IEEE80211_STYPE_ACTION);
  932. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  933. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  934. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  935. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  936. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  937. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  938. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  939. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  940. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  941. mgmt->u.action.u.addba_req.start_seq_num =
  942. cpu_to_le16(start_seq_num << 4);
  943. ieee80211_sta_tx(dev, skb, 0);
  944. }
  945. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  946. struct ieee80211_mgmt *mgmt,
  947. size_t len)
  948. {
  949. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  950. struct ieee80211_hw *hw = &local->hw;
  951. struct ieee80211_conf *conf = &hw->conf;
  952. struct sta_info *sta;
  953. struct tid_ampdu_rx *tid_agg_rx;
  954. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  955. u8 dialog_token;
  956. int ret = -EOPNOTSUPP;
  957. DECLARE_MAC_BUF(mac);
  958. sta = sta_info_get(local, mgmt->sa);
  959. if (!sta)
  960. return;
  961. /* extract session parameters from addba request frame */
  962. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  963. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  964. start_seq_num =
  965. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  966. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  967. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  968. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  969. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  970. status = WLAN_STATUS_REQUEST_DECLINED;
  971. /* sanity check for incoming parameters:
  972. * check if configuration can support the BA policy
  973. * and if buffer size does not exceeds max value */
  974. if (((ba_policy != 1)
  975. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  976. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  977. status = WLAN_STATUS_INVALID_QOS_PARAM;
  978. #ifdef CONFIG_MAC80211_HT_DEBUG
  979. if (net_ratelimit())
  980. printk(KERN_DEBUG "Block Ack Req with bad params from "
  981. "%s on tid %u. policy %d, buffer size %d\n",
  982. print_mac(mac, mgmt->sa), tid, ba_policy,
  983. buf_size);
  984. #endif /* CONFIG_MAC80211_HT_DEBUG */
  985. goto end_no_lock;
  986. }
  987. /* determine default buffer size */
  988. if (buf_size == 0) {
  989. struct ieee80211_supported_band *sband;
  990. sband = local->hw.wiphy->bands[conf->channel->band];
  991. buf_size = IEEE80211_MIN_AMPDU_BUF;
  992. buf_size = buf_size << sband->ht_info.ampdu_factor;
  993. }
  994. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  995. /* examine state machine */
  996. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  997. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  998. #ifdef CONFIG_MAC80211_HT_DEBUG
  999. if (net_ratelimit())
  1000. printk(KERN_DEBUG "unexpected Block Ack Req from "
  1001. "%s on tid %u\n",
  1002. print_mac(mac, mgmt->sa), tid);
  1003. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1004. goto end;
  1005. }
  1006. /* prepare reordering buffer */
  1007. tid_agg_rx->reorder_buf =
  1008. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1009. if (!tid_agg_rx->reorder_buf) {
  1010. if (net_ratelimit())
  1011. printk(KERN_ERR "can not allocate reordering buffer "
  1012. "to tid %d\n", tid);
  1013. goto end;
  1014. }
  1015. memset(tid_agg_rx->reorder_buf, 0,
  1016. buf_size * sizeof(struct sk_buf *));
  1017. if (local->ops->ampdu_action)
  1018. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1019. sta->addr, tid, &start_seq_num);
  1020. #ifdef CONFIG_MAC80211_HT_DEBUG
  1021. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1022. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1023. if (ret) {
  1024. kfree(tid_agg_rx->reorder_buf);
  1025. goto end;
  1026. }
  1027. /* change state and send addba resp */
  1028. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  1029. tid_agg_rx->dialog_token = dialog_token;
  1030. tid_agg_rx->ssn = start_seq_num;
  1031. tid_agg_rx->head_seq_num = start_seq_num;
  1032. tid_agg_rx->buf_size = buf_size;
  1033. tid_agg_rx->timeout = timeout;
  1034. tid_agg_rx->stored_mpdu_num = 0;
  1035. status = WLAN_STATUS_SUCCESS;
  1036. end:
  1037. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1038. end_no_lock:
  1039. ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token,
  1040. status, 1, buf_size, timeout);
  1041. sta_info_put(sta);
  1042. }
  1043. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1044. struct ieee80211_mgmt *mgmt,
  1045. size_t len)
  1046. {
  1047. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1048. struct ieee80211_hw *hw = &local->hw;
  1049. struct sta_info *sta;
  1050. u16 capab;
  1051. u16 tid;
  1052. u8 *state;
  1053. sta = sta_info_get(local, mgmt->sa);
  1054. if (!sta)
  1055. return;
  1056. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1057. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1058. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1059. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1060. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1061. sta->ampdu_mlme.tid_tx[tid].dialog_token) {
  1062. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1063. #ifdef CONFIG_MAC80211_HT_DEBUG
  1064. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1065. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1066. sta_info_put(sta);
  1067. return;
  1068. }
  1069. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid].addba_resp_timer);
  1070. #ifdef CONFIG_MAC80211_HT_DEBUG
  1071. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1072. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1073. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1074. == WLAN_STATUS_SUCCESS) {
  1075. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1076. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1077. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1078. "%d\n", *state);
  1079. sta_info_put(sta);
  1080. return;
  1081. }
  1082. if (*state & HT_ADDBA_RECEIVED_MSK)
  1083. printk(KERN_DEBUG "double addBA response\n");
  1084. *state |= HT_ADDBA_RECEIVED_MSK;
  1085. sta->ampdu_mlme.tid_tx[tid].addba_req_num = 0;
  1086. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1087. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1088. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1089. }
  1090. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1091. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1092. } else {
  1093. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1094. sta->ampdu_mlme.tid_tx[tid].addba_req_num++;
  1095. /* this will allow the state check in stop_BA_session */
  1096. *state = HT_AGG_STATE_OPERATIONAL;
  1097. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1098. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1099. WLAN_BACK_INITIATOR);
  1100. }
  1101. sta_info_put(sta);
  1102. }
  1103. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1104. u16 initiator, u16 reason_code)
  1105. {
  1106. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1107. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1108. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1109. struct sk_buff *skb;
  1110. struct ieee80211_mgmt *mgmt;
  1111. u16 params;
  1112. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1113. sizeof(mgmt->u.action.u.delba));
  1114. if (!skb) {
  1115. printk(KERN_ERR "%s: failed to allocate buffer "
  1116. "for delba frame\n", dev->name);
  1117. return;
  1118. }
  1119. skb_reserve(skb, local->hw.extra_tx_headroom);
  1120. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1121. memset(mgmt, 0, 24);
  1122. memcpy(mgmt->da, da, ETH_ALEN);
  1123. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1124. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1125. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1126. else
  1127. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1128. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1129. IEEE80211_STYPE_ACTION);
  1130. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1131. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1132. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1133. params = (u16)(initiator << 11); /* bit 11 initiator */
  1134. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1135. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1136. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1137. ieee80211_sta_tx(dev, skb, 0);
  1138. }
  1139. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1140. u16 initiator, u16 reason)
  1141. {
  1142. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1143. struct ieee80211_hw *hw = &local->hw;
  1144. struct sta_info *sta;
  1145. int ret, i;
  1146. sta = sta_info_get(local, ra);
  1147. if (!sta)
  1148. return;
  1149. /* check if TID is in operational state */
  1150. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1151. if (sta->ampdu_mlme.tid_rx[tid].state
  1152. != HT_AGG_STATE_OPERATIONAL) {
  1153. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1154. sta_info_put(sta);
  1155. return;
  1156. }
  1157. sta->ampdu_mlme.tid_rx[tid].state =
  1158. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1159. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1160. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1161. /* stop HW Rx aggregation. ampdu_action existence
  1162. * already verified in session init so we add the BUG_ON */
  1163. BUG_ON(!local->ops->ampdu_action);
  1164. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1165. ra, tid, NULL);
  1166. if (ret)
  1167. printk(KERN_DEBUG "HW problem - can not stop rx "
  1168. "aggergation for tid %d\n", tid);
  1169. /* shutdown timer has not expired */
  1170. if (initiator != WLAN_BACK_TIMER)
  1171. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1172. session_timer);
  1173. /* check if this is a self generated aggregation halt */
  1174. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1175. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1176. /* free the reordering buffer */
  1177. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1178. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1179. /* release the reordered frames */
  1180. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1181. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1182. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1183. }
  1184. }
  1185. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1186. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1187. sta_info_put(sta);
  1188. }
  1189. static void ieee80211_sta_process_delba(struct net_device *dev,
  1190. struct ieee80211_mgmt *mgmt, size_t len)
  1191. {
  1192. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1193. struct sta_info *sta;
  1194. u16 tid, params;
  1195. u16 initiator;
  1196. DECLARE_MAC_BUF(mac);
  1197. sta = sta_info_get(local, mgmt->sa);
  1198. if (!sta)
  1199. return;
  1200. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1201. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1202. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1203. #ifdef CONFIG_MAC80211_HT_DEBUG
  1204. if (net_ratelimit())
  1205. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1206. print_mac(mac, mgmt->sa),
  1207. initiator ? "recipient" : "initiator", tid,
  1208. mgmt->u.action.u.delba.reason_code);
  1209. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1210. if (initiator == WLAN_BACK_INITIATOR)
  1211. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1212. WLAN_BACK_INITIATOR, 0);
  1213. else { /* WLAN_BACK_RECIPIENT */
  1214. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1215. sta->ampdu_mlme.tid_tx[tid].state =
  1216. HT_AGG_STATE_OPERATIONAL;
  1217. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1218. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1219. WLAN_BACK_RECIPIENT);
  1220. }
  1221. sta_info_put(sta);
  1222. }
  1223. /*
  1224. * After sending add Block Ack request we activated a timer until
  1225. * add Block Ack response will arrive from the recipient.
  1226. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1227. */
  1228. void sta_addba_resp_timer_expired(unsigned long data)
  1229. {
  1230. /* not an elegant detour, but there is no choice as the timer passes
  1231. * only one argument, and both sta_info and TID are needed, so init
  1232. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1233. * array gives the sta through container_of */
  1234. u16 tid = *(int *)data;
  1235. struct sta_info *temp_sta = container_of((void *)data,
  1236. struct sta_info, timer_to_tid[tid]);
  1237. struct ieee80211_local *local = temp_sta->local;
  1238. struct ieee80211_hw *hw = &local->hw;
  1239. struct sta_info *sta;
  1240. u8 *state;
  1241. sta = sta_info_get(local, temp_sta->addr);
  1242. if (!sta)
  1243. return;
  1244. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1245. /* check if the TID waits for addBA response */
  1246. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1247. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1248. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1249. *state = HT_AGG_STATE_IDLE;
  1250. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1251. "expecting addBA response there", tid);
  1252. goto timer_expired_exit;
  1253. }
  1254. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1255. /* go through the state check in stop_BA_session */
  1256. *state = HT_AGG_STATE_OPERATIONAL;
  1257. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1258. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1259. WLAN_BACK_INITIATOR);
  1260. timer_expired_exit:
  1261. sta_info_put(sta);
  1262. }
  1263. /*
  1264. * After receiving Block Ack Request (BAR) we activated a
  1265. * timer after each frame arrives from the originator.
  1266. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1267. */
  1268. void sta_rx_agg_session_timer_expired(unsigned long data)
  1269. {
  1270. /* not an elegant detour, but there is no choice as the timer passes
  1271. * only one argument, and verious sta_info are needed here, so init
  1272. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1273. * array gives the sta through container_of */
  1274. u8 *ptid = (u8 *)data;
  1275. u8 *timer_to_id = ptid - *ptid;
  1276. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1277. timer_to_tid[0]);
  1278. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1279. ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid,
  1280. WLAN_BACK_TIMER,
  1281. WLAN_REASON_QSTA_TIMEOUT);
  1282. }
  1283. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1284. struct ieee80211_if_sta *ifsta,
  1285. struct ieee80211_mgmt *mgmt,
  1286. size_t len)
  1287. {
  1288. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1289. u16 auth_alg, auth_transaction, status_code;
  1290. DECLARE_MAC_BUF(mac);
  1291. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1292. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1293. printk(KERN_DEBUG "%s: authentication frame received from "
  1294. "%s, but not in authenticate state - ignored\n",
  1295. dev->name, print_mac(mac, mgmt->sa));
  1296. return;
  1297. }
  1298. if (len < 24 + 6) {
  1299. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1300. "received from %s - ignored\n",
  1301. dev->name, len, print_mac(mac, mgmt->sa));
  1302. return;
  1303. }
  1304. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1305. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1306. printk(KERN_DEBUG "%s: authentication frame received from "
  1307. "unknown AP (SA=%s BSSID=%s) - "
  1308. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1309. print_mac(mac, mgmt->bssid));
  1310. return;
  1311. }
  1312. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1313. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1314. printk(KERN_DEBUG "%s: authentication frame received from "
  1315. "unknown BSSID (SA=%s BSSID=%s) - "
  1316. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1317. print_mac(mac, mgmt->bssid));
  1318. return;
  1319. }
  1320. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1321. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1322. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1323. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1324. "transaction=%d status=%d)\n",
  1325. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1326. auth_transaction, status_code);
  1327. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1328. /* IEEE 802.11 standard does not require authentication in IBSS
  1329. * networks and most implementations do not seem to use it.
  1330. * However, try to reply to authentication attempts if someone
  1331. * has actually implemented this.
  1332. * TODO: Could implement shared key authentication. */
  1333. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1334. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1335. "frame (alg=%d transaction=%d)\n",
  1336. dev->name, auth_alg, auth_transaction);
  1337. return;
  1338. }
  1339. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1340. }
  1341. if (auth_alg != ifsta->auth_alg ||
  1342. auth_transaction != ifsta->auth_transaction) {
  1343. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1344. "(alg=%d transaction=%d)\n",
  1345. dev->name, auth_alg, auth_transaction);
  1346. return;
  1347. }
  1348. if (status_code != WLAN_STATUS_SUCCESS) {
  1349. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1350. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1351. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1352. u8 algs[3];
  1353. const int num_algs = ARRAY_SIZE(algs);
  1354. int i, pos;
  1355. algs[0] = algs[1] = algs[2] = 0xff;
  1356. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1357. algs[0] = WLAN_AUTH_OPEN;
  1358. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1359. algs[1] = WLAN_AUTH_SHARED_KEY;
  1360. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1361. algs[2] = WLAN_AUTH_LEAP;
  1362. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1363. pos = 0;
  1364. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1365. pos = 1;
  1366. else
  1367. pos = 2;
  1368. for (i = 0; i < num_algs; i++) {
  1369. pos++;
  1370. if (pos >= num_algs)
  1371. pos = 0;
  1372. if (algs[pos] == ifsta->auth_alg ||
  1373. algs[pos] == 0xff)
  1374. continue;
  1375. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1376. !ieee80211_sta_wep_configured(dev))
  1377. continue;
  1378. ifsta->auth_alg = algs[pos];
  1379. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1380. "next try\n",
  1381. dev->name, ifsta->auth_alg);
  1382. break;
  1383. }
  1384. }
  1385. return;
  1386. }
  1387. switch (ifsta->auth_alg) {
  1388. case WLAN_AUTH_OPEN:
  1389. case WLAN_AUTH_LEAP:
  1390. ieee80211_auth_completed(dev, ifsta);
  1391. break;
  1392. case WLAN_AUTH_SHARED_KEY:
  1393. if (ifsta->auth_transaction == 4)
  1394. ieee80211_auth_completed(dev, ifsta);
  1395. else
  1396. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1397. break;
  1398. }
  1399. }
  1400. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1401. struct ieee80211_if_sta *ifsta,
  1402. struct ieee80211_mgmt *mgmt,
  1403. size_t len)
  1404. {
  1405. u16 reason_code;
  1406. DECLARE_MAC_BUF(mac);
  1407. if (len < 24 + 2) {
  1408. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1409. "received from %s - ignored\n",
  1410. dev->name, len, print_mac(mac, mgmt->sa));
  1411. return;
  1412. }
  1413. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1414. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1415. "unknown AP (SA=%s BSSID=%s) - "
  1416. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1417. print_mac(mac, mgmt->bssid));
  1418. return;
  1419. }
  1420. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1421. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1422. " (reason=%d)\n",
  1423. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1424. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1425. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1426. }
  1427. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1428. ifsta->state == IEEE80211_ASSOCIATE ||
  1429. ifsta->state == IEEE80211_ASSOCIATED) {
  1430. ifsta->state = IEEE80211_AUTHENTICATE;
  1431. mod_timer(&ifsta->timer, jiffies +
  1432. IEEE80211_RETRY_AUTH_INTERVAL);
  1433. }
  1434. ieee80211_set_disassoc(dev, ifsta, 1);
  1435. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1436. }
  1437. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1438. struct ieee80211_if_sta *ifsta,
  1439. struct ieee80211_mgmt *mgmt,
  1440. size_t len)
  1441. {
  1442. u16 reason_code;
  1443. DECLARE_MAC_BUF(mac);
  1444. if (len < 24 + 2) {
  1445. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1446. "received from %s - ignored\n",
  1447. dev->name, len, print_mac(mac, mgmt->sa));
  1448. return;
  1449. }
  1450. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1451. printk(KERN_DEBUG "%s: disassociation frame received from "
  1452. "unknown AP (SA=%s BSSID=%s) - "
  1453. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1454. print_mac(mac, mgmt->bssid));
  1455. return;
  1456. }
  1457. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1458. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1459. " (reason=%d)\n",
  1460. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1461. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1462. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1463. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1464. ifsta->state = IEEE80211_ASSOCIATE;
  1465. mod_timer(&ifsta->timer, jiffies +
  1466. IEEE80211_RETRY_AUTH_INTERVAL);
  1467. }
  1468. ieee80211_set_disassoc(dev, ifsta, 0);
  1469. }
  1470. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1471. struct ieee80211_if_sta *ifsta,
  1472. struct ieee80211_mgmt *mgmt,
  1473. size_t len,
  1474. int reassoc)
  1475. {
  1476. struct ieee80211_local *local = sdata->local;
  1477. struct net_device *dev = sdata->dev;
  1478. struct ieee80211_supported_band *sband;
  1479. struct sta_info *sta;
  1480. u64 rates, basic_rates;
  1481. u16 capab_info, status_code, aid;
  1482. struct ieee802_11_elems elems;
  1483. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1484. u8 *pos;
  1485. int i, j;
  1486. DECLARE_MAC_BUF(mac);
  1487. bool have_higher_than_11mbit = false;
  1488. /* AssocResp and ReassocResp have identical structure, so process both
  1489. * of them in this function. */
  1490. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1491. printk(KERN_DEBUG "%s: association frame received from "
  1492. "%s, but not in associate state - ignored\n",
  1493. dev->name, print_mac(mac, mgmt->sa));
  1494. return;
  1495. }
  1496. if (len < 24 + 6) {
  1497. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1498. "received from %s - ignored\n",
  1499. dev->name, len, print_mac(mac, mgmt->sa));
  1500. return;
  1501. }
  1502. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1503. printk(KERN_DEBUG "%s: association frame received from "
  1504. "unknown AP (SA=%s BSSID=%s) - "
  1505. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1506. print_mac(mac, mgmt->bssid));
  1507. return;
  1508. }
  1509. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1510. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1511. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1512. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1513. "status=%d aid=%d)\n",
  1514. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1515. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1516. if (status_code != WLAN_STATUS_SUCCESS) {
  1517. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1518. dev->name, status_code);
  1519. /* if this was a reassociation, ensure we try a "full"
  1520. * association next time. This works around some broken APs
  1521. * which do not correctly reject reassociation requests. */
  1522. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1523. return;
  1524. }
  1525. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1526. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1527. "set\n", dev->name, aid);
  1528. aid &= ~(BIT(15) | BIT(14));
  1529. pos = mgmt->u.assoc_resp.variable;
  1530. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1531. if (!elems.supp_rates) {
  1532. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1533. dev->name);
  1534. return;
  1535. }
  1536. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1537. ifsta->aid = aid;
  1538. ifsta->ap_capab = capab_info;
  1539. kfree(ifsta->assocresp_ies);
  1540. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1541. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1542. if (ifsta->assocresp_ies)
  1543. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1544. /* Add STA entry for the AP */
  1545. sta = sta_info_get(local, ifsta->bssid);
  1546. if (!sta) {
  1547. struct ieee80211_sta_bss *bss;
  1548. sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
  1549. if (!sta) {
  1550. printk(KERN_DEBUG "%s: failed to add STA entry for the"
  1551. " AP\n", dev->name);
  1552. return;
  1553. }
  1554. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1555. local->hw.conf.channel->center_freq,
  1556. ifsta->ssid, ifsta->ssid_len);
  1557. if (bss) {
  1558. sta->last_rssi = bss->rssi;
  1559. sta->last_signal = bss->signal;
  1560. sta->last_noise = bss->noise;
  1561. ieee80211_rx_bss_put(dev, bss);
  1562. }
  1563. }
  1564. sta->dev = dev;
  1565. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1566. WLAN_STA_AUTHORIZED;
  1567. rates = 0;
  1568. basic_rates = 0;
  1569. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1570. for (i = 0; i < elems.supp_rates_len; i++) {
  1571. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1572. if (rate > 110)
  1573. have_higher_than_11mbit = true;
  1574. for (j = 0; j < sband->n_bitrates; j++) {
  1575. if (sband->bitrates[j].bitrate == rate)
  1576. rates |= BIT(j);
  1577. if (elems.supp_rates[i] & 0x80)
  1578. basic_rates |= BIT(j);
  1579. }
  1580. }
  1581. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1582. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1583. if (rate > 110)
  1584. have_higher_than_11mbit = true;
  1585. for (j = 0; j < sband->n_bitrates; j++) {
  1586. if (sband->bitrates[j].bitrate == rate)
  1587. rates |= BIT(j);
  1588. if (elems.ext_supp_rates[i] & 0x80)
  1589. basic_rates |= BIT(j);
  1590. }
  1591. }
  1592. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1593. sdata->basic_rates = basic_rates;
  1594. /* cf. IEEE 802.11 9.2.12 */
  1595. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1596. have_higher_than_11mbit)
  1597. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1598. else
  1599. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1600. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1601. local->ops->conf_ht) {
  1602. struct ieee80211_ht_bss_info bss_info;
  1603. ieee80211_ht_cap_ie_to_ht_info(
  1604. (struct ieee80211_ht_cap *)
  1605. elems.ht_cap_elem, &sta->ht_info);
  1606. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1607. (struct ieee80211_ht_addt_info *)
  1608. elems.ht_info_elem, &bss_info);
  1609. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1610. }
  1611. rate_control_rate_init(sta, local);
  1612. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1613. sta->flags |= WLAN_STA_WME;
  1614. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1615. elems.wmm_param_len);
  1616. }
  1617. /* set AID, ieee80211_set_associated() will tell the driver */
  1618. bss_conf->aid = aid;
  1619. ieee80211_set_associated(dev, ifsta, 1);
  1620. sta_info_put(sta);
  1621. ieee80211_associated(dev, ifsta);
  1622. }
  1623. /* Caller must hold local->sta_bss_lock */
  1624. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1625. struct ieee80211_sta_bss *bss)
  1626. {
  1627. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1628. bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1629. local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
  1630. }
  1631. /* Caller must hold local->sta_bss_lock */
  1632. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1633. struct ieee80211_sta_bss *bss)
  1634. {
  1635. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1636. struct ieee80211_sta_bss *b, *prev = NULL;
  1637. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1638. while (b) {
  1639. if (b == bss) {
  1640. if (!prev)
  1641. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1642. bss->hnext;
  1643. else
  1644. prev->hnext = bss->hnext;
  1645. break;
  1646. }
  1647. prev = b;
  1648. b = b->hnext;
  1649. }
  1650. }
  1651. static struct ieee80211_sta_bss *
  1652. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1653. u8 *ssid, u8 ssid_len)
  1654. {
  1655. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1656. struct ieee80211_sta_bss *bss;
  1657. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1658. if (!bss)
  1659. return NULL;
  1660. atomic_inc(&bss->users);
  1661. atomic_inc(&bss->users);
  1662. memcpy(bss->bssid, bssid, ETH_ALEN);
  1663. bss->freq = freq;
  1664. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1665. memcpy(bss->ssid, ssid, ssid_len);
  1666. bss->ssid_len = ssid_len;
  1667. }
  1668. spin_lock_bh(&local->sta_bss_lock);
  1669. /* TODO: order by RSSI? */
  1670. list_add_tail(&bss->list, &local->sta_bss_list);
  1671. __ieee80211_rx_bss_hash_add(dev, bss);
  1672. spin_unlock_bh(&local->sta_bss_lock);
  1673. return bss;
  1674. }
  1675. static struct ieee80211_sta_bss *
  1676. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1677. u8 *ssid, u8 ssid_len)
  1678. {
  1679. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1680. struct ieee80211_sta_bss *bss;
  1681. spin_lock_bh(&local->sta_bss_lock);
  1682. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1683. while (bss) {
  1684. if (!memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1685. bss->freq == freq &&
  1686. bss->ssid_len == ssid_len &&
  1687. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1688. atomic_inc(&bss->users);
  1689. break;
  1690. }
  1691. bss = bss->hnext;
  1692. }
  1693. spin_unlock_bh(&local->sta_bss_lock);
  1694. return bss;
  1695. }
  1696. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1697. {
  1698. kfree(bss->wpa_ie);
  1699. kfree(bss->rsn_ie);
  1700. kfree(bss->wmm_ie);
  1701. kfree(bss->ht_ie);
  1702. kfree(bss);
  1703. }
  1704. static void ieee80211_rx_bss_put(struct net_device *dev,
  1705. struct ieee80211_sta_bss *bss)
  1706. {
  1707. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1708. if (!atomic_dec_and_test(&bss->users))
  1709. return;
  1710. spin_lock_bh(&local->sta_bss_lock);
  1711. __ieee80211_rx_bss_hash_del(dev, bss);
  1712. list_del(&bss->list);
  1713. spin_unlock_bh(&local->sta_bss_lock);
  1714. ieee80211_rx_bss_free(bss);
  1715. }
  1716. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1717. {
  1718. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1719. spin_lock_init(&local->sta_bss_lock);
  1720. INIT_LIST_HEAD(&local->sta_bss_list);
  1721. }
  1722. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1723. {
  1724. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1725. struct ieee80211_sta_bss *bss, *tmp;
  1726. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1727. ieee80211_rx_bss_put(dev, bss);
  1728. }
  1729. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1730. struct ieee80211_if_sta *ifsta,
  1731. struct ieee80211_sta_bss *bss)
  1732. {
  1733. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1734. int res, rates, i, j;
  1735. struct sk_buff *skb;
  1736. struct ieee80211_mgmt *mgmt;
  1737. struct ieee80211_tx_control control;
  1738. struct rate_selection ratesel;
  1739. u8 *pos;
  1740. struct ieee80211_sub_if_data *sdata;
  1741. struct ieee80211_supported_band *sband;
  1742. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1743. /* Remove possible STA entries from other IBSS networks. */
  1744. sta_info_flush(local, NULL);
  1745. if (local->ops->reset_tsf) {
  1746. /* Reset own TSF to allow time synchronization work. */
  1747. local->ops->reset_tsf(local_to_hw(local));
  1748. }
  1749. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1750. res = ieee80211_if_config(dev);
  1751. if (res)
  1752. return res;
  1753. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1754. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1755. sdata->drop_unencrypted = bss->capability &
  1756. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1757. res = ieee80211_set_freq(local, bss->freq);
  1758. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1759. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1760. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1761. return -1;
  1762. }
  1763. /* Set beacon template */
  1764. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1765. do {
  1766. if (!skb)
  1767. break;
  1768. skb_reserve(skb, local->hw.extra_tx_headroom);
  1769. mgmt = (struct ieee80211_mgmt *)
  1770. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1771. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1772. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1773. IEEE80211_STYPE_BEACON);
  1774. memset(mgmt->da, 0xff, ETH_ALEN);
  1775. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1776. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1777. mgmt->u.beacon.beacon_int =
  1778. cpu_to_le16(local->hw.conf.beacon_int);
  1779. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1780. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1781. *pos++ = WLAN_EID_SSID;
  1782. *pos++ = ifsta->ssid_len;
  1783. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1784. rates = bss->supp_rates_len;
  1785. if (rates > 8)
  1786. rates = 8;
  1787. pos = skb_put(skb, 2 + rates);
  1788. *pos++ = WLAN_EID_SUPP_RATES;
  1789. *pos++ = rates;
  1790. memcpy(pos, bss->supp_rates, rates);
  1791. if (bss->band == IEEE80211_BAND_2GHZ) {
  1792. pos = skb_put(skb, 2 + 1);
  1793. *pos++ = WLAN_EID_DS_PARAMS;
  1794. *pos++ = 1;
  1795. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1796. }
  1797. pos = skb_put(skb, 2 + 2);
  1798. *pos++ = WLAN_EID_IBSS_PARAMS;
  1799. *pos++ = 2;
  1800. /* FIX: set ATIM window based on scan results */
  1801. *pos++ = 0;
  1802. *pos++ = 0;
  1803. if (bss->supp_rates_len > 8) {
  1804. rates = bss->supp_rates_len - 8;
  1805. pos = skb_put(skb, 2 + rates);
  1806. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1807. *pos++ = rates;
  1808. memcpy(pos, &bss->supp_rates[8], rates);
  1809. }
  1810. memset(&control, 0, sizeof(control));
  1811. rate_control_get_rate(dev, sband, skb, &ratesel);
  1812. if (!ratesel.rate) {
  1813. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1814. "for IBSS beacon\n", dev->name);
  1815. break;
  1816. }
  1817. control.vif = &sdata->vif;
  1818. control.tx_rate = ratesel.rate;
  1819. if (sdata->bss_conf.use_short_preamble &&
  1820. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  1821. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  1822. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  1823. control.flags |= IEEE80211_TXCTL_NO_ACK;
  1824. control.retry_limit = 1;
  1825. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  1826. if (ifsta->probe_resp) {
  1827. mgmt = (struct ieee80211_mgmt *)
  1828. ifsta->probe_resp->data;
  1829. mgmt->frame_control =
  1830. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1831. IEEE80211_STYPE_PROBE_RESP);
  1832. } else {
  1833. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  1834. "template for IBSS\n", dev->name);
  1835. }
  1836. if (local->ops->beacon_update &&
  1837. local->ops->beacon_update(local_to_hw(local),
  1838. skb, &control) == 0) {
  1839. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  1840. "template\n", dev->name);
  1841. skb = NULL;
  1842. }
  1843. rates = 0;
  1844. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1845. for (i = 0; i < bss->supp_rates_len; i++) {
  1846. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  1847. for (j = 0; j < sband->n_bitrates; j++)
  1848. if (sband->bitrates[j].bitrate == bitrate)
  1849. rates |= BIT(j);
  1850. }
  1851. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  1852. } while (0);
  1853. if (skb) {
  1854. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  1855. "template\n", dev->name);
  1856. dev_kfree_skb(skb);
  1857. }
  1858. ifsta->state = IEEE80211_IBSS_JOINED;
  1859. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  1860. ieee80211_rx_bss_put(dev, bss);
  1861. return res;
  1862. }
  1863. static void ieee80211_rx_bss_info(struct net_device *dev,
  1864. struct ieee80211_mgmt *mgmt,
  1865. size_t len,
  1866. struct ieee80211_rx_status *rx_status,
  1867. int beacon)
  1868. {
  1869. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1870. struct ieee802_11_elems elems;
  1871. size_t baselen;
  1872. int freq, clen;
  1873. struct ieee80211_sta_bss *bss;
  1874. struct sta_info *sta;
  1875. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1876. u64 beacon_timestamp, rx_timestamp;
  1877. DECLARE_MAC_BUF(mac);
  1878. DECLARE_MAC_BUF(mac2);
  1879. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  1880. return; /* ignore ProbeResp to foreign address */
  1881. #if 0
  1882. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  1883. dev->name, beacon ? "Beacon" : "Probe Response",
  1884. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  1885. #endif
  1886. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1887. if (baselen > len)
  1888. return;
  1889. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1890. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1891. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  1892. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  1893. (sta = sta_info_get(local, mgmt->sa))) {
  1894. struct ieee80211_supported_band *sband;
  1895. struct ieee80211_rate *bitrates;
  1896. size_t num_rates;
  1897. u64 supp_rates, prev_rates;
  1898. int i, j;
  1899. sband = local->hw.wiphy->bands[rx_status->band];
  1900. if (!sband) {
  1901. WARN_ON(1);
  1902. sband = local->hw.wiphy->bands[
  1903. local->hw.conf.channel->band];
  1904. }
  1905. bitrates = sband->bitrates;
  1906. num_rates = sband->n_bitrates;
  1907. supp_rates = 0;
  1908. for (i = 0; i < elems.supp_rates_len +
  1909. elems.ext_supp_rates_len; i++) {
  1910. u8 rate = 0;
  1911. int own_rate;
  1912. if (i < elems.supp_rates_len)
  1913. rate = elems.supp_rates[i];
  1914. else if (elems.ext_supp_rates)
  1915. rate = elems.ext_supp_rates
  1916. [i - elems.supp_rates_len];
  1917. own_rate = 5 * (rate & 0x7f);
  1918. for (j = 0; j < num_rates; j++)
  1919. if (bitrates[j].bitrate == own_rate)
  1920. supp_rates |= BIT(j);
  1921. }
  1922. prev_rates = sta->supp_rates[rx_status->band];
  1923. sta->supp_rates[rx_status->band] &= supp_rates;
  1924. if (sta->supp_rates[rx_status->band] == 0) {
  1925. /* No matching rates - this should not really happen.
  1926. * Make sure that at least one rate is marked
  1927. * supported to avoid issues with TX rate ctrl. */
  1928. sta->supp_rates[rx_status->band] =
  1929. sdata->u.sta.supp_rates_bits[rx_status->band];
  1930. }
  1931. if (sta->supp_rates[rx_status->band] != prev_rates) {
  1932. printk(KERN_DEBUG "%s: updated supp_rates set for "
  1933. "%s based on beacon info (0x%llx & 0x%llx -> "
  1934. "0x%llx)\n",
  1935. dev->name, print_mac(mac, sta->addr),
  1936. (unsigned long long) prev_rates,
  1937. (unsigned long long) supp_rates,
  1938. (unsigned long long) sta->supp_rates[rx_status->band]);
  1939. }
  1940. sta_info_put(sta);
  1941. }
  1942. if (!elems.ssid)
  1943. return;
  1944. if (elems.ds_params && elems.ds_params_len == 1)
  1945. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  1946. else
  1947. freq = rx_status->freq;
  1948. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  1949. elems.ssid, elems.ssid_len);
  1950. if (!bss) {
  1951. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  1952. elems.ssid, elems.ssid_len);
  1953. if (!bss)
  1954. return;
  1955. } else {
  1956. #if 0
  1957. /* TODO: order by RSSI? */
  1958. spin_lock_bh(&local->sta_bss_lock);
  1959. list_move_tail(&bss->list, &local->sta_bss_list);
  1960. spin_unlock_bh(&local->sta_bss_lock);
  1961. #endif
  1962. }
  1963. bss->band = rx_status->band;
  1964. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1965. bss->probe_resp && beacon) {
  1966. /* STA mode:
  1967. * Do not allow beacon to override data from Probe Response. */
  1968. ieee80211_rx_bss_put(dev, bss);
  1969. return;
  1970. }
  1971. /* save the ERP value so that it is available at association time */
  1972. if (elems.erp_info && elems.erp_info_len >= 1) {
  1973. bss->erp_value = elems.erp_info[0];
  1974. bss->has_erp_value = 1;
  1975. }
  1976. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  1977. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  1978. bss->supp_rates_len = 0;
  1979. if (elems.supp_rates) {
  1980. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1981. if (clen > elems.supp_rates_len)
  1982. clen = elems.supp_rates_len;
  1983. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  1984. clen);
  1985. bss->supp_rates_len += clen;
  1986. }
  1987. if (elems.ext_supp_rates) {
  1988. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1989. if (clen > elems.ext_supp_rates_len)
  1990. clen = elems.ext_supp_rates_len;
  1991. memcpy(&bss->supp_rates[bss->supp_rates_len],
  1992. elems.ext_supp_rates, clen);
  1993. bss->supp_rates_len += clen;
  1994. }
  1995. if (elems.wpa &&
  1996. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  1997. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  1998. kfree(bss->wpa_ie);
  1999. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2000. if (bss->wpa_ie) {
  2001. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2002. bss->wpa_ie_len = elems.wpa_len + 2;
  2003. } else
  2004. bss->wpa_ie_len = 0;
  2005. } else if (!elems.wpa && bss->wpa_ie) {
  2006. kfree(bss->wpa_ie);
  2007. bss->wpa_ie = NULL;
  2008. bss->wpa_ie_len = 0;
  2009. }
  2010. if (elems.rsn &&
  2011. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2012. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2013. kfree(bss->rsn_ie);
  2014. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2015. if (bss->rsn_ie) {
  2016. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2017. bss->rsn_ie_len = elems.rsn_len + 2;
  2018. } else
  2019. bss->rsn_ie_len = 0;
  2020. } else if (!elems.rsn && bss->rsn_ie) {
  2021. kfree(bss->rsn_ie);
  2022. bss->rsn_ie = NULL;
  2023. bss->rsn_ie_len = 0;
  2024. }
  2025. if (elems.wmm_param &&
  2026. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2027. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2028. kfree(bss->wmm_ie);
  2029. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2030. if (bss->wmm_ie) {
  2031. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2032. elems.wmm_param_len + 2);
  2033. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2034. } else
  2035. bss->wmm_ie_len = 0;
  2036. } else if (!elems.wmm_param && bss->wmm_ie) {
  2037. kfree(bss->wmm_ie);
  2038. bss->wmm_ie = NULL;
  2039. bss->wmm_ie_len = 0;
  2040. }
  2041. if (elems.ht_cap_elem &&
  2042. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2043. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2044. kfree(bss->ht_ie);
  2045. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2046. if (bss->ht_ie) {
  2047. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2048. elems.ht_cap_elem_len + 2);
  2049. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2050. } else
  2051. bss->ht_ie_len = 0;
  2052. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2053. kfree(bss->ht_ie);
  2054. bss->ht_ie = NULL;
  2055. bss->ht_ie_len = 0;
  2056. }
  2057. bss->timestamp = beacon_timestamp;
  2058. bss->last_update = jiffies;
  2059. bss->rssi = rx_status->ssi;
  2060. bss->signal = rx_status->signal;
  2061. bss->noise = rx_status->noise;
  2062. if (!beacon)
  2063. bss->probe_resp++;
  2064. /* check if we need to merge IBSS */
  2065. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2066. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2067. mgmt->u.beacon.capab_info & WLAN_CAPABILITY_IBSS &&
  2068. bss->freq == local->oper_channel->center_freq &&
  2069. elems.ssid_len == sdata->u.sta.ssid_len &&
  2070. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2071. if (rx_status->flag & RX_FLAG_TSFT) {
  2072. /* in order for correct IBSS merging we need mactime
  2073. *
  2074. * since mactime is defined as the time the first data
  2075. * symbol of the frame hits the PHY, and the timestamp
  2076. * of the beacon is defined as "the time that the data
  2077. * symbol containing the first bit of the timestamp is
  2078. * transmitted to the PHY plus the transmitting STA’s
  2079. * delays through its local PHY from the MAC-PHY
  2080. * interface to its interface with the WM"
  2081. * (802.11 11.1.2) - equals the time this bit arrives at
  2082. * the receiver - we have to take into account the
  2083. * offset between the two.
  2084. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2085. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2086. */
  2087. int rate = local->hw.wiphy->bands[rx_status->band]->
  2088. bitrates[rx_status->rate_idx].bitrate;
  2089. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2090. } else if (local && local->ops && local->ops->get_tsf)
  2091. /* second best option: get current TSF */
  2092. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2093. else
  2094. /* can't merge without knowing the TSF */
  2095. rx_timestamp = -1LLU;
  2096. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2097. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2098. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2099. print_mac(mac, mgmt->sa),
  2100. print_mac(mac2, mgmt->bssid),
  2101. (unsigned long long)rx_timestamp,
  2102. (unsigned long long)beacon_timestamp,
  2103. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2104. jiffies);
  2105. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2106. if (beacon_timestamp > rx_timestamp) {
  2107. if (CONFIG_MAC80211_IBSS_DEBUG || net_ratelimit())
  2108. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2109. "local TSF - IBSS merge with BSSID %s\n",
  2110. dev->name, print_mac(mac, mgmt->bssid));
  2111. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2112. ieee80211_ibss_add_sta(dev, NULL,
  2113. mgmt->bssid, mgmt->sa);
  2114. }
  2115. }
  2116. ieee80211_rx_bss_put(dev, bss);
  2117. }
  2118. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2119. struct ieee80211_mgmt *mgmt,
  2120. size_t len,
  2121. struct ieee80211_rx_status *rx_status)
  2122. {
  2123. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2124. }
  2125. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2126. struct ieee80211_mgmt *mgmt,
  2127. size_t len,
  2128. struct ieee80211_rx_status *rx_status)
  2129. {
  2130. struct ieee80211_sub_if_data *sdata;
  2131. struct ieee80211_if_sta *ifsta;
  2132. size_t baselen;
  2133. struct ieee802_11_elems elems;
  2134. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2135. struct ieee80211_conf *conf = &local->hw.conf;
  2136. u32 changed = 0;
  2137. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2138. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2139. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2140. return;
  2141. ifsta = &sdata->u.sta;
  2142. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2143. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2144. return;
  2145. /* Process beacon from the current BSS */
  2146. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2147. if (baselen > len)
  2148. return;
  2149. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2150. if (elems.erp_info && elems.erp_info_len >= 1)
  2151. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2152. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2153. elems.wmm_param && local->ops->conf_ht &&
  2154. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2155. struct ieee80211_ht_bss_info bss_info;
  2156. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2157. (struct ieee80211_ht_addt_info *)
  2158. elems.ht_info_elem, &bss_info);
  2159. /* check if AP changed bss inforamation */
  2160. if ((conf->ht_bss_conf.primary_channel !=
  2161. bss_info.primary_channel) ||
  2162. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2163. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2164. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2165. &bss_info);
  2166. }
  2167. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2168. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2169. elems.wmm_param_len);
  2170. }
  2171. ieee80211_bss_info_change_notify(sdata, changed);
  2172. }
  2173. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2174. struct ieee80211_if_sta *ifsta,
  2175. struct ieee80211_mgmt *mgmt,
  2176. size_t len,
  2177. struct ieee80211_rx_status *rx_status)
  2178. {
  2179. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2180. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2181. int tx_last_beacon;
  2182. struct sk_buff *skb;
  2183. struct ieee80211_mgmt *resp;
  2184. u8 *pos, *end;
  2185. DECLARE_MAC_BUF(mac);
  2186. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2187. DECLARE_MAC_BUF(mac2);
  2188. DECLARE_MAC_BUF(mac3);
  2189. #endif
  2190. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2191. ifsta->state != IEEE80211_IBSS_JOINED ||
  2192. len < 24 + 2 || !ifsta->probe_resp)
  2193. return;
  2194. if (local->ops->tx_last_beacon)
  2195. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2196. else
  2197. tx_last_beacon = 1;
  2198. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2199. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2200. "%s (tx_last_beacon=%d)\n",
  2201. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2202. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2203. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2204. if (!tx_last_beacon)
  2205. return;
  2206. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2207. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2208. return;
  2209. end = ((u8 *) mgmt) + len;
  2210. pos = mgmt->u.probe_req.variable;
  2211. if (pos[0] != WLAN_EID_SSID ||
  2212. pos + 2 + pos[1] > end) {
  2213. if (net_ratelimit()) {
  2214. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2215. "from %s\n",
  2216. dev->name, print_mac(mac, mgmt->sa));
  2217. }
  2218. return;
  2219. }
  2220. if (pos[1] != 0 &&
  2221. (pos[1] != ifsta->ssid_len ||
  2222. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2223. /* Ignore ProbeReq for foreign SSID */
  2224. return;
  2225. }
  2226. /* Reply with ProbeResp */
  2227. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2228. if (!skb)
  2229. return;
  2230. resp = (struct ieee80211_mgmt *) skb->data;
  2231. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2232. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2233. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2234. dev->name, print_mac(mac, resp->da));
  2235. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2236. ieee80211_sta_tx(dev, skb, 0);
  2237. }
  2238. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2239. struct ieee80211_if_sta *ifsta,
  2240. struct ieee80211_mgmt *mgmt,
  2241. size_t len)
  2242. {
  2243. if (len < IEEE80211_MIN_ACTION_SIZE)
  2244. return;
  2245. switch (mgmt->u.action.category) {
  2246. case WLAN_CATEGORY_BACK:
  2247. switch (mgmt->u.action.u.addba_req.action_code) {
  2248. case WLAN_ACTION_ADDBA_REQ:
  2249. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2250. sizeof(mgmt->u.action.u.addba_req)))
  2251. break;
  2252. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2253. break;
  2254. case WLAN_ACTION_ADDBA_RESP:
  2255. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2256. sizeof(mgmt->u.action.u.addba_resp)))
  2257. break;
  2258. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2259. break;
  2260. case WLAN_ACTION_DELBA:
  2261. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2262. sizeof(mgmt->u.action.u.delba)))
  2263. break;
  2264. ieee80211_sta_process_delba(dev, mgmt, len);
  2265. break;
  2266. default:
  2267. if (net_ratelimit())
  2268. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2269. dev->name);
  2270. break;
  2271. }
  2272. break;
  2273. default:
  2274. break;
  2275. }
  2276. }
  2277. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2278. struct ieee80211_rx_status *rx_status)
  2279. {
  2280. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2281. struct ieee80211_sub_if_data *sdata;
  2282. struct ieee80211_if_sta *ifsta;
  2283. struct ieee80211_mgmt *mgmt;
  2284. u16 fc;
  2285. if (skb->len < 24)
  2286. goto fail;
  2287. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2288. ifsta = &sdata->u.sta;
  2289. mgmt = (struct ieee80211_mgmt *) skb->data;
  2290. fc = le16_to_cpu(mgmt->frame_control);
  2291. switch (fc & IEEE80211_FCTL_STYPE) {
  2292. case IEEE80211_STYPE_PROBE_REQ:
  2293. case IEEE80211_STYPE_PROBE_RESP:
  2294. case IEEE80211_STYPE_BEACON:
  2295. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2296. case IEEE80211_STYPE_AUTH:
  2297. case IEEE80211_STYPE_ASSOC_RESP:
  2298. case IEEE80211_STYPE_REASSOC_RESP:
  2299. case IEEE80211_STYPE_DEAUTH:
  2300. case IEEE80211_STYPE_DISASSOC:
  2301. case IEEE80211_STYPE_ACTION:
  2302. skb_queue_tail(&ifsta->skb_queue, skb);
  2303. queue_work(local->hw.workqueue, &ifsta->work);
  2304. return;
  2305. default:
  2306. printk(KERN_DEBUG "%s: received unknown management frame - "
  2307. "stype=%d\n", dev->name,
  2308. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2309. break;
  2310. }
  2311. fail:
  2312. kfree_skb(skb);
  2313. }
  2314. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2315. struct sk_buff *skb)
  2316. {
  2317. struct ieee80211_rx_status *rx_status;
  2318. struct ieee80211_sub_if_data *sdata;
  2319. struct ieee80211_if_sta *ifsta;
  2320. struct ieee80211_mgmt *mgmt;
  2321. u16 fc;
  2322. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2323. ifsta = &sdata->u.sta;
  2324. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2325. mgmt = (struct ieee80211_mgmt *) skb->data;
  2326. fc = le16_to_cpu(mgmt->frame_control);
  2327. switch (fc & IEEE80211_FCTL_STYPE) {
  2328. case IEEE80211_STYPE_PROBE_REQ:
  2329. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2330. rx_status);
  2331. break;
  2332. case IEEE80211_STYPE_PROBE_RESP:
  2333. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2334. break;
  2335. case IEEE80211_STYPE_BEACON:
  2336. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2337. break;
  2338. case IEEE80211_STYPE_AUTH:
  2339. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2340. break;
  2341. case IEEE80211_STYPE_ASSOC_RESP:
  2342. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2343. break;
  2344. case IEEE80211_STYPE_REASSOC_RESP:
  2345. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2346. break;
  2347. case IEEE80211_STYPE_DEAUTH:
  2348. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2349. break;
  2350. case IEEE80211_STYPE_DISASSOC:
  2351. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2352. break;
  2353. case IEEE80211_STYPE_ACTION:
  2354. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len);
  2355. break;
  2356. }
  2357. kfree_skb(skb);
  2358. }
  2359. ieee80211_rx_result
  2360. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2361. struct ieee80211_rx_status *rx_status)
  2362. {
  2363. struct ieee80211_mgmt *mgmt;
  2364. u16 fc;
  2365. if (skb->len < 2)
  2366. return RX_DROP_UNUSABLE;
  2367. mgmt = (struct ieee80211_mgmt *) skb->data;
  2368. fc = le16_to_cpu(mgmt->frame_control);
  2369. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2370. return RX_CONTINUE;
  2371. if (skb->len < 24)
  2372. return RX_DROP_MONITOR;
  2373. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2374. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2375. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2376. skb->len, rx_status);
  2377. dev_kfree_skb(skb);
  2378. return RX_QUEUED;
  2379. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2380. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2381. rx_status);
  2382. dev_kfree_skb(skb);
  2383. return RX_QUEUED;
  2384. }
  2385. }
  2386. return RX_CONTINUE;
  2387. }
  2388. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2389. {
  2390. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2391. int active = 0;
  2392. struct sta_info *sta;
  2393. read_lock_bh(&local->sta_lock);
  2394. list_for_each_entry(sta, &local->sta_list, list) {
  2395. if (sta->dev == dev &&
  2396. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2397. jiffies)) {
  2398. active++;
  2399. break;
  2400. }
  2401. }
  2402. read_unlock_bh(&local->sta_lock);
  2403. return active;
  2404. }
  2405. static void ieee80211_sta_expire(struct net_device *dev)
  2406. {
  2407. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2408. struct sta_info *sta, *tmp;
  2409. LIST_HEAD(tmp_list);
  2410. DECLARE_MAC_BUF(mac);
  2411. write_lock_bh(&local->sta_lock);
  2412. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2413. if (time_after(jiffies, sta->last_rx +
  2414. IEEE80211_IBSS_INACTIVITY_LIMIT)) {
  2415. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2416. dev->name, print_mac(mac, sta->addr));
  2417. __sta_info_get(sta);
  2418. sta_info_remove(sta);
  2419. list_add(&sta->list, &tmp_list);
  2420. }
  2421. write_unlock_bh(&local->sta_lock);
  2422. list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
  2423. sta_info_free(sta);
  2424. sta_info_put(sta);
  2425. }
  2426. }
  2427. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2428. struct ieee80211_if_sta *ifsta)
  2429. {
  2430. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2431. ieee80211_sta_expire(dev);
  2432. if (ieee80211_sta_active_ibss(dev))
  2433. return;
  2434. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2435. "IBSS networks with same SSID (merge)\n", dev->name);
  2436. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2437. }
  2438. void ieee80211_sta_timer(unsigned long data)
  2439. {
  2440. struct ieee80211_sub_if_data *sdata =
  2441. (struct ieee80211_sub_if_data *) data;
  2442. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2443. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2444. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2445. queue_work(local->hw.workqueue, &ifsta->work);
  2446. }
  2447. void ieee80211_sta_work(struct work_struct *work)
  2448. {
  2449. struct ieee80211_sub_if_data *sdata =
  2450. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2451. struct net_device *dev = sdata->dev;
  2452. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2453. struct ieee80211_if_sta *ifsta;
  2454. struct sk_buff *skb;
  2455. if (!netif_running(dev))
  2456. return;
  2457. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2458. return;
  2459. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2460. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  2461. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2462. "(type=%d)\n", dev->name, sdata->vif.type);
  2463. return;
  2464. }
  2465. ifsta = &sdata->u.sta;
  2466. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2467. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2468. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2469. ifsta->state != IEEE80211_ASSOCIATE &&
  2470. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2471. if (ifsta->scan_ssid_len)
  2472. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2473. else
  2474. ieee80211_sta_start_scan(dev, NULL, 0);
  2475. return;
  2476. }
  2477. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2478. if (ieee80211_sta_config_auth(dev, ifsta))
  2479. return;
  2480. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2481. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2482. return;
  2483. switch (ifsta->state) {
  2484. case IEEE80211_DISABLED:
  2485. break;
  2486. case IEEE80211_AUTHENTICATE:
  2487. ieee80211_authenticate(dev, ifsta);
  2488. break;
  2489. case IEEE80211_ASSOCIATE:
  2490. ieee80211_associate(dev, ifsta);
  2491. break;
  2492. case IEEE80211_ASSOCIATED:
  2493. ieee80211_associated(dev, ifsta);
  2494. break;
  2495. case IEEE80211_IBSS_SEARCH:
  2496. ieee80211_sta_find_ibss(dev, ifsta);
  2497. break;
  2498. case IEEE80211_IBSS_JOINED:
  2499. ieee80211_sta_merge_ibss(dev, ifsta);
  2500. break;
  2501. default:
  2502. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2503. ifsta->state);
  2504. break;
  2505. }
  2506. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2507. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2508. "mixed-cell disabled - disassociate\n", dev->name);
  2509. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2510. ieee80211_set_disassoc(dev, ifsta, 0);
  2511. }
  2512. }
  2513. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2514. struct ieee80211_if_sta *ifsta)
  2515. {
  2516. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2517. if (local->ops->reset_tsf) {
  2518. /* Reset own TSF to allow time synchronization work. */
  2519. local->ops->reset_tsf(local_to_hw(local));
  2520. }
  2521. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2522. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2523. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2524. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2525. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2526. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2527. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2528. else
  2529. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2530. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2531. ifsta->auth_alg);
  2532. ifsta->auth_transaction = -1;
  2533. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2534. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2535. netif_carrier_off(dev);
  2536. }
  2537. void ieee80211_sta_req_auth(struct net_device *dev,
  2538. struct ieee80211_if_sta *ifsta)
  2539. {
  2540. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2541. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2542. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2543. return;
  2544. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2545. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2546. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2547. IEEE80211_STA_AUTO_SSID_SEL))) {
  2548. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2549. queue_work(local->hw.workqueue, &ifsta->work);
  2550. }
  2551. }
  2552. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2553. const char *ssid, int ssid_len)
  2554. {
  2555. int tmp, hidden_ssid;
  2556. if (ssid_len == ifsta->ssid_len &&
  2557. !memcmp(ifsta->ssid, ssid, ssid_len))
  2558. return 1;
  2559. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2560. return 0;
  2561. hidden_ssid = 1;
  2562. tmp = ssid_len;
  2563. while (tmp--) {
  2564. if (ssid[tmp] != '\0') {
  2565. hidden_ssid = 0;
  2566. break;
  2567. }
  2568. }
  2569. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2570. return 1;
  2571. if (ssid_len == 1 && ssid[0] == ' ')
  2572. return 1;
  2573. return 0;
  2574. }
  2575. static int ieee80211_sta_config_auth(struct net_device *dev,
  2576. struct ieee80211_if_sta *ifsta)
  2577. {
  2578. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2579. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2580. struct ieee80211_sta_bss *bss, *selected = NULL;
  2581. int top_rssi = 0, freq;
  2582. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2583. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2584. ifsta->state = IEEE80211_AUTHENTICATE;
  2585. ieee80211_sta_reset_auth(dev, ifsta);
  2586. return 0;
  2587. }
  2588. spin_lock_bh(&local->sta_bss_lock);
  2589. freq = local->oper_channel->center_freq;
  2590. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2591. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2592. continue;
  2593. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2594. !!sdata->default_key)
  2595. continue;
  2596. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2597. bss->freq != freq)
  2598. continue;
  2599. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2600. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2601. continue;
  2602. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2603. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2604. continue;
  2605. if (!selected || top_rssi < bss->rssi) {
  2606. selected = bss;
  2607. top_rssi = bss->rssi;
  2608. }
  2609. }
  2610. if (selected)
  2611. atomic_inc(&selected->users);
  2612. spin_unlock_bh(&local->sta_bss_lock);
  2613. if (selected) {
  2614. ieee80211_set_freq(local, selected->freq);
  2615. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2616. ieee80211_sta_set_ssid(dev, selected->ssid,
  2617. selected->ssid_len);
  2618. ieee80211_sta_set_bssid(dev, selected->bssid);
  2619. ieee80211_rx_bss_put(dev, selected);
  2620. ifsta->state = IEEE80211_AUTHENTICATE;
  2621. ieee80211_sta_reset_auth(dev, ifsta);
  2622. return 0;
  2623. } else {
  2624. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2625. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2626. ieee80211_sta_start_scan(dev, NULL, 0);
  2627. else
  2628. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2629. ifsta->ssid_len);
  2630. ifsta->state = IEEE80211_AUTHENTICATE;
  2631. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2632. } else
  2633. ifsta->state = IEEE80211_DISABLED;
  2634. }
  2635. return -1;
  2636. }
  2637. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2638. struct ieee80211_if_sta *ifsta)
  2639. {
  2640. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2641. struct ieee80211_sta_bss *bss;
  2642. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2643. struct ieee80211_supported_band *sband;
  2644. u8 bssid[ETH_ALEN], *pos;
  2645. int i;
  2646. DECLARE_MAC_BUF(mac);
  2647. #if 0
  2648. /* Easier testing, use fixed BSSID. */
  2649. memset(bssid, 0xfe, ETH_ALEN);
  2650. #else
  2651. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2652. * own MAC address to make sure that devices that do not have proper
  2653. * random number generator get different BSSID. */
  2654. get_random_bytes(bssid, ETH_ALEN);
  2655. for (i = 0; i < ETH_ALEN; i++)
  2656. bssid[i] ^= dev->dev_addr[i];
  2657. bssid[0] &= ~0x01;
  2658. bssid[0] |= 0x02;
  2659. #endif
  2660. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2661. dev->name, print_mac(mac, bssid));
  2662. bss = ieee80211_rx_bss_add(dev, bssid,
  2663. local->hw.conf.channel->center_freq,
  2664. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2665. if (!bss)
  2666. return -ENOMEM;
  2667. bss->band = local->hw.conf.channel->band;
  2668. sband = local->hw.wiphy->bands[bss->band];
  2669. if (local->hw.conf.beacon_int == 0)
  2670. local->hw.conf.beacon_int = 100;
  2671. bss->beacon_int = local->hw.conf.beacon_int;
  2672. bss->last_update = jiffies;
  2673. bss->capability = WLAN_CAPABILITY_IBSS;
  2674. if (sdata->default_key) {
  2675. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2676. } else
  2677. sdata->drop_unencrypted = 0;
  2678. bss->supp_rates_len = sband->n_bitrates;
  2679. pos = bss->supp_rates;
  2680. for (i = 0; i < sband->n_bitrates; i++) {
  2681. int rate = sband->bitrates[i].bitrate;
  2682. *pos++ = (u8) (rate / 5);
  2683. }
  2684. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2685. }
  2686. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2687. struct ieee80211_if_sta *ifsta)
  2688. {
  2689. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2690. struct ieee80211_sta_bss *bss;
  2691. int found = 0;
  2692. u8 bssid[ETH_ALEN];
  2693. int active_ibss;
  2694. DECLARE_MAC_BUF(mac);
  2695. DECLARE_MAC_BUF(mac2);
  2696. if (ifsta->ssid_len == 0)
  2697. return -EINVAL;
  2698. active_ibss = ieee80211_sta_active_ibss(dev);
  2699. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2700. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2701. dev->name, active_ibss);
  2702. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2703. spin_lock_bh(&local->sta_bss_lock);
  2704. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2705. if (ifsta->ssid_len != bss->ssid_len ||
  2706. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2707. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2708. continue;
  2709. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2710. printk(KERN_DEBUG " bssid=%s found\n",
  2711. print_mac(mac, bss->bssid));
  2712. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2713. memcpy(bssid, bss->bssid, ETH_ALEN);
  2714. found = 1;
  2715. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2716. break;
  2717. }
  2718. spin_unlock_bh(&local->sta_bss_lock);
  2719. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2720. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2721. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2722. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2723. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2724. (bss = ieee80211_rx_bss_get(dev, bssid,
  2725. local->hw.conf.channel->center_freq,
  2726. ifsta->ssid, ifsta->ssid_len))) {
  2727. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2728. " based on configured SSID\n",
  2729. dev->name, print_mac(mac, bssid));
  2730. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2731. }
  2732. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2733. printk(KERN_DEBUG " did not try to join ibss\n");
  2734. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2735. /* Selected IBSS not found in current scan results - try to scan */
  2736. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2737. !ieee80211_sta_active_ibss(dev)) {
  2738. mod_timer(&ifsta->timer, jiffies +
  2739. IEEE80211_IBSS_MERGE_INTERVAL);
  2740. } else if (time_after(jiffies, local->last_scan_completed +
  2741. IEEE80211_SCAN_INTERVAL)) {
  2742. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2743. "join\n", dev->name);
  2744. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2745. ifsta->ssid_len);
  2746. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2747. int interval = IEEE80211_SCAN_INTERVAL;
  2748. if (time_after(jiffies, ifsta->ibss_join_req +
  2749. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2750. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2751. (!(local->oper_channel->flags &
  2752. IEEE80211_CHAN_NO_IBSS)))
  2753. return ieee80211_sta_create_ibss(dev, ifsta);
  2754. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2755. printk(KERN_DEBUG "%s: IBSS not allowed on"
  2756. " %d MHz\n", dev->name,
  2757. local->hw.conf.channel->center_freq);
  2758. }
  2759. /* No IBSS found - decrease scan interval and continue
  2760. * scanning. */
  2761. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2762. }
  2763. ifsta->state = IEEE80211_IBSS_SEARCH;
  2764. mod_timer(&ifsta->timer, jiffies + interval);
  2765. return 0;
  2766. }
  2767. return 0;
  2768. }
  2769. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2770. {
  2771. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2772. struct ieee80211_if_sta *ifsta;
  2773. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2774. if (len > IEEE80211_MAX_SSID_LEN)
  2775. return -EINVAL;
  2776. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2777. * not defined. */
  2778. if (local->ops->conf_tx) {
  2779. struct ieee80211_tx_queue_params qparam;
  2780. int i;
  2781. memset(&qparam, 0, sizeof(qparam));
  2782. qparam.aifs = 2;
  2783. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  2784. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  2785. qparam.cw_min = 31;
  2786. else
  2787. qparam.cw_min = 15;
  2788. qparam.cw_max = 1023;
  2789. qparam.txop = 0;
  2790. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2791. local->ops->conf_tx(local_to_hw(local),
  2792. i + IEEE80211_TX_QUEUE_DATA0,
  2793. &qparam);
  2794. /* IBSS uses different parameters for Beacon sending */
  2795. qparam.cw_min++;
  2796. qparam.cw_min *= 2;
  2797. qparam.cw_min--;
  2798. local->ops->conf_tx(local_to_hw(local),
  2799. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2800. }
  2801. ifsta = &sdata->u.sta;
  2802. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2803. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2804. memcpy(ifsta->ssid, ssid, len);
  2805. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2806. ifsta->ssid_len = len;
  2807. if (len)
  2808. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2809. else
  2810. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2811. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2812. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2813. ifsta->ibss_join_req = jiffies;
  2814. ifsta->state = IEEE80211_IBSS_SEARCH;
  2815. return ieee80211_sta_find_ibss(dev, ifsta);
  2816. }
  2817. return 0;
  2818. }
  2819. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  2820. {
  2821. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2822. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2823. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  2824. *len = ifsta->ssid_len;
  2825. return 0;
  2826. }
  2827. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  2828. {
  2829. struct ieee80211_sub_if_data *sdata;
  2830. struct ieee80211_if_sta *ifsta;
  2831. int res;
  2832. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2833. ifsta = &sdata->u.sta;
  2834. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  2835. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  2836. res = ieee80211_if_config(dev);
  2837. if (res) {
  2838. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  2839. "the low-level driver\n", dev->name);
  2840. return res;
  2841. }
  2842. }
  2843. if (is_valid_ether_addr(bssid))
  2844. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  2845. else
  2846. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  2847. return 0;
  2848. }
  2849. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  2850. struct ieee80211_sub_if_data *sdata,
  2851. int powersave)
  2852. {
  2853. struct sk_buff *skb;
  2854. struct ieee80211_hdr *nullfunc;
  2855. u16 fc;
  2856. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  2857. if (!skb) {
  2858. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  2859. "frame\n", sdata->dev->name);
  2860. return;
  2861. }
  2862. skb_reserve(skb, local->hw.extra_tx_headroom);
  2863. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  2864. memset(nullfunc, 0, 24);
  2865. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  2866. IEEE80211_FCTL_TODS;
  2867. if (powersave)
  2868. fc |= IEEE80211_FCTL_PM;
  2869. nullfunc->frame_control = cpu_to_le16(fc);
  2870. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  2871. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  2872. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  2873. ieee80211_sta_tx(sdata->dev, skb, 0);
  2874. }
  2875. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  2876. {
  2877. struct ieee80211_local *local = hw_to_local(hw);
  2878. struct net_device *dev = local->scan_dev;
  2879. struct ieee80211_sub_if_data *sdata;
  2880. union iwreq_data wrqu;
  2881. local->last_scan_completed = jiffies;
  2882. memset(&wrqu, 0, sizeof(wrqu));
  2883. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  2884. if (local->sta_hw_scanning) {
  2885. local->sta_hw_scanning = 0;
  2886. goto done;
  2887. }
  2888. local->sta_sw_scanning = 0;
  2889. if (ieee80211_hw_config(local))
  2890. printk(KERN_DEBUG "%s: failed to restore operational "
  2891. "channel after scan\n", dev->name);
  2892. netif_tx_lock_bh(local->mdev);
  2893. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  2894. local->ops->configure_filter(local_to_hw(local),
  2895. FIF_BCN_PRBRESP_PROMISC,
  2896. &local->filter_flags,
  2897. local->mdev->mc_count,
  2898. local->mdev->mc_list);
  2899. netif_tx_unlock_bh(local->mdev);
  2900. rcu_read_lock();
  2901. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2902. /* No need to wake the master device. */
  2903. if (sdata->dev == local->mdev)
  2904. continue;
  2905. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  2906. if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  2907. ieee80211_send_nullfunc(local, sdata, 0);
  2908. ieee80211_sta_timer((unsigned long)sdata);
  2909. }
  2910. netif_wake_queue(sdata->dev);
  2911. }
  2912. rcu_read_unlock();
  2913. done:
  2914. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2915. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  2916. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2917. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  2918. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  2919. !ieee80211_sta_active_ibss(dev)))
  2920. ieee80211_sta_find_ibss(dev, ifsta);
  2921. }
  2922. }
  2923. EXPORT_SYMBOL(ieee80211_scan_completed);
  2924. void ieee80211_sta_scan_work(struct work_struct *work)
  2925. {
  2926. struct ieee80211_local *local =
  2927. container_of(work, struct ieee80211_local, scan_work.work);
  2928. struct net_device *dev = local->scan_dev;
  2929. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2930. struct ieee80211_supported_band *sband;
  2931. struct ieee80211_channel *chan;
  2932. int skip;
  2933. unsigned long next_delay = 0;
  2934. if (!local->sta_sw_scanning)
  2935. return;
  2936. switch (local->scan_state) {
  2937. case SCAN_SET_CHANNEL:
  2938. /*
  2939. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  2940. * after we successfully scanned the last channel of the last
  2941. * band (and the last band is supported by the hw)
  2942. */
  2943. if (local->scan_band < IEEE80211_NUM_BANDS)
  2944. sband = local->hw.wiphy->bands[local->scan_band];
  2945. else
  2946. sband = NULL;
  2947. /*
  2948. * If we are at an unsupported band and have more bands
  2949. * left to scan, advance to the next supported one.
  2950. */
  2951. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  2952. local->scan_band++;
  2953. sband = local->hw.wiphy->bands[local->scan_band];
  2954. local->scan_channel_idx = 0;
  2955. }
  2956. /* if no more bands/channels left, complete scan */
  2957. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  2958. ieee80211_scan_completed(local_to_hw(local));
  2959. return;
  2960. }
  2961. skip = 0;
  2962. chan = &sband->channels[local->scan_channel_idx];
  2963. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  2964. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2965. chan->flags & IEEE80211_CHAN_NO_IBSS))
  2966. skip = 1;
  2967. if (!skip) {
  2968. local->scan_channel = chan;
  2969. if (ieee80211_hw_config(local)) {
  2970. printk(KERN_DEBUG "%s: failed to set freq to "
  2971. "%d MHz for scan\n", dev->name,
  2972. chan->center_freq);
  2973. skip = 1;
  2974. }
  2975. }
  2976. /* advance state machine to next channel/band */
  2977. local->scan_channel_idx++;
  2978. if (local->scan_channel_idx >= sband->n_channels) {
  2979. /*
  2980. * scan_band may end up == IEEE80211_NUM_BANDS, but
  2981. * we'll catch that case above and complete the scan
  2982. * if that is the case.
  2983. */
  2984. local->scan_band++;
  2985. local->scan_channel_idx = 0;
  2986. }
  2987. if (skip)
  2988. break;
  2989. next_delay = IEEE80211_PROBE_DELAY +
  2990. usecs_to_jiffies(local->hw.channel_change_time);
  2991. local->scan_state = SCAN_SEND_PROBE;
  2992. break;
  2993. case SCAN_SEND_PROBE:
  2994. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  2995. local->scan_state = SCAN_SET_CHANNEL;
  2996. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  2997. break;
  2998. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  2999. local->scan_ssid_len);
  3000. next_delay = IEEE80211_CHANNEL_TIME;
  3001. break;
  3002. }
  3003. if (local->sta_sw_scanning)
  3004. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3005. next_delay);
  3006. }
  3007. static int ieee80211_sta_start_scan(struct net_device *dev,
  3008. u8 *ssid, size_t ssid_len)
  3009. {
  3010. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3011. struct ieee80211_sub_if_data *sdata;
  3012. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3013. return -EINVAL;
  3014. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3015. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3016. * BSSID: MACAddress
  3017. * SSID
  3018. * ScanType: ACTIVE, PASSIVE
  3019. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3020. * a Probe frame during active scanning
  3021. * ChannelList
  3022. * MinChannelTime (>= ProbeDelay), in TU
  3023. * MaxChannelTime: (>= MinChannelTime), in TU
  3024. */
  3025. /* MLME-SCAN.confirm
  3026. * BSSDescriptionSet
  3027. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3028. */
  3029. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3030. if (local->scan_dev == dev)
  3031. return 0;
  3032. return -EBUSY;
  3033. }
  3034. if (local->ops->hw_scan) {
  3035. int rc = local->ops->hw_scan(local_to_hw(local),
  3036. ssid, ssid_len);
  3037. if (!rc) {
  3038. local->sta_hw_scanning = 1;
  3039. local->scan_dev = dev;
  3040. }
  3041. return rc;
  3042. }
  3043. local->sta_sw_scanning = 1;
  3044. rcu_read_lock();
  3045. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3046. /* Don't stop the master interface, otherwise we can't transmit
  3047. * probes! */
  3048. if (sdata->dev == local->mdev)
  3049. continue;
  3050. netif_stop_queue(sdata->dev);
  3051. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3052. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3053. ieee80211_send_nullfunc(local, sdata, 1);
  3054. }
  3055. rcu_read_unlock();
  3056. if (ssid) {
  3057. local->scan_ssid_len = ssid_len;
  3058. memcpy(local->scan_ssid, ssid, ssid_len);
  3059. } else
  3060. local->scan_ssid_len = 0;
  3061. local->scan_state = SCAN_SET_CHANNEL;
  3062. local->scan_channel_idx = 0;
  3063. local->scan_band = IEEE80211_BAND_2GHZ;
  3064. local->scan_dev = dev;
  3065. netif_tx_lock_bh(local->mdev);
  3066. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3067. local->ops->configure_filter(local_to_hw(local),
  3068. FIF_BCN_PRBRESP_PROMISC,
  3069. &local->filter_flags,
  3070. local->mdev->mc_count,
  3071. local->mdev->mc_list);
  3072. netif_tx_unlock_bh(local->mdev);
  3073. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3074. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3075. IEEE80211_CHANNEL_TIME);
  3076. return 0;
  3077. }
  3078. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3079. {
  3080. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3081. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3082. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3083. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3084. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3085. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3086. if (local->scan_dev == dev)
  3087. return 0;
  3088. return -EBUSY;
  3089. }
  3090. ifsta->scan_ssid_len = ssid_len;
  3091. if (ssid_len)
  3092. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3093. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3094. queue_work(local->hw.workqueue, &ifsta->work);
  3095. return 0;
  3096. }
  3097. static char *
  3098. ieee80211_sta_scan_result(struct net_device *dev,
  3099. struct ieee80211_sta_bss *bss,
  3100. char *current_ev, char *end_buf)
  3101. {
  3102. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3103. struct iw_event iwe;
  3104. if (time_after(jiffies,
  3105. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3106. return current_ev;
  3107. memset(&iwe, 0, sizeof(iwe));
  3108. iwe.cmd = SIOCGIWAP;
  3109. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3110. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3111. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3112. IW_EV_ADDR_LEN);
  3113. memset(&iwe, 0, sizeof(iwe));
  3114. iwe.cmd = SIOCGIWESSID;
  3115. iwe.u.data.length = bss->ssid_len;
  3116. iwe.u.data.flags = 1;
  3117. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3118. bss->ssid);
  3119. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
  3120. memset(&iwe, 0, sizeof(iwe));
  3121. iwe.cmd = SIOCGIWMODE;
  3122. if (bss->capability & WLAN_CAPABILITY_ESS)
  3123. iwe.u.mode = IW_MODE_MASTER;
  3124. else
  3125. iwe.u.mode = IW_MODE_ADHOC;
  3126. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3127. IW_EV_UINT_LEN);
  3128. }
  3129. memset(&iwe, 0, sizeof(iwe));
  3130. iwe.cmd = SIOCGIWFREQ;
  3131. iwe.u.freq.m = bss->freq;
  3132. iwe.u.freq.e = 6;
  3133. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3134. IW_EV_FREQ_LEN);
  3135. memset(&iwe, 0, sizeof(iwe));
  3136. iwe.cmd = SIOCGIWFREQ;
  3137. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3138. iwe.u.freq.e = 0;
  3139. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3140. IW_EV_FREQ_LEN);
  3141. memset(&iwe, 0, sizeof(iwe));
  3142. iwe.cmd = IWEVQUAL;
  3143. iwe.u.qual.qual = bss->signal;
  3144. iwe.u.qual.level = bss->rssi;
  3145. iwe.u.qual.noise = bss->noise;
  3146. iwe.u.qual.updated = local->wstats_flags;
  3147. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3148. IW_EV_QUAL_LEN);
  3149. memset(&iwe, 0, sizeof(iwe));
  3150. iwe.cmd = SIOCGIWENCODE;
  3151. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3152. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3153. else
  3154. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3155. iwe.u.data.length = 0;
  3156. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3157. if (bss && bss->wpa_ie) {
  3158. memset(&iwe, 0, sizeof(iwe));
  3159. iwe.cmd = IWEVGENIE;
  3160. iwe.u.data.length = bss->wpa_ie_len;
  3161. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3162. bss->wpa_ie);
  3163. }
  3164. if (bss && bss->rsn_ie) {
  3165. memset(&iwe, 0, sizeof(iwe));
  3166. iwe.cmd = IWEVGENIE;
  3167. iwe.u.data.length = bss->rsn_ie_len;
  3168. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3169. bss->rsn_ie);
  3170. }
  3171. if (bss && bss->supp_rates_len > 0) {
  3172. /* display all supported rates in readable format */
  3173. char *p = current_ev + IW_EV_LCP_LEN;
  3174. int i;
  3175. memset(&iwe, 0, sizeof(iwe));
  3176. iwe.cmd = SIOCGIWRATE;
  3177. /* Those two flags are ignored... */
  3178. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3179. for (i = 0; i < bss->supp_rates_len; i++) {
  3180. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3181. 0x7f) * 500000);
  3182. p = iwe_stream_add_value(current_ev, p,
  3183. end_buf, &iwe, IW_EV_PARAM_LEN);
  3184. }
  3185. current_ev = p;
  3186. }
  3187. if (bss) {
  3188. char *buf;
  3189. buf = kmalloc(30, GFP_ATOMIC);
  3190. if (buf) {
  3191. memset(&iwe, 0, sizeof(iwe));
  3192. iwe.cmd = IWEVCUSTOM;
  3193. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3194. iwe.u.data.length = strlen(buf);
  3195. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3196. &iwe, buf);
  3197. kfree(buf);
  3198. }
  3199. }
  3200. return current_ev;
  3201. }
  3202. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3203. {
  3204. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3205. char *current_ev = buf;
  3206. char *end_buf = buf + len;
  3207. struct ieee80211_sta_bss *bss;
  3208. spin_lock_bh(&local->sta_bss_lock);
  3209. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3210. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3211. spin_unlock_bh(&local->sta_bss_lock);
  3212. return -E2BIG;
  3213. }
  3214. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3215. end_buf);
  3216. }
  3217. spin_unlock_bh(&local->sta_bss_lock);
  3218. return current_ev - buf;
  3219. }
  3220. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3221. {
  3222. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3223. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3224. kfree(ifsta->extra_ie);
  3225. if (len == 0) {
  3226. ifsta->extra_ie = NULL;
  3227. ifsta->extra_ie_len = 0;
  3228. return 0;
  3229. }
  3230. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3231. if (!ifsta->extra_ie) {
  3232. ifsta->extra_ie_len = 0;
  3233. return -ENOMEM;
  3234. }
  3235. memcpy(ifsta->extra_ie, ie, len);
  3236. ifsta->extra_ie_len = len;
  3237. return 0;
  3238. }
  3239. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3240. struct sk_buff *skb, u8 *bssid,
  3241. u8 *addr)
  3242. {
  3243. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3244. struct sta_info *sta;
  3245. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3246. DECLARE_MAC_BUF(mac);
  3247. /* TODO: Could consider removing the least recently used entry and
  3248. * allow new one to be added. */
  3249. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3250. if (net_ratelimit()) {
  3251. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3252. "entry %s\n", dev->name, print_mac(mac, addr));
  3253. }
  3254. return NULL;
  3255. }
  3256. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3257. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3258. sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
  3259. if (!sta)
  3260. return NULL;
  3261. sta->flags |= WLAN_STA_AUTHORIZED;
  3262. sta->supp_rates[local->hw.conf.channel->band] =
  3263. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3264. rate_control_rate_init(sta, local);
  3265. return sta; /* caller will call sta_info_put() */
  3266. }
  3267. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3268. {
  3269. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3270. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3271. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3272. dev->name, reason);
  3273. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3274. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3275. return -EINVAL;
  3276. ieee80211_send_deauth(dev, ifsta, reason);
  3277. ieee80211_set_disassoc(dev, ifsta, 1);
  3278. return 0;
  3279. }
  3280. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3281. {
  3282. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3283. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3284. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3285. dev->name, reason);
  3286. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3287. return -EINVAL;
  3288. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3289. return -1;
  3290. ieee80211_send_disassoc(dev, ifsta, reason);
  3291. ieee80211_set_disassoc(dev, ifsta, 0);
  3292. return 0;
  3293. }