mmap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. * This is where eCryptfs coordinates the symmetric encryption and
  4. * decryption of the file data as it passes between the lower
  5. * encrypted file and the upper decrypted file.
  6. *
  7. * Copyright (C) 1997-2003 Erez Zadok
  8. * Copyright (C) 2001-2003 Stony Brook University
  9. * Copyright (C) 2004-2007 International Business Machines Corp.
  10. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation; either version 2 of the
  15. * License, or (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful, but
  18. * WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  25. * 02111-1307, USA.
  26. */
  27. #include <linux/pagemap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/page-flags.h>
  30. #include <linux/mount.h>
  31. #include <linux/file.h>
  32. #include <linux/crypto.h>
  33. #include <linux/scatterlist.h>
  34. #include "ecryptfs_kernel.h"
  35. struct kmem_cache *ecryptfs_lower_page_cache;
  36. /**
  37. * ecryptfs_get1page
  38. *
  39. * Get one page from cache or lower f/s, return error otherwise.
  40. *
  41. * Returns unlocked and up-to-date page (if ok), with increased
  42. * refcnt.
  43. */
  44. static struct page *ecryptfs_get1page(struct file *file, int index)
  45. {
  46. struct page *page;
  47. struct dentry *dentry;
  48. struct inode *inode;
  49. struct address_space *mapping;
  50. dentry = file->f_path.dentry;
  51. inode = dentry->d_inode;
  52. mapping = inode->i_mapping;
  53. page = read_cache_page(mapping, index,
  54. (filler_t *)mapping->a_ops->readpage,
  55. (void *)file);
  56. if (IS_ERR(page))
  57. goto out;
  58. wait_on_page_locked(page);
  59. out:
  60. return page;
  61. }
  62. static
  63. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
  64. /**
  65. * ecryptfs_fill_zeros
  66. * @file: The ecryptfs file
  67. * @new_length: The new length of the data in the underlying file;
  68. * everything between the prior end of the file and the
  69. * new end of the file will be filled with zero's.
  70. * new_length must be greater than current length
  71. *
  72. * Function for handling lseek-ing past the end of the file.
  73. *
  74. * This function does not support shrinking, only growing a file.
  75. *
  76. * Returns zero on success; non-zero otherwise.
  77. */
  78. int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
  79. {
  80. int rc = 0;
  81. struct dentry *dentry = file->f_path.dentry;
  82. struct inode *inode = dentry->d_inode;
  83. pgoff_t old_end_page_index = 0;
  84. pgoff_t index = old_end_page_index;
  85. int old_end_pos_in_page = -1;
  86. pgoff_t new_end_page_index;
  87. int new_end_pos_in_page;
  88. loff_t cur_length = i_size_read(inode);
  89. if (cur_length != 0) {
  90. index = old_end_page_index =
  91. ((cur_length - 1) >> PAGE_CACHE_SHIFT);
  92. old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
  93. }
  94. new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
  95. new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
  96. ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
  97. "old_end_pos_in_page = [%d]; "
  98. "new_end_page_index = [0x%.16x]; "
  99. "new_end_pos_in_page = [%d]\n",
  100. old_end_page_index, old_end_pos_in_page,
  101. new_end_page_index, new_end_pos_in_page);
  102. if (old_end_page_index == new_end_page_index) {
  103. /* Start and end are in the same page; we just need to
  104. * set a portion of the existing page to zero's */
  105. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  106. (new_end_pos_in_page - old_end_pos_in_page));
  107. if (rc)
  108. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  109. "index=[0x%.16x], "
  110. "old_end_pos_in_page=[d], "
  111. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  112. "=[%d]"
  113. ")=[d]) returned [%d]\n", file, index,
  114. old_end_pos_in_page,
  115. new_end_pos_in_page,
  116. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  117. rc);
  118. goto out;
  119. }
  120. /* Fill the remainder of the previous last page with zeros */
  121. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  122. ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
  123. if (rc) {
  124. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  125. "index=[0x%.16x], old_end_pos_in_page=[d], "
  126. "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
  127. "returned [%d]\n", file, index,
  128. old_end_pos_in_page,
  129. (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
  130. goto out;
  131. }
  132. index++;
  133. while (index < new_end_page_index) {
  134. /* Fill all intermediate pages with zeros */
  135. rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
  136. if (rc) {
  137. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  138. "index=[0x%.16x], "
  139. "old_end_pos_in_page=[d], "
  140. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  141. "=[%d]"
  142. ")=[d]) returned [%d]\n", file, index,
  143. old_end_pos_in_page,
  144. new_end_pos_in_page,
  145. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  146. rc);
  147. goto out;
  148. }
  149. index++;
  150. }
  151. /* Fill the portion at the beginning of the last new page with
  152. * zero's */
  153. rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
  154. if (rc) {
  155. ecryptfs_printk(KERN_ERR, "write_zeros(file="
  156. "[%p], index=[0x%.16x], 0, "
  157. "new_end_pos_in_page=[%d]"
  158. "returned [%d]\n", file, index,
  159. new_end_pos_in_page, rc);
  160. goto out;
  161. }
  162. out:
  163. return rc;
  164. }
  165. /**
  166. * ecryptfs_writepage
  167. * @page: Page that is locked before this call is made
  168. *
  169. * Returns zero on success; non-zero otherwise
  170. */
  171. static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
  172. {
  173. struct ecryptfs_page_crypt_context ctx;
  174. int rc;
  175. ctx.page = page;
  176. ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
  177. ctx.param.wbc = wbc;
  178. rc = ecryptfs_encrypt_page(&ctx);
  179. if (rc) {
  180. ecryptfs_printk(KERN_WARNING, "Error encrypting "
  181. "page (upper index [0x%.16x])\n", page->index);
  182. ClearPageUptodate(page);
  183. goto out;
  184. }
  185. SetPageUptodate(page);
  186. unlock_page(page);
  187. out:
  188. return rc;
  189. }
  190. /**
  191. * Reads the data from the lower file file at index lower_page_index
  192. * and copies that data into page.
  193. *
  194. * @param page Page to fill
  195. * @param lower_page_index Index of the page in the lower file to get
  196. */
  197. int ecryptfs_do_readpage(struct file *file, struct page *page,
  198. pgoff_t lower_page_index)
  199. {
  200. int rc;
  201. struct dentry *dentry;
  202. struct file *lower_file;
  203. struct dentry *lower_dentry;
  204. struct inode *inode;
  205. struct inode *lower_inode;
  206. char *page_data;
  207. struct page *lower_page = NULL;
  208. char *lower_page_data;
  209. const struct address_space_operations *lower_a_ops;
  210. dentry = file->f_path.dentry;
  211. lower_file = ecryptfs_file_to_lower(file);
  212. lower_dentry = ecryptfs_dentry_to_lower(dentry);
  213. inode = dentry->d_inode;
  214. lower_inode = ecryptfs_inode_to_lower(inode);
  215. lower_a_ops = lower_inode->i_mapping->a_ops;
  216. lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
  217. (filler_t *)lower_a_ops->readpage,
  218. (void *)lower_file);
  219. if (IS_ERR(lower_page)) {
  220. rc = PTR_ERR(lower_page);
  221. lower_page = NULL;
  222. ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
  223. goto out;
  224. }
  225. wait_on_page_locked(lower_page);
  226. page_data = kmap_atomic(page, KM_USER0);
  227. lower_page_data = kmap_atomic(lower_page, KM_USER1);
  228. memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
  229. kunmap_atomic(lower_page_data, KM_USER1);
  230. kunmap_atomic(page_data, KM_USER0);
  231. rc = 0;
  232. out:
  233. if (likely(lower_page))
  234. page_cache_release(lower_page);
  235. if (rc == 0)
  236. SetPageUptodate(page);
  237. else
  238. ClearPageUptodate(page);
  239. return rc;
  240. }
  241. /**
  242. * Header Extent:
  243. * Octets 0-7: Unencrypted file size (big-endian)
  244. * Octets 8-15: eCryptfs special marker
  245. * Octets 16-19: Flags
  246. * Octet 16: File format version number (between 0 and 255)
  247. * Octets 17-18: Reserved
  248. * Octet 19: Bit 1 (lsb): Reserved
  249. * Bit 2: Encrypted?
  250. * Bits 3-8: Reserved
  251. * Octets 20-23: Header extent size (big-endian)
  252. * Octets 24-25: Number of header extents at front of file
  253. * (big-endian)
  254. * Octet 26: Begin RFC 2440 authentication token packet set
  255. */
  256. static void set_header_info(char *page_virt,
  257. struct ecryptfs_crypt_stat *crypt_stat)
  258. {
  259. size_t written;
  260. int save_num_header_extents_at_front =
  261. crypt_stat->num_header_extents_at_front;
  262. crypt_stat->num_header_extents_at_front = 1;
  263. ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
  264. crypt_stat->num_header_extents_at_front =
  265. save_num_header_extents_at_front;
  266. }
  267. /**
  268. * ecryptfs_readpage
  269. * @file: This is an ecryptfs file
  270. * @page: ecryptfs associated page to stick the read data into
  271. *
  272. * Read in a page, decrypting if necessary.
  273. *
  274. * Returns zero on success; non-zero on error.
  275. */
  276. static int ecryptfs_readpage(struct file *file, struct page *page)
  277. {
  278. int rc = 0;
  279. struct ecryptfs_crypt_stat *crypt_stat;
  280. BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
  281. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  282. ->crypt_stat;
  283. if (!crypt_stat
  284. || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)
  285. || ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
  286. ecryptfs_printk(KERN_DEBUG,
  287. "Passing through unencrypted page\n");
  288. rc = ecryptfs_do_readpage(file, page, page->index);
  289. if (rc) {
  290. ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
  291. "[%d]\n", rc);
  292. goto out;
  293. }
  294. } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
  295. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
  296. int num_pages_in_header_region =
  297. (crypt_stat->header_extent_size
  298. / PAGE_CACHE_SIZE);
  299. if (page->index < num_pages_in_header_region) {
  300. char *page_virt;
  301. page_virt = kmap_atomic(page, KM_USER0);
  302. memset(page_virt, 0, PAGE_CACHE_SIZE);
  303. if (page->index == 0) {
  304. rc = ecryptfs_read_xattr_region(
  305. page_virt, file->f_path.dentry);
  306. set_header_info(page_virt, crypt_stat);
  307. }
  308. kunmap_atomic(page_virt, KM_USER0);
  309. if (rc) {
  310. printk(KERN_ERR "Error reading xattr "
  311. "region\n");
  312. goto out;
  313. }
  314. } else {
  315. rc = ecryptfs_do_readpage(
  316. file, page,
  317. (page->index
  318. - num_pages_in_header_region));
  319. if (rc) {
  320. printk(KERN_ERR "Error reading page; "
  321. "rc = [%d]\n", rc);
  322. goto out;
  323. }
  324. }
  325. } else {
  326. rc = ecryptfs_do_readpage(file, page, page->index);
  327. if (rc) {
  328. printk(KERN_ERR "Error reading page; rc = "
  329. "[%d]\n", rc);
  330. goto out;
  331. }
  332. }
  333. } else {
  334. rc = ecryptfs_decrypt_page(file, page);
  335. if (rc) {
  336. ecryptfs_printk(KERN_ERR, "Error decrypting page; "
  337. "rc = [%d]\n", rc);
  338. goto out;
  339. }
  340. }
  341. SetPageUptodate(page);
  342. out:
  343. if (rc)
  344. ClearPageUptodate(page);
  345. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  346. page->index);
  347. unlock_page(page);
  348. return rc;
  349. }
  350. /**
  351. * Called with lower inode mutex held.
  352. */
  353. static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
  354. {
  355. struct inode *inode = page->mapping->host;
  356. int end_byte_in_page;
  357. char *page_virt;
  358. if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
  359. goto out;
  360. end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
  361. if (to > end_byte_in_page)
  362. end_byte_in_page = to;
  363. page_virt = kmap_atomic(page, KM_USER0);
  364. memset((page_virt + end_byte_in_page), 0,
  365. (PAGE_CACHE_SIZE - end_byte_in_page));
  366. kunmap_atomic(page_virt, KM_USER0);
  367. out:
  368. return 0;
  369. }
  370. static int ecryptfs_prepare_write(struct file *file, struct page *page,
  371. unsigned from, unsigned to)
  372. {
  373. int rc = 0;
  374. if (from == 0 && to == PAGE_CACHE_SIZE)
  375. goto out; /* If we are writing a full page, it will be
  376. up to date. */
  377. if (!PageUptodate(page))
  378. rc = ecryptfs_do_readpage(file, page, page->index);
  379. out:
  380. return rc;
  381. }
  382. int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
  383. struct inode *lower_inode,
  384. struct writeback_control *wbc)
  385. {
  386. int rc = 0;
  387. rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
  388. if (rc) {
  389. ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
  390. "rc = [%d]\n", rc);
  391. goto out;
  392. }
  393. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  394. page_cache_release(lower_page);
  395. out:
  396. return rc;
  397. }
  398. static void ecryptfs_release_lower_page(struct page *lower_page)
  399. {
  400. unlock_page(lower_page);
  401. page_cache_release(lower_page);
  402. }
  403. /**
  404. * ecryptfs_write_inode_size_to_header
  405. *
  406. * Writes the lower file size to the first 8 bytes of the header.
  407. *
  408. * Returns zero on success; non-zero on error.
  409. */
  410. static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
  411. struct inode *lower_inode,
  412. struct inode *inode)
  413. {
  414. int rc = 0;
  415. struct page *header_page;
  416. char *header_virt;
  417. const struct address_space_operations *lower_a_ops;
  418. u64 file_size;
  419. header_page = grab_cache_page(lower_inode->i_mapping, 0);
  420. if (!header_page) {
  421. ecryptfs_printk(KERN_ERR, "grab_cache_page for "
  422. "lower_page_index 0 failed\n");
  423. rc = -EINVAL;
  424. goto out;
  425. }
  426. lower_a_ops = lower_inode->i_mapping->a_ops;
  427. rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
  428. file_size = (u64)i_size_read(inode);
  429. ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
  430. file_size = cpu_to_be64(file_size);
  431. header_virt = kmap_atomic(header_page, KM_USER0);
  432. memcpy(header_virt, &file_size, sizeof(u64));
  433. kunmap_atomic(header_virt, KM_USER0);
  434. rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
  435. if (rc < 0)
  436. ecryptfs_printk(KERN_ERR, "Error commiting header page "
  437. "write\n");
  438. ecryptfs_release_lower_page(header_page);
  439. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  440. mark_inode_dirty_sync(inode);
  441. out:
  442. return rc;
  443. }
  444. static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
  445. struct inode *inode,
  446. struct dentry *ecryptfs_dentry,
  447. int lower_i_mutex_held)
  448. {
  449. ssize_t size;
  450. void *xattr_virt;
  451. struct dentry *lower_dentry;
  452. u64 file_size;
  453. int rc;
  454. xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
  455. if (!xattr_virt) {
  456. printk(KERN_ERR "Out of memory whilst attempting to write "
  457. "inode size to xattr\n");
  458. rc = -ENOMEM;
  459. goto out;
  460. }
  461. lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
  462. if (!lower_dentry->d_inode->i_op->getxattr) {
  463. printk(KERN_WARNING
  464. "No support for setting xattr in lower filesystem\n");
  465. rc = -ENOSYS;
  466. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  467. goto out;
  468. }
  469. if (!lower_i_mutex_held)
  470. mutex_lock(&lower_dentry->d_inode->i_mutex);
  471. size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
  472. ECRYPTFS_XATTR_NAME,
  473. xattr_virt,
  474. PAGE_CACHE_SIZE);
  475. if (!lower_i_mutex_held)
  476. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  477. if (size < 0)
  478. size = 8;
  479. file_size = (u64)i_size_read(inode);
  480. file_size = cpu_to_be64(file_size);
  481. memcpy(xattr_virt, &file_size, sizeof(u64));
  482. if (!lower_i_mutex_held)
  483. mutex_lock(&lower_dentry->d_inode->i_mutex);
  484. rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
  485. ECRYPTFS_XATTR_NAME,
  486. xattr_virt, size, 0);
  487. if (!lower_i_mutex_held)
  488. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  489. if (rc)
  490. printk(KERN_ERR "Error whilst attempting to write inode size "
  491. "to lower file xattr; rc = [%d]\n", rc);
  492. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  493. out:
  494. return rc;
  495. }
  496. int
  497. ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
  498. struct inode *lower_inode,
  499. struct inode *inode,
  500. struct dentry *ecryptfs_dentry,
  501. int lower_i_mutex_held)
  502. {
  503. struct ecryptfs_crypt_stat *crypt_stat;
  504. crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
  505. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  506. return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
  507. ecryptfs_dentry,
  508. lower_i_mutex_held);
  509. else
  510. return ecryptfs_write_inode_size_to_header(lower_file,
  511. lower_inode,
  512. inode);
  513. }
  514. int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
  515. struct file *lower_file,
  516. unsigned long lower_page_index, int byte_offset,
  517. int region_bytes)
  518. {
  519. int rc = 0;
  520. *lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
  521. if (!(*lower_page)) {
  522. rc = -EINVAL;
  523. ecryptfs_printk(KERN_ERR, "Error attempting to grab "
  524. "lower page with index [0x%.16x]\n",
  525. lower_page_index);
  526. goto out;
  527. }
  528. rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
  529. (*lower_page),
  530. byte_offset,
  531. region_bytes);
  532. if (rc) {
  533. ecryptfs_printk(KERN_ERR, "prepare_write for "
  534. "lower_page_index = [0x%.16x] failed; rc = "
  535. "[%d]\n", lower_page_index, rc);
  536. }
  537. out:
  538. if (rc && (*lower_page)) {
  539. ecryptfs_release_lower_page(*lower_page);
  540. (*lower_page) = NULL;
  541. }
  542. return rc;
  543. }
  544. /**
  545. * ecryptfs_commit_lower_page
  546. *
  547. * Returns zero on success; non-zero on error
  548. */
  549. int
  550. ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
  551. struct file *lower_file, int byte_offset,
  552. int region_size)
  553. {
  554. int rc = 0;
  555. rc = lower_inode->i_mapping->a_ops->commit_write(
  556. lower_file, lower_page, byte_offset, region_size);
  557. if (rc < 0) {
  558. ecryptfs_printk(KERN_ERR,
  559. "Error committing write; rc = [%d]\n", rc);
  560. } else
  561. rc = 0;
  562. ecryptfs_release_lower_page(lower_page);
  563. return rc;
  564. }
  565. /**
  566. * ecryptfs_copy_page_to_lower
  567. *
  568. * Used for plaintext pass-through; no page index interpolation
  569. * required.
  570. */
  571. int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
  572. struct file *lower_file)
  573. {
  574. int rc = 0;
  575. struct page *lower_page;
  576. rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
  577. page->index, 0, PAGE_CACHE_SIZE);
  578. if (rc) {
  579. ecryptfs_printk(KERN_ERR, "Error attempting to get page "
  580. "at index [0x%.16x]\n", page->index);
  581. goto out;
  582. }
  583. /* TODO: aops */
  584. memcpy((char *)page_address(lower_page), page_address(page),
  585. PAGE_CACHE_SIZE);
  586. rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
  587. 0, PAGE_CACHE_SIZE);
  588. if (rc)
  589. ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
  590. "at index [0x%.16x]\n", page->index);
  591. out:
  592. return rc;
  593. }
  594. struct kmem_cache *ecryptfs_xattr_cache;
  595. /**
  596. * ecryptfs_commit_write
  597. * @file: The eCryptfs file object
  598. * @page: The eCryptfs page
  599. * @from: Ignored (we rotate the page IV on each write)
  600. * @to: Ignored
  601. *
  602. * This is where we encrypt the data and pass the encrypted data to
  603. * the lower filesystem. In OpenPGP-compatible mode, we operate on
  604. * entire underlying packets.
  605. */
  606. static int ecryptfs_commit_write(struct file *file, struct page *page,
  607. unsigned from, unsigned to)
  608. {
  609. struct ecryptfs_page_crypt_context ctx;
  610. loff_t pos;
  611. struct inode *inode;
  612. struct inode *lower_inode;
  613. struct file *lower_file;
  614. struct ecryptfs_crypt_stat *crypt_stat;
  615. int rc;
  616. inode = page->mapping->host;
  617. lower_inode = ecryptfs_inode_to_lower(inode);
  618. lower_file = ecryptfs_file_to_lower(file);
  619. mutex_lock(&lower_inode->i_mutex);
  620. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  621. ->crypt_stat;
  622. if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
  623. ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
  624. "crypt_stat at memory location [%p]\n", crypt_stat);
  625. ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE);
  626. } else
  627. ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
  628. ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
  629. "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
  630. to);
  631. rc = fill_zeros_to_end_of_page(page, to);
  632. if (rc) {
  633. ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
  634. "zeros in page with index = [0x%.16x]\n",
  635. page->index);
  636. goto out;
  637. }
  638. ctx.page = page;
  639. ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
  640. ctx.param.lower_file = lower_file;
  641. rc = ecryptfs_encrypt_page(&ctx);
  642. if (rc) {
  643. ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
  644. "index [0x%.16x])\n", page->index);
  645. goto out;
  646. }
  647. inode->i_blocks = lower_inode->i_blocks;
  648. pos = (page->index << PAGE_CACHE_SHIFT) + to;
  649. if (pos > i_size_read(inode)) {
  650. i_size_write(inode, pos);
  651. ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
  652. "[0x%.16x]\n", i_size_read(inode));
  653. }
  654. rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
  655. inode, file->f_dentry,
  656. ECRYPTFS_LOWER_I_MUTEX_HELD);
  657. if (rc)
  658. printk(KERN_ERR "Error writing inode size to metadata; "
  659. "rc = [%d]\n", rc);
  660. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  661. mark_inode_dirty_sync(inode);
  662. out:
  663. if (rc < 0)
  664. ClearPageUptodate(page);
  665. else
  666. SetPageUptodate(page);
  667. mutex_unlock(&lower_inode->i_mutex);
  668. return rc;
  669. }
  670. /**
  671. * write_zeros
  672. * @file: The ecryptfs file
  673. * @index: The index in which we are writing
  674. * @start: The position after the last block of data
  675. * @num_zeros: The number of zeros to write
  676. *
  677. * Write a specified number of zero's to a page.
  678. *
  679. * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
  680. */
  681. static
  682. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
  683. {
  684. int rc = 0;
  685. struct page *tmp_page;
  686. char *tmp_page_virt;
  687. tmp_page = ecryptfs_get1page(file, index);
  688. if (IS_ERR(tmp_page)) {
  689. ecryptfs_printk(KERN_ERR, "Error getting page at index "
  690. "[0x%.16x]\n", index);
  691. rc = PTR_ERR(tmp_page);
  692. goto out;
  693. }
  694. rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros);
  695. if (rc) {
  696. ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
  697. "to remainder of page at index [0x%.16x]\n",
  698. index);
  699. page_cache_release(tmp_page);
  700. goto out;
  701. }
  702. tmp_page_virt = kmap_atomic(tmp_page, KM_USER0);
  703. memset(((char *)tmp_page_virt + start), 0, num_zeros);
  704. kunmap_atomic(tmp_page_virt, KM_USER0);
  705. rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
  706. if (rc < 0) {
  707. ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
  708. "to remainder of page at index [0x%.16x]\n",
  709. index);
  710. page_cache_release(tmp_page);
  711. goto out;
  712. }
  713. rc = 0;
  714. page_cache_release(tmp_page);
  715. out:
  716. return rc;
  717. }
  718. static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
  719. {
  720. int rc = 0;
  721. struct inode *inode;
  722. struct inode *lower_inode;
  723. inode = (struct inode *)mapping->host;
  724. lower_inode = ecryptfs_inode_to_lower(inode);
  725. if (lower_inode->i_mapping->a_ops->bmap)
  726. rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
  727. block);
  728. return rc;
  729. }
  730. static void ecryptfs_sync_page(struct page *page)
  731. {
  732. struct inode *inode;
  733. struct inode *lower_inode;
  734. struct page *lower_page;
  735. inode = page->mapping->host;
  736. lower_inode = ecryptfs_inode_to_lower(inode);
  737. /* NOTE: Recently swapped with grab_cache_page(), since
  738. * sync_page() just makes sure that pending I/O gets done. */
  739. lower_page = find_lock_page(lower_inode->i_mapping, page->index);
  740. if (!lower_page) {
  741. ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
  742. return;
  743. }
  744. lower_page->mapping->a_ops->sync_page(lower_page);
  745. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  746. lower_page->index);
  747. unlock_page(lower_page);
  748. page_cache_release(lower_page);
  749. }
  750. struct address_space_operations ecryptfs_aops = {
  751. .writepage = ecryptfs_writepage,
  752. .readpage = ecryptfs_readpage,
  753. .prepare_write = ecryptfs_prepare_write,
  754. .commit_write = ecryptfs_commit_write,
  755. .bmap = ecryptfs_bmap,
  756. .sync_page = ecryptfs_sync_page,
  757. };