md.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. /*
  108. * Enables to iterate over all existing md arrays
  109. * all_mddevs_lock protects this list.
  110. */
  111. static LIST_HEAD(all_mddevs);
  112. static DEFINE_SPINLOCK(all_mddevs_lock);
  113. /*
  114. * iterates through all used mddevs in the system.
  115. * We take care to grab the all_mddevs_lock whenever navigating
  116. * the list, and to always hold a refcount when unlocked.
  117. * Any code which breaks out of this loop while own
  118. * a reference to the current mddev and must mddev_put it.
  119. */
  120. #define ITERATE_MDDEV(mddev,tmp) \
  121. \
  122. for (({ spin_lock(&all_mddevs_lock); \
  123. tmp = all_mddevs.next; \
  124. mddev = NULL;}); \
  125. ({ if (tmp != &all_mddevs) \
  126. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  127. spin_unlock(&all_mddevs_lock); \
  128. if (mddev) mddev_put(mddev); \
  129. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  130. tmp != &all_mddevs;}); \
  131. ({ spin_lock(&all_mddevs_lock); \
  132. tmp = tmp->next;}) \
  133. )
  134. static int md_fail_request (request_queue_t *q, struct bio *bio)
  135. {
  136. bio_io_error(bio, bio->bi_size);
  137. return 0;
  138. }
  139. static inline mddev_t *mddev_get(mddev_t *mddev)
  140. {
  141. atomic_inc(&mddev->active);
  142. return mddev;
  143. }
  144. static void mddev_put(mddev_t *mddev)
  145. {
  146. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  147. return;
  148. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  149. list_del(&mddev->all_mddevs);
  150. blk_put_queue(mddev->queue);
  151. kobject_unregister(&mddev->kobj);
  152. }
  153. spin_unlock(&all_mddevs_lock);
  154. }
  155. static mddev_t * mddev_find(dev_t unit)
  156. {
  157. mddev_t *mddev, *new = NULL;
  158. retry:
  159. spin_lock(&all_mddevs_lock);
  160. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  161. if (mddev->unit == unit) {
  162. mddev_get(mddev);
  163. spin_unlock(&all_mddevs_lock);
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. spin_lock_init(&new->write_lock);
  188. init_waitqueue_head(&new->sb_wait);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. md_wakeup_thread(mddev->thread);
  213. }
  214. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  215. {
  216. mdk_rdev_t * rdev;
  217. struct list_head *tmp;
  218. ITERATE_RDEV(mddev,rdev,tmp) {
  219. if (rdev->desc_nr == nr)
  220. return rdev;
  221. }
  222. return NULL;
  223. }
  224. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  225. {
  226. struct list_head *tmp;
  227. mdk_rdev_t *rdev;
  228. ITERATE_RDEV(mddev,rdev,tmp) {
  229. if (rdev->bdev->bd_dev == dev)
  230. return rdev;
  231. }
  232. return NULL;
  233. }
  234. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  235. {
  236. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  237. return MD_NEW_SIZE_BLOCKS(size);
  238. }
  239. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  240. {
  241. sector_t size;
  242. size = rdev->sb_offset;
  243. if (chunk_size)
  244. size &= ~((sector_t)chunk_size/1024 - 1);
  245. return size;
  246. }
  247. static int alloc_disk_sb(mdk_rdev_t * rdev)
  248. {
  249. if (rdev->sb_page)
  250. MD_BUG();
  251. rdev->sb_page = alloc_page(GFP_KERNEL);
  252. if (!rdev->sb_page) {
  253. printk(KERN_ALERT "md: out of memory.\n");
  254. return -EINVAL;
  255. }
  256. return 0;
  257. }
  258. static void free_disk_sb(mdk_rdev_t * rdev)
  259. {
  260. if (rdev->sb_page) {
  261. page_cache_release(rdev->sb_page);
  262. rdev->sb_loaded = 0;
  263. rdev->sb_page = NULL;
  264. rdev->sb_offset = 0;
  265. rdev->size = 0;
  266. }
  267. }
  268. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  269. {
  270. mdk_rdev_t *rdev = bio->bi_private;
  271. if (bio->bi_size)
  272. return 1;
  273. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  274. md_error(rdev->mddev, rdev);
  275. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  276. wake_up(&rdev->mddev->sb_wait);
  277. bio_put(bio);
  278. return 0;
  279. }
  280. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  281. sector_t sector, int size, struct page *page)
  282. {
  283. /* write first size bytes of page to sector of rdev
  284. * Increment mddev->pending_writes before returning
  285. * and decrement it on completion, waking up sb_wait
  286. * if zero is reached.
  287. * If an error occurred, call md_error
  288. */
  289. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  290. bio->bi_bdev = rdev->bdev;
  291. bio->bi_sector = sector;
  292. bio_add_page(bio, page, size, 0);
  293. bio->bi_private = rdev;
  294. bio->bi_end_io = super_written;
  295. atomic_inc(&mddev->pending_writes);
  296. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  297. }
  298. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  299. {
  300. if (bio->bi_size)
  301. return 1;
  302. complete((struct completion*)bio->bi_private);
  303. return 0;
  304. }
  305. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  306. struct page *page, int rw)
  307. {
  308. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  309. struct completion event;
  310. int ret;
  311. rw |= (1 << BIO_RW_SYNC);
  312. bio->bi_bdev = bdev;
  313. bio->bi_sector = sector;
  314. bio_add_page(bio, page, size, 0);
  315. init_completion(&event);
  316. bio->bi_private = &event;
  317. bio->bi_end_io = bi_complete;
  318. submit_bio(rw, bio);
  319. wait_for_completion(&event);
  320. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  321. bio_put(bio);
  322. return ret;
  323. }
  324. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  325. {
  326. char b[BDEVNAME_SIZE];
  327. if (!rdev->sb_page) {
  328. MD_BUG();
  329. return -EINVAL;
  330. }
  331. if (rdev->sb_loaded)
  332. return 0;
  333. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  334. goto fail;
  335. rdev->sb_loaded = 1;
  336. return 0;
  337. fail:
  338. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  339. bdevname(rdev->bdev,b));
  340. return -EINVAL;
  341. }
  342. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  343. {
  344. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  345. (sb1->set_uuid1 == sb2->set_uuid1) &&
  346. (sb1->set_uuid2 == sb2->set_uuid2) &&
  347. (sb1->set_uuid3 == sb2->set_uuid3))
  348. return 1;
  349. return 0;
  350. }
  351. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  352. {
  353. int ret;
  354. mdp_super_t *tmp1, *tmp2;
  355. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  356. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  357. if (!tmp1 || !tmp2) {
  358. ret = 0;
  359. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  360. goto abort;
  361. }
  362. *tmp1 = *sb1;
  363. *tmp2 = *sb2;
  364. /*
  365. * nr_disks is not constant
  366. */
  367. tmp1->nr_disks = 0;
  368. tmp2->nr_disks = 0;
  369. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  370. ret = 0;
  371. else
  372. ret = 1;
  373. abort:
  374. kfree(tmp1);
  375. kfree(tmp2);
  376. return ret;
  377. }
  378. static unsigned int calc_sb_csum(mdp_super_t * sb)
  379. {
  380. unsigned int disk_csum, csum;
  381. disk_csum = sb->sb_csum;
  382. sb->sb_csum = 0;
  383. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  384. sb->sb_csum = disk_csum;
  385. return csum;
  386. }
  387. /*
  388. * Handle superblock details.
  389. * We want to be able to handle multiple superblock formats
  390. * so we have a common interface to them all, and an array of
  391. * different handlers.
  392. * We rely on user-space to write the initial superblock, and support
  393. * reading and updating of superblocks.
  394. * Interface methods are:
  395. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  396. * loads and validates a superblock on dev.
  397. * if refdev != NULL, compare superblocks on both devices
  398. * Return:
  399. * 0 - dev has a superblock that is compatible with refdev
  400. * 1 - dev has a superblock that is compatible and newer than refdev
  401. * so dev should be used as the refdev in future
  402. * -EINVAL superblock incompatible or invalid
  403. * -othererror e.g. -EIO
  404. *
  405. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  406. * Verify that dev is acceptable into mddev.
  407. * The first time, mddev->raid_disks will be 0, and data from
  408. * dev should be merged in. Subsequent calls check that dev
  409. * is new enough. Return 0 or -EINVAL
  410. *
  411. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  412. * Update the superblock for rdev with data in mddev
  413. * This does not write to disc.
  414. *
  415. */
  416. struct super_type {
  417. char *name;
  418. struct module *owner;
  419. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  420. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  422. };
  423. /*
  424. * load_super for 0.90.0
  425. */
  426. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  427. {
  428. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  429. mdp_super_t *sb;
  430. int ret;
  431. sector_t sb_offset;
  432. /*
  433. * Calculate the position of the superblock,
  434. * it's at the end of the disk.
  435. *
  436. * It also happens to be a multiple of 4Kb.
  437. */
  438. sb_offset = calc_dev_sboffset(rdev->bdev);
  439. rdev->sb_offset = sb_offset;
  440. ret = read_disk_sb(rdev, MD_SB_BYTES);
  441. if (ret) return ret;
  442. ret = -EINVAL;
  443. bdevname(rdev->bdev, b);
  444. sb = (mdp_super_t*)page_address(rdev->sb_page);
  445. if (sb->md_magic != MD_SB_MAGIC) {
  446. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  447. b);
  448. goto abort;
  449. }
  450. if (sb->major_version != 0 ||
  451. sb->minor_version != 90) {
  452. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  453. sb->major_version, sb->minor_version,
  454. b);
  455. goto abort;
  456. }
  457. if (sb->raid_disks <= 0)
  458. goto abort;
  459. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  460. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  461. b);
  462. goto abort;
  463. }
  464. rdev->preferred_minor = sb->md_minor;
  465. rdev->data_offset = 0;
  466. rdev->sb_size = MD_SB_BYTES;
  467. if (sb->level == LEVEL_MULTIPATH)
  468. rdev->desc_nr = -1;
  469. else
  470. rdev->desc_nr = sb->this_disk.number;
  471. if (refdev == 0)
  472. ret = 1;
  473. else {
  474. __u64 ev1, ev2;
  475. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  476. if (!uuid_equal(refsb, sb)) {
  477. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  478. b, bdevname(refdev->bdev,b2));
  479. goto abort;
  480. }
  481. if (!sb_equal(refsb, sb)) {
  482. printk(KERN_WARNING "md: %s has same UUID"
  483. " but different superblock to %s\n",
  484. b, bdevname(refdev->bdev, b2));
  485. goto abort;
  486. }
  487. ev1 = md_event(sb);
  488. ev2 = md_event(refsb);
  489. if (ev1 > ev2)
  490. ret = 1;
  491. else
  492. ret = 0;
  493. }
  494. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  495. abort:
  496. return ret;
  497. }
  498. /*
  499. * validate_super for 0.90.0
  500. */
  501. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  502. {
  503. mdp_disk_t *desc;
  504. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  505. rdev->raid_disk = -1;
  506. rdev->in_sync = 0;
  507. if (mddev->raid_disks == 0) {
  508. mddev->major_version = 0;
  509. mddev->minor_version = sb->minor_version;
  510. mddev->patch_version = sb->patch_version;
  511. mddev->persistent = ! sb->not_persistent;
  512. mddev->chunk_size = sb->chunk_size;
  513. mddev->ctime = sb->ctime;
  514. mddev->utime = sb->utime;
  515. mddev->level = sb->level;
  516. mddev->layout = sb->layout;
  517. mddev->raid_disks = sb->raid_disks;
  518. mddev->size = sb->size;
  519. mddev->events = md_event(sb);
  520. mddev->bitmap_offset = 0;
  521. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  522. if (sb->state & (1<<MD_SB_CLEAN))
  523. mddev->recovery_cp = MaxSector;
  524. else {
  525. if (sb->events_hi == sb->cp_events_hi &&
  526. sb->events_lo == sb->cp_events_lo) {
  527. mddev->recovery_cp = sb->recovery_cp;
  528. } else
  529. mddev->recovery_cp = 0;
  530. }
  531. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  532. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  533. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  534. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  535. mddev->max_disks = MD_SB_DISKS;
  536. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  537. mddev->bitmap_file == NULL) {
  538. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  539. /* FIXME use a better test */
  540. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  541. return -EINVAL;
  542. }
  543. mddev->bitmap_offset = mddev->default_bitmap_offset;
  544. }
  545. } else if (mddev->pers == NULL) {
  546. /* Insist on good event counter while assembling */
  547. __u64 ev1 = md_event(sb);
  548. ++ev1;
  549. if (ev1 < mddev->events)
  550. return -EINVAL;
  551. } else if (mddev->bitmap) {
  552. /* if adding to array with a bitmap, then we can accept an
  553. * older device ... but not too old.
  554. */
  555. __u64 ev1 = md_event(sb);
  556. if (ev1 < mddev->bitmap->events_cleared)
  557. return 0;
  558. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  559. return 0;
  560. if (mddev->level != LEVEL_MULTIPATH) {
  561. rdev->faulty = 0;
  562. rdev->flags = 0;
  563. desc = sb->disks + rdev->desc_nr;
  564. if (desc->state & (1<<MD_DISK_FAULTY))
  565. rdev->faulty = 1;
  566. else if (desc->state & (1<<MD_DISK_SYNC) &&
  567. desc->raid_disk < mddev->raid_disks) {
  568. rdev->in_sync = 1;
  569. rdev->raid_disk = desc->raid_disk;
  570. }
  571. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  572. set_bit(WriteMostly, &rdev->flags);
  573. } else /* MULTIPATH are always insync */
  574. rdev->in_sync = 1;
  575. return 0;
  576. }
  577. /*
  578. * sync_super for 0.90.0
  579. */
  580. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  581. {
  582. mdp_super_t *sb;
  583. struct list_head *tmp;
  584. mdk_rdev_t *rdev2;
  585. int next_spare = mddev->raid_disks;
  586. /* make rdev->sb match mddev data..
  587. *
  588. * 1/ zero out disks
  589. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  590. * 3/ any empty disks < next_spare become removed
  591. *
  592. * disks[0] gets initialised to REMOVED because
  593. * we cannot be sure from other fields if it has
  594. * been initialised or not.
  595. */
  596. int i;
  597. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  598. unsigned int fixdesc=0;
  599. rdev->sb_size = MD_SB_BYTES;
  600. sb = (mdp_super_t*)page_address(rdev->sb_page);
  601. memset(sb, 0, sizeof(*sb));
  602. sb->md_magic = MD_SB_MAGIC;
  603. sb->major_version = mddev->major_version;
  604. sb->minor_version = mddev->minor_version;
  605. sb->patch_version = mddev->patch_version;
  606. sb->gvalid_words = 0; /* ignored */
  607. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  608. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  609. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  610. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  611. sb->ctime = mddev->ctime;
  612. sb->level = mddev->level;
  613. sb->size = mddev->size;
  614. sb->raid_disks = mddev->raid_disks;
  615. sb->md_minor = mddev->md_minor;
  616. sb->not_persistent = !mddev->persistent;
  617. sb->utime = mddev->utime;
  618. sb->state = 0;
  619. sb->events_hi = (mddev->events>>32);
  620. sb->events_lo = (u32)mddev->events;
  621. if (mddev->in_sync)
  622. {
  623. sb->recovery_cp = mddev->recovery_cp;
  624. sb->cp_events_hi = (mddev->events>>32);
  625. sb->cp_events_lo = (u32)mddev->events;
  626. if (mddev->recovery_cp == MaxSector)
  627. sb->state = (1<< MD_SB_CLEAN);
  628. } else
  629. sb->recovery_cp = 0;
  630. sb->layout = mddev->layout;
  631. sb->chunk_size = mddev->chunk_size;
  632. if (mddev->bitmap && mddev->bitmap_file == NULL)
  633. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  634. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  635. ITERATE_RDEV(mddev,rdev2,tmp) {
  636. mdp_disk_t *d;
  637. int desc_nr;
  638. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  639. desc_nr = rdev2->raid_disk;
  640. else
  641. desc_nr = next_spare++;
  642. if (desc_nr != rdev2->desc_nr) {
  643. fixdesc |= (1 << desc_nr);
  644. rdev2->desc_nr = desc_nr;
  645. if (rdev2->raid_disk >= 0) {
  646. char nm[20];
  647. sprintf(nm, "rd%d", rdev2->raid_disk);
  648. sysfs_remove_link(&mddev->kobj, nm);
  649. }
  650. sysfs_remove_link(&rdev2->kobj, "block");
  651. kobject_del(&rdev2->kobj);
  652. }
  653. d = &sb->disks[rdev2->desc_nr];
  654. nr_disks++;
  655. d->number = rdev2->desc_nr;
  656. d->major = MAJOR(rdev2->bdev->bd_dev);
  657. d->minor = MINOR(rdev2->bdev->bd_dev);
  658. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  659. d->raid_disk = rdev2->raid_disk;
  660. else
  661. d->raid_disk = rdev2->desc_nr; /* compatibility */
  662. if (rdev2->faulty) {
  663. d->state = (1<<MD_DISK_FAULTY);
  664. failed++;
  665. } else if (rdev2->in_sync) {
  666. d->state = (1<<MD_DISK_ACTIVE);
  667. d->state |= (1<<MD_DISK_SYNC);
  668. active++;
  669. working++;
  670. } else {
  671. d->state = 0;
  672. spare++;
  673. working++;
  674. }
  675. if (test_bit(WriteMostly, &rdev2->flags))
  676. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  677. }
  678. if (fixdesc)
  679. ITERATE_RDEV(mddev,rdev2,tmp)
  680. if (fixdesc & (1<<rdev2->desc_nr)) {
  681. snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
  682. rdev2->desc_nr);
  683. kobject_add(&rdev2->kobj);
  684. sysfs_create_link(&rdev2->kobj,
  685. &rdev2->bdev->bd_disk->kobj,
  686. "block");
  687. if (rdev2->raid_disk >= 0) {
  688. char nm[20];
  689. sprintf(nm, "rd%d", rdev2->raid_disk);
  690. sysfs_create_link(&mddev->kobj,
  691. &rdev2->kobj, nm);
  692. }
  693. }
  694. /* now set the "removed" and "faulty" bits on any missing devices */
  695. for (i=0 ; i < mddev->raid_disks ; i++) {
  696. mdp_disk_t *d = &sb->disks[i];
  697. if (d->state == 0 && d->number == 0) {
  698. d->number = i;
  699. d->raid_disk = i;
  700. d->state = (1<<MD_DISK_REMOVED);
  701. d->state |= (1<<MD_DISK_FAULTY);
  702. failed++;
  703. }
  704. }
  705. sb->nr_disks = nr_disks;
  706. sb->active_disks = active;
  707. sb->working_disks = working;
  708. sb->failed_disks = failed;
  709. sb->spare_disks = spare;
  710. sb->this_disk = sb->disks[rdev->desc_nr];
  711. sb->sb_csum = calc_sb_csum(sb);
  712. }
  713. /*
  714. * version 1 superblock
  715. */
  716. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  717. {
  718. unsigned int disk_csum, csum;
  719. unsigned long long newcsum;
  720. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  721. unsigned int *isuper = (unsigned int*)sb;
  722. int i;
  723. disk_csum = sb->sb_csum;
  724. sb->sb_csum = 0;
  725. newcsum = 0;
  726. for (i=0; size>=4; size -= 4 )
  727. newcsum += le32_to_cpu(*isuper++);
  728. if (size == 2)
  729. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  730. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  731. sb->sb_csum = disk_csum;
  732. return cpu_to_le32(csum);
  733. }
  734. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  735. {
  736. struct mdp_superblock_1 *sb;
  737. int ret;
  738. sector_t sb_offset;
  739. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  740. int bmask;
  741. /*
  742. * Calculate the position of the superblock.
  743. * It is always aligned to a 4K boundary and
  744. * depeding on minor_version, it can be:
  745. * 0: At least 8K, but less than 12K, from end of device
  746. * 1: At start of device
  747. * 2: 4K from start of device.
  748. */
  749. switch(minor_version) {
  750. case 0:
  751. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  752. sb_offset -= 8*2;
  753. sb_offset &= ~(sector_t)(4*2-1);
  754. /* convert from sectors to K */
  755. sb_offset /= 2;
  756. break;
  757. case 1:
  758. sb_offset = 0;
  759. break;
  760. case 2:
  761. sb_offset = 4;
  762. break;
  763. default:
  764. return -EINVAL;
  765. }
  766. rdev->sb_offset = sb_offset;
  767. /* superblock is rarely larger than 1K, but it can be larger,
  768. * and it is safe to read 4k, so we do that
  769. */
  770. ret = read_disk_sb(rdev, 4096);
  771. if (ret) return ret;
  772. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  773. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  774. sb->major_version != cpu_to_le32(1) ||
  775. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  776. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  777. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  778. return -EINVAL;
  779. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  780. printk("md: invalid superblock checksum on %s\n",
  781. bdevname(rdev->bdev,b));
  782. return -EINVAL;
  783. }
  784. if (le64_to_cpu(sb->data_size) < 10) {
  785. printk("md: data_size too small on %s\n",
  786. bdevname(rdev->bdev,b));
  787. return -EINVAL;
  788. }
  789. rdev->preferred_minor = 0xffff;
  790. rdev->data_offset = le64_to_cpu(sb->data_offset);
  791. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  792. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  793. if (rdev->sb_size & bmask)
  794. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  795. if (refdev == 0)
  796. return 1;
  797. else {
  798. __u64 ev1, ev2;
  799. struct mdp_superblock_1 *refsb =
  800. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  801. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  802. sb->level != refsb->level ||
  803. sb->layout != refsb->layout ||
  804. sb->chunksize != refsb->chunksize) {
  805. printk(KERN_WARNING "md: %s has strangely different"
  806. " superblock to %s\n",
  807. bdevname(rdev->bdev,b),
  808. bdevname(refdev->bdev,b2));
  809. return -EINVAL;
  810. }
  811. ev1 = le64_to_cpu(sb->events);
  812. ev2 = le64_to_cpu(refsb->events);
  813. if (ev1 > ev2)
  814. return 1;
  815. }
  816. if (minor_version)
  817. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  818. else
  819. rdev->size = rdev->sb_offset;
  820. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  821. return -EINVAL;
  822. rdev->size = le64_to_cpu(sb->data_size)/2;
  823. if (le32_to_cpu(sb->chunksize))
  824. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  825. return 0;
  826. }
  827. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  828. {
  829. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  830. rdev->raid_disk = -1;
  831. rdev->in_sync = 0;
  832. if (mddev->raid_disks == 0) {
  833. mddev->major_version = 1;
  834. mddev->patch_version = 0;
  835. mddev->persistent = 1;
  836. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  837. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  838. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  839. mddev->level = le32_to_cpu(sb->level);
  840. mddev->layout = le32_to_cpu(sb->layout);
  841. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  842. mddev->size = le64_to_cpu(sb->size)/2;
  843. mddev->events = le64_to_cpu(sb->events);
  844. mddev->bitmap_offset = 0;
  845. mddev->default_bitmap_offset = 0;
  846. mddev->default_bitmap_offset = 1024;
  847. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  848. memcpy(mddev->uuid, sb->set_uuid, 16);
  849. mddev->max_disks = (4096-256)/2;
  850. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  851. mddev->bitmap_file == NULL ) {
  852. if (mddev->level != 1) {
  853. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  854. return -EINVAL;
  855. }
  856. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  857. }
  858. } else if (mddev->pers == NULL) {
  859. /* Insist of good event counter while assembling */
  860. __u64 ev1 = le64_to_cpu(sb->events);
  861. ++ev1;
  862. if (ev1 < mddev->events)
  863. return -EINVAL;
  864. } else if (mddev->bitmap) {
  865. /* If adding to array with a bitmap, then we can accept an
  866. * older device, but not too old.
  867. */
  868. __u64 ev1 = le64_to_cpu(sb->events);
  869. if (ev1 < mddev->bitmap->events_cleared)
  870. return 0;
  871. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  872. return 0;
  873. if (mddev->level != LEVEL_MULTIPATH) {
  874. int role;
  875. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  876. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  877. switch(role) {
  878. case 0xffff: /* spare */
  879. rdev->faulty = 0;
  880. break;
  881. case 0xfffe: /* faulty */
  882. rdev->faulty = 1;
  883. break;
  884. default:
  885. rdev->in_sync = 1;
  886. rdev->faulty = 0;
  887. rdev->raid_disk = role;
  888. break;
  889. }
  890. rdev->flags = 0;
  891. if (sb->devflags & WriteMostly1)
  892. set_bit(WriteMostly, &rdev->flags);
  893. } else /* MULTIPATH are always insync */
  894. rdev->in_sync = 1;
  895. return 0;
  896. }
  897. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  898. {
  899. struct mdp_superblock_1 *sb;
  900. struct list_head *tmp;
  901. mdk_rdev_t *rdev2;
  902. int max_dev, i;
  903. /* make rdev->sb match mddev and rdev data. */
  904. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  905. sb->feature_map = 0;
  906. sb->pad0 = 0;
  907. memset(sb->pad1, 0, sizeof(sb->pad1));
  908. memset(sb->pad2, 0, sizeof(sb->pad2));
  909. memset(sb->pad3, 0, sizeof(sb->pad3));
  910. sb->utime = cpu_to_le64((__u64)mddev->utime);
  911. sb->events = cpu_to_le64(mddev->events);
  912. if (mddev->in_sync)
  913. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  914. else
  915. sb->resync_offset = cpu_to_le64(0);
  916. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  917. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  918. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  919. }
  920. max_dev = 0;
  921. ITERATE_RDEV(mddev,rdev2,tmp)
  922. if (rdev2->desc_nr+1 > max_dev)
  923. max_dev = rdev2->desc_nr+1;
  924. sb->max_dev = cpu_to_le32(max_dev);
  925. for (i=0; i<max_dev;i++)
  926. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  927. ITERATE_RDEV(mddev,rdev2,tmp) {
  928. i = rdev2->desc_nr;
  929. if (rdev2->faulty)
  930. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  931. else if (rdev2->in_sync)
  932. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  933. else
  934. sb->dev_roles[i] = cpu_to_le16(0xffff);
  935. }
  936. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  937. sb->sb_csum = calc_sb_1_csum(sb);
  938. }
  939. static struct super_type super_types[] = {
  940. [0] = {
  941. .name = "0.90.0",
  942. .owner = THIS_MODULE,
  943. .load_super = super_90_load,
  944. .validate_super = super_90_validate,
  945. .sync_super = super_90_sync,
  946. },
  947. [1] = {
  948. .name = "md-1",
  949. .owner = THIS_MODULE,
  950. .load_super = super_1_load,
  951. .validate_super = super_1_validate,
  952. .sync_super = super_1_sync,
  953. },
  954. };
  955. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  956. {
  957. struct list_head *tmp;
  958. mdk_rdev_t *rdev;
  959. ITERATE_RDEV(mddev,rdev,tmp)
  960. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  961. return rdev;
  962. return NULL;
  963. }
  964. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  965. {
  966. struct list_head *tmp;
  967. mdk_rdev_t *rdev;
  968. ITERATE_RDEV(mddev1,rdev,tmp)
  969. if (match_dev_unit(mddev2, rdev))
  970. return 1;
  971. return 0;
  972. }
  973. static LIST_HEAD(pending_raid_disks);
  974. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  975. {
  976. mdk_rdev_t *same_pdev;
  977. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  978. if (rdev->mddev) {
  979. MD_BUG();
  980. return -EINVAL;
  981. }
  982. same_pdev = match_dev_unit(mddev, rdev);
  983. if (same_pdev)
  984. printk(KERN_WARNING
  985. "%s: WARNING: %s appears to be on the same physical"
  986. " disk as %s. True\n protection against single-disk"
  987. " failure might be compromised.\n",
  988. mdname(mddev), bdevname(rdev->bdev,b),
  989. bdevname(same_pdev->bdev,b2));
  990. /* Verify rdev->desc_nr is unique.
  991. * If it is -1, assign a free number, else
  992. * check number is not in use
  993. */
  994. if (rdev->desc_nr < 0) {
  995. int choice = 0;
  996. if (mddev->pers) choice = mddev->raid_disks;
  997. while (find_rdev_nr(mddev, choice))
  998. choice++;
  999. rdev->desc_nr = choice;
  1000. } else {
  1001. if (find_rdev_nr(mddev, rdev->desc_nr))
  1002. return -EBUSY;
  1003. }
  1004. list_add(&rdev->same_set, &mddev->disks);
  1005. rdev->mddev = mddev;
  1006. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  1007. rdev->kobj.k_name = NULL;
  1008. snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
  1009. rdev->kobj.parent = kobject_get(&mddev->kobj);
  1010. kobject_add(&rdev->kobj);
  1011. sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
  1012. return 0;
  1013. }
  1014. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1015. {
  1016. char b[BDEVNAME_SIZE];
  1017. if (!rdev->mddev) {
  1018. MD_BUG();
  1019. return;
  1020. }
  1021. list_del_init(&rdev->same_set);
  1022. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1023. rdev->mddev = NULL;
  1024. sysfs_remove_link(&rdev->kobj, "block");
  1025. kobject_del(&rdev->kobj);
  1026. }
  1027. /*
  1028. * prevent the device from being mounted, repartitioned or
  1029. * otherwise reused by a RAID array (or any other kernel
  1030. * subsystem), by bd_claiming the device.
  1031. */
  1032. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1033. {
  1034. int err = 0;
  1035. struct block_device *bdev;
  1036. char b[BDEVNAME_SIZE];
  1037. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1038. if (IS_ERR(bdev)) {
  1039. printk(KERN_ERR "md: could not open %s.\n",
  1040. __bdevname(dev, b));
  1041. return PTR_ERR(bdev);
  1042. }
  1043. err = bd_claim(bdev, rdev);
  1044. if (err) {
  1045. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1046. bdevname(bdev, b));
  1047. blkdev_put(bdev);
  1048. return err;
  1049. }
  1050. rdev->bdev = bdev;
  1051. return err;
  1052. }
  1053. static void unlock_rdev(mdk_rdev_t *rdev)
  1054. {
  1055. struct block_device *bdev = rdev->bdev;
  1056. rdev->bdev = NULL;
  1057. if (!bdev)
  1058. MD_BUG();
  1059. bd_release(bdev);
  1060. blkdev_put(bdev);
  1061. }
  1062. void md_autodetect_dev(dev_t dev);
  1063. static void export_rdev(mdk_rdev_t * rdev)
  1064. {
  1065. char b[BDEVNAME_SIZE];
  1066. printk(KERN_INFO "md: export_rdev(%s)\n",
  1067. bdevname(rdev->bdev,b));
  1068. if (rdev->mddev)
  1069. MD_BUG();
  1070. free_disk_sb(rdev);
  1071. list_del_init(&rdev->same_set);
  1072. #ifndef MODULE
  1073. md_autodetect_dev(rdev->bdev->bd_dev);
  1074. #endif
  1075. unlock_rdev(rdev);
  1076. kobject_put(&rdev->kobj);
  1077. }
  1078. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1079. {
  1080. unbind_rdev_from_array(rdev);
  1081. export_rdev(rdev);
  1082. }
  1083. static void export_array(mddev_t *mddev)
  1084. {
  1085. struct list_head *tmp;
  1086. mdk_rdev_t *rdev;
  1087. ITERATE_RDEV(mddev,rdev,tmp) {
  1088. if (!rdev->mddev) {
  1089. MD_BUG();
  1090. continue;
  1091. }
  1092. kick_rdev_from_array(rdev);
  1093. }
  1094. if (!list_empty(&mddev->disks))
  1095. MD_BUG();
  1096. mddev->raid_disks = 0;
  1097. mddev->major_version = 0;
  1098. }
  1099. static void print_desc(mdp_disk_t *desc)
  1100. {
  1101. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1102. desc->major,desc->minor,desc->raid_disk,desc->state);
  1103. }
  1104. static void print_sb(mdp_super_t *sb)
  1105. {
  1106. int i;
  1107. printk(KERN_INFO
  1108. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1109. sb->major_version, sb->minor_version, sb->patch_version,
  1110. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1111. sb->ctime);
  1112. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1113. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1114. sb->md_minor, sb->layout, sb->chunk_size);
  1115. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1116. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1117. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1118. sb->failed_disks, sb->spare_disks,
  1119. sb->sb_csum, (unsigned long)sb->events_lo);
  1120. printk(KERN_INFO);
  1121. for (i = 0; i < MD_SB_DISKS; i++) {
  1122. mdp_disk_t *desc;
  1123. desc = sb->disks + i;
  1124. if (desc->number || desc->major || desc->minor ||
  1125. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1126. printk(" D %2d: ", i);
  1127. print_desc(desc);
  1128. }
  1129. }
  1130. printk(KERN_INFO "md: THIS: ");
  1131. print_desc(&sb->this_disk);
  1132. }
  1133. static void print_rdev(mdk_rdev_t *rdev)
  1134. {
  1135. char b[BDEVNAME_SIZE];
  1136. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1137. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1138. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1139. if (rdev->sb_loaded) {
  1140. printk(KERN_INFO "md: rdev superblock:\n");
  1141. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1142. } else
  1143. printk(KERN_INFO "md: no rdev superblock!\n");
  1144. }
  1145. void md_print_devices(void)
  1146. {
  1147. struct list_head *tmp, *tmp2;
  1148. mdk_rdev_t *rdev;
  1149. mddev_t *mddev;
  1150. char b[BDEVNAME_SIZE];
  1151. printk("\n");
  1152. printk("md: **********************************\n");
  1153. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1154. printk("md: **********************************\n");
  1155. ITERATE_MDDEV(mddev,tmp) {
  1156. if (mddev->bitmap)
  1157. bitmap_print_sb(mddev->bitmap);
  1158. else
  1159. printk("%s: ", mdname(mddev));
  1160. ITERATE_RDEV(mddev,rdev,tmp2)
  1161. printk("<%s>", bdevname(rdev->bdev,b));
  1162. printk("\n");
  1163. ITERATE_RDEV(mddev,rdev,tmp2)
  1164. print_rdev(rdev);
  1165. }
  1166. printk("md: **********************************\n");
  1167. printk("\n");
  1168. }
  1169. static void sync_sbs(mddev_t * mddev)
  1170. {
  1171. mdk_rdev_t *rdev;
  1172. struct list_head *tmp;
  1173. ITERATE_RDEV(mddev,rdev,tmp) {
  1174. super_types[mddev->major_version].
  1175. sync_super(mddev, rdev);
  1176. rdev->sb_loaded = 1;
  1177. }
  1178. }
  1179. static void md_update_sb(mddev_t * mddev)
  1180. {
  1181. int err;
  1182. struct list_head *tmp;
  1183. mdk_rdev_t *rdev;
  1184. int sync_req;
  1185. repeat:
  1186. spin_lock(&mddev->write_lock);
  1187. sync_req = mddev->in_sync;
  1188. mddev->utime = get_seconds();
  1189. mddev->events ++;
  1190. if (!mddev->events) {
  1191. /*
  1192. * oops, this 64-bit counter should never wrap.
  1193. * Either we are in around ~1 trillion A.C., assuming
  1194. * 1 reboot per second, or we have a bug:
  1195. */
  1196. MD_BUG();
  1197. mddev->events --;
  1198. }
  1199. mddev->sb_dirty = 2;
  1200. sync_sbs(mddev);
  1201. /*
  1202. * do not write anything to disk if using
  1203. * nonpersistent superblocks
  1204. */
  1205. if (!mddev->persistent) {
  1206. mddev->sb_dirty = 0;
  1207. spin_unlock(&mddev->write_lock);
  1208. wake_up(&mddev->sb_wait);
  1209. return;
  1210. }
  1211. spin_unlock(&mddev->write_lock);
  1212. dprintk(KERN_INFO
  1213. "md: updating %s RAID superblock on device (in sync %d)\n",
  1214. mdname(mddev),mddev->in_sync);
  1215. err = bitmap_update_sb(mddev->bitmap);
  1216. ITERATE_RDEV(mddev,rdev,tmp) {
  1217. char b[BDEVNAME_SIZE];
  1218. dprintk(KERN_INFO "md: ");
  1219. if (rdev->faulty)
  1220. dprintk("(skipping faulty ");
  1221. dprintk("%s ", bdevname(rdev->bdev,b));
  1222. if (!rdev->faulty) {
  1223. md_super_write(mddev,rdev,
  1224. rdev->sb_offset<<1, rdev->sb_size,
  1225. rdev->sb_page);
  1226. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1227. bdevname(rdev->bdev,b),
  1228. (unsigned long long)rdev->sb_offset);
  1229. } else
  1230. dprintk(")\n");
  1231. if (mddev->level == LEVEL_MULTIPATH)
  1232. /* only need to write one superblock... */
  1233. break;
  1234. }
  1235. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1236. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1237. spin_lock(&mddev->write_lock);
  1238. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1239. /* have to write it out again */
  1240. spin_unlock(&mddev->write_lock);
  1241. goto repeat;
  1242. }
  1243. mddev->sb_dirty = 0;
  1244. spin_unlock(&mddev->write_lock);
  1245. wake_up(&mddev->sb_wait);
  1246. }
  1247. struct rdev_sysfs_entry {
  1248. struct attribute attr;
  1249. ssize_t (*show)(mdk_rdev_t *, char *);
  1250. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1251. };
  1252. static ssize_t
  1253. rdev_show_state(mdk_rdev_t *rdev, char *page)
  1254. {
  1255. char *sep = "";
  1256. int len=0;
  1257. if (rdev->faulty) {
  1258. len+= sprintf(page+len, "%sfaulty",sep);
  1259. sep = ",";
  1260. }
  1261. if (rdev->in_sync) {
  1262. len += sprintf(page+len, "%sin_sync",sep);
  1263. sep = ",";
  1264. }
  1265. if (!rdev->faulty && !rdev->in_sync) {
  1266. len += sprintf(page+len, "%sspare", sep);
  1267. sep = ",";
  1268. }
  1269. return len+sprintf(page+len, "\n");
  1270. }
  1271. static struct rdev_sysfs_entry rdev_state = {
  1272. .attr = {.name = "state", .mode = S_IRUGO },
  1273. .show = rdev_show_state,
  1274. };
  1275. static ssize_t
  1276. rdev_show_super(mdk_rdev_t *rdev, char *page)
  1277. {
  1278. if (rdev->sb_loaded && rdev->sb_size) {
  1279. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1280. return rdev->sb_size;
  1281. } else
  1282. return 0;
  1283. }
  1284. static struct rdev_sysfs_entry rdev_super = {
  1285. .attr = {.name = "super", .mode = S_IRUGO },
  1286. .show = rdev_show_super,
  1287. };
  1288. static struct attribute *rdev_default_attrs[] = {
  1289. &rdev_state.attr,
  1290. &rdev_super.attr,
  1291. NULL,
  1292. };
  1293. static ssize_t
  1294. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1295. {
  1296. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1297. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1298. if (!entry->show)
  1299. return -EIO;
  1300. return entry->show(rdev, page);
  1301. }
  1302. static ssize_t
  1303. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1304. const char *page, size_t length)
  1305. {
  1306. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1307. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1308. if (!entry->store)
  1309. return -EIO;
  1310. return entry->store(rdev, page, length);
  1311. }
  1312. static void rdev_free(struct kobject *ko)
  1313. {
  1314. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1315. kfree(rdev);
  1316. }
  1317. static struct sysfs_ops rdev_sysfs_ops = {
  1318. .show = rdev_attr_show,
  1319. .store = rdev_attr_store,
  1320. };
  1321. static struct kobj_type rdev_ktype = {
  1322. .release = rdev_free,
  1323. .sysfs_ops = &rdev_sysfs_ops,
  1324. .default_attrs = rdev_default_attrs,
  1325. };
  1326. /*
  1327. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1328. *
  1329. * mark the device faulty if:
  1330. *
  1331. * - the device is nonexistent (zero size)
  1332. * - the device has no valid superblock
  1333. *
  1334. * a faulty rdev _never_ has rdev->sb set.
  1335. */
  1336. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1337. {
  1338. char b[BDEVNAME_SIZE];
  1339. int err;
  1340. mdk_rdev_t *rdev;
  1341. sector_t size;
  1342. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1343. if (!rdev) {
  1344. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1345. return ERR_PTR(-ENOMEM);
  1346. }
  1347. memset(rdev, 0, sizeof(*rdev));
  1348. if ((err = alloc_disk_sb(rdev)))
  1349. goto abort_free;
  1350. err = lock_rdev(rdev, newdev);
  1351. if (err)
  1352. goto abort_free;
  1353. rdev->kobj.parent = NULL;
  1354. rdev->kobj.ktype = &rdev_ktype;
  1355. kobject_init(&rdev->kobj);
  1356. rdev->desc_nr = -1;
  1357. rdev->faulty = 0;
  1358. rdev->in_sync = 0;
  1359. rdev->data_offset = 0;
  1360. atomic_set(&rdev->nr_pending, 0);
  1361. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1362. if (!size) {
  1363. printk(KERN_WARNING
  1364. "md: %s has zero or unknown size, marking faulty!\n",
  1365. bdevname(rdev->bdev,b));
  1366. err = -EINVAL;
  1367. goto abort_free;
  1368. }
  1369. if (super_format >= 0) {
  1370. err = super_types[super_format].
  1371. load_super(rdev, NULL, super_minor);
  1372. if (err == -EINVAL) {
  1373. printk(KERN_WARNING
  1374. "md: %s has invalid sb, not importing!\n",
  1375. bdevname(rdev->bdev,b));
  1376. goto abort_free;
  1377. }
  1378. if (err < 0) {
  1379. printk(KERN_WARNING
  1380. "md: could not read %s's sb, not importing!\n",
  1381. bdevname(rdev->bdev,b));
  1382. goto abort_free;
  1383. }
  1384. }
  1385. INIT_LIST_HEAD(&rdev->same_set);
  1386. return rdev;
  1387. abort_free:
  1388. if (rdev->sb_page) {
  1389. if (rdev->bdev)
  1390. unlock_rdev(rdev);
  1391. free_disk_sb(rdev);
  1392. }
  1393. kfree(rdev);
  1394. return ERR_PTR(err);
  1395. }
  1396. /*
  1397. * Check a full RAID array for plausibility
  1398. */
  1399. static void analyze_sbs(mddev_t * mddev)
  1400. {
  1401. int i;
  1402. struct list_head *tmp;
  1403. mdk_rdev_t *rdev, *freshest;
  1404. char b[BDEVNAME_SIZE];
  1405. freshest = NULL;
  1406. ITERATE_RDEV(mddev,rdev,tmp)
  1407. switch (super_types[mddev->major_version].
  1408. load_super(rdev, freshest, mddev->minor_version)) {
  1409. case 1:
  1410. freshest = rdev;
  1411. break;
  1412. case 0:
  1413. break;
  1414. default:
  1415. printk( KERN_ERR \
  1416. "md: fatal superblock inconsistency in %s"
  1417. " -- removing from array\n",
  1418. bdevname(rdev->bdev,b));
  1419. kick_rdev_from_array(rdev);
  1420. }
  1421. super_types[mddev->major_version].
  1422. validate_super(mddev, freshest);
  1423. i = 0;
  1424. ITERATE_RDEV(mddev,rdev,tmp) {
  1425. if (rdev != freshest)
  1426. if (super_types[mddev->major_version].
  1427. validate_super(mddev, rdev)) {
  1428. printk(KERN_WARNING "md: kicking non-fresh %s"
  1429. " from array!\n",
  1430. bdevname(rdev->bdev,b));
  1431. kick_rdev_from_array(rdev);
  1432. continue;
  1433. }
  1434. if (mddev->level == LEVEL_MULTIPATH) {
  1435. rdev->desc_nr = i++;
  1436. rdev->raid_disk = rdev->desc_nr;
  1437. rdev->in_sync = 1;
  1438. }
  1439. }
  1440. if (mddev->recovery_cp != MaxSector &&
  1441. mddev->level >= 1)
  1442. printk(KERN_ERR "md: %s: raid array is not clean"
  1443. " -- starting background reconstruction\n",
  1444. mdname(mddev));
  1445. }
  1446. struct md_sysfs_entry {
  1447. struct attribute attr;
  1448. ssize_t (*show)(mddev_t *, char *);
  1449. ssize_t (*store)(mddev_t *, const char *, size_t);
  1450. };
  1451. static ssize_t
  1452. md_show_level(mddev_t *mddev, char *page)
  1453. {
  1454. mdk_personality_t *p = mddev->pers;
  1455. if (p == NULL)
  1456. return 0;
  1457. if (mddev->level >= 0)
  1458. return sprintf(page, "RAID-%d\n", mddev->level);
  1459. else
  1460. return sprintf(page, "%s\n", p->name);
  1461. }
  1462. static struct md_sysfs_entry md_level = {
  1463. .attr = {.name = "level", .mode = S_IRUGO },
  1464. .show = md_show_level,
  1465. };
  1466. static ssize_t
  1467. md_show_rdisks(mddev_t *mddev, char *page)
  1468. {
  1469. return sprintf(page, "%d\n", mddev->raid_disks);
  1470. }
  1471. static struct md_sysfs_entry md_raid_disks = {
  1472. .attr = {.name = "raid_disks", .mode = S_IRUGO },
  1473. .show = md_show_rdisks,
  1474. };
  1475. static ssize_t
  1476. md_show_scan(mddev_t *mddev, char *page)
  1477. {
  1478. char *type = "none";
  1479. if (mddev->recovery &
  1480. ((1<<MD_RECOVERY_RUNNING) || (1<<MD_RECOVERY_NEEDED))) {
  1481. if (mddev->recovery & (1<<MD_RECOVERY_SYNC)) {
  1482. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1483. type = "resync";
  1484. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1485. type = "check";
  1486. else
  1487. type = "repair";
  1488. } else
  1489. type = "recover";
  1490. }
  1491. return sprintf(page, "%s\n", type);
  1492. }
  1493. static ssize_t
  1494. md_store_scan(mddev_t *mddev, const char *page, size_t len)
  1495. {
  1496. int canscan=0;
  1497. if (mddev->recovery &
  1498. ((1<<MD_RECOVERY_RUNNING) || (1<<MD_RECOVERY_NEEDED)))
  1499. return -EBUSY;
  1500. down(&mddev->reconfig_sem);
  1501. if (mddev->pers && mddev->pers->sync_request)
  1502. canscan=1;
  1503. up(&mddev->reconfig_sem);
  1504. if (!canscan)
  1505. return -EINVAL;
  1506. if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
  1507. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1508. else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
  1509. return -EINVAL;
  1510. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1511. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1512. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1513. md_wakeup_thread(mddev->thread);
  1514. return len;
  1515. }
  1516. static ssize_t
  1517. md_show_mismatch(mddev_t *mddev, char *page)
  1518. {
  1519. return sprintf(page, "%llu\n",
  1520. (unsigned long long) mddev->resync_mismatches);
  1521. }
  1522. static struct md_sysfs_entry md_scan_mode = {
  1523. .attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
  1524. .show = md_show_scan,
  1525. .store = md_store_scan,
  1526. };
  1527. static struct md_sysfs_entry md_mismatches = {
  1528. .attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
  1529. .show = md_show_mismatch,
  1530. };
  1531. static struct attribute *md_default_attrs[] = {
  1532. &md_level.attr,
  1533. &md_raid_disks.attr,
  1534. &md_scan_mode.attr,
  1535. &md_mismatches.attr,
  1536. NULL,
  1537. };
  1538. static ssize_t
  1539. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1540. {
  1541. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1542. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1543. if (!entry->show)
  1544. return -EIO;
  1545. return entry->show(mddev, page);
  1546. }
  1547. static ssize_t
  1548. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1549. const char *page, size_t length)
  1550. {
  1551. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1552. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1553. if (!entry->store)
  1554. return -EIO;
  1555. return entry->store(mddev, page, length);
  1556. }
  1557. static void md_free(struct kobject *ko)
  1558. {
  1559. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1560. kfree(mddev);
  1561. }
  1562. static struct sysfs_ops md_sysfs_ops = {
  1563. .show = md_attr_show,
  1564. .store = md_attr_store,
  1565. };
  1566. static struct kobj_type md_ktype = {
  1567. .release = md_free,
  1568. .sysfs_ops = &md_sysfs_ops,
  1569. .default_attrs = md_default_attrs,
  1570. };
  1571. int mdp_major = 0;
  1572. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1573. {
  1574. static DECLARE_MUTEX(disks_sem);
  1575. mddev_t *mddev = mddev_find(dev);
  1576. struct gendisk *disk;
  1577. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1578. int shift = partitioned ? MdpMinorShift : 0;
  1579. int unit = MINOR(dev) >> shift;
  1580. if (!mddev)
  1581. return NULL;
  1582. down(&disks_sem);
  1583. if (mddev->gendisk) {
  1584. up(&disks_sem);
  1585. mddev_put(mddev);
  1586. return NULL;
  1587. }
  1588. disk = alloc_disk(1 << shift);
  1589. if (!disk) {
  1590. up(&disks_sem);
  1591. mddev_put(mddev);
  1592. return NULL;
  1593. }
  1594. disk->major = MAJOR(dev);
  1595. disk->first_minor = unit << shift;
  1596. if (partitioned) {
  1597. sprintf(disk->disk_name, "md_d%d", unit);
  1598. sprintf(disk->devfs_name, "md/d%d", unit);
  1599. } else {
  1600. sprintf(disk->disk_name, "md%d", unit);
  1601. sprintf(disk->devfs_name, "md/%d", unit);
  1602. }
  1603. disk->fops = &md_fops;
  1604. disk->private_data = mddev;
  1605. disk->queue = mddev->queue;
  1606. add_disk(disk);
  1607. mddev->gendisk = disk;
  1608. up(&disks_sem);
  1609. mddev->kobj.parent = kobject_get(&disk->kobj);
  1610. mddev->kobj.k_name = NULL;
  1611. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1612. mddev->kobj.ktype = &md_ktype;
  1613. kobject_register(&mddev->kobj);
  1614. return NULL;
  1615. }
  1616. void md_wakeup_thread(mdk_thread_t *thread);
  1617. static void md_safemode_timeout(unsigned long data)
  1618. {
  1619. mddev_t *mddev = (mddev_t *) data;
  1620. mddev->safemode = 1;
  1621. md_wakeup_thread(mddev->thread);
  1622. }
  1623. static int do_md_run(mddev_t * mddev)
  1624. {
  1625. int pnum, err;
  1626. int chunk_size;
  1627. struct list_head *tmp;
  1628. mdk_rdev_t *rdev;
  1629. struct gendisk *disk;
  1630. char b[BDEVNAME_SIZE];
  1631. if (list_empty(&mddev->disks))
  1632. /* cannot run an array with no devices.. */
  1633. return -EINVAL;
  1634. if (mddev->pers)
  1635. return -EBUSY;
  1636. /*
  1637. * Analyze all RAID superblock(s)
  1638. */
  1639. if (!mddev->raid_disks)
  1640. analyze_sbs(mddev);
  1641. chunk_size = mddev->chunk_size;
  1642. pnum = level_to_pers(mddev->level);
  1643. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1644. if (!chunk_size) {
  1645. /*
  1646. * 'default chunksize' in the old md code used to
  1647. * be PAGE_SIZE, baaad.
  1648. * we abort here to be on the safe side. We don't
  1649. * want to continue the bad practice.
  1650. */
  1651. printk(KERN_ERR
  1652. "no chunksize specified, see 'man raidtab'\n");
  1653. return -EINVAL;
  1654. }
  1655. if (chunk_size > MAX_CHUNK_SIZE) {
  1656. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1657. chunk_size, MAX_CHUNK_SIZE);
  1658. return -EINVAL;
  1659. }
  1660. /*
  1661. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1662. */
  1663. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1664. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1665. return -EINVAL;
  1666. }
  1667. if (chunk_size < PAGE_SIZE) {
  1668. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1669. chunk_size, PAGE_SIZE);
  1670. return -EINVAL;
  1671. }
  1672. /* devices must have minimum size of one chunk */
  1673. ITERATE_RDEV(mddev,rdev,tmp) {
  1674. if (rdev->faulty)
  1675. continue;
  1676. if (rdev->size < chunk_size / 1024) {
  1677. printk(KERN_WARNING
  1678. "md: Dev %s smaller than chunk_size:"
  1679. " %lluk < %dk\n",
  1680. bdevname(rdev->bdev,b),
  1681. (unsigned long long)rdev->size,
  1682. chunk_size / 1024);
  1683. return -EINVAL;
  1684. }
  1685. }
  1686. }
  1687. #ifdef CONFIG_KMOD
  1688. if (!pers[pnum])
  1689. {
  1690. request_module("md-personality-%d", pnum);
  1691. }
  1692. #endif
  1693. /*
  1694. * Drop all container device buffers, from now on
  1695. * the only valid external interface is through the md
  1696. * device.
  1697. * Also find largest hardsector size
  1698. */
  1699. ITERATE_RDEV(mddev,rdev,tmp) {
  1700. if (rdev->faulty)
  1701. continue;
  1702. sync_blockdev(rdev->bdev);
  1703. invalidate_bdev(rdev->bdev, 0);
  1704. }
  1705. md_probe(mddev->unit, NULL, NULL);
  1706. disk = mddev->gendisk;
  1707. if (!disk)
  1708. return -ENOMEM;
  1709. spin_lock(&pers_lock);
  1710. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1711. spin_unlock(&pers_lock);
  1712. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1713. pnum);
  1714. return -EINVAL;
  1715. }
  1716. mddev->pers = pers[pnum];
  1717. spin_unlock(&pers_lock);
  1718. mddev->recovery = 0;
  1719. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1720. /* before we start the array running, initialise the bitmap */
  1721. err = bitmap_create(mddev);
  1722. if (err)
  1723. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1724. mdname(mddev), err);
  1725. else
  1726. err = mddev->pers->run(mddev);
  1727. if (err) {
  1728. printk(KERN_ERR "md: pers->run() failed ...\n");
  1729. module_put(mddev->pers->owner);
  1730. mddev->pers = NULL;
  1731. bitmap_destroy(mddev);
  1732. return err;
  1733. }
  1734. atomic_set(&mddev->writes_pending,0);
  1735. mddev->safemode = 0;
  1736. mddev->safemode_timer.function = md_safemode_timeout;
  1737. mddev->safemode_timer.data = (unsigned long) mddev;
  1738. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1739. mddev->in_sync = 1;
  1740. ITERATE_RDEV(mddev,rdev,tmp)
  1741. if (rdev->raid_disk >= 0) {
  1742. char nm[20];
  1743. sprintf(nm, "rd%d", rdev->raid_disk);
  1744. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1745. }
  1746. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1747. md_wakeup_thread(mddev->thread);
  1748. if (mddev->sb_dirty)
  1749. md_update_sb(mddev);
  1750. set_capacity(disk, mddev->array_size<<1);
  1751. /* If we call blk_queue_make_request here, it will
  1752. * re-initialise max_sectors etc which may have been
  1753. * refined inside -> run. So just set the bits we need to set.
  1754. * Most initialisation happended when we called
  1755. * blk_queue_make_request(..., md_fail_request)
  1756. * earlier.
  1757. */
  1758. mddev->queue->queuedata = mddev;
  1759. mddev->queue->make_request_fn = mddev->pers->make_request;
  1760. mddev->changed = 1;
  1761. return 0;
  1762. }
  1763. static int restart_array(mddev_t *mddev)
  1764. {
  1765. struct gendisk *disk = mddev->gendisk;
  1766. int err;
  1767. /*
  1768. * Complain if it has no devices
  1769. */
  1770. err = -ENXIO;
  1771. if (list_empty(&mddev->disks))
  1772. goto out;
  1773. if (mddev->pers) {
  1774. err = -EBUSY;
  1775. if (!mddev->ro)
  1776. goto out;
  1777. mddev->safemode = 0;
  1778. mddev->ro = 0;
  1779. set_disk_ro(disk, 0);
  1780. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1781. mdname(mddev));
  1782. /*
  1783. * Kick recovery or resync if necessary
  1784. */
  1785. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1786. md_wakeup_thread(mddev->thread);
  1787. err = 0;
  1788. } else {
  1789. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1790. mdname(mddev));
  1791. err = -EINVAL;
  1792. }
  1793. out:
  1794. return err;
  1795. }
  1796. static int do_md_stop(mddev_t * mddev, int ro)
  1797. {
  1798. int err = 0;
  1799. struct gendisk *disk = mddev->gendisk;
  1800. if (mddev->pers) {
  1801. if (atomic_read(&mddev->active)>2) {
  1802. printk("md: %s still in use.\n",mdname(mddev));
  1803. return -EBUSY;
  1804. }
  1805. if (mddev->sync_thread) {
  1806. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1807. md_unregister_thread(mddev->sync_thread);
  1808. mddev->sync_thread = NULL;
  1809. }
  1810. del_timer_sync(&mddev->safemode_timer);
  1811. invalidate_partition(disk, 0);
  1812. if (ro) {
  1813. err = -ENXIO;
  1814. if (mddev->ro)
  1815. goto out;
  1816. mddev->ro = 1;
  1817. } else {
  1818. bitmap_flush(mddev);
  1819. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1820. if (mddev->ro)
  1821. set_disk_ro(disk, 0);
  1822. blk_queue_make_request(mddev->queue, md_fail_request);
  1823. mddev->pers->stop(mddev);
  1824. module_put(mddev->pers->owner);
  1825. mddev->pers = NULL;
  1826. if (mddev->ro)
  1827. mddev->ro = 0;
  1828. }
  1829. if (!mddev->in_sync) {
  1830. /* mark array as shutdown cleanly */
  1831. mddev->in_sync = 1;
  1832. md_update_sb(mddev);
  1833. }
  1834. if (ro)
  1835. set_disk_ro(disk, 1);
  1836. }
  1837. bitmap_destroy(mddev);
  1838. if (mddev->bitmap_file) {
  1839. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1840. fput(mddev->bitmap_file);
  1841. mddev->bitmap_file = NULL;
  1842. }
  1843. mddev->bitmap_offset = 0;
  1844. /*
  1845. * Free resources if final stop
  1846. */
  1847. if (!ro) {
  1848. mdk_rdev_t *rdev;
  1849. struct list_head *tmp;
  1850. struct gendisk *disk;
  1851. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1852. ITERATE_RDEV(mddev,rdev,tmp)
  1853. if (rdev->raid_disk >= 0) {
  1854. char nm[20];
  1855. sprintf(nm, "rd%d", rdev->raid_disk);
  1856. sysfs_remove_link(&mddev->kobj, nm);
  1857. }
  1858. export_array(mddev);
  1859. mddev->array_size = 0;
  1860. disk = mddev->gendisk;
  1861. if (disk)
  1862. set_capacity(disk, 0);
  1863. mddev->changed = 1;
  1864. } else
  1865. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1866. mdname(mddev));
  1867. err = 0;
  1868. out:
  1869. return err;
  1870. }
  1871. static void autorun_array(mddev_t *mddev)
  1872. {
  1873. mdk_rdev_t *rdev;
  1874. struct list_head *tmp;
  1875. int err;
  1876. if (list_empty(&mddev->disks))
  1877. return;
  1878. printk(KERN_INFO "md: running: ");
  1879. ITERATE_RDEV(mddev,rdev,tmp) {
  1880. char b[BDEVNAME_SIZE];
  1881. printk("<%s>", bdevname(rdev->bdev,b));
  1882. }
  1883. printk("\n");
  1884. err = do_md_run (mddev);
  1885. if (err) {
  1886. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1887. do_md_stop (mddev, 0);
  1888. }
  1889. }
  1890. /*
  1891. * lets try to run arrays based on all disks that have arrived
  1892. * until now. (those are in pending_raid_disks)
  1893. *
  1894. * the method: pick the first pending disk, collect all disks with
  1895. * the same UUID, remove all from the pending list and put them into
  1896. * the 'same_array' list. Then order this list based on superblock
  1897. * update time (freshest comes first), kick out 'old' disks and
  1898. * compare superblocks. If everything's fine then run it.
  1899. *
  1900. * If "unit" is allocated, then bump its reference count
  1901. */
  1902. static void autorun_devices(int part)
  1903. {
  1904. struct list_head candidates;
  1905. struct list_head *tmp;
  1906. mdk_rdev_t *rdev0, *rdev;
  1907. mddev_t *mddev;
  1908. char b[BDEVNAME_SIZE];
  1909. printk(KERN_INFO "md: autorun ...\n");
  1910. while (!list_empty(&pending_raid_disks)) {
  1911. dev_t dev;
  1912. rdev0 = list_entry(pending_raid_disks.next,
  1913. mdk_rdev_t, same_set);
  1914. printk(KERN_INFO "md: considering %s ...\n",
  1915. bdevname(rdev0->bdev,b));
  1916. INIT_LIST_HEAD(&candidates);
  1917. ITERATE_RDEV_PENDING(rdev,tmp)
  1918. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1919. printk(KERN_INFO "md: adding %s ...\n",
  1920. bdevname(rdev->bdev,b));
  1921. list_move(&rdev->same_set, &candidates);
  1922. }
  1923. /*
  1924. * now we have a set of devices, with all of them having
  1925. * mostly sane superblocks. It's time to allocate the
  1926. * mddev.
  1927. */
  1928. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1929. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1930. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1931. break;
  1932. }
  1933. if (part)
  1934. dev = MKDEV(mdp_major,
  1935. rdev0->preferred_minor << MdpMinorShift);
  1936. else
  1937. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1938. md_probe(dev, NULL, NULL);
  1939. mddev = mddev_find(dev);
  1940. if (!mddev) {
  1941. printk(KERN_ERR
  1942. "md: cannot allocate memory for md drive.\n");
  1943. break;
  1944. }
  1945. if (mddev_lock(mddev))
  1946. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1947. mdname(mddev));
  1948. else if (mddev->raid_disks || mddev->major_version
  1949. || !list_empty(&mddev->disks)) {
  1950. printk(KERN_WARNING
  1951. "md: %s already running, cannot run %s\n",
  1952. mdname(mddev), bdevname(rdev0->bdev,b));
  1953. mddev_unlock(mddev);
  1954. } else {
  1955. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1956. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1957. list_del_init(&rdev->same_set);
  1958. if (bind_rdev_to_array(rdev, mddev))
  1959. export_rdev(rdev);
  1960. }
  1961. autorun_array(mddev);
  1962. mddev_unlock(mddev);
  1963. }
  1964. /* on success, candidates will be empty, on error
  1965. * it won't...
  1966. */
  1967. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1968. export_rdev(rdev);
  1969. mddev_put(mddev);
  1970. }
  1971. printk(KERN_INFO "md: ... autorun DONE.\n");
  1972. }
  1973. /*
  1974. * import RAID devices based on one partition
  1975. * if possible, the array gets run as well.
  1976. */
  1977. static int autostart_array(dev_t startdev)
  1978. {
  1979. char b[BDEVNAME_SIZE];
  1980. int err = -EINVAL, i;
  1981. mdp_super_t *sb = NULL;
  1982. mdk_rdev_t *start_rdev = NULL, *rdev;
  1983. start_rdev = md_import_device(startdev, 0, 0);
  1984. if (IS_ERR(start_rdev))
  1985. return err;
  1986. /* NOTE: this can only work for 0.90.0 superblocks */
  1987. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1988. if (sb->major_version != 0 ||
  1989. sb->minor_version != 90 ) {
  1990. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1991. export_rdev(start_rdev);
  1992. return err;
  1993. }
  1994. if (start_rdev->faulty) {
  1995. printk(KERN_WARNING
  1996. "md: can not autostart based on faulty %s!\n",
  1997. bdevname(start_rdev->bdev,b));
  1998. export_rdev(start_rdev);
  1999. return err;
  2000. }
  2001. list_add(&start_rdev->same_set, &pending_raid_disks);
  2002. for (i = 0; i < MD_SB_DISKS; i++) {
  2003. mdp_disk_t *desc = sb->disks + i;
  2004. dev_t dev = MKDEV(desc->major, desc->minor);
  2005. if (!dev)
  2006. continue;
  2007. if (dev == startdev)
  2008. continue;
  2009. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2010. continue;
  2011. rdev = md_import_device(dev, 0, 0);
  2012. if (IS_ERR(rdev))
  2013. continue;
  2014. list_add(&rdev->same_set, &pending_raid_disks);
  2015. }
  2016. /*
  2017. * possibly return codes
  2018. */
  2019. autorun_devices(0);
  2020. return 0;
  2021. }
  2022. static int get_version(void __user * arg)
  2023. {
  2024. mdu_version_t ver;
  2025. ver.major = MD_MAJOR_VERSION;
  2026. ver.minor = MD_MINOR_VERSION;
  2027. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2028. if (copy_to_user(arg, &ver, sizeof(ver)))
  2029. return -EFAULT;
  2030. return 0;
  2031. }
  2032. static int get_array_info(mddev_t * mddev, void __user * arg)
  2033. {
  2034. mdu_array_info_t info;
  2035. int nr,working,active,failed,spare;
  2036. mdk_rdev_t *rdev;
  2037. struct list_head *tmp;
  2038. nr=working=active=failed=spare=0;
  2039. ITERATE_RDEV(mddev,rdev,tmp) {
  2040. nr++;
  2041. if (rdev->faulty)
  2042. failed++;
  2043. else {
  2044. working++;
  2045. if (rdev->in_sync)
  2046. active++;
  2047. else
  2048. spare++;
  2049. }
  2050. }
  2051. info.major_version = mddev->major_version;
  2052. info.minor_version = mddev->minor_version;
  2053. info.patch_version = MD_PATCHLEVEL_VERSION;
  2054. info.ctime = mddev->ctime;
  2055. info.level = mddev->level;
  2056. info.size = mddev->size;
  2057. info.nr_disks = nr;
  2058. info.raid_disks = mddev->raid_disks;
  2059. info.md_minor = mddev->md_minor;
  2060. info.not_persistent= !mddev->persistent;
  2061. info.utime = mddev->utime;
  2062. info.state = 0;
  2063. if (mddev->in_sync)
  2064. info.state = (1<<MD_SB_CLEAN);
  2065. if (mddev->bitmap && mddev->bitmap_offset)
  2066. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2067. info.active_disks = active;
  2068. info.working_disks = working;
  2069. info.failed_disks = failed;
  2070. info.spare_disks = spare;
  2071. info.layout = mddev->layout;
  2072. info.chunk_size = mddev->chunk_size;
  2073. if (copy_to_user(arg, &info, sizeof(info)))
  2074. return -EFAULT;
  2075. return 0;
  2076. }
  2077. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2078. {
  2079. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2080. char *ptr, *buf = NULL;
  2081. int err = -ENOMEM;
  2082. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2083. if (!file)
  2084. goto out;
  2085. /* bitmap disabled, zero the first byte and copy out */
  2086. if (!mddev->bitmap || !mddev->bitmap->file) {
  2087. file->pathname[0] = '\0';
  2088. goto copy_out;
  2089. }
  2090. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2091. if (!buf)
  2092. goto out;
  2093. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2094. if (!ptr)
  2095. goto out;
  2096. strcpy(file->pathname, ptr);
  2097. copy_out:
  2098. err = 0;
  2099. if (copy_to_user(arg, file, sizeof(*file)))
  2100. err = -EFAULT;
  2101. out:
  2102. kfree(buf);
  2103. kfree(file);
  2104. return err;
  2105. }
  2106. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2107. {
  2108. mdu_disk_info_t info;
  2109. unsigned int nr;
  2110. mdk_rdev_t *rdev;
  2111. if (copy_from_user(&info, arg, sizeof(info)))
  2112. return -EFAULT;
  2113. nr = info.number;
  2114. rdev = find_rdev_nr(mddev, nr);
  2115. if (rdev) {
  2116. info.major = MAJOR(rdev->bdev->bd_dev);
  2117. info.minor = MINOR(rdev->bdev->bd_dev);
  2118. info.raid_disk = rdev->raid_disk;
  2119. info.state = 0;
  2120. if (rdev->faulty)
  2121. info.state |= (1<<MD_DISK_FAULTY);
  2122. else if (rdev->in_sync) {
  2123. info.state |= (1<<MD_DISK_ACTIVE);
  2124. info.state |= (1<<MD_DISK_SYNC);
  2125. }
  2126. if (test_bit(WriteMostly, &rdev->flags))
  2127. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2128. } else {
  2129. info.major = info.minor = 0;
  2130. info.raid_disk = -1;
  2131. info.state = (1<<MD_DISK_REMOVED);
  2132. }
  2133. if (copy_to_user(arg, &info, sizeof(info)))
  2134. return -EFAULT;
  2135. return 0;
  2136. }
  2137. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2138. {
  2139. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2140. mdk_rdev_t *rdev;
  2141. dev_t dev = MKDEV(info->major,info->minor);
  2142. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2143. return -EOVERFLOW;
  2144. if (!mddev->raid_disks) {
  2145. int err;
  2146. /* expecting a device which has a superblock */
  2147. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2148. if (IS_ERR(rdev)) {
  2149. printk(KERN_WARNING
  2150. "md: md_import_device returned %ld\n",
  2151. PTR_ERR(rdev));
  2152. return PTR_ERR(rdev);
  2153. }
  2154. if (!list_empty(&mddev->disks)) {
  2155. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2156. mdk_rdev_t, same_set);
  2157. int err = super_types[mddev->major_version]
  2158. .load_super(rdev, rdev0, mddev->minor_version);
  2159. if (err < 0) {
  2160. printk(KERN_WARNING
  2161. "md: %s has different UUID to %s\n",
  2162. bdevname(rdev->bdev,b),
  2163. bdevname(rdev0->bdev,b2));
  2164. export_rdev(rdev);
  2165. return -EINVAL;
  2166. }
  2167. }
  2168. err = bind_rdev_to_array(rdev, mddev);
  2169. if (err)
  2170. export_rdev(rdev);
  2171. return err;
  2172. }
  2173. /*
  2174. * add_new_disk can be used once the array is assembled
  2175. * to add "hot spares". They must already have a superblock
  2176. * written
  2177. */
  2178. if (mddev->pers) {
  2179. int err;
  2180. if (!mddev->pers->hot_add_disk) {
  2181. printk(KERN_WARNING
  2182. "%s: personality does not support diskops!\n",
  2183. mdname(mddev));
  2184. return -EINVAL;
  2185. }
  2186. if (mddev->persistent)
  2187. rdev = md_import_device(dev, mddev->major_version,
  2188. mddev->minor_version);
  2189. else
  2190. rdev = md_import_device(dev, -1, -1);
  2191. if (IS_ERR(rdev)) {
  2192. printk(KERN_WARNING
  2193. "md: md_import_device returned %ld\n",
  2194. PTR_ERR(rdev));
  2195. return PTR_ERR(rdev);
  2196. }
  2197. /* set save_raid_disk if appropriate */
  2198. if (!mddev->persistent) {
  2199. if (info->state & (1<<MD_DISK_SYNC) &&
  2200. info->raid_disk < mddev->raid_disks)
  2201. rdev->raid_disk = info->raid_disk;
  2202. else
  2203. rdev->raid_disk = -1;
  2204. } else
  2205. super_types[mddev->major_version].
  2206. validate_super(mddev, rdev);
  2207. rdev->saved_raid_disk = rdev->raid_disk;
  2208. rdev->in_sync = 0; /* just to be sure */
  2209. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2210. set_bit(WriteMostly, &rdev->flags);
  2211. rdev->raid_disk = -1;
  2212. err = bind_rdev_to_array(rdev, mddev);
  2213. if (err)
  2214. export_rdev(rdev);
  2215. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2216. md_wakeup_thread(mddev->thread);
  2217. return err;
  2218. }
  2219. /* otherwise, add_new_disk is only allowed
  2220. * for major_version==0 superblocks
  2221. */
  2222. if (mddev->major_version != 0) {
  2223. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2224. mdname(mddev));
  2225. return -EINVAL;
  2226. }
  2227. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2228. int err;
  2229. rdev = md_import_device (dev, -1, 0);
  2230. if (IS_ERR(rdev)) {
  2231. printk(KERN_WARNING
  2232. "md: error, md_import_device() returned %ld\n",
  2233. PTR_ERR(rdev));
  2234. return PTR_ERR(rdev);
  2235. }
  2236. rdev->desc_nr = info->number;
  2237. if (info->raid_disk < mddev->raid_disks)
  2238. rdev->raid_disk = info->raid_disk;
  2239. else
  2240. rdev->raid_disk = -1;
  2241. rdev->faulty = 0;
  2242. if (rdev->raid_disk < mddev->raid_disks)
  2243. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  2244. else
  2245. rdev->in_sync = 0;
  2246. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2247. set_bit(WriteMostly, &rdev->flags);
  2248. err = bind_rdev_to_array(rdev, mddev);
  2249. if (err) {
  2250. export_rdev(rdev);
  2251. return err;
  2252. }
  2253. if (!mddev->persistent) {
  2254. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2255. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2256. } else
  2257. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2258. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2259. if (!mddev->size || (mddev->size > rdev->size))
  2260. mddev->size = rdev->size;
  2261. }
  2262. return 0;
  2263. }
  2264. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2265. {
  2266. char b[BDEVNAME_SIZE];
  2267. mdk_rdev_t *rdev;
  2268. if (!mddev->pers)
  2269. return -ENODEV;
  2270. rdev = find_rdev(mddev, dev);
  2271. if (!rdev)
  2272. return -ENXIO;
  2273. if (rdev->raid_disk >= 0)
  2274. goto busy;
  2275. kick_rdev_from_array(rdev);
  2276. md_update_sb(mddev);
  2277. return 0;
  2278. busy:
  2279. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2280. bdevname(rdev->bdev,b), mdname(mddev));
  2281. return -EBUSY;
  2282. }
  2283. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2284. {
  2285. char b[BDEVNAME_SIZE];
  2286. int err;
  2287. unsigned int size;
  2288. mdk_rdev_t *rdev;
  2289. if (!mddev->pers)
  2290. return -ENODEV;
  2291. if (mddev->major_version != 0) {
  2292. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2293. " version-0 superblocks.\n",
  2294. mdname(mddev));
  2295. return -EINVAL;
  2296. }
  2297. if (!mddev->pers->hot_add_disk) {
  2298. printk(KERN_WARNING
  2299. "%s: personality does not support diskops!\n",
  2300. mdname(mddev));
  2301. return -EINVAL;
  2302. }
  2303. rdev = md_import_device (dev, -1, 0);
  2304. if (IS_ERR(rdev)) {
  2305. printk(KERN_WARNING
  2306. "md: error, md_import_device() returned %ld\n",
  2307. PTR_ERR(rdev));
  2308. return -EINVAL;
  2309. }
  2310. if (mddev->persistent)
  2311. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2312. else
  2313. rdev->sb_offset =
  2314. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2315. size = calc_dev_size(rdev, mddev->chunk_size);
  2316. rdev->size = size;
  2317. if (size < mddev->size) {
  2318. printk(KERN_WARNING
  2319. "%s: disk size %llu blocks < array size %llu\n",
  2320. mdname(mddev), (unsigned long long)size,
  2321. (unsigned long long)mddev->size);
  2322. err = -ENOSPC;
  2323. goto abort_export;
  2324. }
  2325. if (rdev->faulty) {
  2326. printk(KERN_WARNING
  2327. "md: can not hot-add faulty %s disk to %s!\n",
  2328. bdevname(rdev->bdev,b), mdname(mddev));
  2329. err = -EINVAL;
  2330. goto abort_export;
  2331. }
  2332. rdev->in_sync = 0;
  2333. rdev->desc_nr = -1;
  2334. bind_rdev_to_array(rdev, mddev);
  2335. /*
  2336. * The rest should better be atomic, we can have disk failures
  2337. * noticed in interrupt contexts ...
  2338. */
  2339. if (rdev->desc_nr == mddev->max_disks) {
  2340. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2341. mdname(mddev));
  2342. err = -EBUSY;
  2343. goto abort_unbind_export;
  2344. }
  2345. rdev->raid_disk = -1;
  2346. md_update_sb(mddev);
  2347. /*
  2348. * Kick recovery, maybe this spare has to be added to the
  2349. * array immediately.
  2350. */
  2351. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2352. md_wakeup_thread(mddev->thread);
  2353. return 0;
  2354. abort_unbind_export:
  2355. unbind_rdev_from_array(rdev);
  2356. abort_export:
  2357. export_rdev(rdev);
  2358. return err;
  2359. }
  2360. /* similar to deny_write_access, but accounts for our holding a reference
  2361. * to the file ourselves */
  2362. static int deny_bitmap_write_access(struct file * file)
  2363. {
  2364. struct inode *inode = file->f_mapping->host;
  2365. spin_lock(&inode->i_lock);
  2366. if (atomic_read(&inode->i_writecount) > 1) {
  2367. spin_unlock(&inode->i_lock);
  2368. return -ETXTBSY;
  2369. }
  2370. atomic_set(&inode->i_writecount, -1);
  2371. spin_unlock(&inode->i_lock);
  2372. return 0;
  2373. }
  2374. static int set_bitmap_file(mddev_t *mddev, int fd)
  2375. {
  2376. int err;
  2377. if (mddev->pers) {
  2378. if (!mddev->pers->quiesce)
  2379. return -EBUSY;
  2380. if (mddev->recovery || mddev->sync_thread)
  2381. return -EBUSY;
  2382. /* we should be able to change the bitmap.. */
  2383. }
  2384. if (fd >= 0) {
  2385. if (mddev->bitmap)
  2386. return -EEXIST; /* cannot add when bitmap is present */
  2387. mddev->bitmap_file = fget(fd);
  2388. if (mddev->bitmap_file == NULL) {
  2389. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2390. mdname(mddev));
  2391. return -EBADF;
  2392. }
  2393. err = deny_bitmap_write_access(mddev->bitmap_file);
  2394. if (err) {
  2395. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2396. mdname(mddev));
  2397. fput(mddev->bitmap_file);
  2398. mddev->bitmap_file = NULL;
  2399. return err;
  2400. }
  2401. mddev->bitmap_offset = 0; /* file overrides offset */
  2402. } else if (mddev->bitmap == NULL)
  2403. return -ENOENT; /* cannot remove what isn't there */
  2404. err = 0;
  2405. if (mddev->pers) {
  2406. mddev->pers->quiesce(mddev, 1);
  2407. if (fd >= 0)
  2408. err = bitmap_create(mddev);
  2409. if (fd < 0 || err)
  2410. bitmap_destroy(mddev);
  2411. mddev->pers->quiesce(mddev, 0);
  2412. } else if (fd < 0) {
  2413. if (mddev->bitmap_file)
  2414. fput(mddev->bitmap_file);
  2415. mddev->bitmap_file = NULL;
  2416. }
  2417. return err;
  2418. }
  2419. /*
  2420. * set_array_info is used two different ways
  2421. * The original usage is when creating a new array.
  2422. * In this usage, raid_disks is > 0 and it together with
  2423. * level, size, not_persistent,layout,chunksize determine the
  2424. * shape of the array.
  2425. * This will always create an array with a type-0.90.0 superblock.
  2426. * The newer usage is when assembling an array.
  2427. * In this case raid_disks will be 0, and the major_version field is
  2428. * use to determine which style super-blocks are to be found on the devices.
  2429. * The minor and patch _version numbers are also kept incase the
  2430. * super_block handler wishes to interpret them.
  2431. */
  2432. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2433. {
  2434. if (info->raid_disks == 0) {
  2435. /* just setting version number for superblock loading */
  2436. if (info->major_version < 0 ||
  2437. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2438. super_types[info->major_version].name == NULL) {
  2439. /* maybe try to auto-load a module? */
  2440. printk(KERN_INFO
  2441. "md: superblock version %d not known\n",
  2442. info->major_version);
  2443. return -EINVAL;
  2444. }
  2445. mddev->major_version = info->major_version;
  2446. mddev->minor_version = info->minor_version;
  2447. mddev->patch_version = info->patch_version;
  2448. return 0;
  2449. }
  2450. mddev->major_version = MD_MAJOR_VERSION;
  2451. mddev->minor_version = MD_MINOR_VERSION;
  2452. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2453. mddev->ctime = get_seconds();
  2454. mddev->level = info->level;
  2455. mddev->size = info->size;
  2456. mddev->raid_disks = info->raid_disks;
  2457. /* don't set md_minor, it is determined by which /dev/md* was
  2458. * openned
  2459. */
  2460. if (info->state & (1<<MD_SB_CLEAN))
  2461. mddev->recovery_cp = MaxSector;
  2462. else
  2463. mddev->recovery_cp = 0;
  2464. mddev->persistent = ! info->not_persistent;
  2465. mddev->layout = info->layout;
  2466. mddev->chunk_size = info->chunk_size;
  2467. mddev->max_disks = MD_SB_DISKS;
  2468. mddev->sb_dirty = 1;
  2469. /*
  2470. * Generate a 128 bit UUID
  2471. */
  2472. get_random_bytes(mddev->uuid, 16);
  2473. return 0;
  2474. }
  2475. /*
  2476. * update_array_info is used to change the configuration of an
  2477. * on-line array.
  2478. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2479. * fields in the info are checked against the array.
  2480. * Any differences that cannot be handled will cause an error.
  2481. * Normally, only one change can be managed at a time.
  2482. */
  2483. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2484. {
  2485. int rv = 0;
  2486. int cnt = 0;
  2487. int state = 0;
  2488. /* calculate expected state,ignoring low bits */
  2489. if (mddev->bitmap && mddev->bitmap_offset)
  2490. state |= (1 << MD_SB_BITMAP_PRESENT);
  2491. if (mddev->major_version != info->major_version ||
  2492. mddev->minor_version != info->minor_version ||
  2493. /* mddev->patch_version != info->patch_version || */
  2494. mddev->ctime != info->ctime ||
  2495. mddev->level != info->level ||
  2496. /* mddev->layout != info->layout || */
  2497. !mddev->persistent != info->not_persistent||
  2498. mddev->chunk_size != info->chunk_size ||
  2499. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2500. ((state^info->state) & 0xfffffe00)
  2501. )
  2502. return -EINVAL;
  2503. /* Check there is only one change */
  2504. if (mddev->size != info->size) cnt++;
  2505. if (mddev->raid_disks != info->raid_disks) cnt++;
  2506. if (mddev->layout != info->layout) cnt++;
  2507. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2508. if (cnt == 0) return 0;
  2509. if (cnt > 1) return -EINVAL;
  2510. if (mddev->layout != info->layout) {
  2511. /* Change layout
  2512. * we don't need to do anything at the md level, the
  2513. * personality will take care of it all.
  2514. */
  2515. if (mddev->pers->reconfig == NULL)
  2516. return -EINVAL;
  2517. else
  2518. return mddev->pers->reconfig(mddev, info->layout, -1);
  2519. }
  2520. if (mddev->size != info->size) {
  2521. mdk_rdev_t * rdev;
  2522. struct list_head *tmp;
  2523. if (mddev->pers->resize == NULL)
  2524. return -EINVAL;
  2525. /* The "size" is the amount of each device that is used.
  2526. * This can only make sense for arrays with redundancy.
  2527. * linear and raid0 always use whatever space is available
  2528. * We can only consider changing the size if no resync
  2529. * or reconstruction is happening, and if the new size
  2530. * is acceptable. It must fit before the sb_offset or,
  2531. * if that is <data_offset, it must fit before the
  2532. * size of each device.
  2533. * If size is zero, we find the largest size that fits.
  2534. */
  2535. if (mddev->sync_thread)
  2536. return -EBUSY;
  2537. ITERATE_RDEV(mddev,rdev,tmp) {
  2538. sector_t avail;
  2539. int fit = (info->size == 0);
  2540. if (rdev->sb_offset > rdev->data_offset)
  2541. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2542. else
  2543. avail = get_capacity(rdev->bdev->bd_disk)
  2544. - rdev->data_offset;
  2545. if (fit && (info->size == 0 || info->size > avail/2))
  2546. info->size = avail/2;
  2547. if (avail < ((sector_t)info->size << 1))
  2548. return -ENOSPC;
  2549. }
  2550. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2551. if (!rv) {
  2552. struct block_device *bdev;
  2553. bdev = bdget_disk(mddev->gendisk, 0);
  2554. if (bdev) {
  2555. down(&bdev->bd_inode->i_sem);
  2556. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2557. up(&bdev->bd_inode->i_sem);
  2558. bdput(bdev);
  2559. }
  2560. }
  2561. }
  2562. if (mddev->raid_disks != info->raid_disks) {
  2563. /* change the number of raid disks */
  2564. if (mddev->pers->reshape == NULL)
  2565. return -EINVAL;
  2566. if (info->raid_disks <= 0 ||
  2567. info->raid_disks >= mddev->max_disks)
  2568. return -EINVAL;
  2569. if (mddev->sync_thread)
  2570. return -EBUSY;
  2571. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2572. if (!rv) {
  2573. struct block_device *bdev;
  2574. bdev = bdget_disk(mddev->gendisk, 0);
  2575. if (bdev) {
  2576. down(&bdev->bd_inode->i_sem);
  2577. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2578. up(&bdev->bd_inode->i_sem);
  2579. bdput(bdev);
  2580. }
  2581. }
  2582. }
  2583. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2584. if (mddev->pers->quiesce == NULL)
  2585. return -EINVAL;
  2586. if (mddev->recovery || mddev->sync_thread)
  2587. return -EBUSY;
  2588. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2589. /* add the bitmap */
  2590. if (mddev->bitmap)
  2591. return -EEXIST;
  2592. if (mddev->default_bitmap_offset == 0)
  2593. return -EINVAL;
  2594. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2595. mddev->pers->quiesce(mddev, 1);
  2596. rv = bitmap_create(mddev);
  2597. if (rv)
  2598. bitmap_destroy(mddev);
  2599. mddev->pers->quiesce(mddev, 0);
  2600. } else {
  2601. /* remove the bitmap */
  2602. if (!mddev->bitmap)
  2603. return -ENOENT;
  2604. if (mddev->bitmap->file)
  2605. return -EINVAL;
  2606. mddev->pers->quiesce(mddev, 1);
  2607. bitmap_destroy(mddev);
  2608. mddev->pers->quiesce(mddev, 0);
  2609. mddev->bitmap_offset = 0;
  2610. }
  2611. }
  2612. md_update_sb(mddev);
  2613. return rv;
  2614. }
  2615. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2616. {
  2617. mdk_rdev_t *rdev;
  2618. if (mddev->pers == NULL)
  2619. return -ENODEV;
  2620. rdev = find_rdev(mddev, dev);
  2621. if (!rdev)
  2622. return -ENODEV;
  2623. md_error(mddev, rdev);
  2624. return 0;
  2625. }
  2626. static int md_ioctl(struct inode *inode, struct file *file,
  2627. unsigned int cmd, unsigned long arg)
  2628. {
  2629. int err = 0;
  2630. void __user *argp = (void __user *)arg;
  2631. struct hd_geometry __user *loc = argp;
  2632. mddev_t *mddev = NULL;
  2633. if (!capable(CAP_SYS_ADMIN))
  2634. return -EACCES;
  2635. /*
  2636. * Commands dealing with the RAID driver but not any
  2637. * particular array:
  2638. */
  2639. switch (cmd)
  2640. {
  2641. case RAID_VERSION:
  2642. err = get_version(argp);
  2643. goto done;
  2644. case PRINT_RAID_DEBUG:
  2645. err = 0;
  2646. md_print_devices();
  2647. goto done;
  2648. #ifndef MODULE
  2649. case RAID_AUTORUN:
  2650. err = 0;
  2651. autostart_arrays(arg);
  2652. goto done;
  2653. #endif
  2654. default:;
  2655. }
  2656. /*
  2657. * Commands creating/starting a new array:
  2658. */
  2659. mddev = inode->i_bdev->bd_disk->private_data;
  2660. if (!mddev) {
  2661. BUG();
  2662. goto abort;
  2663. }
  2664. if (cmd == START_ARRAY) {
  2665. /* START_ARRAY doesn't need to lock the array as autostart_array
  2666. * does the locking, and it could even be a different array
  2667. */
  2668. static int cnt = 3;
  2669. if (cnt > 0 ) {
  2670. printk(KERN_WARNING
  2671. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2672. "This will not be supported beyond 2.6\n",
  2673. current->comm, current->pid);
  2674. cnt--;
  2675. }
  2676. err = autostart_array(new_decode_dev(arg));
  2677. if (err) {
  2678. printk(KERN_WARNING "md: autostart failed!\n");
  2679. goto abort;
  2680. }
  2681. goto done;
  2682. }
  2683. err = mddev_lock(mddev);
  2684. if (err) {
  2685. printk(KERN_INFO
  2686. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2687. err, cmd);
  2688. goto abort;
  2689. }
  2690. switch (cmd)
  2691. {
  2692. case SET_ARRAY_INFO:
  2693. {
  2694. mdu_array_info_t info;
  2695. if (!arg)
  2696. memset(&info, 0, sizeof(info));
  2697. else if (copy_from_user(&info, argp, sizeof(info))) {
  2698. err = -EFAULT;
  2699. goto abort_unlock;
  2700. }
  2701. if (mddev->pers) {
  2702. err = update_array_info(mddev, &info);
  2703. if (err) {
  2704. printk(KERN_WARNING "md: couldn't update"
  2705. " array info. %d\n", err);
  2706. goto abort_unlock;
  2707. }
  2708. goto done_unlock;
  2709. }
  2710. if (!list_empty(&mddev->disks)) {
  2711. printk(KERN_WARNING
  2712. "md: array %s already has disks!\n",
  2713. mdname(mddev));
  2714. err = -EBUSY;
  2715. goto abort_unlock;
  2716. }
  2717. if (mddev->raid_disks) {
  2718. printk(KERN_WARNING
  2719. "md: array %s already initialised!\n",
  2720. mdname(mddev));
  2721. err = -EBUSY;
  2722. goto abort_unlock;
  2723. }
  2724. err = set_array_info(mddev, &info);
  2725. if (err) {
  2726. printk(KERN_WARNING "md: couldn't set"
  2727. " array info. %d\n", err);
  2728. goto abort_unlock;
  2729. }
  2730. }
  2731. goto done_unlock;
  2732. default:;
  2733. }
  2734. /*
  2735. * Commands querying/configuring an existing array:
  2736. */
  2737. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2738. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2739. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2740. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2741. err = -ENODEV;
  2742. goto abort_unlock;
  2743. }
  2744. /*
  2745. * Commands even a read-only array can execute:
  2746. */
  2747. switch (cmd)
  2748. {
  2749. case GET_ARRAY_INFO:
  2750. err = get_array_info(mddev, argp);
  2751. goto done_unlock;
  2752. case GET_BITMAP_FILE:
  2753. err = get_bitmap_file(mddev, argp);
  2754. goto done_unlock;
  2755. case GET_DISK_INFO:
  2756. err = get_disk_info(mddev, argp);
  2757. goto done_unlock;
  2758. case RESTART_ARRAY_RW:
  2759. err = restart_array(mddev);
  2760. goto done_unlock;
  2761. case STOP_ARRAY:
  2762. err = do_md_stop (mddev, 0);
  2763. goto done_unlock;
  2764. case STOP_ARRAY_RO:
  2765. err = do_md_stop (mddev, 1);
  2766. goto done_unlock;
  2767. /*
  2768. * We have a problem here : there is no easy way to give a CHS
  2769. * virtual geometry. We currently pretend that we have a 2 heads
  2770. * 4 sectors (with a BIG number of cylinders...). This drives
  2771. * dosfs just mad... ;-)
  2772. */
  2773. case HDIO_GETGEO:
  2774. if (!loc) {
  2775. err = -EINVAL;
  2776. goto abort_unlock;
  2777. }
  2778. err = put_user (2, (char __user *) &loc->heads);
  2779. if (err)
  2780. goto abort_unlock;
  2781. err = put_user (4, (char __user *) &loc->sectors);
  2782. if (err)
  2783. goto abort_unlock;
  2784. err = put_user(get_capacity(mddev->gendisk)/8,
  2785. (short __user *) &loc->cylinders);
  2786. if (err)
  2787. goto abort_unlock;
  2788. err = put_user (get_start_sect(inode->i_bdev),
  2789. (long __user *) &loc->start);
  2790. goto done_unlock;
  2791. }
  2792. /*
  2793. * The remaining ioctls are changing the state of the
  2794. * superblock, so we do not allow read-only arrays
  2795. * here:
  2796. */
  2797. if (mddev->ro) {
  2798. err = -EROFS;
  2799. goto abort_unlock;
  2800. }
  2801. switch (cmd)
  2802. {
  2803. case ADD_NEW_DISK:
  2804. {
  2805. mdu_disk_info_t info;
  2806. if (copy_from_user(&info, argp, sizeof(info)))
  2807. err = -EFAULT;
  2808. else
  2809. err = add_new_disk(mddev, &info);
  2810. goto done_unlock;
  2811. }
  2812. case HOT_REMOVE_DISK:
  2813. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2814. goto done_unlock;
  2815. case HOT_ADD_DISK:
  2816. err = hot_add_disk(mddev, new_decode_dev(arg));
  2817. goto done_unlock;
  2818. case SET_DISK_FAULTY:
  2819. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2820. goto done_unlock;
  2821. case RUN_ARRAY:
  2822. err = do_md_run (mddev);
  2823. goto done_unlock;
  2824. case SET_BITMAP_FILE:
  2825. err = set_bitmap_file(mddev, (int)arg);
  2826. goto done_unlock;
  2827. default:
  2828. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2829. printk(KERN_WARNING "md: %s(pid %d) used"
  2830. " obsolete MD ioctl, upgrade your"
  2831. " software to use new ictls.\n",
  2832. current->comm, current->pid);
  2833. err = -EINVAL;
  2834. goto abort_unlock;
  2835. }
  2836. done_unlock:
  2837. abort_unlock:
  2838. mddev_unlock(mddev);
  2839. return err;
  2840. done:
  2841. if (err)
  2842. MD_BUG();
  2843. abort:
  2844. return err;
  2845. }
  2846. static int md_open(struct inode *inode, struct file *file)
  2847. {
  2848. /*
  2849. * Succeed if we can lock the mddev, which confirms that
  2850. * it isn't being stopped right now.
  2851. */
  2852. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2853. int err;
  2854. if ((err = mddev_lock(mddev)))
  2855. goto out;
  2856. err = 0;
  2857. mddev_get(mddev);
  2858. mddev_unlock(mddev);
  2859. check_disk_change(inode->i_bdev);
  2860. out:
  2861. return err;
  2862. }
  2863. static int md_release(struct inode *inode, struct file * file)
  2864. {
  2865. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2866. if (!mddev)
  2867. BUG();
  2868. mddev_put(mddev);
  2869. return 0;
  2870. }
  2871. static int md_media_changed(struct gendisk *disk)
  2872. {
  2873. mddev_t *mddev = disk->private_data;
  2874. return mddev->changed;
  2875. }
  2876. static int md_revalidate(struct gendisk *disk)
  2877. {
  2878. mddev_t *mddev = disk->private_data;
  2879. mddev->changed = 0;
  2880. return 0;
  2881. }
  2882. static struct block_device_operations md_fops =
  2883. {
  2884. .owner = THIS_MODULE,
  2885. .open = md_open,
  2886. .release = md_release,
  2887. .ioctl = md_ioctl,
  2888. .media_changed = md_media_changed,
  2889. .revalidate_disk= md_revalidate,
  2890. };
  2891. static int md_thread(void * arg)
  2892. {
  2893. mdk_thread_t *thread = arg;
  2894. /*
  2895. * md_thread is a 'system-thread', it's priority should be very
  2896. * high. We avoid resource deadlocks individually in each
  2897. * raid personality. (RAID5 does preallocation) We also use RR and
  2898. * the very same RT priority as kswapd, thus we will never get
  2899. * into a priority inversion deadlock.
  2900. *
  2901. * we definitely have to have equal or higher priority than
  2902. * bdflush, otherwise bdflush will deadlock if there are too
  2903. * many dirty RAID5 blocks.
  2904. */
  2905. allow_signal(SIGKILL);
  2906. complete(thread->event);
  2907. while (!kthread_should_stop()) {
  2908. void (*run)(mddev_t *);
  2909. wait_event_interruptible_timeout(thread->wqueue,
  2910. test_bit(THREAD_WAKEUP, &thread->flags)
  2911. || kthread_should_stop(),
  2912. thread->timeout);
  2913. try_to_freeze();
  2914. clear_bit(THREAD_WAKEUP, &thread->flags);
  2915. run = thread->run;
  2916. if (run)
  2917. run(thread->mddev);
  2918. }
  2919. return 0;
  2920. }
  2921. void md_wakeup_thread(mdk_thread_t *thread)
  2922. {
  2923. if (thread) {
  2924. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2925. set_bit(THREAD_WAKEUP, &thread->flags);
  2926. wake_up(&thread->wqueue);
  2927. }
  2928. }
  2929. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2930. const char *name)
  2931. {
  2932. mdk_thread_t *thread;
  2933. struct completion event;
  2934. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  2935. if (!thread)
  2936. return NULL;
  2937. memset(thread, 0, sizeof(mdk_thread_t));
  2938. init_waitqueue_head(&thread->wqueue);
  2939. init_completion(&event);
  2940. thread->event = &event;
  2941. thread->run = run;
  2942. thread->mddev = mddev;
  2943. thread->name = name;
  2944. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2945. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  2946. if (IS_ERR(thread->tsk)) {
  2947. kfree(thread);
  2948. return NULL;
  2949. }
  2950. wait_for_completion(&event);
  2951. return thread;
  2952. }
  2953. void md_unregister_thread(mdk_thread_t *thread)
  2954. {
  2955. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2956. kthread_stop(thread->tsk);
  2957. kfree(thread);
  2958. }
  2959. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2960. {
  2961. if (!mddev) {
  2962. MD_BUG();
  2963. return;
  2964. }
  2965. if (!rdev || rdev->faulty)
  2966. return;
  2967. /*
  2968. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2969. mdname(mddev),
  2970. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2971. __builtin_return_address(0),__builtin_return_address(1),
  2972. __builtin_return_address(2),__builtin_return_address(3));
  2973. */
  2974. if (!mddev->pers->error_handler)
  2975. return;
  2976. mddev->pers->error_handler(mddev,rdev);
  2977. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2978. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2979. md_wakeup_thread(mddev->thread);
  2980. }
  2981. /* seq_file implementation /proc/mdstat */
  2982. static void status_unused(struct seq_file *seq)
  2983. {
  2984. int i = 0;
  2985. mdk_rdev_t *rdev;
  2986. struct list_head *tmp;
  2987. seq_printf(seq, "unused devices: ");
  2988. ITERATE_RDEV_PENDING(rdev,tmp) {
  2989. char b[BDEVNAME_SIZE];
  2990. i++;
  2991. seq_printf(seq, "%s ",
  2992. bdevname(rdev->bdev,b));
  2993. }
  2994. if (!i)
  2995. seq_printf(seq, "<none>");
  2996. seq_printf(seq, "\n");
  2997. }
  2998. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2999. {
  3000. unsigned long max_blocks, resync, res, dt, db, rt;
  3001. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3002. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3003. max_blocks = mddev->resync_max_sectors >> 1;
  3004. else
  3005. max_blocks = mddev->size;
  3006. /*
  3007. * Should not happen.
  3008. */
  3009. if (!max_blocks) {
  3010. MD_BUG();
  3011. return;
  3012. }
  3013. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3014. {
  3015. int i, x = res/50, y = 20-x;
  3016. seq_printf(seq, "[");
  3017. for (i = 0; i < x; i++)
  3018. seq_printf(seq, "=");
  3019. seq_printf(seq, ">");
  3020. for (i = 0; i < y; i++)
  3021. seq_printf(seq, ".");
  3022. seq_printf(seq, "] ");
  3023. }
  3024. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3025. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3026. "resync" : "recovery"),
  3027. res/10, res % 10, resync, max_blocks);
  3028. /*
  3029. * We do not want to overflow, so the order of operands and
  3030. * the * 100 / 100 trick are important. We do a +1 to be
  3031. * safe against division by zero. We only estimate anyway.
  3032. *
  3033. * dt: time from mark until now
  3034. * db: blocks written from mark until now
  3035. * rt: remaining time
  3036. */
  3037. dt = ((jiffies - mddev->resync_mark) / HZ);
  3038. if (!dt) dt++;
  3039. db = resync - (mddev->resync_mark_cnt/2);
  3040. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3041. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3042. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3043. }
  3044. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3045. {
  3046. struct list_head *tmp;
  3047. loff_t l = *pos;
  3048. mddev_t *mddev;
  3049. if (l >= 0x10000)
  3050. return NULL;
  3051. if (!l--)
  3052. /* header */
  3053. return (void*)1;
  3054. spin_lock(&all_mddevs_lock);
  3055. list_for_each(tmp,&all_mddevs)
  3056. if (!l--) {
  3057. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3058. mddev_get(mddev);
  3059. spin_unlock(&all_mddevs_lock);
  3060. return mddev;
  3061. }
  3062. spin_unlock(&all_mddevs_lock);
  3063. if (!l--)
  3064. return (void*)2;/* tail */
  3065. return NULL;
  3066. }
  3067. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3068. {
  3069. struct list_head *tmp;
  3070. mddev_t *next_mddev, *mddev = v;
  3071. ++*pos;
  3072. if (v == (void*)2)
  3073. return NULL;
  3074. spin_lock(&all_mddevs_lock);
  3075. if (v == (void*)1)
  3076. tmp = all_mddevs.next;
  3077. else
  3078. tmp = mddev->all_mddevs.next;
  3079. if (tmp != &all_mddevs)
  3080. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3081. else {
  3082. next_mddev = (void*)2;
  3083. *pos = 0x10000;
  3084. }
  3085. spin_unlock(&all_mddevs_lock);
  3086. if (v != (void*)1)
  3087. mddev_put(mddev);
  3088. return next_mddev;
  3089. }
  3090. static void md_seq_stop(struct seq_file *seq, void *v)
  3091. {
  3092. mddev_t *mddev = v;
  3093. if (mddev && v != (void*)1 && v != (void*)2)
  3094. mddev_put(mddev);
  3095. }
  3096. static int md_seq_show(struct seq_file *seq, void *v)
  3097. {
  3098. mddev_t *mddev = v;
  3099. sector_t size;
  3100. struct list_head *tmp2;
  3101. mdk_rdev_t *rdev;
  3102. int i;
  3103. struct bitmap *bitmap;
  3104. if (v == (void*)1) {
  3105. seq_printf(seq, "Personalities : ");
  3106. spin_lock(&pers_lock);
  3107. for (i = 0; i < MAX_PERSONALITY; i++)
  3108. if (pers[i])
  3109. seq_printf(seq, "[%s] ", pers[i]->name);
  3110. spin_unlock(&pers_lock);
  3111. seq_printf(seq, "\n");
  3112. return 0;
  3113. }
  3114. if (v == (void*)2) {
  3115. status_unused(seq);
  3116. return 0;
  3117. }
  3118. if (mddev_lock(mddev)!=0)
  3119. return -EINTR;
  3120. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3121. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3122. mddev->pers ? "" : "in");
  3123. if (mddev->pers) {
  3124. if (mddev->ro)
  3125. seq_printf(seq, " (read-only)");
  3126. seq_printf(seq, " %s", mddev->pers->name);
  3127. }
  3128. size = 0;
  3129. ITERATE_RDEV(mddev,rdev,tmp2) {
  3130. char b[BDEVNAME_SIZE];
  3131. seq_printf(seq, " %s[%d]",
  3132. bdevname(rdev->bdev,b), rdev->desc_nr);
  3133. if (test_bit(WriteMostly, &rdev->flags))
  3134. seq_printf(seq, "(W)");
  3135. if (rdev->faulty) {
  3136. seq_printf(seq, "(F)");
  3137. continue;
  3138. } else if (rdev->raid_disk < 0)
  3139. seq_printf(seq, "(S)"); /* spare */
  3140. size += rdev->size;
  3141. }
  3142. if (!list_empty(&mddev->disks)) {
  3143. if (mddev->pers)
  3144. seq_printf(seq, "\n %llu blocks",
  3145. (unsigned long long)mddev->array_size);
  3146. else
  3147. seq_printf(seq, "\n %llu blocks",
  3148. (unsigned long long)size);
  3149. }
  3150. if (mddev->persistent) {
  3151. if (mddev->major_version != 0 ||
  3152. mddev->minor_version != 90) {
  3153. seq_printf(seq," super %d.%d",
  3154. mddev->major_version,
  3155. mddev->minor_version);
  3156. }
  3157. } else
  3158. seq_printf(seq, " super non-persistent");
  3159. if (mddev->pers) {
  3160. mddev->pers->status (seq, mddev);
  3161. seq_printf(seq, "\n ");
  3162. if (mddev->curr_resync > 2) {
  3163. status_resync (seq, mddev);
  3164. seq_printf(seq, "\n ");
  3165. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3166. seq_printf(seq, " resync=DELAYED\n ");
  3167. } else
  3168. seq_printf(seq, "\n ");
  3169. if ((bitmap = mddev->bitmap)) {
  3170. unsigned long chunk_kb;
  3171. unsigned long flags;
  3172. spin_lock_irqsave(&bitmap->lock, flags);
  3173. chunk_kb = bitmap->chunksize >> 10;
  3174. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3175. "%lu%s chunk",
  3176. bitmap->pages - bitmap->missing_pages,
  3177. bitmap->pages,
  3178. (bitmap->pages - bitmap->missing_pages)
  3179. << (PAGE_SHIFT - 10),
  3180. chunk_kb ? chunk_kb : bitmap->chunksize,
  3181. chunk_kb ? "KB" : "B");
  3182. if (bitmap->file) {
  3183. seq_printf(seq, ", file: ");
  3184. seq_path(seq, bitmap->file->f_vfsmnt,
  3185. bitmap->file->f_dentry," \t\n");
  3186. }
  3187. seq_printf(seq, "\n");
  3188. spin_unlock_irqrestore(&bitmap->lock, flags);
  3189. }
  3190. seq_printf(seq, "\n");
  3191. }
  3192. mddev_unlock(mddev);
  3193. return 0;
  3194. }
  3195. static struct seq_operations md_seq_ops = {
  3196. .start = md_seq_start,
  3197. .next = md_seq_next,
  3198. .stop = md_seq_stop,
  3199. .show = md_seq_show,
  3200. };
  3201. static int md_seq_open(struct inode *inode, struct file *file)
  3202. {
  3203. int error;
  3204. error = seq_open(file, &md_seq_ops);
  3205. return error;
  3206. }
  3207. static struct file_operations md_seq_fops = {
  3208. .open = md_seq_open,
  3209. .read = seq_read,
  3210. .llseek = seq_lseek,
  3211. .release = seq_release,
  3212. };
  3213. int register_md_personality(int pnum, mdk_personality_t *p)
  3214. {
  3215. if (pnum >= MAX_PERSONALITY) {
  3216. printk(KERN_ERR
  3217. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3218. p->name, pnum, MAX_PERSONALITY-1);
  3219. return -EINVAL;
  3220. }
  3221. spin_lock(&pers_lock);
  3222. if (pers[pnum]) {
  3223. spin_unlock(&pers_lock);
  3224. return -EBUSY;
  3225. }
  3226. pers[pnum] = p;
  3227. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3228. spin_unlock(&pers_lock);
  3229. return 0;
  3230. }
  3231. int unregister_md_personality(int pnum)
  3232. {
  3233. if (pnum >= MAX_PERSONALITY)
  3234. return -EINVAL;
  3235. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3236. spin_lock(&pers_lock);
  3237. pers[pnum] = NULL;
  3238. spin_unlock(&pers_lock);
  3239. return 0;
  3240. }
  3241. static int is_mddev_idle(mddev_t *mddev)
  3242. {
  3243. mdk_rdev_t * rdev;
  3244. struct list_head *tmp;
  3245. int idle;
  3246. unsigned long curr_events;
  3247. idle = 1;
  3248. ITERATE_RDEV(mddev,rdev,tmp) {
  3249. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3250. curr_events = disk_stat_read(disk, sectors[0]) +
  3251. disk_stat_read(disk, sectors[1]) -
  3252. atomic_read(&disk->sync_io);
  3253. /* Allow some slack between valud of curr_events and last_events,
  3254. * as there are some uninteresting races.
  3255. * Note: the following is an unsigned comparison.
  3256. */
  3257. if ((curr_events - rdev->last_events + 32) > 64) {
  3258. rdev->last_events = curr_events;
  3259. idle = 0;
  3260. }
  3261. }
  3262. return idle;
  3263. }
  3264. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3265. {
  3266. /* another "blocks" (512byte) blocks have been synced */
  3267. atomic_sub(blocks, &mddev->recovery_active);
  3268. wake_up(&mddev->recovery_wait);
  3269. if (!ok) {
  3270. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3271. md_wakeup_thread(mddev->thread);
  3272. // stop recovery, signal do_sync ....
  3273. }
  3274. }
  3275. /* md_write_start(mddev, bi)
  3276. * If we need to update some array metadata (e.g. 'active' flag
  3277. * in superblock) before writing, schedule a superblock update
  3278. * and wait for it to complete.
  3279. */
  3280. void md_write_start(mddev_t *mddev, struct bio *bi)
  3281. {
  3282. if (bio_data_dir(bi) != WRITE)
  3283. return;
  3284. atomic_inc(&mddev->writes_pending);
  3285. if (mddev->in_sync) {
  3286. spin_lock(&mddev->write_lock);
  3287. if (mddev->in_sync) {
  3288. mddev->in_sync = 0;
  3289. mddev->sb_dirty = 1;
  3290. md_wakeup_thread(mddev->thread);
  3291. }
  3292. spin_unlock(&mddev->write_lock);
  3293. }
  3294. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3295. }
  3296. void md_write_end(mddev_t *mddev)
  3297. {
  3298. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3299. if (mddev->safemode == 2)
  3300. md_wakeup_thread(mddev->thread);
  3301. else
  3302. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3303. }
  3304. }
  3305. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3306. #define SYNC_MARKS 10
  3307. #define SYNC_MARK_STEP (3*HZ)
  3308. static void md_do_sync(mddev_t *mddev)
  3309. {
  3310. mddev_t *mddev2;
  3311. unsigned int currspeed = 0,
  3312. window;
  3313. sector_t max_sectors,j, io_sectors;
  3314. unsigned long mark[SYNC_MARKS];
  3315. sector_t mark_cnt[SYNC_MARKS];
  3316. int last_mark,m;
  3317. struct list_head *tmp;
  3318. sector_t last_check;
  3319. int skipped = 0;
  3320. /* just incase thread restarts... */
  3321. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3322. return;
  3323. /* we overload curr_resync somewhat here.
  3324. * 0 == not engaged in resync at all
  3325. * 2 == checking that there is no conflict with another sync
  3326. * 1 == like 2, but have yielded to allow conflicting resync to
  3327. * commense
  3328. * other == active in resync - this many blocks
  3329. *
  3330. * Before starting a resync we must have set curr_resync to
  3331. * 2, and then checked that every "conflicting" array has curr_resync
  3332. * less than ours. When we find one that is the same or higher
  3333. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3334. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3335. * This will mean we have to start checking from the beginning again.
  3336. *
  3337. */
  3338. do {
  3339. mddev->curr_resync = 2;
  3340. try_again:
  3341. if (signal_pending(current) ||
  3342. kthread_should_stop()) {
  3343. flush_signals(current);
  3344. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3345. goto skip;
  3346. }
  3347. ITERATE_MDDEV(mddev2,tmp) {
  3348. if (mddev2 == mddev)
  3349. continue;
  3350. if (mddev2->curr_resync &&
  3351. match_mddev_units(mddev,mddev2)) {
  3352. DEFINE_WAIT(wq);
  3353. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3354. /* arbitrarily yield */
  3355. mddev->curr_resync = 1;
  3356. wake_up(&resync_wait);
  3357. }
  3358. if (mddev > mddev2 && mddev->curr_resync == 1)
  3359. /* no need to wait here, we can wait the next
  3360. * time 'round when curr_resync == 2
  3361. */
  3362. continue;
  3363. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3364. if (!signal_pending(current) &&
  3365. !kthread_should_stop() &&
  3366. mddev2->curr_resync >= mddev->curr_resync) {
  3367. printk(KERN_INFO "md: delaying resync of %s"
  3368. " until %s has finished resync (they"
  3369. " share one or more physical units)\n",
  3370. mdname(mddev), mdname(mddev2));
  3371. mddev_put(mddev2);
  3372. schedule();
  3373. finish_wait(&resync_wait, &wq);
  3374. goto try_again;
  3375. }
  3376. finish_wait(&resync_wait, &wq);
  3377. }
  3378. }
  3379. } while (mddev->curr_resync < 2);
  3380. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3381. /* resync follows the size requested by the personality,
  3382. * which defaults to physical size, but can be virtual size
  3383. */
  3384. max_sectors = mddev->resync_max_sectors;
  3385. mddev->resync_mismatches = 0;
  3386. } else
  3387. /* recovery follows the physical size of devices */
  3388. max_sectors = mddev->size << 1;
  3389. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3390. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3391. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3392. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3393. "(but not more than %d KB/sec) for reconstruction.\n",
  3394. sysctl_speed_limit_max);
  3395. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3396. /* we don't use the checkpoint if there's a bitmap */
  3397. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3398. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3399. j = mddev->recovery_cp;
  3400. else
  3401. j = 0;
  3402. io_sectors = 0;
  3403. for (m = 0; m < SYNC_MARKS; m++) {
  3404. mark[m] = jiffies;
  3405. mark_cnt[m] = io_sectors;
  3406. }
  3407. last_mark = 0;
  3408. mddev->resync_mark = mark[last_mark];
  3409. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3410. /*
  3411. * Tune reconstruction:
  3412. */
  3413. window = 32*(PAGE_SIZE/512);
  3414. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3415. window/2,(unsigned long long) max_sectors/2);
  3416. atomic_set(&mddev->recovery_active, 0);
  3417. init_waitqueue_head(&mddev->recovery_wait);
  3418. last_check = 0;
  3419. if (j>2) {
  3420. printk(KERN_INFO
  3421. "md: resuming recovery of %s from checkpoint.\n",
  3422. mdname(mddev));
  3423. mddev->curr_resync = j;
  3424. }
  3425. while (j < max_sectors) {
  3426. sector_t sectors;
  3427. skipped = 0;
  3428. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3429. currspeed < sysctl_speed_limit_min);
  3430. if (sectors == 0) {
  3431. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3432. goto out;
  3433. }
  3434. if (!skipped) { /* actual IO requested */
  3435. io_sectors += sectors;
  3436. atomic_add(sectors, &mddev->recovery_active);
  3437. }
  3438. j += sectors;
  3439. if (j>1) mddev->curr_resync = j;
  3440. if (last_check + window > io_sectors || j == max_sectors)
  3441. continue;
  3442. last_check = io_sectors;
  3443. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3444. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3445. break;
  3446. repeat:
  3447. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3448. /* step marks */
  3449. int next = (last_mark+1) % SYNC_MARKS;
  3450. mddev->resync_mark = mark[next];
  3451. mddev->resync_mark_cnt = mark_cnt[next];
  3452. mark[next] = jiffies;
  3453. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3454. last_mark = next;
  3455. }
  3456. if (signal_pending(current) || kthread_should_stop()) {
  3457. /*
  3458. * got a signal, exit.
  3459. */
  3460. printk(KERN_INFO
  3461. "md: md_do_sync() got signal ... exiting\n");
  3462. flush_signals(current);
  3463. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3464. goto out;
  3465. }
  3466. /*
  3467. * this loop exits only if either when we are slower than
  3468. * the 'hard' speed limit, or the system was IO-idle for
  3469. * a jiffy.
  3470. * the system might be non-idle CPU-wise, but we only care
  3471. * about not overloading the IO subsystem. (things like an
  3472. * e2fsck being done on the RAID array should execute fast)
  3473. */
  3474. mddev->queue->unplug_fn(mddev->queue);
  3475. cond_resched();
  3476. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3477. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3478. if (currspeed > sysctl_speed_limit_min) {
  3479. if ((currspeed > sysctl_speed_limit_max) ||
  3480. !is_mddev_idle(mddev)) {
  3481. msleep_interruptible(250);
  3482. goto repeat;
  3483. }
  3484. }
  3485. }
  3486. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3487. /*
  3488. * this also signals 'finished resyncing' to md_stop
  3489. */
  3490. out:
  3491. mddev->queue->unplug_fn(mddev->queue);
  3492. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3493. /* tell personality that we are finished */
  3494. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3495. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3496. mddev->curr_resync > 2 &&
  3497. mddev->curr_resync >= mddev->recovery_cp) {
  3498. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3499. printk(KERN_INFO
  3500. "md: checkpointing recovery of %s.\n",
  3501. mdname(mddev));
  3502. mddev->recovery_cp = mddev->curr_resync;
  3503. } else
  3504. mddev->recovery_cp = MaxSector;
  3505. }
  3506. skip:
  3507. mddev->curr_resync = 0;
  3508. wake_up(&resync_wait);
  3509. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3510. md_wakeup_thread(mddev->thread);
  3511. }
  3512. /*
  3513. * This routine is regularly called by all per-raid-array threads to
  3514. * deal with generic issues like resync and super-block update.
  3515. * Raid personalities that don't have a thread (linear/raid0) do not
  3516. * need this as they never do any recovery or update the superblock.
  3517. *
  3518. * It does not do any resync itself, but rather "forks" off other threads
  3519. * to do that as needed.
  3520. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3521. * "->recovery" and create a thread at ->sync_thread.
  3522. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3523. * and wakeups up this thread which will reap the thread and finish up.
  3524. * This thread also removes any faulty devices (with nr_pending == 0).
  3525. *
  3526. * The overall approach is:
  3527. * 1/ if the superblock needs updating, update it.
  3528. * 2/ If a recovery thread is running, don't do anything else.
  3529. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3530. * 4/ If there are any faulty devices, remove them.
  3531. * 5/ If array is degraded, try to add spares devices
  3532. * 6/ If array has spares or is not in-sync, start a resync thread.
  3533. */
  3534. void md_check_recovery(mddev_t *mddev)
  3535. {
  3536. mdk_rdev_t *rdev;
  3537. struct list_head *rtmp;
  3538. if (mddev->bitmap)
  3539. bitmap_daemon_work(mddev->bitmap);
  3540. if (mddev->ro)
  3541. return;
  3542. if (signal_pending(current)) {
  3543. if (mddev->pers->sync_request) {
  3544. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3545. mdname(mddev));
  3546. mddev->safemode = 2;
  3547. }
  3548. flush_signals(current);
  3549. }
  3550. if ( ! (
  3551. mddev->sb_dirty ||
  3552. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3553. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3554. (mddev->safemode == 1) ||
  3555. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3556. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3557. ))
  3558. return;
  3559. if (mddev_trylock(mddev)==0) {
  3560. int spares =0;
  3561. spin_lock(&mddev->write_lock);
  3562. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3563. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3564. mddev->in_sync = 1;
  3565. mddev->sb_dirty = 1;
  3566. }
  3567. if (mddev->safemode == 1)
  3568. mddev->safemode = 0;
  3569. spin_unlock(&mddev->write_lock);
  3570. if (mddev->sb_dirty)
  3571. md_update_sb(mddev);
  3572. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3573. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3574. /* resync/recovery still happening */
  3575. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3576. goto unlock;
  3577. }
  3578. if (mddev->sync_thread) {
  3579. /* resync has finished, collect result */
  3580. md_unregister_thread(mddev->sync_thread);
  3581. mddev->sync_thread = NULL;
  3582. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3583. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3584. /* success...*/
  3585. /* activate any spares */
  3586. mddev->pers->spare_active(mddev);
  3587. }
  3588. md_update_sb(mddev);
  3589. /* if array is no-longer degraded, then any saved_raid_disk
  3590. * information must be scrapped
  3591. */
  3592. if (!mddev->degraded)
  3593. ITERATE_RDEV(mddev,rdev,rtmp)
  3594. rdev->saved_raid_disk = -1;
  3595. mddev->recovery = 0;
  3596. /* flag recovery needed just to double check */
  3597. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3598. goto unlock;
  3599. }
  3600. /* Clear some bits that don't mean anything, but
  3601. * might be left set
  3602. */
  3603. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3604. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3605. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3606. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3607. /* no recovery is running.
  3608. * remove any failed drives, then
  3609. * add spares if possible.
  3610. * Spare are also removed and re-added, to allow
  3611. * the personality to fail the re-add.
  3612. */
  3613. ITERATE_RDEV(mddev,rdev,rtmp)
  3614. if (rdev->raid_disk >= 0 &&
  3615. (rdev->faulty || ! rdev->in_sync) &&
  3616. atomic_read(&rdev->nr_pending)==0) {
  3617. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3618. char nm[20];
  3619. sprintf(nm,"rd%d", rdev->raid_disk);
  3620. sysfs_remove_link(&mddev->kobj, nm);
  3621. rdev->raid_disk = -1;
  3622. }
  3623. }
  3624. if (mddev->degraded) {
  3625. ITERATE_RDEV(mddev,rdev,rtmp)
  3626. if (rdev->raid_disk < 0
  3627. && !rdev->faulty) {
  3628. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3629. char nm[20];
  3630. sprintf(nm, "rd%d", rdev->raid_disk);
  3631. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3632. spares++;
  3633. } else
  3634. break;
  3635. }
  3636. }
  3637. if (spares) {
  3638. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3639. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3640. } else if (mddev->recovery_cp < MaxSector) {
  3641. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3642. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3643. /* nothing to be done ... */
  3644. goto unlock;
  3645. if (mddev->pers->sync_request) {
  3646. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3647. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3648. /* We are adding a device or devices to an array
  3649. * which has the bitmap stored on all devices.
  3650. * So make sure all bitmap pages get written
  3651. */
  3652. bitmap_write_all(mddev->bitmap);
  3653. }
  3654. mddev->sync_thread = md_register_thread(md_do_sync,
  3655. mddev,
  3656. "%s_resync");
  3657. if (!mddev->sync_thread) {
  3658. printk(KERN_ERR "%s: could not start resync"
  3659. " thread...\n",
  3660. mdname(mddev));
  3661. /* leave the spares where they are, it shouldn't hurt */
  3662. mddev->recovery = 0;
  3663. } else {
  3664. md_wakeup_thread(mddev->sync_thread);
  3665. }
  3666. }
  3667. unlock:
  3668. mddev_unlock(mddev);
  3669. }
  3670. }
  3671. static int md_notify_reboot(struct notifier_block *this,
  3672. unsigned long code, void *x)
  3673. {
  3674. struct list_head *tmp;
  3675. mddev_t *mddev;
  3676. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3677. printk(KERN_INFO "md: stopping all md devices.\n");
  3678. ITERATE_MDDEV(mddev,tmp)
  3679. if (mddev_trylock(mddev)==0)
  3680. do_md_stop (mddev, 1);
  3681. /*
  3682. * certain more exotic SCSI devices are known to be
  3683. * volatile wrt too early system reboots. While the
  3684. * right place to handle this issue is the given
  3685. * driver, we do want to have a safe RAID driver ...
  3686. */
  3687. mdelay(1000*1);
  3688. }
  3689. return NOTIFY_DONE;
  3690. }
  3691. static struct notifier_block md_notifier = {
  3692. .notifier_call = md_notify_reboot,
  3693. .next = NULL,
  3694. .priority = INT_MAX, /* before any real devices */
  3695. };
  3696. static void md_geninit(void)
  3697. {
  3698. struct proc_dir_entry *p;
  3699. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3700. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3701. if (p)
  3702. p->proc_fops = &md_seq_fops;
  3703. }
  3704. static int __init md_init(void)
  3705. {
  3706. int minor;
  3707. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3708. " MD_SB_DISKS=%d\n",
  3709. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3710. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3711. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3712. BITMAP_MINOR);
  3713. if (register_blkdev(MAJOR_NR, "md"))
  3714. return -1;
  3715. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3716. unregister_blkdev(MAJOR_NR, "md");
  3717. return -1;
  3718. }
  3719. devfs_mk_dir("md");
  3720. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3721. md_probe, NULL, NULL);
  3722. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3723. md_probe, NULL, NULL);
  3724. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3725. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3726. S_IFBLK|S_IRUSR|S_IWUSR,
  3727. "md/%d", minor);
  3728. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3729. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3730. S_IFBLK|S_IRUSR|S_IWUSR,
  3731. "md/mdp%d", minor);
  3732. register_reboot_notifier(&md_notifier);
  3733. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3734. md_geninit();
  3735. return (0);
  3736. }
  3737. #ifndef MODULE
  3738. /*
  3739. * Searches all registered partitions for autorun RAID arrays
  3740. * at boot time.
  3741. */
  3742. static dev_t detected_devices[128];
  3743. static int dev_cnt;
  3744. void md_autodetect_dev(dev_t dev)
  3745. {
  3746. if (dev_cnt >= 0 && dev_cnt < 127)
  3747. detected_devices[dev_cnt++] = dev;
  3748. }
  3749. static void autostart_arrays(int part)
  3750. {
  3751. mdk_rdev_t *rdev;
  3752. int i;
  3753. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3754. for (i = 0; i < dev_cnt; i++) {
  3755. dev_t dev = detected_devices[i];
  3756. rdev = md_import_device(dev,0, 0);
  3757. if (IS_ERR(rdev))
  3758. continue;
  3759. if (rdev->faulty) {
  3760. MD_BUG();
  3761. continue;
  3762. }
  3763. list_add(&rdev->same_set, &pending_raid_disks);
  3764. }
  3765. dev_cnt = 0;
  3766. autorun_devices(part);
  3767. }
  3768. #endif
  3769. static __exit void md_exit(void)
  3770. {
  3771. mddev_t *mddev;
  3772. struct list_head *tmp;
  3773. int i;
  3774. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3775. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3776. for (i=0; i < MAX_MD_DEVS; i++)
  3777. devfs_remove("md/%d", i);
  3778. for (i=0; i < MAX_MD_DEVS; i++)
  3779. devfs_remove("md/d%d", i);
  3780. devfs_remove("md");
  3781. unregister_blkdev(MAJOR_NR,"md");
  3782. unregister_blkdev(mdp_major, "mdp");
  3783. unregister_reboot_notifier(&md_notifier);
  3784. unregister_sysctl_table(raid_table_header);
  3785. remove_proc_entry("mdstat", NULL);
  3786. ITERATE_MDDEV(mddev,tmp) {
  3787. struct gendisk *disk = mddev->gendisk;
  3788. if (!disk)
  3789. continue;
  3790. export_array(mddev);
  3791. del_gendisk(disk);
  3792. put_disk(disk);
  3793. mddev->gendisk = NULL;
  3794. mddev_put(mddev);
  3795. }
  3796. }
  3797. module_init(md_init)
  3798. module_exit(md_exit)
  3799. EXPORT_SYMBOL(register_md_personality);
  3800. EXPORT_SYMBOL(unregister_md_personality);
  3801. EXPORT_SYMBOL(md_error);
  3802. EXPORT_SYMBOL(md_done_sync);
  3803. EXPORT_SYMBOL(md_write_start);
  3804. EXPORT_SYMBOL(md_write_end);
  3805. EXPORT_SYMBOL(md_register_thread);
  3806. EXPORT_SYMBOL(md_unregister_thread);
  3807. EXPORT_SYMBOL(md_wakeup_thread);
  3808. EXPORT_SYMBOL(md_print_devices);
  3809. EXPORT_SYMBOL(md_check_recovery);
  3810. MODULE_LICENSE("GPL");
  3811. MODULE_ALIAS("md");
  3812. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);