disk-io.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #ifdef CONFIG_X86
  50. #include <asm/cpufeature.h>
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. static void free_fs_root(struct btrfs_root *root);
  55. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  56. int read_only);
  57. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. /*
  70. * end_io_wq structs are used to do processing in task context when an IO is
  71. * complete. This is used during reads to verify checksums, and it is used
  72. * by writes to insert metadata for new file extents after IO is complete.
  73. */
  74. struct end_io_wq {
  75. struct bio *bio;
  76. bio_end_io_t *end_io;
  77. void *private;
  78. struct btrfs_fs_info *info;
  79. int error;
  80. int metadata;
  81. struct list_head list;
  82. struct btrfs_work work;
  83. };
  84. /*
  85. * async submit bios are used to offload expensive checksumming
  86. * onto the worker threads. They checksum file and metadata bios
  87. * just before they are sent down the IO stack.
  88. */
  89. struct async_submit_bio {
  90. struct inode *inode;
  91. struct bio *bio;
  92. struct list_head list;
  93. extent_submit_bio_hook_t *submit_bio_start;
  94. extent_submit_bio_hook_t *submit_bio_done;
  95. int rw;
  96. int mirror_num;
  97. unsigned long bio_flags;
  98. /*
  99. * bio_offset is optional, can be used if the pages in the bio
  100. * can't tell us where in the file the bio should go
  101. */
  102. u64 bio_offset;
  103. struct btrfs_work work;
  104. int error;
  105. };
  106. /*
  107. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  108. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  109. * the level the eb occupies in the tree.
  110. *
  111. * Different roots are used for different purposes and may nest inside each
  112. * other and they require separate keysets. As lockdep keys should be
  113. * static, assign keysets according to the purpose of the root as indicated
  114. * by btrfs_root->objectid. This ensures that all special purpose roots
  115. * have separate keysets.
  116. *
  117. * Lock-nesting across peer nodes is always done with the immediate parent
  118. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  119. * subclass to avoid triggering lockdep warning in such cases.
  120. *
  121. * The key is set by the readpage_end_io_hook after the buffer has passed
  122. * csum validation but before the pages are unlocked. It is also set by
  123. * btrfs_init_new_buffer on freshly allocated blocks.
  124. *
  125. * We also add a check to make sure the highest level of the tree is the
  126. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  127. * needs update as well.
  128. */
  129. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  130. # if BTRFS_MAX_LEVEL != 8
  131. # error
  132. # endif
  133. static struct btrfs_lockdep_keyset {
  134. u64 id; /* root objectid */
  135. const char *name_stem; /* lock name stem */
  136. char names[BTRFS_MAX_LEVEL + 1][20];
  137. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  138. } btrfs_lockdep_keysets[] = {
  139. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  140. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  141. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  142. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  143. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  144. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  145. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  146. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  147. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  148. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  149. { .id = 0, .name_stem = "tree" },
  150. };
  151. void __init btrfs_init_lockdep(void)
  152. {
  153. int i, j;
  154. /* initialize lockdep class names */
  155. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  156. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  157. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  158. snprintf(ks->names[j], sizeof(ks->names[j]),
  159. "btrfs-%s-%02d", ks->name_stem, j);
  160. }
  161. }
  162. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  163. int level)
  164. {
  165. struct btrfs_lockdep_keyset *ks;
  166. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  167. /* find the matching keyset, id 0 is the default entry */
  168. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  169. if (ks->id == objectid)
  170. break;
  171. lockdep_set_class_and_name(&eb->lock,
  172. &ks->keys[level], ks->names[level]);
  173. }
  174. #endif
  175. /*
  176. * extents on the btree inode are pretty simple, there's one extent
  177. * that covers the entire device
  178. */
  179. static struct extent_map *btree_get_extent(struct inode *inode,
  180. struct page *page, size_t pg_offset, u64 start, u64 len,
  181. int create)
  182. {
  183. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  184. struct extent_map *em;
  185. int ret;
  186. read_lock(&em_tree->lock);
  187. em = lookup_extent_mapping(em_tree, start, len);
  188. if (em) {
  189. em->bdev =
  190. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  191. read_unlock(&em_tree->lock);
  192. goto out;
  193. }
  194. read_unlock(&em_tree->lock);
  195. em = alloc_extent_map();
  196. if (!em) {
  197. em = ERR_PTR(-ENOMEM);
  198. goto out;
  199. }
  200. em->start = 0;
  201. em->len = (u64)-1;
  202. em->block_len = (u64)-1;
  203. em->block_start = 0;
  204. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  205. write_lock(&em_tree->lock);
  206. ret = add_extent_mapping(em_tree, em);
  207. if (ret == -EEXIST) {
  208. free_extent_map(em);
  209. em = lookup_extent_mapping(em_tree, start, len);
  210. if (!em)
  211. em = ERR_PTR(-EIO);
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = ERR_PTR(ret);
  215. }
  216. write_unlock(&em_tree->lock);
  217. out:
  218. return em;
  219. }
  220. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  221. {
  222. return crc32c(seed, data, len);
  223. }
  224. void btrfs_csum_final(u32 crc, char *result)
  225. {
  226. put_unaligned_le32(~crc, result);
  227. }
  228. /*
  229. * compute the csum for a btree block, and either verify it or write it
  230. * into the csum field of the block.
  231. */
  232. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  233. int verify)
  234. {
  235. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  236. char *result = NULL;
  237. unsigned long len;
  238. unsigned long cur_len;
  239. unsigned long offset = BTRFS_CSUM_SIZE;
  240. char *kaddr;
  241. unsigned long map_start;
  242. unsigned long map_len;
  243. int err;
  244. u32 crc = ~(u32)0;
  245. unsigned long inline_result;
  246. len = buf->len - offset;
  247. while (len > 0) {
  248. err = map_private_extent_buffer(buf, offset, 32,
  249. &kaddr, &map_start, &map_len);
  250. if (err)
  251. return 1;
  252. cur_len = min(len, map_len - (offset - map_start));
  253. crc = btrfs_csum_data(kaddr + offset - map_start,
  254. crc, cur_len);
  255. len -= cur_len;
  256. offset += cur_len;
  257. }
  258. if (csum_size > sizeof(inline_result)) {
  259. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  260. if (!result)
  261. return 1;
  262. } else {
  263. result = (char *)&inline_result;
  264. }
  265. btrfs_csum_final(crc, result);
  266. if (verify) {
  267. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  268. u32 val;
  269. u32 found = 0;
  270. memcpy(&found, result, csum_size);
  271. read_extent_buffer(buf, &val, 0, csum_size);
  272. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  273. "failed on %llu wanted %X found %X "
  274. "level %d\n",
  275. root->fs_info->sb->s_id,
  276. (unsigned long long)buf->start, val, found,
  277. btrfs_header_level(buf));
  278. if (result != (char *)&inline_result)
  279. kfree(result);
  280. return 1;
  281. }
  282. } else {
  283. write_extent_buffer(buf, result, 0, csum_size);
  284. }
  285. if (result != (char *)&inline_result)
  286. kfree(result);
  287. return 0;
  288. }
  289. /*
  290. * we can't consider a given block up to date unless the transid of the
  291. * block matches the transid in the parent node's pointer. This is how we
  292. * detect blocks that either didn't get written at all or got written
  293. * in the wrong place.
  294. */
  295. static int verify_parent_transid(struct extent_io_tree *io_tree,
  296. struct extent_buffer *eb, u64 parent_transid,
  297. int atomic)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. if (atomic)
  304. return -EAGAIN;
  305. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  306. 0, &cached_state);
  307. if (extent_buffer_uptodate(eb) &&
  308. btrfs_header_generation(eb) == parent_transid) {
  309. ret = 0;
  310. goto out;
  311. }
  312. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  313. "found %llu\n",
  314. (unsigned long long)eb->start,
  315. (unsigned long long)parent_transid,
  316. (unsigned long long)btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * helper to read a given tree block, doing retries as required when
  326. * the checksums don't match and we have alternate mirrors to try.
  327. */
  328. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  329. struct extent_buffer *eb,
  330. u64 start, u64 parent_transid)
  331. {
  332. struct extent_io_tree *io_tree;
  333. int failed = 0;
  334. int ret;
  335. int num_copies = 0;
  336. int mirror_num = 0;
  337. int failed_mirror = 0;
  338. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  339. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  340. while (1) {
  341. ret = read_extent_buffer_pages(io_tree, eb, start,
  342. WAIT_COMPLETE,
  343. btree_get_extent, mirror_num);
  344. if (!ret) {
  345. if (!verify_parent_transid(io_tree, eb,
  346. parent_transid, 0))
  347. break;
  348. else
  349. ret = -EIO;
  350. }
  351. /*
  352. * This buffer's crc is fine, but its contents are corrupted, so
  353. * there is no reason to read the other copies, they won't be
  354. * any less wrong.
  355. */
  356. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  357. break;
  358. num_copies = btrfs_num_copies(root->fs_info,
  359. eb->start, eb->len);
  360. if (num_copies == 1)
  361. break;
  362. if (!failed_mirror) {
  363. failed = 1;
  364. failed_mirror = eb->read_mirror;
  365. }
  366. mirror_num++;
  367. if (mirror_num == failed_mirror)
  368. mirror_num++;
  369. if (mirror_num > num_copies)
  370. break;
  371. }
  372. if (failed && !ret && failed_mirror)
  373. repair_eb_io_failure(root, eb, failed_mirror);
  374. return ret;
  375. }
  376. /*
  377. * checksum a dirty tree block before IO. This has extra checks to make sure
  378. * we only fill in the checksum field in the first page of a multi-page block
  379. */
  380. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  381. {
  382. struct extent_io_tree *tree;
  383. u64 start = page_offset(page);
  384. u64 found_start;
  385. struct extent_buffer *eb;
  386. tree = &BTRFS_I(page->mapping->host)->io_tree;
  387. eb = (struct extent_buffer *)page->private;
  388. if (page != eb->pages[0])
  389. return 0;
  390. found_start = btrfs_header_bytenr(eb);
  391. if (found_start != start) {
  392. WARN_ON(1);
  393. return 0;
  394. }
  395. if (!PageUptodate(page)) {
  396. WARN_ON(1);
  397. return 0;
  398. }
  399. csum_tree_block(root, eb, 0);
  400. return 0;
  401. }
  402. static int check_tree_block_fsid(struct btrfs_root *root,
  403. struct extent_buffer *eb)
  404. {
  405. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  406. u8 fsid[BTRFS_UUID_SIZE];
  407. int ret = 1;
  408. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  409. BTRFS_FSID_SIZE);
  410. while (fs_devices) {
  411. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  412. ret = 0;
  413. break;
  414. }
  415. fs_devices = fs_devices->seed;
  416. }
  417. return ret;
  418. }
  419. #define CORRUPT(reason, eb, root, slot) \
  420. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  421. "root=%llu, slot=%d\n", reason, \
  422. (unsigned long long)btrfs_header_bytenr(eb), \
  423. (unsigned long long)root->objectid, slot)
  424. static noinline int check_leaf(struct btrfs_root *root,
  425. struct extent_buffer *leaf)
  426. {
  427. struct btrfs_key key;
  428. struct btrfs_key leaf_key;
  429. u32 nritems = btrfs_header_nritems(leaf);
  430. int slot;
  431. if (nritems == 0)
  432. return 0;
  433. /* Check the 0 item */
  434. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  435. BTRFS_LEAF_DATA_SIZE(root)) {
  436. CORRUPT("invalid item offset size pair", leaf, root, 0);
  437. return -EIO;
  438. }
  439. /*
  440. * Check to make sure each items keys are in the correct order and their
  441. * offsets make sense. We only have to loop through nritems-1 because
  442. * we check the current slot against the next slot, which verifies the
  443. * next slot's offset+size makes sense and that the current's slot
  444. * offset is correct.
  445. */
  446. for (slot = 0; slot < nritems - 1; slot++) {
  447. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  448. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  449. /* Make sure the keys are in the right order */
  450. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  451. CORRUPT("bad key order", leaf, root, slot);
  452. return -EIO;
  453. }
  454. /*
  455. * Make sure the offset and ends are right, remember that the
  456. * item data starts at the end of the leaf and grows towards the
  457. * front.
  458. */
  459. if (btrfs_item_offset_nr(leaf, slot) !=
  460. btrfs_item_end_nr(leaf, slot + 1)) {
  461. CORRUPT("slot offset bad", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Check to make sure that we don't point outside of the leaf,
  466. * just incase all the items are consistent to eachother, but
  467. * all point outside of the leaf.
  468. */
  469. if (btrfs_item_end_nr(leaf, slot) >
  470. BTRFS_LEAF_DATA_SIZE(root)) {
  471. CORRUPT("slot end outside of leaf", leaf, root, slot);
  472. return -EIO;
  473. }
  474. }
  475. return 0;
  476. }
  477. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  478. struct page *page, int max_walk)
  479. {
  480. struct extent_buffer *eb;
  481. u64 start = page_offset(page);
  482. u64 target = start;
  483. u64 min_start;
  484. if (start < max_walk)
  485. min_start = 0;
  486. else
  487. min_start = start - max_walk;
  488. while (start >= min_start) {
  489. eb = find_extent_buffer(tree, start, 0);
  490. if (eb) {
  491. /*
  492. * we found an extent buffer and it contains our page
  493. * horray!
  494. */
  495. if (eb->start <= target &&
  496. eb->start + eb->len > target)
  497. return eb;
  498. /* we found an extent buffer that wasn't for us */
  499. free_extent_buffer(eb);
  500. return NULL;
  501. }
  502. if (start == 0)
  503. break;
  504. start -= PAGE_CACHE_SIZE;
  505. }
  506. return NULL;
  507. }
  508. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  509. struct extent_state *state, int mirror)
  510. {
  511. struct extent_io_tree *tree;
  512. u64 found_start;
  513. int found_level;
  514. struct extent_buffer *eb;
  515. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  516. int ret = 0;
  517. int reads_done;
  518. if (!page->private)
  519. goto out;
  520. tree = &BTRFS_I(page->mapping->host)->io_tree;
  521. eb = (struct extent_buffer *)page->private;
  522. /* the pending IO might have been the only thing that kept this buffer
  523. * in memory. Make sure we have a ref for all this other checks
  524. */
  525. extent_buffer_get(eb);
  526. reads_done = atomic_dec_and_test(&eb->io_pages);
  527. if (!reads_done)
  528. goto err;
  529. eb->read_mirror = mirror;
  530. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  531. ret = -EIO;
  532. goto err;
  533. }
  534. found_start = btrfs_header_bytenr(eb);
  535. if (found_start != eb->start) {
  536. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  537. "%llu %llu\n",
  538. (unsigned long long)found_start,
  539. (unsigned long long)eb->start);
  540. ret = -EIO;
  541. goto err;
  542. }
  543. if (check_tree_block_fsid(root, eb)) {
  544. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  545. (unsigned long long)eb->start);
  546. ret = -EIO;
  547. goto err;
  548. }
  549. found_level = btrfs_header_level(eb);
  550. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  551. eb, found_level);
  552. ret = csum_tree_block(root, eb, 1);
  553. if (ret) {
  554. ret = -EIO;
  555. goto err;
  556. }
  557. /*
  558. * If this is a leaf block and it is corrupt, set the corrupt bit so
  559. * that we don't try and read the other copies of this block, just
  560. * return -EIO.
  561. */
  562. if (found_level == 0 && check_leaf(root, eb)) {
  563. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  564. ret = -EIO;
  565. }
  566. if (!ret)
  567. set_extent_buffer_uptodate(eb);
  568. err:
  569. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  570. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  571. btree_readahead_hook(root, eb, eb->start, ret);
  572. }
  573. if (ret) {
  574. /*
  575. * our io error hook is going to dec the io pages
  576. * again, we have to make sure it has something
  577. * to decrement
  578. */
  579. atomic_inc(&eb->io_pages);
  580. clear_extent_buffer_uptodate(eb);
  581. }
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. atomic_dec(&eb->io_pages);
  594. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  595. btree_readahead_hook(root, eb, eb->start, -EIO);
  596. return -EIO; /* we fixed nothing */
  597. }
  598. static void end_workqueue_bio(struct bio *bio, int err)
  599. {
  600. struct end_io_wq *end_io_wq = bio->bi_private;
  601. struct btrfs_fs_info *fs_info;
  602. fs_info = end_io_wq->info;
  603. end_io_wq->error = err;
  604. end_io_wq->work.func = end_workqueue_fn;
  605. end_io_wq->work.flags = 0;
  606. if (bio->bi_rw & REQ_WRITE) {
  607. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  608. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  609. &end_io_wq->work);
  610. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  611. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  612. &end_io_wq->work);
  613. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  614. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  615. &end_io_wq->work);
  616. else
  617. btrfs_queue_worker(&fs_info->endio_write_workers,
  618. &end_io_wq->work);
  619. } else {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  621. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata)
  624. btrfs_queue_worker(&fs_info->endio_meta_workers,
  625. &end_io_wq->work);
  626. else
  627. btrfs_queue_worker(&fs_info->endio_workers,
  628. &end_io_wq->work);
  629. }
  630. }
  631. /*
  632. * For the metadata arg you want
  633. *
  634. * 0 - if data
  635. * 1 - if normal metadta
  636. * 2 - if writing to the free space cache area
  637. * 3 - raid parity work
  638. */
  639. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  640. int metadata)
  641. {
  642. struct end_io_wq *end_io_wq;
  643. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  644. if (!end_io_wq)
  645. return -ENOMEM;
  646. end_io_wq->private = bio->bi_private;
  647. end_io_wq->end_io = bio->bi_end_io;
  648. end_io_wq->info = info;
  649. end_io_wq->error = 0;
  650. end_io_wq->bio = bio;
  651. end_io_wq->metadata = metadata;
  652. bio->bi_private = end_io_wq;
  653. bio->bi_end_io = end_workqueue_bio;
  654. return 0;
  655. }
  656. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  657. {
  658. unsigned long limit = min_t(unsigned long,
  659. info->workers.max_workers,
  660. info->fs_devices->open_devices);
  661. return 256 * limit;
  662. }
  663. static void run_one_async_start(struct btrfs_work *work)
  664. {
  665. struct async_submit_bio *async;
  666. int ret;
  667. async = container_of(work, struct async_submit_bio, work);
  668. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  669. async->mirror_num, async->bio_flags,
  670. async->bio_offset);
  671. if (ret)
  672. async->error = ret;
  673. }
  674. static void run_one_async_done(struct btrfs_work *work)
  675. {
  676. struct btrfs_fs_info *fs_info;
  677. struct async_submit_bio *async;
  678. int limit;
  679. async = container_of(work, struct async_submit_bio, work);
  680. fs_info = BTRFS_I(async->inode)->root->fs_info;
  681. limit = btrfs_async_submit_limit(fs_info);
  682. limit = limit * 2 / 3;
  683. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  684. waitqueue_active(&fs_info->async_submit_wait))
  685. wake_up(&fs_info->async_submit_wait);
  686. /* If an error occured we just want to clean up the bio and move on */
  687. if (async->error) {
  688. bio_endio(async->bio, async->error);
  689. return;
  690. }
  691. async->submit_bio_done(async->inode, async->rw, async->bio,
  692. async->mirror_num, async->bio_flags,
  693. async->bio_offset);
  694. }
  695. static void run_one_async_free(struct btrfs_work *work)
  696. {
  697. struct async_submit_bio *async;
  698. async = container_of(work, struct async_submit_bio, work);
  699. kfree(async);
  700. }
  701. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  702. int rw, struct bio *bio, int mirror_num,
  703. unsigned long bio_flags,
  704. u64 bio_offset,
  705. extent_submit_bio_hook_t *submit_bio_start,
  706. extent_submit_bio_hook_t *submit_bio_done)
  707. {
  708. struct async_submit_bio *async;
  709. async = kmalloc(sizeof(*async), GFP_NOFS);
  710. if (!async)
  711. return -ENOMEM;
  712. async->inode = inode;
  713. async->rw = rw;
  714. async->bio = bio;
  715. async->mirror_num = mirror_num;
  716. async->submit_bio_start = submit_bio_start;
  717. async->submit_bio_done = submit_bio_done;
  718. async->work.func = run_one_async_start;
  719. async->work.ordered_func = run_one_async_done;
  720. async->work.ordered_free = run_one_async_free;
  721. async->work.flags = 0;
  722. async->bio_flags = bio_flags;
  723. async->bio_offset = bio_offset;
  724. async->error = 0;
  725. atomic_inc(&fs_info->nr_async_submits);
  726. if (rw & REQ_SYNC)
  727. btrfs_set_work_high_prio(&async->work);
  728. btrfs_queue_worker(&fs_info->workers, &async->work);
  729. while (atomic_read(&fs_info->async_submit_draining) &&
  730. atomic_read(&fs_info->nr_async_submits)) {
  731. wait_event(fs_info->async_submit_wait,
  732. (atomic_read(&fs_info->nr_async_submits) == 0));
  733. }
  734. return 0;
  735. }
  736. static int btree_csum_one_bio(struct bio *bio)
  737. {
  738. struct bio_vec *bvec = bio->bi_io_vec;
  739. int bio_index = 0;
  740. struct btrfs_root *root;
  741. int ret = 0;
  742. WARN_ON(bio->bi_vcnt <= 0);
  743. while (bio_index < bio->bi_vcnt) {
  744. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  745. ret = csum_dirty_buffer(root, bvec->bv_page);
  746. if (ret)
  747. break;
  748. bio_index++;
  749. bvec++;
  750. }
  751. return ret;
  752. }
  753. static int __btree_submit_bio_start(struct inode *inode, int rw,
  754. struct bio *bio, int mirror_num,
  755. unsigned long bio_flags,
  756. u64 bio_offset)
  757. {
  758. /*
  759. * when we're called for a write, we're already in the async
  760. * submission context. Just jump into btrfs_map_bio
  761. */
  762. return btree_csum_one_bio(bio);
  763. }
  764. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  765. int mirror_num, unsigned long bio_flags,
  766. u64 bio_offset)
  767. {
  768. int ret;
  769. /*
  770. * when we're called for a write, we're already in the async
  771. * submission context. Just jump into btrfs_map_bio
  772. */
  773. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  774. if (ret)
  775. bio_endio(bio, ret);
  776. return ret;
  777. }
  778. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  779. {
  780. if (bio_flags & EXTENT_BIO_TREE_LOG)
  781. return 0;
  782. #ifdef CONFIG_X86
  783. if (cpu_has_xmm4_2)
  784. return 0;
  785. #endif
  786. return 1;
  787. }
  788. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  789. int mirror_num, unsigned long bio_flags,
  790. u64 bio_offset)
  791. {
  792. int async = check_async_write(inode, bio_flags);
  793. int ret;
  794. if (!(rw & REQ_WRITE)) {
  795. /*
  796. * called for a read, do the setup so that checksum validation
  797. * can happen in the async kernel threads
  798. */
  799. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  800. bio, 1);
  801. if (ret)
  802. goto out_w_error;
  803. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  804. mirror_num, 0);
  805. } else if (!async) {
  806. ret = btree_csum_one_bio(bio);
  807. if (ret)
  808. goto out_w_error;
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  810. mirror_num, 0);
  811. } else {
  812. /*
  813. * kthread helpers are used to submit writes so that
  814. * checksumming can happen in parallel across all CPUs
  815. */
  816. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  817. inode, rw, bio, mirror_num, 0,
  818. bio_offset,
  819. __btree_submit_bio_start,
  820. __btree_submit_bio_done);
  821. }
  822. if (ret) {
  823. out_w_error:
  824. bio_endio(bio, ret);
  825. }
  826. return ret;
  827. }
  828. #ifdef CONFIG_MIGRATION
  829. static int btree_migratepage(struct address_space *mapping,
  830. struct page *newpage, struct page *page,
  831. enum migrate_mode mode)
  832. {
  833. /*
  834. * we can't safely write a btree page from here,
  835. * we haven't done the locking hook
  836. */
  837. if (PageDirty(page))
  838. return -EAGAIN;
  839. /*
  840. * Buffers may be managed in a filesystem specific way.
  841. * We must have no buffers or drop them.
  842. */
  843. if (page_has_private(page) &&
  844. !try_to_release_page(page, GFP_KERNEL))
  845. return -EAGAIN;
  846. return migrate_page(mapping, newpage, page, mode);
  847. }
  848. #endif
  849. static int btree_writepages(struct address_space *mapping,
  850. struct writeback_control *wbc)
  851. {
  852. struct extent_io_tree *tree;
  853. struct btrfs_fs_info *fs_info;
  854. int ret;
  855. tree = &BTRFS_I(mapping->host)->io_tree;
  856. if (wbc->sync_mode == WB_SYNC_NONE) {
  857. if (wbc->for_kupdate)
  858. return 0;
  859. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  860. /* this is a bit racy, but that's ok */
  861. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  862. BTRFS_DIRTY_METADATA_THRESH);
  863. if (ret < 0)
  864. return 0;
  865. }
  866. return btree_write_cache_pages(mapping, wbc);
  867. }
  868. static int btree_readpage(struct file *file, struct page *page)
  869. {
  870. struct extent_io_tree *tree;
  871. tree = &BTRFS_I(page->mapping->host)->io_tree;
  872. return extent_read_full_page(tree, page, btree_get_extent, 0);
  873. }
  874. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  875. {
  876. if (PageWriteback(page) || PageDirty(page))
  877. return 0;
  878. /*
  879. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  880. * slab allocation from alloc_extent_state down the callchain where
  881. * it'd hit a BUG_ON as those flags are not allowed.
  882. */
  883. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  884. return try_release_extent_buffer(page, gfp_flags);
  885. }
  886. static void btree_invalidatepage(struct page *page, unsigned long offset)
  887. {
  888. struct extent_io_tree *tree;
  889. tree = &BTRFS_I(page->mapping->host)->io_tree;
  890. extent_invalidatepage(tree, page, offset);
  891. btree_releasepage(page, GFP_NOFS);
  892. if (PagePrivate(page)) {
  893. printk(KERN_WARNING "btrfs warning page private not zero "
  894. "on page %llu\n", (unsigned long long)page_offset(page));
  895. ClearPagePrivate(page);
  896. set_page_private(page, 0);
  897. page_cache_release(page);
  898. }
  899. }
  900. static int btree_set_page_dirty(struct page *page)
  901. {
  902. #ifdef DEBUG
  903. struct extent_buffer *eb;
  904. BUG_ON(!PagePrivate(page));
  905. eb = (struct extent_buffer *)page->private;
  906. BUG_ON(!eb);
  907. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  908. BUG_ON(!atomic_read(&eb->refs));
  909. btrfs_assert_tree_locked(eb);
  910. #endif
  911. return __set_page_dirty_nobuffers(page);
  912. }
  913. static const struct address_space_operations btree_aops = {
  914. .readpage = btree_readpage,
  915. .writepages = btree_writepages,
  916. .releasepage = btree_releasepage,
  917. .invalidatepage = btree_invalidatepage,
  918. #ifdef CONFIG_MIGRATION
  919. .migratepage = btree_migratepage,
  920. #endif
  921. .set_page_dirty = btree_set_page_dirty,
  922. };
  923. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  924. u64 parent_transid)
  925. {
  926. struct extent_buffer *buf = NULL;
  927. struct inode *btree_inode = root->fs_info->btree_inode;
  928. int ret = 0;
  929. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  930. if (!buf)
  931. return 0;
  932. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  933. buf, 0, WAIT_NONE, btree_get_extent, 0);
  934. free_extent_buffer(buf);
  935. return ret;
  936. }
  937. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  938. int mirror_num, struct extent_buffer **eb)
  939. {
  940. struct extent_buffer *buf = NULL;
  941. struct inode *btree_inode = root->fs_info->btree_inode;
  942. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  943. int ret;
  944. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  945. if (!buf)
  946. return 0;
  947. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  948. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  949. btree_get_extent, mirror_num);
  950. if (ret) {
  951. free_extent_buffer(buf);
  952. return ret;
  953. }
  954. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  955. free_extent_buffer(buf);
  956. return -EIO;
  957. } else if (extent_buffer_uptodate(buf)) {
  958. *eb = buf;
  959. } else {
  960. free_extent_buffer(buf);
  961. }
  962. return 0;
  963. }
  964. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  965. u64 bytenr, u32 blocksize)
  966. {
  967. struct inode *btree_inode = root->fs_info->btree_inode;
  968. struct extent_buffer *eb;
  969. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  970. bytenr, blocksize);
  971. return eb;
  972. }
  973. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  974. u64 bytenr, u32 blocksize)
  975. {
  976. struct inode *btree_inode = root->fs_info->btree_inode;
  977. struct extent_buffer *eb;
  978. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  979. bytenr, blocksize);
  980. return eb;
  981. }
  982. int btrfs_write_tree_block(struct extent_buffer *buf)
  983. {
  984. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  985. buf->start + buf->len - 1);
  986. }
  987. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawait_range(buf->pages[0]->mapping,
  990. buf->start, buf->start + buf->len - 1);
  991. }
  992. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  993. u32 blocksize, u64 parent_transid)
  994. {
  995. struct extent_buffer *buf = NULL;
  996. int ret;
  997. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  998. if (!buf)
  999. return NULL;
  1000. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1001. return buf;
  1002. }
  1003. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1004. struct extent_buffer *buf)
  1005. {
  1006. struct btrfs_fs_info *fs_info = root->fs_info;
  1007. if (btrfs_header_generation(buf) ==
  1008. fs_info->running_transaction->transid) {
  1009. btrfs_assert_tree_locked(buf);
  1010. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1011. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1012. -buf->len,
  1013. fs_info->dirty_metadata_batch);
  1014. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1015. btrfs_set_lock_blocking(buf);
  1016. clear_extent_buffer_dirty(buf);
  1017. }
  1018. }
  1019. }
  1020. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1021. u32 stripesize, struct btrfs_root *root,
  1022. struct btrfs_fs_info *fs_info,
  1023. u64 objectid)
  1024. {
  1025. root->node = NULL;
  1026. root->commit_root = NULL;
  1027. root->sectorsize = sectorsize;
  1028. root->nodesize = nodesize;
  1029. root->leafsize = leafsize;
  1030. root->stripesize = stripesize;
  1031. root->ref_cows = 0;
  1032. root->track_dirty = 0;
  1033. root->in_radix = 0;
  1034. root->orphan_item_inserted = 0;
  1035. root->orphan_cleanup_state = 0;
  1036. root->objectid = objectid;
  1037. root->last_trans = 0;
  1038. root->highest_objectid = 0;
  1039. root->name = NULL;
  1040. root->inode_tree = RB_ROOT;
  1041. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1042. root->block_rsv = NULL;
  1043. root->orphan_block_rsv = NULL;
  1044. INIT_LIST_HEAD(&root->dirty_list);
  1045. INIT_LIST_HEAD(&root->root_list);
  1046. INIT_LIST_HEAD(&root->logged_list[0]);
  1047. INIT_LIST_HEAD(&root->logged_list[1]);
  1048. spin_lock_init(&root->orphan_lock);
  1049. spin_lock_init(&root->inode_lock);
  1050. spin_lock_init(&root->accounting_lock);
  1051. spin_lock_init(&root->log_extents_lock[0]);
  1052. spin_lock_init(&root->log_extents_lock[1]);
  1053. mutex_init(&root->objectid_mutex);
  1054. mutex_init(&root->log_mutex);
  1055. init_waitqueue_head(&root->log_writer_wait);
  1056. init_waitqueue_head(&root->log_commit_wait[0]);
  1057. init_waitqueue_head(&root->log_commit_wait[1]);
  1058. atomic_set(&root->log_commit[0], 0);
  1059. atomic_set(&root->log_commit[1], 0);
  1060. atomic_set(&root->log_writers, 0);
  1061. atomic_set(&root->log_batch, 0);
  1062. atomic_set(&root->orphan_inodes, 0);
  1063. root->log_transid = 0;
  1064. root->last_log_commit = 0;
  1065. extent_io_tree_init(&root->dirty_log_pages,
  1066. fs_info->btree_inode->i_mapping);
  1067. memset(&root->root_key, 0, sizeof(root->root_key));
  1068. memset(&root->root_item, 0, sizeof(root->root_item));
  1069. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1070. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1071. root->defrag_trans_start = fs_info->generation;
  1072. init_completion(&root->kobj_unregister);
  1073. root->defrag_running = 0;
  1074. root->root_key.objectid = objectid;
  1075. root->anon_dev = 0;
  1076. spin_lock_init(&root->root_item_lock);
  1077. }
  1078. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1079. struct btrfs_fs_info *fs_info,
  1080. u64 objectid,
  1081. struct btrfs_root *root)
  1082. {
  1083. int ret;
  1084. u32 blocksize;
  1085. u64 generation;
  1086. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1087. tree_root->sectorsize, tree_root->stripesize,
  1088. root, fs_info, objectid);
  1089. ret = btrfs_find_last_root(tree_root, objectid,
  1090. &root->root_item, &root->root_key);
  1091. if (ret > 0)
  1092. return -ENOENT;
  1093. else if (ret < 0)
  1094. return ret;
  1095. generation = btrfs_root_generation(&root->root_item);
  1096. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1097. root->commit_root = NULL;
  1098. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1099. blocksize, generation);
  1100. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1101. free_extent_buffer(root->node);
  1102. root->node = NULL;
  1103. return -EIO;
  1104. }
  1105. root->commit_root = btrfs_root_node(root);
  1106. return 0;
  1107. }
  1108. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1109. {
  1110. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1111. if (root)
  1112. root->fs_info = fs_info;
  1113. return root;
  1114. }
  1115. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1116. struct btrfs_fs_info *fs_info,
  1117. u64 objectid)
  1118. {
  1119. struct extent_buffer *leaf;
  1120. struct btrfs_root *tree_root = fs_info->tree_root;
  1121. struct btrfs_root *root;
  1122. struct btrfs_key key;
  1123. int ret = 0;
  1124. u64 bytenr;
  1125. root = btrfs_alloc_root(fs_info);
  1126. if (!root)
  1127. return ERR_PTR(-ENOMEM);
  1128. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1129. tree_root->sectorsize, tree_root->stripesize,
  1130. root, fs_info, objectid);
  1131. root->root_key.objectid = objectid;
  1132. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1133. root->root_key.offset = 0;
  1134. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1135. 0, objectid, NULL, 0, 0, 0);
  1136. if (IS_ERR(leaf)) {
  1137. ret = PTR_ERR(leaf);
  1138. leaf = NULL;
  1139. goto fail;
  1140. }
  1141. bytenr = leaf->start;
  1142. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1143. btrfs_set_header_bytenr(leaf, leaf->start);
  1144. btrfs_set_header_generation(leaf, trans->transid);
  1145. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1146. btrfs_set_header_owner(leaf, objectid);
  1147. root->node = leaf;
  1148. write_extent_buffer(leaf, fs_info->fsid,
  1149. (unsigned long)btrfs_header_fsid(leaf),
  1150. BTRFS_FSID_SIZE);
  1151. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1152. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1153. BTRFS_UUID_SIZE);
  1154. btrfs_mark_buffer_dirty(leaf);
  1155. root->commit_root = btrfs_root_node(root);
  1156. root->track_dirty = 1;
  1157. root->root_item.flags = 0;
  1158. root->root_item.byte_limit = 0;
  1159. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1160. btrfs_set_root_generation(&root->root_item, trans->transid);
  1161. btrfs_set_root_level(&root->root_item, 0);
  1162. btrfs_set_root_refs(&root->root_item, 1);
  1163. btrfs_set_root_used(&root->root_item, leaf->len);
  1164. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1165. btrfs_set_root_dirid(&root->root_item, 0);
  1166. root->root_item.drop_level = 0;
  1167. key.objectid = objectid;
  1168. key.type = BTRFS_ROOT_ITEM_KEY;
  1169. key.offset = 0;
  1170. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1171. if (ret)
  1172. goto fail;
  1173. btrfs_tree_unlock(leaf);
  1174. return root;
  1175. fail:
  1176. if (leaf) {
  1177. btrfs_tree_unlock(leaf);
  1178. free_extent_buffer(leaf);
  1179. }
  1180. kfree(root);
  1181. return ERR_PTR(ret);
  1182. }
  1183. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1184. struct btrfs_fs_info *fs_info)
  1185. {
  1186. struct btrfs_root *root;
  1187. struct btrfs_root *tree_root = fs_info->tree_root;
  1188. struct extent_buffer *leaf;
  1189. root = btrfs_alloc_root(fs_info);
  1190. if (!root)
  1191. return ERR_PTR(-ENOMEM);
  1192. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1193. tree_root->sectorsize, tree_root->stripesize,
  1194. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1195. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1196. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1197. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1198. /*
  1199. * log trees do not get reference counted because they go away
  1200. * before a real commit is actually done. They do store pointers
  1201. * to file data extents, and those reference counts still get
  1202. * updated (along with back refs to the log tree).
  1203. */
  1204. root->ref_cows = 0;
  1205. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1206. BTRFS_TREE_LOG_OBJECTID, NULL,
  1207. 0, 0, 0);
  1208. if (IS_ERR(leaf)) {
  1209. kfree(root);
  1210. return ERR_CAST(leaf);
  1211. }
  1212. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1213. btrfs_set_header_bytenr(leaf, leaf->start);
  1214. btrfs_set_header_generation(leaf, trans->transid);
  1215. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1216. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1217. root->node = leaf;
  1218. write_extent_buffer(root->node, root->fs_info->fsid,
  1219. (unsigned long)btrfs_header_fsid(root->node),
  1220. BTRFS_FSID_SIZE);
  1221. btrfs_mark_buffer_dirty(root->node);
  1222. btrfs_tree_unlock(root->node);
  1223. return root;
  1224. }
  1225. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1226. struct btrfs_fs_info *fs_info)
  1227. {
  1228. struct btrfs_root *log_root;
  1229. log_root = alloc_log_tree(trans, fs_info);
  1230. if (IS_ERR(log_root))
  1231. return PTR_ERR(log_root);
  1232. WARN_ON(fs_info->log_root_tree);
  1233. fs_info->log_root_tree = log_root;
  1234. return 0;
  1235. }
  1236. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1237. struct btrfs_root *root)
  1238. {
  1239. struct btrfs_root *log_root;
  1240. struct btrfs_inode_item *inode_item;
  1241. log_root = alloc_log_tree(trans, root->fs_info);
  1242. if (IS_ERR(log_root))
  1243. return PTR_ERR(log_root);
  1244. log_root->last_trans = trans->transid;
  1245. log_root->root_key.offset = root->root_key.objectid;
  1246. inode_item = &log_root->root_item.inode;
  1247. inode_item->generation = cpu_to_le64(1);
  1248. inode_item->size = cpu_to_le64(3);
  1249. inode_item->nlink = cpu_to_le32(1);
  1250. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1251. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1252. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1253. WARN_ON(root->log_root);
  1254. root->log_root = log_root;
  1255. root->log_transid = 0;
  1256. root->last_log_commit = 0;
  1257. return 0;
  1258. }
  1259. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1260. struct btrfs_key *location)
  1261. {
  1262. struct btrfs_root *root;
  1263. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1264. struct btrfs_path *path;
  1265. struct extent_buffer *l;
  1266. u64 generation;
  1267. u32 blocksize;
  1268. int ret = 0;
  1269. int slot;
  1270. root = btrfs_alloc_root(fs_info);
  1271. if (!root)
  1272. return ERR_PTR(-ENOMEM);
  1273. if (location->offset == (u64)-1) {
  1274. ret = find_and_setup_root(tree_root, fs_info,
  1275. location->objectid, root);
  1276. if (ret) {
  1277. kfree(root);
  1278. return ERR_PTR(ret);
  1279. }
  1280. goto out;
  1281. }
  1282. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1283. tree_root->sectorsize, tree_root->stripesize,
  1284. root, fs_info, location->objectid);
  1285. path = btrfs_alloc_path();
  1286. if (!path) {
  1287. kfree(root);
  1288. return ERR_PTR(-ENOMEM);
  1289. }
  1290. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1291. if (ret == 0) {
  1292. l = path->nodes[0];
  1293. slot = path->slots[0];
  1294. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1295. memcpy(&root->root_key, location, sizeof(*location));
  1296. }
  1297. btrfs_free_path(path);
  1298. if (ret) {
  1299. kfree(root);
  1300. if (ret > 0)
  1301. ret = -ENOENT;
  1302. return ERR_PTR(ret);
  1303. }
  1304. generation = btrfs_root_generation(&root->root_item);
  1305. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1306. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1307. blocksize, generation);
  1308. root->commit_root = btrfs_root_node(root);
  1309. BUG_ON(!root->node); /* -ENOMEM */
  1310. out:
  1311. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1312. root->ref_cows = 1;
  1313. btrfs_check_and_init_root_item(&root->root_item);
  1314. }
  1315. return root;
  1316. }
  1317. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1318. struct btrfs_key *location)
  1319. {
  1320. struct btrfs_root *root;
  1321. int ret;
  1322. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1323. return fs_info->tree_root;
  1324. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1325. return fs_info->extent_root;
  1326. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1327. return fs_info->chunk_root;
  1328. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1329. return fs_info->dev_root;
  1330. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1331. return fs_info->csum_root;
  1332. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1333. return fs_info->quota_root ? fs_info->quota_root :
  1334. ERR_PTR(-ENOENT);
  1335. again:
  1336. spin_lock(&fs_info->fs_roots_radix_lock);
  1337. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1338. (unsigned long)location->objectid);
  1339. spin_unlock(&fs_info->fs_roots_radix_lock);
  1340. if (root)
  1341. return root;
  1342. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1343. if (IS_ERR(root))
  1344. return root;
  1345. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1346. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1347. GFP_NOFS);
  1348. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1349. ret = -ENOMEM;
  1350. goto fail;
  1351. }
  1352. btrfs_init_free_ino_ctl(root);
  1353. mutex_init(&root->fs_commit_mutex);
  1354. spin_lock_init(&root->cache_lock);
  1355. init_waitqueue_head(&root->cache_wait);
  1356. ret = get_anon_bdev(&root->anon_dev);
  1357. if (ret)
  1358. goto fail;
  1359. if (btrfs_root_refs(&root->root_item) == 0) {
  1360. ret = -ENOENT;
  1361. goto fail;
  1362. }
  1363. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1364. if (ret < 0)
  1365. goto fail;
  1366. if (ret == 0)
  1367. root->orphan_item_inserted = 1;
  1368. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1369. if (ret)
  1370. goto fail;
  1371. spin_lock(&fs_info->fs_roots_radix_lock);
  1372. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1373. (unsigned long)root->root_key.objectid,
  1374. root);
  1375. if (ret == 0)
  1376. root->in_radix = 1;
  1377. spin_unlock(&fs_info->fs_roots_radix_lock);
  1378. radix_tree_preload_end();
  1379. if (ret) {
  1380. if (ret == -EEXIST) {
  1381. free_fs_root(root);
  1382. goto again;
  1383. }
  1384. goto fail;
  1385. }
  1386. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1387. root->root_key.objectid);
  1388. WARN_ON(ret);
  1389. return root;
  1390. fail:
  1391. free_fs_root(root);
  1392. return ERR_PTR(ret);
  1393. }
  1394. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1395. {
  1396. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1397. int ret = 0;
  1398. struct btrfs_device *device;
  1399. struct backing_dev_info *bdi;
  1400. rcu_read_lock();
  1401. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1402. if (!device->bdev)
  1403. continue;
  1404. bdi = blk_get_backing_dev_info(device->bdev);
  1405. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1406. ret = 1;
  1407. break;
  1408. }
  1409. }
  1410. rcu_read_unlock();
  1411. return ret;
  1412. }
  1413. /*
  1414. * If this fails, caller must call bdi_destroy() to get rid of the
  1415. * bdi again.
  1416. */
  1417. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1418. {
  1419. int err;
  1420. bdi->capabilities = BDI_CAP_MAP_COPY;
  1421. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1422. if (err)
  1423. return err;
  1424. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1425. bdi->congested_fn = btrfs_congested_fn;
  1426. bdi->congested_data = info;
  1427. return 0;
  1428. }
  1429. /*
  1430. * called by the kthread helper functions to finally call the bio end_io
  1431. * functions. This is where read checksum verification actually happens
  1432. */
  1433. static void end_workqueue_fn(struct btrfs_work *work)
  1434. {
  1435. struct bio *bio;
  1436. struct end_io_wq *end_io_wq;
  1437. struct btrfs_fs_info *fs_info;
  1438. int error;
  1439. end_io_wq = container_of(work, struct end_io_wq, work);
  1440. bio = end_io_wq->bio;
  1441. fs_info = end_io_wq->info;
  1442. error = end_io_wq->error;
  1443. bio->bi_private = end_io_wq->private;
  1444. bio->bi_end_io = end_io_wq->end_io;
  1445. kfree(end_io_wq);
  1446. bio_endio(bio, error);
  1447. }
  1448. static int cleaner_kthread(void *arg)
  1449. {
  1450. struct btrfs_root *root = arg;
  1451. do {
  1452. int again = 0;
  1453. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1454. down_read_trylock(&root->fs_info->sb->s_umount)) {
  1455. if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1456. btrfs_run_delayed_iputs(root);
  1457. again = btrfs_clean_one_deleted_snapshot(root);
  1458. mutex_unlock(&root->fs_info->cleaner_mutex);
  1459. }
  1460. btrfs_run_defrag_inodes(root->fs_info);
  1461. up_read(&root->fs_info->sb->s_umount);
  1462. }
  1463. if (!try_to_freeze() && !again) {
  1464. set_current_state(TASK_INTERRUPTIBLE);
  1465. if (!kthread_should_stop())
  1466. schedule();
  1467. __set_current_state(TASK_RUNNING);
  1468. }
  1469. } while (!kthread_should_stop());
  1470. return 0;
  1471. }
  1472. static int transaction_kthread(void *arg)
  1473. {
  1474. struct btrfs_root *root = arg;
  1475. struct btrfs_trans_handle *trans;
  1476. struct btrfs_transaction *cur;
  1477. u64 transid;
  1478. unsigned long now;
  1479. unsigned long delay;
  1480. bool cannot_commit;
  1481. do {
  1482. cannot_commit = false;
  1483. delay = HZ * 30;
  1484. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1485. spin_lock(&root->fs_info->trans_lock);
  1486. cur = root->fs_info->running_transaction;
  1487. if (!cur) {
  1488. spin_unlock(&root->fs_info->trans_lock);
  1489. goto sleep;
  1490. }
  1491. now = get_seconds();
  1492. if (!cur->blocked &&
  1493. (now < cur->start_time || now - cur->start_time < 30)) {
  1494. spin_unlock(&root->fs_info->trans_lock);
  1495. delay = HZ * 5;
  1496. goto sleep;
  1497. }
  1498. transid = cur->transid;
  1499. spin_unlock(&root->fs_info->trans_lock);
  1500. /* If the file system is aborted, this will always fail. */
  1501. trans = btrfs_attach_transaction(root);
  1502. if (IS_ERR(trans)) {
  1503. if (PTR_ERR(trans) != -ENOENT)
  1504. cannot_commit = true;
  1505. goto sleep;
  1506. }
  1507. if (transid == trans->transid) {
  1508. btrfs_commit_transaction(trans, root);
  1509. } else {
  1510. btrfs_end_transaction(trans, root);
  1511. }
  1512. sleep:
  1513. wake_up_process(root->fs_info->cleaner_kthread);
  1514. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1515. if (!try_to_freeze()) {
  1516. set_current_state(TASK_INTERRUPTIBLE);
  1517. if (!kthread_should_stop() &&
  1518. (!btrfs_transaction_blocked(root->fs_info) ||
  1519. cannot_commit))
  1520. schedule_timeout(delay);
  1521. __set_current_state(TASK_RUNNING);
  1522. }
  1523. } while (!kthread_should_stop());
  1524. return 0;
  1525. }
  1526. /*
  1527. * this will find the highest generation in the array of
  1528. * root backups. The index of the highest array is returned,
  1529. * or -1 if we can't find anything.
  1530. *
  1531. * We check to make sure the array is valid by comparing the
  1532. * generation of the latest root in the array with the generation
  1533. * in the super block. If they don't match we pitch it.
  1534. */
  1535. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1536. {
  1537. u64 cur;
  1538. int newest_index = -1;
  1539. struct btrfs_root_backup *root_backup;
  1540. int i;
  1541. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1542. root_backup = info->super_copy->super_roots + i;
  1543. cur = btrfs_backup_tree_root_gen(root_backup);
  1544. if (cur == newest_gen)
  1545. newest_index = i;
  1546. }
  1547. /* check to see if we actually wrapped around */
  1548. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1549. root_backup = info->super_copy->super_roots;
  1550. cur = btrfs_backup_tree_root_gen(root_backup);
  1551. if (cur == newest_gen)
  1552. newest_index = 0;
  1553. }
  1554. return newest_index;
  1555. }
  1556. /*
  1557. * find the oldest backup so we know where to store new entries
  1558. * in the backup array. This will set the backup_root_index
  1559. * field in the fs_info struct
  1560. */
  1561. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1562. u64 newest_gen)
  1563. {
  1564. int newest_index = -1;
  1565. newest_index = find_newest_super_backup(info, newest_gen);
  1566. /* if there was garbage in there, just move along */
  1567. if (newest_index == -1) {
  1568. info->backup_root_index = 0;
  1569. } else {
  1570. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1571. }
  1572. }
  1573. /*
  1574. * copy all the root pointers into the super backup array.
  1575. * this will bump the backup pointer by one when it is
  1576. * done
  1577. */
  1578. static void backup_super_roots(struct btrfs_fs_info *info)
  1579. {
  1580. int next_backup;
  1581. struct btrfs_root_backup *root_backup;
  1582. int last_backup;
  1583. next_backup = info->backup_root_index;
  1584. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1585. BTRFS_NUM_BACKUP_ROOTS;
  1586. /*
  1587. * just overwrite the last backup if we're at the same generation
  1588. * this happens only at umount
  1589. */
  1590. root_backup = info->super_for_commit->super_roots + last_backup;
  1591. if (btrfs_backup_tree_root_gen(root_backup) ==
  1592. btrfs_header_generation(info->tree_root->node))
  1593. next_backup = last_backup;
  1594. root_backup = info->super_for_commit->super_roots + next_backup;
  1595. /*
  1596. * make sure all of our padding and empty slots get zero filled
  1597. * regardless of which ones we use today
  1598. */
  1599. memset(root_backup, 0, sizeof(*root_backup));
  1600. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1601. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1602. btrfs_set_backup_tree_root_gen(root_backup,
  1603. btrfs_header_generation(info->tree_root->node));
  1604. btrfs_set_backup_tree_root_level(root_backup,
  1605. btrfs_header_level(info->tree_root->node));
  1606. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1607. btrfs_set_backup_chunk_root_gen(root_backup,
  1608. btrfs_header_generation(info->chunk_root->node));
  1609. btrfs_set_backup_chunk_root_level(root_backup,
  1610. btrfs_header_level(info->chunk_root->node));
  1611. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1612. btrfs_set_backup_extent_root_gen(root_backup,
  1613. btrfs_header_generation(info->extent_root->node));
  1614. btrfs_set_backup_extent_root_level(root_backup,
  1615. btrfs_header_level(info->extent_root->node));
  1616. /*
  1617. * we might commit during log recovery, which happens before we set
  1618. * the fs_root. Make sure it is valid before we fill it in.
  1619. */
  1620. if (info->fs_root && info->fs_root->node) {
  1621. btrfs_set_backup_fs_root(root_backup,
  1622. info->fs_root->node->start);
  1623. btrfs_set_backup_fs_root_gen(root_backup,
  1624. btrfs_header_generation(info->fs_root->node));
  1625. btrfs_set_backup_fs_root_level(root_backup,
  1626. btrfs_header_level(info->fs_root->node));
  1627. }
  1628. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1629. btrfs_set_backup_dev_root_gen(root_backup,
  1630. btrfs_header_generation(info->dev_root->node));
  1631. btrfs_set_backup_dev_root_level(root_backup,
  1632. btrfs_header_level(info->dev_root->node));
  1633. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1634. btrfs_set_backup_csum_root_gen(root_backup,
  1635. btrfs_header_generation(info->csum_root->node));
  1636. btrfs_set_backup_csum_root_level(root_backup,
  1637. btrfs_header_level(info->csum_root->node));
  1638. btrfs_set_backup_total_bytes(root_backup,
  1639. btrfs_super_total_bytes(info->super_copy));
  1640. btrfs_set_backup_bytes_used(root_backup,
  1641. btrfs_super_bytes_used(info->super_copy));
  1642. btrfs_set_backup_num_devices(root_backup,
  1643. btrfs_super_num_devices(info->super_copy));
  1644. /*
  1645. * if we don't copy this out to the super_copy, it won't get remembered
  1646. * for the next commit
  1647. */
  1648. memcpy(&info->super_copy->super_roots,
  1649. &info->super_for_commit->super_roots,
  1650. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1651. }
  1652. /*
  1653. * this copies info out of the root backup array and back into
  1654. * the in-memory super block. It is meant to help iterate through
  1655. * the array, so you send it the number of backups you've already
  1656. * tried and the last backup index you used.
  1657. *
  1658. * this returns -1 when it has tried all the backups
  1659. */
  1660. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1661. struct btrfs_super_block *super,
  1662. int *num_backups_tried, int *backup_index)
  1663. {
  1664. struct btrfs_root_backup *root_backup;
  1665. int newest = *backup_index;
  1666. if (*num_backups_tried == 0) {
  1667. u64 gen = btrfs_super_generation(super);
  1668. newest = find_newest_super_backup(info, gen);
  1669. if (newest == -1)
  1670. return -1;
  1671. *backup_index = newest;
  1672. *num_backups_tried = 1;
  1673. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1674. /* we've tried all the backups, all done */
  1675. return -1;
  1676. } else {
  1677. /* jump to the next oldest backup */
  1678. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1679. BTRFS_NUM_BACKUP_ROOTS;
  1680. *backup_index = newest;
  1681. *num_backups_tried += 1;
  1682. }
  1683. root_backup = super->super_roots + newest;
  1684. btrfs_set_super_generation(super,
  1685. btrfs_backup_tree_root_gen(root_backup));
  1686. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1687. btrfs_set_super_root_level(super,
  1688. btrfs_backup_tree_root_level(root_backup));
  1689. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1690. /*
  1691. * fixme: the total bytes and num_devices need to match or we should
  1692. * need a fsck
  1693. */
  1694. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1695. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1696. return 0;
  1697. }
  1698. /* helper to cleanup workers */
  1699. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1700. {
  1701. btrfs_stop_workers(&fs_info->generic_worker);
  1702. btrfs_stop_workers(&fs_info->fixup_workers);
  1703. btrfs_stop_workers(&fs_info->delalloc_workers);
  1704. btrfs_stop_workers(&fs_info->workers);
  1705. btrfs_stop_workers(&fs_info->endio_workers);
  1706. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1707. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1708. btrfs_stop_workers(&fs_info->rmw_workers);
  1709. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1710. btrfs_stop_workers(&fs_info->endio_write_workers);
  1711. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1712. btrfs_stop_workers(&fs_info->submit_workers);
  1713. btrfs_stop_workers(&fs_info->delayed_workers);
  1714. btrfs_stop_workers(&fs_info->caching_workers);
  1715. btrfs_stop_workers(&fs_info->readahead_workers);
  1716. btrfs_stop_workers(&fs_info->flush_workers);
  1717. }
  1718. /* helper to cleanup tree roots */
  1719. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1720. {
  1721. free_extent_buffer(info->tree_root->node);
  1722. free_extent_buffer(info->tree_root->commit_root);
  1723. free_extent_buffer(info->dev_root->node);
  1724. free_extent_buffer(info->dev_root->commit_root);
  1725. free_extent_buffer(info->extent_root->node);
  1726. free_extent_buffer(info->extent_root->commit_root);
  1727. free_extent_buffer(info->csum_root->node);
  1728. free_extent_buffer(info->csum_root->commit_root);
  1729. if (info->quota_root) {
  1730. free_extent_buffer(info->quota_root->node);
  1731. free_extent_buffer(info->quota_root->commit_root);
  1732. }
  1733. info->tree_root->node = NULL;
  1734. info->tree_root->commit_root = NULL;
  1735. info->dev_root->node = NULL;
  1736. info->dev_root->commit_root = NULL;
  1737. info->extent_root->node = NULL;
  1738. info->extent_root->commit_root = NULL;
  1739. info->csum_root->node = NULL;
  1740. info->csum_root->commit_root = NULL;
  1741. if (info->quota_root) {
  1742. info->quota_root->node = NULL;
  1743. info->quota_root->commit_root = NULL;
  1744. }
  1745. if (chunk_root) {
  1746. free_extent_buffer(info->chunk_root->node);
  1747. free_extent_buffer(info->chunk_root->commit_root);
  1748. info->chunk_root->node = NULL;
  1749. info->chunk_root->commit_root = NULL;
  1750. }
  1751. }
  1752. int open_ctree(struct super_block *sb,
  1753. struct btrfs_fs_devices *fs_devices,
  1754. char *options)
  1755. {
  1756. u32 sectorsize;
  1757. u32 nodesize;
  1758. u32 leafsize;
  1759. u32 blocksize;
  1760. u32 stripesize;
  1761. u64 generation;
  1762. u64 features;
  1763. struct btrfs_key location;
  1764. struct buffer_head *bh;
  1765. struct btrfs_super_block *disk_super;
  1766. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1767. struct btrfs_root *tree_root;
  1768. struct btrfs_root *extent_root;
  1769. struct btrfs_root *csum_root;
  1770. struct btrfs_root *chunk_root;
  1771. struct btrfs_root *dev_root;
  1772. struct btrfs_root *quota_root;
  1773. struct btrfs_root *log_tree_root;
  1774. int ret;
  1775. int err = -EINVAL;
  1776. int num_backups_tried = 0;
  1777. int backup_index = 0;
  1778. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1779. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1780. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1781. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1782. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1783. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1784. if (!tree_root || !extent_root || !csum_root ||
  1785. !chunk_root || !dev_root || !quota_root) {
  1786. err = -ENOMEM;
  1787. goto fail;
  1788. }
  1789. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1790. if (ret) {
  1791. err = ret;
  1792. goto fail;
  1793. }
  1794. ret = setup_bdi(fs_info, &fs_info->bdi);
  1795. if (ret) {
  1796. err = ret;
  1797. goto fail_srcu;
  1798. }
  1799. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1800. if (ret) {
  1801. err = ret;
  1802. goto fail_bdi;
  1803. }
  1804. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1805. (1 + ilog2(nr_cpu_ids));
  1806. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1807. if (ret) {
  1808. err = ret;
  1809. goto fail_dirty_metadata_bytes;
  1810. }
  1811. fs_info->btree_inode = new_inode(sb);
  1812. if (!fs_info->btree_inode) {
  1813. err = -ENOMEM;
  1814. goto fail_delalloc_bytes;
  1815. }
  1816. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1817. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1818. INIT_LIST_HEAD(&fs_info->trans_list);
  1819. INIT_LIST_HEAD(&fs_info->dead_roots);
  1820. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1821. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1822. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1823. spin_lock_init(&fs_info->delalloc_lock);
  1824. spin_lock_init(&fs_info->trans_lock);
  1825. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1826. spin_lock_init(&fs_info->delayed_iput_lock);
  1827. spin_lock_init(&fs_info->defrag_inodes_lock);
  1828. spin_lock_init(&fs_info->free_chunk_lock);
  1829. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1830. rwlock_init(&fs_info->tree_mod_log_lock);
  1831. mutex_init(&fs_info->reloc_mutex);
  1832. seqlock_init(&fs_info->profiles_lock);
  1833. init_completion(&fs_info->kobj_unregister);
  1834. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1835. INIT_LIST_HEAD(&fs_info->space_info);
  1836. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1837. btrfs_mapping_init(&fs_info->mapping_tree);
  1838. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1839. BTRFS_BLOCK_RSV_GLOBAL);
  1840. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1841. BTRFS_BLOCK_RSV_DELALLOC);
  1842. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1843. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1844. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1845. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1846. BTRFS_BLOCK_RSV_DELOPS);
  1847. atomic_set(&fs_info->nr_async_submits, 0);
  1848. atomic_set(&fs_info->async_delalloc_pages, 0);
  1849. atomic_set(&fs_info->async_submit_draining, 0);
  1850. atomic_set(&fs_info->nr_async_bios, 0);
  1851. atomic_set(&fs_info->defrag_running, 0);
  1852. atomic_set(&fs_info->tree_mod_seq, 0);
  1853. fs_info->sb = sb;
  1854. fs_info->max_inline = 8192 * 1024;
  1855. fs_info->metadata_ratio = 0;
  1856. fs_info->defrag_inodes = RB_ROOT;
  1857. fs_info->trans_no_join = 0;
  1858. fs_info->free_chunk_space = 0;
  1859. fs_info->tree_mod_log = RB_ROOT;
  1860. /* readahead state */
  1861. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1862. spin_lock_init(&fs_info->reada_lock);
  1863. fs_info->thread_pool_size = min_t(unsigned long,
  1864. num_online_cpus() + 2, 8);
  1865. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1866. spin_lock_init(&fs_info->ordered_extent_lock);
  1867. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1868. GFP_NOFS);
  1869. if (!fs_info->delayed_root) {
  1870. err = -ENOMEM;
  1871. goto fail_iput;
  1872. }
  1873. btrfs_init_delayed_root(fs_info->delayed_root);
  1874. mutex_init(&fs_info->scrub_lock);
  1875. atomic_set(&fs_info->scrubs_running, 0);
  1876. atomic_set(&fs_info->scrub_pause_req, 0);
  1877. atomic_set(&fs_info->scrubs_paused, 0);
  1878. atomic_set(&fs_info->scrub_cancel_req, 0);
  1879. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1880. init_rwsem(&fs_info->scrub_super_lock);
  1881. fs_info->scrub_workers_refcnt = 0;
  1882. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1883. fs_info->check_integrity_print_mask = 0;
  1884. #endif
  1885. spin_lock_init(&fs_info->balance_lock);
  1886. mutex_init(&fs_info->balance_mutex);
  1887. atomic_set(&fs_info->balance_running, 0);
  1888. atomic_set(&fs_info->balance_pause_req, 0);
  1889. atomic_set(&fs_info->balance_cancel_req, 0);
  1890. fs_info->balance_ctl = NULL;
  1891. init_waitqueue_head(&fs_info->balance_wait_q);
  1892. sb->s_blocksize = 4096;
  1893. sb->s_blocksize_bits = blksize_bits(4096);
  1894. sb->s_bdi = &fs_info->bdi;
  1895. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1896. set_nlink(fs_info->btree_inode, 1);
  1897. /*
  1898. * we set the i_size on the btree inode to the max possible int.
  1899. * the real end of the address space is determined by all of
  1900. * the devices in the system
  1901. */
  1902. fs_info->btree_inode->i_size = OFFSET_MAX;
  1903. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1904. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1905. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1906. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1907. fs_info->btree_inode->i_mapping);
  1908. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1909. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1910. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1911. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1912. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1913. sizeof(struct btrfs_key));
  1914. set_bit(BTRFS_INODE_DUMMY,
  1915. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1916. insert_inode_hash(fs_info->btree_inode);
  1917. spin_lock_init(&fs_info->block_group_cache_lock);
  1918. fs_info->block_group_cache_tree = RB_ROOT;
  1919. fs_info->first_logical_byte = (u64)-1;
  1920. extent_io_tree_init(&fs_info->freed_extents[0],
  1921. fs_info->btree_inode->i_mapping);
  1922. extent_io_tree_init(&fs_info->freed_extents[1],
  1923. fs_info->btree_inode->i_mapping);
  1924. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1925. fs_info->do_barriers = 1;
  1926. mutex_init(&fs_info->ordered_operations_mutex);
  1927. mutex_init(&fs_info->tree_log_mutex);
  1928. mutex_init(&fs_info->chunk_mutex);
  1929. mutex_init(&fs_info->transaction_kthread_mutex);
  1930. mutex_init(&fs_info->cleaner_mutex);
  1931. mutex_init(&fs_info->volume_mutex);
  1932. init_rwsem(&fs_info->extent_commit_sem);
  1933. init_rwsem(&fs_info->cleanup_work_sem);
  1934. init_rwsem(&fs_info->subvol_sem);
  1935. fs_info->dev_replace.lock_owner = 0;
  1936. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1937. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1938. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1939. mutex_init(&fs_info->dev_replace.lock);
  1940. spin_lock_init(&fs_info->qgroup_lock);
  1941. fs_info->qgroup_tree = RB_ROOT;
  1942. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1943. fs_info->qgroup_seq = 1;
  1944. fs_info->quota_enabled = 0;
  1945. fs_info->pending_quota_state = 0;
  1946. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1947. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1948. init_waitqueue_head(&fs_info->transaction_throttle);
  1949. init_waitqueue_head(&fs_info->transaction_wait);
  1950. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1951. init_waitqueue_head(&fs_info->async_submit_wait);
  1952. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1953. if (ret) {
  1954. err = ret;
  1955. goto fail_alloc;
  1956. }
  1957. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1958. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1959. invalidate_bdev(fs_devices->latest_bdev);
  1960. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1961. if (!bh) {
  1962. err = -EINVAL;
  1963. goto fail_alloc;
  1964. }
  1965. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1966. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1967. sizeof(*fs_info->super_for_commit));
  1968. brelse(bh);
  1969. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1970. disk_super = fs_info->super_copy;
  1971. if (!btrfs_super_root(disk_super))
  1972. goto fail_alloc;
  1973. /* check FS state, whether FS is broken. */
  1974. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  1975. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  1976. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1977. if (ret) {
  1978. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1979. err = ret;
  1980. goto fail_alloc;
  1981. }
  1982. /*
  1983. * run through our array of backup supers and setup
  1984. * our ring pointer to the oldest one
  1985. */
  1986. generation = btrfs_super_generation(disk_super);
  1987. find_oldest_super_backup(fs_info, generation);
  1988. /*
  1989. * In the long term, we'll store the compression type in the super
  1990. * block, and it'll be used for per file compression control.
  1991. */
  1992. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1993. ret = btrfs_parse_options(tree_root, options);
  1994. if (ret) {
  1995. err = ret;
  1996. goto fail_alloc;
  1997. }
  1998. features = btrfs_super_incompat_flags(disk_super) &
  1999. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2000. if (features) {
  2001. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2002. "unsupported optional features (%Lx).\n",
  2003. (unsigned long long)features);
  2004. err = -EINVAL;
  2005. goto fail_alloc;
  2006. }
  2007. if (btrfs_super_leafsize(disk_super) !=
  2008. btrfs_super_nodesize(disk_super)) {
  2009. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2010. "blocksizes don't match. node %d leaf %d\n",
  2011. btrfs_super_nodesize(disk_super),
  2012. btrfs_super_leafsize(disk_super));
  2013. err = -EINVAL;
  2014. goto fail_alloc;
  2015. }
  2016. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2017. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2018. "blocksize (%d) was too large\n",
  2019. btrfs_super_leafsize(disk_super));
  2020. err = -EINVAL;
  2021. goto fail_alloc;
  2022. }
  2023. features = btrfs_super_incompat_flags(disk_super);
  2024. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2025. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2026. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2027. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2028. printk(KERN_ERR "btrfs: has skinny extents\n");
  2029. /*
  2030. * flag our filesystem as having big metadata blocks if
  2031. * they are bigger than the page size
  2032. */
  2033. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2034. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2035. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2036. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2037. }
  2038. nodesize = btrfs_super_nodesize(disk_super);
  2039. leafsize = btrfs_super_leafsize(disk_super);
  2040. sectorsize = btrfs_super_sectorsize(disk_super);
  2041. stripesize = btrfs_super_stripesize(disk_super);
  2042. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2043. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2044. /*
  2045. * mixed block groups end up with duplicate but slightly offset
  2046. * extent buffers for the same range. It leads to corruptions
  2047. */
  2048. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2049. (sectorsize != leafsize)) {
  2050. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2051. "are not allowed for mixed block groups on %s\n",
  2052. sb->s_id);
  2053. goto fail_alloc;
  2054. }
  2055. btrfs_set_super_incompat_flags(disk_super, features);
  2056. features = btrfs_super_compat_ro_flags(disk_super) &
  2057. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2058. if (!(sb->s_flags & MS_RDONLY) && features) {
  2059. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2060. "unsupported option features (%Lx).\n",
  2061. (unsigned long long)features);
  2062. err = -EINVAL;
  2063. goto fail_alloc;
  2064. }
  2065. btrfs_init_workers(&fs_info->generic_worker,
  2066. "genwork", 1, NULL);
  2067. btrfs_init_workers(&fs_info->workers, "worker",
  2068. fs_info->thread_pool_size,
  2069. &fs_info->generic_worker);
  2070. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2071. fs_info->thread_pool_size,
  2072. &fs_info->generic_worker);
  2073. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2074. fs_info->thread_pool_size,
  2075. &fs_info->generic_worker);
  2076. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2077. min_t(u64, fs_devices->num_devices,
  2078. fs_info->thread_pool_size),
  2079. &fs_info->generic_worker);
  2080. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2081. 2, &fs_info->generic_worker);
  2082. /* a higher idle thresh on the submit workers makes it much more
  2083. * likely that bios will be send down in a sane order to the
  2084. * devices
  2085. */
  2086. fs_info->submit_workers.idle_thresh = 64;
  2087. fs_info->workers.idle_thresh = 16;
  2088. fs_info->workers.ordered = 1;
  2089. fs_info->delalloc_workers.idle_thresh = 2;
  2090. fs_info->delalloc_workers.ordered = 1;
  2091. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2092. &fs_info->generic_worker);
  2093. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2094. fs_info->thread_pool_size,
  2095. &fs_info->generic_worker);
  2096. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2097. fs_info->thread_pool_size,
  2098. &fs_info->generic_worker);
  2099. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2100. "endio-meta-write", fs_info->thread_pool_size,
  2101. &fs_info->generic_worker);
  2102. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2103. "endio-raid56", fs_info->thread_pool_size,
  2104. &fs_info->generic_worker);
  2105. btrfs_init_workers(&fs_info->rmw_workers,
  2106. "rmw", fs_info->thread_pool_size,
  2107. &fs_info->generic_worker);
  2108. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2109. fs_info->thread_pool_size,
  2110. &fs_info->generic_worker);
  2111. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2112. 1, &fs_info->generic_worker);
  2113. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2114. fs_info->thread_pool_size,
  2115. &fs_info->generic_worker);
  2116. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2117. fs_info->thread_pool_size,
  2118. &fs_info->generic_worker);
  2119. /*
  2120. * endios are largely parallel and should have a very
  2121. * low idle thresh
  2122. */
  2123. fs_info->endio_workers.idle_thresh = 4;
  2124. fs_info->endio_meta_workers.idle_thresh = 4;
  2125. fs_info->endio_raid56_workers.idle_thresh = 4;
  2126. fs_info->rmw_workers.idle_thresh = 2;
  2127. fs_info->endio_write_workers.idle_thresh = 2;
  2128. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2129. fs_info->readahead_workers.idle_thresh = 2;
  2130. /*
  2131. * btrfs_start_workers can really only fail because of ENOMEM so just
  2132. * return -ENOMEM if any of these fail.
  2133. */
  2134. ret = btrfs_start_workers(&fs_info->workers);
  2135. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2136. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2137. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2138. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2139. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2140. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2141. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2142. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2143. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2144. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2145. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2146. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2147. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2148. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2149. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2150. if (ret) {
  2151. err = -ENOMEM;
  2152. goto fail_sb_buffer;
  2153. }
  2154. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2155. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2156. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2157. tree_root->nodesize = nodesize;
  2158. tree_root->leafsize = leafsize;
  2159. tree_root->sectorsize = sectorsize;
  2160. tree_root->stripesize = stripesize;
  2161. sb->s_blocksize = sectorsize;
  2162. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2163. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2164. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2165. goto fail_sb_buffer;
  2166. }
  2167. if (sectorsize != PAGE_SIZE) {
  2168. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2169. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2170. goto fail_sb_buffer;
  2171. }
  2172. mutex_lock(&fs_info->chunk_mutex);
  2173. ret = btrfs_read_sys_array(tree_root);
  2174. mutex_unlock(&fs_info->chunk_mutex);
  2175. if (ret) {
  2176. printk(KERN_WARNING "btrfs: failed to read the system "
  2177. "array on %s\n", sb->s_id);
  2178. goto fail_sb_buffer;
  2179. }
  2180. blocksize = btrfs_level_size(tree_root,
  2181. btrfs_super_chunk_root_level(disk_super));
  2182. generation = btrfs_super_chunk_root_generation(disk_super);
  2183. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2184. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2185. chunk_root->node = read_tree_block(chunk_root,
  2186. btrfs_super_chunk_root(disk_super),
  2187. blocksize, generation);
  2188. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2189. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2190. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2191. sb->s_id);
  2192. goto fail_tree_roots;
  2193. }
  2194. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2195. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2196. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2197. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2198. BTRFS_UUID_SIZE);
  2199. ret = btrfs_read_chunk_tree(chunk_root);
  2200. if (ret) {
  2201. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2202. sb->s_id);
  2203. goto fail_tree_roots;
  2204. }
  2205. /*
  2206. * keep the device that is marked to be the target device for the
  2207. * dev_replace procedure
  2208. */
  2209. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2210. if (!fs_devices->latest_bdev) {
  2211. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2212. sb->s_id);
  2213. goto fail_tree_roots;
  2214. }
  2215. retry_root_backup:
  2216. blocksize = btrfs_level_size(tree_root,
  2217. btrfs_super_root_level(disk_super));
  2218. generation = btrfs_super_generation(disk_super);
  2219. tree_root->node = read_tree_block(tree_root,
  2220. btrfs_super_root(disk_super),
  2221. blocksize, generation);
  2222. if (!tree_root->node ||
  2223. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2224. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2225. sb->s_id);
  2226. goto recovery_tree_root;
  2227. }
  2228. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2229. tree_root->commit_root = btrfs_root_node(tree_root);
  2230. ret = find_and_setup_root(tree_root, fs_info,
  2231. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2232. if (ret)
  2233. goto recovery_tree_root;
  2234. extent_root->track_dirty = 1;
  2235. ret = find_and_setup_root(tree_root, fs_info,
  2236. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2237. if (ret)
  2238. goto recovery_tree_root;
  2239. dev_root->track_dirty = 1;
  2240. ret = find_and_setup_root(tree_root, fs_info,
  2241. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2242. if (ret)
  2243. goto recovery_tree_root;
  2244. csum_root->track_dirty = 1;
  2245. ret = find_and_setup_root(tree_root, fs_info,
  2246. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2247. if (ret) {
  2248. kfree(quota_root);
  2249. quota_root = fs_info->quota_root = NULL;
  2250. } else {
  2251. quota_root->track_dirty = 1;
  2252. fs_info->quota_enabled = 1;
  2253. fs_info->pending_quota_state = 1;
  2254. }
  2255. fs_info->generation = generation;
  2256. fs_info->last_trans_committed = generation;
  2257. ret = btrfs_recover_balance(fs_info);
  2258. if (ret) {
  2259. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2260. goto fail_block_groups;
  2261. }
  2262. ret = btrfs_init_dev_stats(fs_info);
  2263. if (ret) {
  2264. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2265. ret);
  2266. goto fail_block_groups;
  2267. }
  2268. ret = btrfs_init_dev_replace(fs_info);
  2269. if (ret) {
  2270. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2271. goto fail_block_groups;
  2272. }
  2273. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2274. ret = btrfs_init_space_info(fs_info);
  2275. if (ret) {
  2276. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2277. goto fail_block_groups;
  2278. }
  2279. ret = btrfs_read_block_groups(extent_root);
  2280. if (ret) {
  2281. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2282. goto fail_block_groups;
  2283. }
  2284. fs_info->num_tolerated_disk_barrier_failures =
  2285. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2286. if (fs_info->fs_devices->missing_devices >
  2287. fs_info->num_tolerated_disk_barrier_failures &&
  2288. !(sb->s_flags & MS_RDONLY)) {
  2289. printk(KERN_WARNING
  2290. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2291. goto fail_block_groups;
  2292. }
  2293. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2294. "btrfs-cleaner");
  2295. if (IS_ERR(fs_info->cleaner_kthread))
  2296. goto fail_block_groups;
  2297. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2298. tree_root,
  2299. "btrfs-transaction");
  2300. if (IS_ERR(fs_info->transaction_kthread))
  2301. goto fail_cleaner;
  2302. if (!btrfs_test_opt(tree_root, SSD) &&
  2303. !btrfs_test_opt(tree_root, NOSSD) &&
  2304. !fs_info->fs_devices->rotating) {
  2305. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2306. "mode\n");
  2307. btrfs_set_opt(fs_info->mount_opt, SSD);
  2308. }
  2309. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2310. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2311. ret = btrfsic_mount(tree_root, fs_devices,
  2312. btrfs_test_opt(tree_root,
  2313. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2314. 1 : 0,
  2315. fs_info->check_integrity_print_mask);
  2316. if (ret)
  2317. printk(KERN_WARNING "btrfs: failed to initialize"
  2318. " integrity check module %s\n", sb->s_id);
  2319. }
  2320. #endif
  2321. ret = btrfs_read_qgroup_config(fs_info);
  2322. if (ret)
  2323. goto fail_trans_kthread;
  2324. /* do not make disk changes in broken FS */
  2325. if (btrfs_super_log_root(disk_super) != 0) {
  2326. u64 bytenr = btrfs_super_log_root(disk_super);
  2327. if (fs_devices->rw_devices == 0) {
  2328. printk(KERN_WARNING "Btrfs log replay required "
  2329. "on RO media\n");
  2330. err = -EIO;
  2331. goto fail_qgroup;
  2332. }
  2333. blocksize =
  2334. btrfs_level_size(tree_root,
  2335. btrfs_super_log_root_level(disk_super));
  2336. log_tree_root = btrfs_alloc_root(fs_info);
  2337. if (!log_tree_root) {
  2338. err = -ENOMEM;
  2339. goto fail_qgroup;
  2340. }
  2341. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2342. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2343. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2344. blocksize,
  2345. generation + 1);
  2346. /* returns with log_tree_root freed on success */
  2347. ret = btrfs_recover_log_trees(log_tree_root);
  2348. if (ret) {
  2349. btrfs_error(tree_root->fs_info, ret,
  2350. "Failed to recover log tree");
  2351. free_extent_buffer(log_tree_root->node);
  2352. kfree(log_tree_root);
  2353. goto fail_trans_kthread;
  2354. }
  2355. if (sb->s_flags & MS_RDONLY) {
  2356. ret = btrfs_commit_super(tree_root);
  2357. if (ret)
  2358. goto fail_trans_kthread;
  2359. }
  2360. }
  2361. ret = btrfs_find_orphan_roots(tree_root);
  2362. if (ret)
  2363. goto fail_trans_kthread;
  2364. if (!(sb->s_flags & MS_RDONLY)) {
  2365. ret = btrfs_cleanup_fs_roots(fs_info);
  2366. if (ret)
  2367. goto fail_trans_kthread;
  2368. ret = btrfs_recover_relocation(tree_root);
  2369. if (ret < 0) {
  2370. printk(KERN_WARNING
  2371. "btrfs: failed to recover relocation\n");
  2372. err = -EINVAL;
  2373. goto fail_qgroup;
  2374. }
  2375. }
  2376. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2377. location.type = BTRFS_ROOT_ITEM_KEY;
  2378. location.offset = (u64)-1;
  2379. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2380. if (!fs_info->fs_root)
  2381. goto fail_qgroup;
  2382. if (IS_ERR(fs_info->fs_root)) {
  2383. err = PTR_ERR(fs_info->fs_root);
  2384. goto fail_qgroup;
  2385. }
  2386. if (sb->s_flags & MS_RDONLY)
  2387. return 0;
  2388. down_read(&fs_info->cleanup_work_sem);
  2389. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2390. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2391. up_read(&fs_info->cleanup_work_sem);
  2392. close_ctree(tree_root);
  2393. return ret;
  2394. }
  2395. up_read(&fs_info->cleanup_work_sem);
  2396. ret = btrfs_resume_balance_async(fs_info);
  2397. if (ret) {
  2398. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2399. close_ctree(tree_root);
  2400. return ret;
  2401. }
  2402. ret = btrfs_resume_dev_replace_async(fs_info);
  2403. if (ret) {
  2404. pr_warn("btrfs: failed to resume dev_replace\n");
  2405. close_ctree(tree_root);
  2406. return ret;
  2407. }
  2408. return 0;
  2409. fail_qgroup:
  2410. btrfs_free_qgroup_config(fs_info);
  2411. fail_trans_kthread:
  2412. kthread_stop(fs_info->transaction_kthread);
  2413. fail_cleaner:
  2414. kthread_stop(fs_info->cleaner_kthread);
  2415. /*
  2416. * make sure we're done with the btree inode before we stop our
  2417. * kthreads
  2418. */
  2419. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2420. fail_block_groups:
  2421. btrfs_free_block_groups(fs_info);
  2422. fail_tree_roots:
  2423. free_root_pointers(fs_info, 1);
  2424. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2425. fail_sb_buffer:
  2426. btrfs_stop_all_workers(fs_info);
  2427. fail_alloc:
  2428. fail_iput:
  2429. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2430. iput(fs_info->btree_inode);
  2431. fail_delalloc_bytes:
  2432. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2433. fail_dirty_metadata_bytes:
  2434. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2435. fail_bdi:
  2436. bdi_destroy(&fs_info->bdi);
  2437. fail_srcu:
  2438. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2439. fail:
  2440. btrfs_free_stripe_hash_table(fs_info);
  2441. btrfs_close_devices(fs_info->fs_devices);
  2442. return err;
  2443. recovery_tree_root:
  2444. if (!btrfs_test_opt(tree_root, RECOVERY))
  2445. goto fail_tree_roots;
  2446. free_root_pointers(fs_info, 0);
  2447. /* don't use the log in recovery mode, it won't be valid */
  2448. btrfs_set_super_log_root(disk_super, 0);
  2449. /* we can't trust the free space cache either */
  2450. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2451. ret = next_root_backup(fs_info, fs_info->super_copy,
  2452. &num_backups_tried, &backup_index);
  2453. if (ret == -1)
  2454. goto fail_block_groups;
  2455. goto retry_root_backup;
  2456. }
  2457. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2458. {
  2459. if (uptodate) {
  2460. set_buffer_uptodate(bh);
  2461. } else {
  2462. struct btrfs_device *device = (struct btrfs_device *)
  2463. bh->b_private;
  2464. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2465. "I/O error on %s\n",
  2466. rcu_str_deref(device->name));
  2467. /* note, we dont' set_buffer_write_io_error because we have
  2468. * our own ways of dealing with the IO errors
  2469. */
  2470. clear_buffer_uptodate(bh);
  2471. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2472. }
  2473. unlock_buffer(bh);
  2474. put_bh(bh);
  2475. }
  2476. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2477. {
  2478. struct buffer_head *bh;
  2479. struct buffer_head *latest = NULL;
  2480. struct btrfs_super_block *super;
  2481. int i;
  2482. u64 transid = 0;
  2483. u64 bytenr;
  2484. /* we would like to check all the supers, but that would make
  2485. * a btrfs mount succeed after a mkfs from a different FS.
  2486. * So, we need to add a special mount option to scan for
  2487. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2488. */
  2489. for (i = 0; i < 1; i++) {
  2490. bytenr = btrfs_sb_offset(i);
  2491. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2492. break;
  2493. bh = __bread(bdev, bytenr / 4096, 4096);
  2494. if (!bh)
  2495. continue;
  2496. super = (struct btrfs_super_block *)bh->b_data;
  2497. if (btrfs_super_bytenr(super) != bytenr ||
  2498. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2499. brelse(bh);
  2500. continue;
  2501. }
  2502. if (!latest || btrfs_super_generation(super) > transid) {
  2503. brelse(latest);
  2504. latest = bh;
  2505. transid = btrfs_super_generation(super);
  2506. } else {
  2507. brelse(bh);
  2508. }
  2509. }
  2510. return latest;
  2511. }
  2512. /*
  2513. * this should be called twice, once with wait == 0 and
  2514. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2515. * we write are pinned.
  2516. *
  2517. * They are released when wait == 1 is done.
  2518. * max_mirrors must be the same for both runs, and it indicates how
  2519. * many supers on this one device should be written.
  2520. *
  2521. * max_mirrors == 0 means to write them all.
  2522. */
  2523. static int write_dev_supers(struct btrfs_device *device,
  2524. struct btrfs_super_block *sb,
  2525. int do_barriers, int wait, int max_mirrors)
  2526. {
  2527. struct buffer_head *bh;
  2528. int i;
  2529. int ret;
  2530. int errors = 0;
  2531. u32 crc;
  2532. u64 bytenr;
  2533. if (max_mirrors == 0)
  2534. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2535. for (i = 0; i < max_mirrors; i++) {
  2536. bytenr = btrfs_sb_offset(i);
  2537. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2538. break;
  2539. if (wait) {
  2540. bh = __find_get_block(device->bdev, bytenr / 4096,
  2541. BTRFS_SUPER_INFO_SIZE);
  2542. BUG_ON(!bh);
  2543. wait_on_buffer(bh);
  2544. if (!buffer_uptodate(bh))
  2545. errors++;
  2546. /* drop our reference */
  2547. brelse(bh);
  2548. /* drop the reference from the wait == 0 run */
  2549. brelse(bh);
  2550. continue;
  2551. } else {
  2552. btrfs_set_super_bytenr(sb, bytenr);
  2553. crc = ~(u32)0;
  2554. crc = btrfs_csum_data((char *)sb +
  2555. BTRFS_CSUM_SIZE, crc,
  2556. BTRFS_SUPER_INFO_SIZE -
  2557. BTRFS_CSUM_SIZE);
  2558. btrfs_csum_final(crc, sb->csum);
  2559. /*
  2560. * one reference for us, and we leave it for the
  2561. * caller
  2562. */
  2563. bh = __getblk(device->bdev, bytenr / 4096,
  2564. BTRFS_SUPER_INFO_SIZE);
  2565. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2566. /* one reference for submit_bh */
  2567. get_bh(bh);
  2568. set_buffer_uptodate(bh);
  2569. lock_buffer(bh);
  2570. bh->b_end_io = btrfs_end_buffer_write_sync;
  2571. bh->b_private = device;
  2572. }
  2573. /*
  2574. * we fua the first super. The others we allow
  2575. * to go down lazy.
  2576. */
  2577. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2578. if (ret)
  2579. errors++;
  2580. }
  2581. return errors < i ? 0 : -1;
  2582. }
  2583. /*
  2584. * endio for the write_dev_flush, this will wake anyone waiting
  2585. * for the barrier when it is done
  2586. */
  2587. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2588. {
  2589. if (err) {
  2590. if (err == -EOPNOTSUPP)
  2591. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2592. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2593. }
  2594. if (bio->bi_private)
  2595. complete(bio->bi_private);
  2596. bio_put(bio);
  2597. }
  2598. /*
  2599. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2600. * sent down. With wait == 1, it waits for the previous flush.
  2601. *
  2602. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2603. * capable
  2604. */
  2605. static int write_dev_flush(struct btrfs_device *device, int wait)
  2606. {
  2607. struct bio *bio;
  2608. int ret = 0;
  2609. if (device->nobarriers)
  2610. return 0;
  2611. if (wait) {
  2612. bio = device->flush_bio;
  2613. if (!bio)
  2614. return 0;
  2615. wait_for_completion(&device->flush_wait);
  2616. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2617. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2618. rcu_str_deref(device->name));
  2619. device->nobarriers = 1;
  2620. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2621. ret = -EIO;
  2622. btrfs_dev_stat_inc_and_print(device,
  2623. BTRFS_DEV_STAT_FLUSH_ERRS);
  2624. }
  2625. /* drop the reference from the wait == 0 run */
  2626. bio_put(bio);
  2627. device->flush_bio = NULL;
  2628. return ret;
  2629. }
  2630. /*
  2631. * one reference for us, and we leave it for the
  2632. * caller
  2633. */
  2634. device->flush_bio = NULL;
  2635. bio = bio_alloc(GFP_NOFS, 0);
  2636. if (!bio)
  2637. return -ENOMEM;
  2638. bio->bi_end_io = btrfs_end_empty_barrier;
  2639. bio->bi_bdev = device->bdev;
  2640. init_completion(&device->flush_wait);
  2641. bio->bi_private = &device->flush_wait;
  2642. device->flush_bio = bio;
  2643. bio_get(bio);
  2644. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2645. return 0;
  2646. }
  2647. /*
  2648. * send an empty flush down to each device in parallel,
  2649. * then wait for them
  2650. */
  2651. static int barrier_all_devices(struct btrfs_fs_info *info)
  2652. {
  2653. struct list_head *head;
  2654. struct btrfs_device *dev;
  2655. int errors_send = 0;
  2656. int errors_wait = 0;
  2657. int ret;
  2658. /* send down all the barriers */
  2659. head = &info->fs_devices->devices;
  2660. list_for_each_entry_rcu(dev, head, dev_list) {
  2661. if (!dev->bdev) {
  2662. errors_send++;
  2663. continue;
  2664. }
  2665. if (!dev->in_fs_metadata || !dev->writeable)
  2666. continue;
  2667. ret = write_dev_flush(dev, 0);
  2668. if (ret)
  2669. errors_send++;
  2670. }
  2671. /* wait for all the barriers */
  2672. list_for_each_entry_rcu(dev, head, dev_list) {
  2673. if (!dev->bdev) {
  2674. errors_wait++;
  2675. continue;
  2676. }
  2677. if (!dev->in_fs_metadata || !dev->writeable)
  2678. continue;
  2679. ret = write_dev_flush(dev, 1);
  2680. if (ret)
  2681. errors_wait++;
  2682. }
  2683. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2684. errors_wait > info->num_tolerated_disk_barrier_failures)
  2685. return -EIO;
  2686. return 0;
  2687. }
  2688. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2689. struct btrfs_fs_info *fs_info)
  2690. {
  2691. struct btrfs_ioctl_space_info space;
  2692. struct btrfs_space_info *sinfo;
  2693. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2694. BTRFS_BLOCK_GROUP_SYSTEM,
  2695. BTRFS_BLOCK_GROUP_METADATA,
  2696. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2697. int num_types = 4;
  2698. int i;
  2699. int c;
  2700. int num_tolerated_disk_barrier_failures =
  2701. (int)fs_info->fs_devices->num_devices;
  2702. for (i = 0; i < num_types; i++) {
  2703. struct btrfs_space_info *tmp;
  2704. sinfo = NULL;
  2705. rcu_read_lock();
  2706. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2707. if (tmp->flags == types[i]) {
  2708. sinfo = tmp;
  2709. break;
  2710. }
  2711. }
  2712. rcu_read_unlock();
  2713. if (!sinfo)
  2714. continue;
  2715. down_read(&sinfo->groups_sem);
  2716. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2717. if (!list_empty(&sinfo->block_groups[c])) {
  2718. u64 flags;
  2719. btrfs_get_block_group_info(
  2720. &sinfo->block_groups[c], &space);
  2721. if (space.total_bytes == 0 ||
  2722. space.used_bytes == 0)
  2723. continue;
  2724. flags = space.flags;
  2725. /*
  2726. * return
  2727. * 0: if dup, single or RAID0 is configured for
  2728. * any of metadata, system or data, else
  2729. * 1: if RAID5 is configured, or if RAID1 or
  2730. * RAID10 is configured and only two mirrors
  2731. * are used, else
  2732. * 2: if RAID6 is configured, else
  2733. * num_mirrors - 1: if RAID1 or RAID10 is
  2734. * configured and more than
  2735. * 2 mirrors are used.
  2736. */
  2737. if (num_tolerated_disk_barrier_failures > 0 &&
  2738. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2739. BTRFS_BLOCK_GROUP_RAID0)) ||
  2740. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2741. == 0)))
  2742. num_tolerated_disk_barrier_failures = 0;
  2743. else if (num_tolerated_disk_barrier_failures > 1) {
  2744. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2745. BTRFS_BLOCK_GROUP_RAID5 |
  2746. BTRFS_BLOCK_GROUP_RAID10)) {
  2747. num_tolerated_disk_barrier_failures = 1;
  2748. } else if (flags &
  2749. BTRFS_BLOCK_GROUP_RAID5) {
  2750. num_tolerated_disk_barrier_failures = 2;
  2751. }
  2752. }
  2753. }
  2754. }
  2755. up_read(&sinfo->groups_sem);
  2756. }
  2757. return num_tolerated_disk_barrier_failures;
  2758. }
  2759. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2760. {
  2761. struct list_head *head;
  2762. struct btrfs_device *dev;
  2763. struct btrfs_super_block *sb;
  2764. struct btrfs_dev_item *dev_item;
  2765. int ret;
  2766. int do_barriers;
  2767. int max_errors;
  2768. int total_errors = 0;
  2769. u64 flags;
  2770. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2771. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2772. backup_super_roots(root->fs_info);
  2773. sb = root->fs_info->super_for_commit;
  2774. dev_item = &sb->dev_item;
  2775. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2776. head = &root->fs_info->fs_devices->devices;
  2777. if (do_barriers) {
  2778. ret = barrier_all_devices(root->fs_info);
  2779. if (ret) {
  2780. mutex_unlock(
  2781. &root->fs_info->fs_devices->device_list_mutex);
  2782. btrfs_error(root->fs_info, ret,
  2783. "errors while submitting device barriers.");
  2784. return ret;
  2785. }
  2786. }
  2787. list_for_each_entry_rcu(dev, head, dev_list) {
  2788. if (!dev->bdev) {
  2789. total_errors++;
  2790. continue;
  2791. }
  2792. if (!dev->in_fs_metadata || !dev->writeable)
  2793. continue;
  2794. btrfs_set_stack_device_generation(dev_item, 0);
  2795. btrfs_set_stack_device_type(dev_item, dev->type);
  2796. btrfs_set_stack_device_id(dev_item, dev->devid);
  2797. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2798. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2799. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2800. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2801. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2802. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2803. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2804. flags = btrfs_super_flags(sb);
  2805. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2806. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2807. if (ret)
  2808. total_errors++;
  2809. }
  2810. if (total_errors > max_errors) {
  2811. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2812. total_errors);
  2813. /* This shouldn't happen. FUA is masked off if unsupported */
  2814. BUG();
  2815. }
  2816. total_errors = 0;
  2817. list_for_each_entry_rcu(dev, head, dev_list) {
  2818. if (!dev->bdev)
  2819. continue;
  2820. if (!dev->in_fs_metadata || !dev->writeable)
  2821. continue;
  2822. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2823. if (ret)
  2824. total_errors++;
  2825. }
  2826. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2827. if (total_errors > max_errors) {
  2828. btrfs_error(root->fs_info, -EIO,
  2829. "%d errors while writing supers", total_errors);
  2830. return -EIO;
  2831. }
  2832. return 0;
  2833. }
  2834. int write_ctree_super(struct btrfs_trans_handle *trans,
  2835. struct btrfs_root *root, int max_mirrors)
  2836. {
  2837. int ret;
  2838. ret = write_all_supers(root, max_mirrors);
  2839. return ret;
  2840. }
  2841. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2842. {
  2843. spin_lock(&fs_info->fs_roots_radix_lock);
  2844. radix_tree_delete(&fs_info->fs_roots_radix,
  2845. (unsigned long)root->root_key.objectid);
  2846. spin_unlock(&fs_info->fs_roots_radix_lock);
  2847. if (btrfs_root_refs(&root->root_item) == 0)
  2848. synchronize_srcu(&fs_info->subvol_srcu);
  2849. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2850. btrfs_free_log(NULL, root);
  2851. btrfs_free_log_root_tree(NULL, fs_info);
  2852. }
  2853. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2854. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2855. free_fs_root(root);
  2856. }
  2857. static void free_fs_root(struct btrfs_root *root)
  2858. {
  2859. iput(root->cache_inode);
  2860. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2861. if (root->anon_dev)
  2862. free_anon_bdev(root->anon_dev);
  2863. free_extent_buffer(root->node);
  2864. free_extent_buffer(root->commit_root);
  2865. kfree(root->free_ino_ctl);
  2866. kfree(root->free_ino_pinned);
  2867. kfree(root->name);
  2868. kfree(root);
  2869. }
  2870. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2871. {
  2872. int ret;
  2873. struct btrfs_root *gang[8];
  2874. int i;
  2875. while (!list_empty(&fs_info->dead_roots)) {
  2876. gang[0] = list_entry(fs_info->dead_roots.next,
  2877. struct btrfs_root, root_list);
  2878. list_del(&gang[0]->root_list);
  2879. if (gang[0]->in_radix) {
  2880. btrfs_free_fs_root(fs_info, gang[0]);
  2881. } else {
  2882. free_extent_buffer(gang[0]->node);
  2883. free_extent_buffer(gang[0]->commit_root);
  2884. kfree(gang[0]);
  2885. }
  2886. }
  2887. while (1) {
  2888. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2889. (void **)gang, 0,
  2890. ARRAY_SIZE(gang));
  2891. if (!ret)
  2892. break;
  2893. for (i = 0; i < ret; i++)
  2894. btrfs_free_fs_root(fs_info, gang[i]);
  2895. }
  2896. }
  2897. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2898. {
  2899. u64 root_objectid = 0;
  2900. struct btrfs_root *gang[8];
  2901. int i;
  2902. int ret;
  2903. while (1) {
  2904. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2905. (void **)gang, root_objectid,
  2906. ARRAY_SIZE(gang));
  2907. if (!ret)
  2908. break;
  2909. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2910. for (i = 0; i < ret; i++) {
  2911. int err;
  2912. root_objectid = gang[i]->root_key.objectid;
  2913. err = btrfs_orphan_cleanup(gang[i]);
  2914. if (err)
  2915. return err;
  2916. }
  2917. root_objectid++;
  2918. }
  2919. return 0;
  2920. }
  2921. int btrfs_commit_super(struct btrfs_root *root)
  2922. {
  2923. struct btrfs_trans_handle *trans;
  2924. int ret;
  2925. mutex_lock(&root->fs_info->cleaner_mutex);
  2926. btrfs_run_delayed_iputs(root);
  2927. mutex_unlock(&root->fs_info->cleaner_mutex);
  2928. wake_up_process(root->fs_info->cleaner_kthread);
  2929. /* wait until ongoing cleanup work done */
  2930. down_write(&root->fs_info->cleanup_work_sem);
  2931. up_write(&root->fs_info->cleanup_work_sem);
  2932. trans = btrfs_join_transaction(root);
  2933. if (IS_ERR(trans))
  2934. return PTR_ERR(trans);
  2935. ret = btrfs_commit_transaction(trans, root);
  2936. if (ret)
  2937. return ret;
  2938. /* run commit again to drop the original snapshot */
  2939. trans = btrfs_join_transaction(root);
  2940. if (IS_ERR(trans))
  2941. return PTR_ERR(trans);
  2942. ret = btrfs_commit_transaction(trans, root);
  2943. if (ret)
  2944. return ret;
  2945. ret = btrfs_write_and_wait_transaction(NULL, root);
  2946. if (ret) {
  2947. btrfs_error(root->fs_info, ret,
  2948. "Failed to sync btree inode to disk.");
  2949. return ret;
  2950. }
  2951. ret = write_ctree_super(NULL, root, 0);
  2952. return ret;
  2953. }
  2954. int close_ctree(struct btrfs_root *root)
  2955. {
  2956. struct btrfs_fs_info *fs_info = root->fs_info;
  2957. int ret;
  2958. fs_info->closing = 1;
  2959. smp_mb();
  2960. /* pause restriper - we want to resume on mount */
  2961. btrfs_pause_balance(fs_info);
  2962. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2963. btrfs_scrub_cancel(fs_info);
  2964. /* wait for any defraggers to finish */
  2965. wait_event(fs_info->transaction_wait,
  2966. (atomic_read(&fs_info->defrag_running) == 0));
  2967. /* clear out the rbtree of defraggable inodes */
  2968. btrfs_cleanup_defrag_inodes(fs_info);
  2969. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2970. ret = btrfs_commit_super(root);
  2971. if (ret)
  2972. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2973. }
  2974. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2975. btrfs_error_commit_super(root);
  2976. btrfs_put_block_group_cache(fs_info);
  2977. kthread_stop(fs_info->transaction_kthread);
  2978. kthread_stop(fs_info->cleaner_kthread);
  2979. fs_info->closing = 2;
  2980. smp_mb();
  2981. btrfs_free_qgroup_config(root->fs_info);
  2982. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  2983. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  2984. percpu_counter_sum(&fs_info->delalloc_bytes));
  2985. }
  2986. free_root_pointers(fs_info, 1);
  2987. btrfs_free_block_groups(fs_info);
  2988. del_fs_roots(fs_info);
  2989. iput(fs_info->btree_inode);
  2990. btrfs_stop_all_workers(fs_info);
  2991. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2992. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2993. btrfsic_unmount(root, fs_info->fs_devices);
  2994. #endif
  2995. btrfs_close_devices(fs_info->fs_devices);
  2996. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2997. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2998. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2999. bdi_destroy(&fs_info->bdi);
  3000. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3001. btrfs_free_stripe_hash_table(fs_info);
  3002. return 0;
  3003. }
  3004. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3005. int atomic)
  3006. {
  3007. int ret;
  3008. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3009. ret = extent_buffer_uptodate(buf);
  3010. if (!ret)
  3011. return ret;
  3012. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3013. parent_transid, atomic);
  3014. if (ret == -EAGAIN)
  3015. return ret;
  3016. return !ret;
  3017. }
  3018. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3019. {
  3020. return set_extent_buffer_uptodate(buf);
  3021. }
  3022. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3023. {
  3024. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3025. u64 transid = btrfs_header_generation(buf);
  3026. int was_dirty;
  3027. btrfs_assert_tree_locked(buf);
  3028. if (transid != root->fs_info->generation)
  3029. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3030. "found %llu running %llu\n",
  3031. (unsigned long long)buf->start,
  3032. (unsigned long long)transid,
  3033. (unsigned long long)root->fs_info->generation);
  3034. was_dirty = set_extent_buffer_dirty(buf);
  3035. if (!was_dirty)
  3036. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3037. buf->len,
  3038. root->fs_info->dirty_metadata_batch);
  3039. }
  3040. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3041. int flush_delayed)
  3042. {
  3043. /*
  3044. * looks as though older kernels can get into trouble with
  3045. * this code, they end up stuck in balance_dirty_pages forever
  3046. */
  3047. int ret;
  3048. if (current->flags & PF_MEMALLOC)
  3049. return;
  3050. if (flush_delayed)
  3051. btrfs_balance_delayed_items(root);
  3052. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3053. BTRFS_DIRTY_METADATA_THRESH);
  3054. if (ret > 0) {
  3055. balance_dirty_pages_ratelimited(
  3056. root->fs_info->btree_inode->i_mapping);
  3057. }
  3058. return;
  3059. }
  3060. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3061. {
  3062. __btrfs_btree_balance_dirty(root, 1);
  3063. }
  3064. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3065. {
  3066. __btrfs_btree_balance_dirty(root, 0);
  3067. }
  3068. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3069. {
  3070. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3071. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3072. }
  3073. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3074. int read_only)
  3075. {
  3076. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3077. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3078. return -EINVAL;
  3079. }
  3080. if (read_only)
  3081. return 0;
  3082. return 0;
  3083. }
  3084. void btrfs_error_commit_super(struct btrfs_root *root)
  3085. {
  3086. mutex_lock(&root->fs_info->cleaner_mutex);
  3087. btrfs_run_delayed_iputs(root);
  3088. mutex_unlock(&root->fs_info->cleaner_mutex);
  3089. down_write(&root->fs_info->cleanup_work_sem);
  3090. up_write(&root->fs_info->cleanup_work_sem);
  3091. /* cleanup FS via transaction */
  3092. btrfs_cleanup_transaction(root);
  3093. }
  3094. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3095. struct btrfs_root *root)
  3096. {
  3097. struct btrfs_inode *btrfs_inode;
  3098. struct list_head splice;
  3099. INIT_LIST_HEAD(&splice);
  3100. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3101. spin_lock(&root->fs_info->ordered_extent_lock);
  3102. list_splice_init(&t->ordered_operations, &splice);
  3103. while (!list_empty(&splice)) {
  3104. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3105. ordered_operations);
  3106. list_del_init(&btrfs_inode->ordered_operations);
  3107. btrfs_invalidate_inodes(btrfs_inode->root);
  3108. }
  3109. spin_unlock(&root->fs_info->ordered_extent_lock);
  3110. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3111. }
  3112. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3113. {
  3114. struct btrfs_ordered_extent *ordered;
  3115. spin_lock(&root->fs_info->ordered_extent_lock);
  3116. /*
  3117. * This will just short circuit the ordered completion stuff which will
  3118. * make sure the ordered extent gets properly cleaned up.
  3119. */
  3120. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3121. root_extent_list)
  3122. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3123. spin_unlock(&root->fs_info->ordered_extent_lock);
  3124. }
  3125. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3126. struct btrfs_root *root)
  3127. {
  3128. struct rb_node *node;
  3129. struct btrfs_delayed_ref_root *delayed_refs;
  3130. struct btrfs_delayed_ref_node *ref;
  3131. int ret = 0;
  3132. delayed_refs = &trans->delayed_refs;
  3133. spin_lock(&delayed_refs->lock);
  3134. if (delayed_refs->num_entries == 0) {
  3135. spin_unlock(&delayed_refs->lock);
  3136. printk(KERN_INFO "delayed_refs has NO entry\n");
  3137. return ret;
  3138. }
  3139. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3140. struct btrfs_delayed_ref_head *head = NULL;
  3141. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3142. atomic_set(&ref->refs, 1);
  3143. if (btrfs_delayed_ref_is_head(ref)) {
  3144. head = btrfs_delayed_node_to_head(ref);
  3145. if (!mutex_trylock(&head->mutex)) {
  3146. atomic_inc(&ref->refs);
  3147. spin_unlock(&delayed_refs->lock);
  3148. /* Need to wait for the delayed ref to run */
  3149. mutex_lock(&head->mutex);
  3150. mutex_unlock(&head->mutex);
  3151. btrfs_put_delayed_ref(ref);
  3152. spin_lock(&delayed_refs->lock);
  3153. continue;
  3154. }
  3155. btrfs_free_delayed_extent_op(head->extent_op);
  3156. delayed_refs->num_heads--;
  3157. if (list_empty(&head->cluster))
  3158. delayed_refs->num_heads_ready--;
  3159. list_del_init(&head->cluster);
  3160. }
  3161. ref->in_tree = 0;
  3162. rb_erase(&ref->rb_node, &delayed_refs->root);
  3163. delayed_refs->num_entries--;
  3164. if (head)
  3165. mutex_unlock(&head->mutex);
  3166. spin_unlock(&delayed_refs->lock);
  3167. btrfs_put_delayed_ref(ref);
  3168. cond_resched();
  3169. spin_lock(&delayed_refs->lock);
  3170. }
  3171. spin_unlock(&delayed_refs->lock);
  3172. return ret;
  3173. }
  3174. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3175. {
  3176. struct btrfs_pending_snapshot *snapshot;
  3177. struct list_head splice;
  3178. INIT_LIST_HEAD(&splice);
  3179. list_splice_init(&t->pending_snapshots, &splice);
  3180. while (!list_empty(&splice)) {
  3181. snapshot = list_entry(splice.next,
  3182. struct btrfs_pending_snapshot,
  3183. list);
  3184. snapshot->error = -ECANCELED;
  3185. list_del_init(&snapshot->list);
  3186. }
  3187. }
  3188. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3189. {
  3190. struct btrfs_inode *btrfs_inode;
  3191. struct list_head splice;
  3192. INIT_LIST_HEAD(&splice);
  3193. spin_lock(&root->fs_info->delalloc_lock);
  3194. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3195. while (!list_empty(&splice)) {
  3196. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3197. delalloc_inodes);
  3198. list_del_init(&btrfs_inode->delalloc_inodes);
  3199. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3200. &btrfs_inode->runtime_flags);
  3201. btrfs_invalidate_inodes(btrfs_inode->root);
  3202. }
  3203. spin_unlock(&root->fs_info->delalloc_lock);
  3204. }
  3205. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3206. struct extent_io_tree *dirty_pages,
  3207. int mark)
  3208. {
  3209. int ret;
  3210. struct page *page;
  3211. struct inode *btree_inode = root->fs_info->btree_inode;
  3212. struct extent_buffer *eb;
  3213. u64 start = 0;
  3214. u64 end;
  3215. u64 offset;
  3216. unsigned long index;
  3217. while (1) {
  3218. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3219. mark, NULL);
  3220. if (ret)
  3221. break;
  3222. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3223. while (start <= end) {
  3224. index = start >> PAGE_CACHE_SHIFT;
  3225. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3226. page = find_get_page(btree_inode->i_mapping, index);
  3227. if (!page)
  3228. continue;
  3229. offset = page_offset(page);
  3230. spin_lock(&dirty_pages->buffer_lock);
  3231. eb = radix_tree_lookup(
  3232. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3233. offset >> PAGE_CACHE_SHIFT);
  3234. spin_unlock(&dirty_pages->buffer_lock);
  3235. if (eb)
  3236. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3237. &eb->bflags);
  3238. if (PageWriteback(page))
  3239. end_page_writeback(page);
  3240. lock_page(page);
  3241. if (PageDirty(page)) {
  3242. clear_page_dirty_for_io(page);
  3243. spin_lock_irq(&page->mapping->tree_lock);
  3244. radix_tree_tag_clear(&page->mapping->page_tree,
  3245. page_index(page),
  3246. PAGECACHE_TAG_DIRTY);
  3247. spin_unlock_irq(&page->mapping->tree_lock);
  3248. }
  3249. unlock_page(page);
  3250. page_cache_release(page);
  3251. }
  3252. }
  3253. return ret;
  3254. }
  3255. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3256. struct extent_io_tree *pinned_extents)
  3257. {
  3258. struct extent_io_tree *unpin;
  3259. u64 start;
  3260. u64 end;
  3261. int ret;
  3262. bool loop = true;
  3263. unpin = pinned_extents;
  3264. again:
  3265. while (1) {
  3266. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3267. EXTENT_DIRTY, NULL);
  3268. if (ret)
  3269. break;
  3270. /* opt_discard */
  3271. if (btrfs_test_opt(root, DISCARD))
  3272. ret = btrfs_error_discard_extent(root, start,
  3273. end + 1 - start,
  3274. NULL);
  3275. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3276. btrfs_error_unpin_extent_range(root, start, end);
  3277. cond_resched();
  3278. }
  3279. if (loop) {
  3280. if (unpin == &root->fs_info->freed_extents[0])
  3281. unpin = &root->fs_info->freed_extents[1];
  3282. else
  3283. unpin = &root->fs_info->freed_extents[0];
  3284. loop = false;
  3285. goto again;
  3286. }
  3287. return 0;
  3288. }
  3289. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3290. struct btrfs_root *root)
  3291. {
  3292. btrfs_destroy_delayed_refs(cur_trans, root);
  3293. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3294. cur_trans->dirty_pages.dirty_bytes);
  3295. /* FIXME: cleanup wait for commit */
  3296. cur_trans->in_commit = 1;
  3297. cur_trans->blocked = 1;
  3298. wake_up(&root->fs_info->transaction_blocked_wait);
  3299. btrfs_evict_pending_snapshots(cur_trans);
  3300. cur_trans->blocked = 0;
  3301. wake_up(&root->fs_info->transaction_wait);
  3302. cur_trans->commit_done = 1;
  3303. wake_up(&cur_trans->commit_wait);
  3304. btrfs_destroy_delayed_inodes(root);
  3305. btrfs_assert_delayed_root_empty(root);
  3306. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3307. EXTENT_DIRTY);
  3308. btrfs_destroy_pinned_extent(root,
  3309. root->fs_info->pinned_extents);
  3310. /*
  3311. memset(cur_trans, 0, sizeof(*cur_trans));
  3312. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3313. */
  3314. }
  3315. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3316. {
  3317. struct btrfs_transaction *t;
  3318. LIST_HEAD(list);
  3319. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3320. spin_lock(&root->fs_info->trans_lock);
  3321. list_splice_init(&root->fs_info->trans_list, &list);
  3322. root->fs_info->trans_no_join = 1;
  3323. spin_unlock(&root->fs_info->trans_lock);
  3324. while (!list_empty(&list)) {
  3325. t = list_entry(list.next, struct btrfs_transaction, list);
  3326. btrfs_destroy_ordered_operations(t, root);
  3327. btrfs_destroy_ordered_extents(root);
  3328. btrfs_destroy_delayed_refs(t, root);
  3329. btrfs_block_rsv_release(root,
  3330. &root->fs_info->trans_block_rsv,
  3331. t->dirty_pages.dirty_bytes);
  3332. /* FIXME: cleanup wait for commit */
  3333. t->in_commit = 1;
  3334. t->blocked = 1;
  3335. smp_mb();
  3336. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3337. wake_up(&root->fs_info->transaction_blocked_wait);
  3338. btrfs_evict_pending_snapshots(t);
  3339. t->blocked = 0;
  3340. smp_mb();
  3341. if (waitqueue_active(&root->fs_info->transaction_wait))
  3342. wake_up(&root->fs_info->transaction_wait);
  3343. t->commit_done = 1;
  3344. smp_mb();
  3345. if (waitqueue_active(&t->commit_wait))
  3346. wake_up(&t->commit_wait);
  3347. btrfs_destroy_delayed_inodes(root);
  3348. btrfs_assert_delayed_root_empty(root);
  3349. btrfs_destroy_delalloc_inodes(root);
  3350. spin_lock(&root->fs_info->trans_lock);
  3351. root->fs_info->running_transaction = NULL;
  3352. spin_unlock(&root->fs_info->trans_lock);
  3353. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3354. EXTENT_DIRTY);
  3355. btrfs_destroy_pinned_extent(root,
  3356. root->fs_info->pinned_extents);
  3357. atomic_set(&t->use_count, 0);
  3358. list_del_init(&t->list);
  3359. memset(t, 0, sizeof(*t));
  3360. kmem_cache_free(btrfs_transaction_cachep, t);
  3361. }
  3362. spin_lock(&root->fs_info->trans_lock);
  3363. root->fs_info->trans_no_join = 0;
  3364. spin_unlock(&root->fs_info->trans_lock);
  3365. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3366. return 0;
  3367. }
  3368. static struct extent_io_ops btree_extent_io_ops = {
  3369. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3370. .readpage_io_failed_hook = btree_io_failed_hook,
  3371. .submit_bio_hook = btree_submit_bio_hook,
  3372. /* note we're sharing with inode.c for the merge bio hook */
  3373. .merge_bio_hook = btrfs_merge_bio_hook,
  3374. };