write.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <linux/export.h>
  22. #include <asm/uaccess.h>
  23. #include "delegation.h"
  24. #include "internal.h"
  25. #include "iostat.h"
  26. #include "nfs4_fs.h"
  27. #include "fscache.h"
  28. #include "pnfs.h"
  29. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  30. #define MIN_POOL_WRITE (32)
  31. #define MIN_POOL_COMMIT (4)
  32. /*
  33. * Local function declarations
  34. */
  35. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  36. struct inode *inode, int ioflags);
  37. static void nfs_redirty_request(struct nfs_page *req);
  38. static const struct rpc_call_ops nfs_write_partial_ops;
  39. static const struct rpc_call_ops nfs_write_full_ops;
  40. static const struct rpc_call_ops nfs_commit_ops;
  41. static struct kmem_cache *nfs_wdata_cachep;
  42. static mempool_t *nfs_wdata_mempool;
  43. static mempool_t *nfs_commit_mempool;
  44. struct nfs_write_data *nfs_commitdata_alloc(void)
  45. {
  46. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  47. if (p) {
  48. memset(p, 0, sizeof(*p));
  49. INIT_LIST_HEAD(&p->pages);
  50. }
  51. return p;
  52. }
  53. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  54. void nfs_commit_free(struct nfs_write_data *p)
  55. {
  56. if (p && (p->pagevec != &p->page_array[0]))
  57. kfree(p->pagevec);
  58. mempool_free(p, nfs_commit_mempool);
  59. }
  60. EXPORT_SYMBOL_GPL(nfs_commit_free);
  61. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  62. {
  63. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  64. if (p) {
  65. memset(p, 0, sizeof(*p));
  66. INIT_LIST_HEAD(&p->pages);
  67. p->npages = pagecount;
  68. if (pagecount <= ARRAY_SIZE(p->page_array))
  69. p->pagevec = p->page_array;
  70. else {
  71. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  72. if (!p->pagevec) {
  73. mempool_free(p, nfs_wdata_mempool);
  74. p = NULL;
  75. }
  76. }
  77. }
  78. return p;
  79. }
  80. void nfs_writedata_free(struct nfs_write_data *p)
  81. {
  82. if (p && (p->pagevec != &p->page_array[0]))
  83. kfree(p->pagevec);
  84. mempool_free(p, nfs_wdata_mempool);
  85. }
  86. void nfs_writedata_release(struct nfs_write_data *wdata)
  87. {
  88. put_lseg(wdata->lseg);
  89. put_nfs_open_context(wdata->args.context);
  90. nfs_writedata_free(wdata);
  91. }
  92. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  93. {
  94. ctx->error = error;
  95. smp_wmb();
  96. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  97. }
  98. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  99. {
  100. struct nfs_page *req = NULL;
  101. if (PagePrivate(page)) {
  102. req = (struct nfs_page *)page_private(page);
  103. if (req != NULL)
  104. kref_get(&req->wb_kref);
  105. }
  106. return req;
  107. }
  108. static struct nfs_page *nfs_page_find_request(struct page *page)
  109. {
  110. struct inode *inode = page->mapping->host;
  111. struct nfs_page *req = NULL;
  112. spin_lock(&inode->i_lock);
  113. req = nfs_page_find_request_locked(page);
  114. spin_unlock(&inode->i_lock);
  115. return req;
  116. }
  117. /* Adjust the file length if we're writing beyond the end */
  118. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  119. {
  120. struct inode *inode = page->mapping->host;
  121. loff_t end, i_size;
  122. pgoff_t end_index;
  123. spin_lock(&inode->i_lock);
  124. i_size = i_size_read(inode);
  125. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  126. if (i_size > 0 && page->index < end_index)
  127. goto out;
  128. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  129. if (i_size >= end)
  130. goto out;
  131. i_size_write(inode, end);
  132. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  133. out:
  134. spin_unlock(&inode->i_lock);
  135. }
  136. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  137. static void nfs_set_pageerror(struct page *page)
  138. {
  139. SetPageError(page);
  140. nfs_zap_mapping(page->mapping->host, page->mapping);
  141. }
  142. /* We can set the PG_uptodate flag if we see that a write request
  143. * covers the full page.
  144. */
  145. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  146. {
  147. if (PageUptodate(page))
  148. return;
  149. if (base != 0)
  150. return;
  151. if (count != nfs_page_length(page))
  152. return;
  153. SetPageUptodate(page);
  154. }
  155. static int wb_priority(struct writeback_control *wbc)
  156. {
  157. if (wbc->for_reclaim)
  158. return FLUSH_HIGHPRI | FLUSH_STABLE;
  159. if (wbc->for_kupdate || wbc->for_background)
  160. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  161. return FLUSH_COND_STABLE;
  162. }
  163. /*
  164. * NFS congestion control
  165. */
  166. int nfs_congestion_kb;
  167. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  168. #define NFS_CONGESTION_OFF_THRESH \
  169. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  170. static int nfs_set_page_writeback(struct page *page)
  171. {
  172. int ret = test_set_page_writeback(page);
  173. if (!ret) {
  174. struct inode *inode = page->mapping->host;
  175. struct nfs_server *nfss = NFS_SERVER(inode);
  176. page_cache_get(page);
  177. if (atomic_long_inc_return(&nfss->writeback) >
  178. NFS_CONGESTION_ON_THRESH) {
  179. set_bdi_congested(&nfss->backing_dev_info,
  180. BLK_RW_ASYNC);
  181. }
  182. }
  183. return ret;
  184. }
  185. static void nfs_end_page_writeback(struct page *page)
  186. {
  187. struct inode *inode = page->mapping->host;
  188. struct nfs_server *nfss = NFS_SERVER(inode);
  189. end_page_writeback(page);
  190. page_cache_release(page);
  191. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  192. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  193. }
  194. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  195. {
  196. struct inode *inode = page->mapping->host;
  197. struct nfs_page *req;
  198. int ret;
  199. spin_lock(&inode->i_lock);
  200. for (;;) {
  201. req = nfs_page_find_request_locked(page);
  202. if (req == NULL)
  203. break;
  204. if (nfs_set_page_tag_locked(req))
  205. break;
  206. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  207. * then the call to nfs_set_page_tag_locked() will always
  208. * succeed provided that someone hasn't already marked the
  209. * request as dirty (in which case we don't care).
  210. */
  211. spin_unlock(&inode->i_lock);
  212. if (!nonblock)
  213. ret = nfs_wait_on_request(req);
  214. else
  215. ret = -EAGAIN;
  216. nfs_release_request(req);
  217. if (ret != 0)
  218. return ERR_PTR(ret);
  219. spin_lock(&inode->i_lock);
  220. }
  221. spin_unlock(&inode->i_lock);
  222. return req;
  223. }
  224. /*
  225. * Find an associated nfs write request, and prepare to flush it out
  226. * May return an error if the user signalled nfs_wait_on_request().
  227. */
  228. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  229. struct page *page, bool nonblock)
  230. {
  231. struct nfs_page *req;
  232. int ret = 0;
  233. req = nfs_find_and_lock_request(page, nonblock);
  234. if (!req)
  235. goto out;
  236. ret = PTR_ERR(req);
  237. if (IS_ERR(req))
  238. goto out;
  239. ret = nfs_set_page_writeback(page);
  240. BUG_ON(ret != 0);
  241. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  242. if (!nfs_pageio_add_request(pgio, req)) {
  243. nfs_redirty_request(req);
  244. ret = pgio->pg_error;
  245. }
  246. out:
  247. return ret;
  248. }
  249. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  250. {
  251. struct inode *inode = page->mapping->host;
  252. int ret;
  253. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  254. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  255. nfs_pageio_cond_complete(pgio, page->index);
  256. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  257. if (ret == -EAGAIN) {
  258. redirty_page_for_writepage(wbc, page);
  259. ret = 0;
  260. }
  261. return ret;
  262. }
  263. /*
  264. * Write an mmapped page to the server.
  265. */
  266. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  267. {
  268. struct nfs_pageio_descriptor pgio;
  269. int err;
  270. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  271. err = nfs_do_writepage(page, wbc, &pgio);
  272. nfs_pageio_complete(&pgio);
  273. if (err < 0)
  274. return err;
  275. if (pgio.pg_error < 0)
  276. return pgio.pg_error;
  277. return 0;
  278. }
  279. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  280. {
  281. int ret;
  282. ret = nfs_writepage_locked(page, wbc);
  283. unlock_page(page);
  284. return ret;
  285. }
  286. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  287. {
  288. int ret;
  289. ret = nfs_do_writepage(page, wbc, data);
  290. unlock_page(page);
  291. return ret;
  292. }
  293. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  294. {
  295. struct inode *inode = mapping->host;
  296. unsigned long *bitlock = &NFS_I(inode)->flags;
  297. struct nfs_pageio_descriptor pgio;
  298. int err;
  299. /* Stop dirtying of new pages while we sync */
  300. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  301. nfs_wait_bit_killable, TASK_KILLABLE);
  302. if (err)
  303. goto out_err;
  304. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  305. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  306. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  307. nfs_pageio_complete(&pgio);
  308. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  309. smp_mb__after_clear_bit();
  310. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  311. if (err < 0)
  312. goto out_err;
  313. err = pgio.pg_error;
  314. if (err < 0)
  315. goto out_err;
  316. return 0;
  317. out_err:
  318. return err;
  319. }
  320. /*
  321. * Insert a write request into an inode
  322. */
  323. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  324. {
  325. struct nfs_inode *nfsi = NFS_I(inode);
  326. int error;
  327. error = radix_tree_preload(GFP_NOFS);
  328. if (error != 0)
  329. goto out;
  330. /* Lock the request! */
  331. nfs_lock_request_dontget(req);
  332. spin_lock(&inode->i_lock);
  333. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  334. BUG_ON(error);
  335. if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
  336. inode->i_version++;
  337. set_bit(PG_MAPPED, &req->wb_flags);
  338. SetPagePrivate(req->wb_page);
  339. set_page_private(req->wb_page, (unsigned long)req);
  340. nfsi->npages++;
  341. kref_get(&req->wb_kref);
  342. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  343. NFS_PAGE_TAG_LOCKED);
  344. spin_unlock(&inode->i_lock);
  345. radix_tree_preload_end();
  346. out:
  347. return error;
  348. }
  349. /*
  350. * Remove a write request from an inode
  351. */
  352. static void nfs_inode_remove_request(struct nfs_page *req)
  353. {
  354. struct inode *inode = req->wb_context->dentry->d_inode;
  355. struct nfs_inode *nfsi = NFS_I(inode);
  356. BUG_ON (!NFS_WBACK_BUSY(req));
  357. spin_lock(&inode->i_lock);
  358. set_page_private(req->wb_page, 0);
  359. ClearPagePrivate(req->wb_page);
  360. clear_bit(PG_MAPPED, &req->wb_flags);
  361. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  362. nfsi->npages--;
  363. spin_unlock(&inode->i_lock);
  364. nfs_release_request(req);
  365. }
  366. static void
  367. nfs_mark_request_dirty(struct nfs_page *req)
  368. {
  369. __set_page_dirty_nobuffers(req->wb_page);
  370. }
  371. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  372. /*
  373. * Add a request to the inode's commit list.
  374. */
  375. static void
  376. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  377. {
  378. struct inode *inode = req->wb_context->dentry->d_inode;
  379. struct nfs_inode *nfsi = NFS_I(inode);
  380. spin_lock(&inode->i_lock);
  381. set_bit(PG_CLEAN, &(req)->wb_flags);
  382. radix_tree_tag_set(&nfsi->nfs_page_tree,
  383. req->wb_index,
  384. NFS_PAGE_TAG_COMMIT);
  385. nfsi->ncommit++;
  386. spin_unlock(&inode->i_lock);
  387. pnfs_mark_request_commit(req, lseg);
  388. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  389. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  390. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  391. }
  392. static int
  393. nfs_clear_request_commit(struct nfs_page *req)
  394. {
  395. struct page *page = req->wb_page;
  396. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  397. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  398. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  399. return 1;
  400. }
  401. return 0;
  402. }
  403. static inline
  404. int nfs_write_need_commit(struct nfs_write_data *data)
  405. {
  406. if (data->verf.committed == NFS_DATA_SYNC)
  407. return data->lseg == NULL;
  408. else
  409. return data->verf.committed != NFS_FILE_SYNC;
  410. }
  411. static inline
  412. int nfs_reschedule_unstable_write(struct nfs_page *req,
  413. struct nfs_write_data *data)
  414. {
  415. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  416. nfs_mark_request_commit(req, data->lseg);
  417. return 1;
  418. }
  419. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  420. nfs_mark_request_dirty(req);
  421. return 1;
  422. }
  423. return 0;
  424. }
  425. #else
  426. static inline void
  427. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  428. {
  429. }
  430. static inline int
  431. nfs_clear_request_commit(struct nfs_page *req)
  432. {
  433. return 0;
  434. }
  435. static inline
  436. int nfs_write_need_commit(struct nfs_write_data *data)
  437. {
  438. return 0;
  439. }
  440. static inline
  441. int nfs_reschedule_unstable_write(struct nfs_page *req,
  442. struct nfs_write_data *data)
  443. {
  444. return 0;
  445. }
  446. #endif
  447. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  448. static int
  449. nfs_need_commit(struct nfs_inode *nfsi)
  450. {
  451. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  452. }
  453. /*
  454. * nfs_scan_commit - Scan an inode for commit requests
  455. * @inode: NFS inode to scan
  456. * @dst: destination list
  457. * @idx_start: lower bound of page->index to scan.
  458. * @npages: idx_start + npages sets the upper bound to scan.
  459. *
  460. * Moves requests from the inode's 'commit' request list.
  461. * The requests are *not* checked to ensure that they form a contiguous set.
  462. */
  463. static int
  464. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  465. {
  466. struct nfs_inode *nfsi = NFS_I(inode);
  467. int ret;
  468. if (!nfs_need_commit(nfsi))
  469. return 0;
  470. spin_lock(&inode->i_lock);
  471. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  472. if (ret > 0)
  473. nfsi->ncommit -= ret;
  474. spin_unlock(&inode->i_lock);
  475. if (nfs_need_commit(NFS_I(inode)))
  476. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  477. return ret;
  478. }
  479. #else
  480. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  481. {
  482. return 0;
  483. }
  484. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  485. {
  486. return 0;
  487. }
  488. #endif
  489. /*
  490. * Search for an existing write request, and attempt to update
  491. * it to reflect a new dirty region on a given page.
  492. *
  493. * If the attempt fails, then the existing request is flushed out
  494. * to disk.
  495. */
  496. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  497. struct page *page,
  498. unsigned int offset,
  499. unsigned int bytes)
  500. {
  501. struct nfs_page *req;
  502. unsigned int rqend;
  503. unsigned int end;
  504. int error;
  505. if (!PagePrivate(page))
  506. return NULL;
  507. end = offset + bytes;
  508. spin_lock(&inode->i_lock);
  509. for (;;) {
  510. req = nfs_page_find_request_locked(page);
  511. if (req == NULL)
  512. goto out_unlock;
  513. rqend = req->wb_offset + req->wb_bytes;
  514. /*
  515. * Tell the caller to flush out the request if
  516. * the offsets are non-contiguous.
  517. * Note: nfs_flush_incompatible() will already
  518. * have flushed out requests having wrong owners.
  519. */
  520. if (offset > rqend
  521. || end < req->wb_offset)
  522. goto out_flushme;
  523. if (nfs_set_page_tag_locked(req))
  524. break;
  525. /* The request is locked, so wait and then retry */
  526. spin_unlock(&inode->i_lock);
  527. error = nfs_wait_on_request(req);
  528. nfs_release_request(req);
  529. if (error != 0)
  530. goto out_err;
  531. spin_lock(&inode->i_lock);
  532. }
  533. if (nfs_clear_request_commit(req) &&
  534. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  535. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
  536. NFS_I(inode)->ncommit--;
  537. pnfs_clear_request_commit(req);
  538. }
  539. /* Okay, the request matches. Update the region */
  540. if (offset < req->wb_offset) {
  541. req->wb_offset = offset;
  542. req->wb_pgbase = offset;
  543. }
  544. if (end > rqend)
  545. req->wb_bytes = end - req->wb_offset;
  546. else
  547. req->wb_bytes = rqend - req->wb_offset;
  548. out_unlock:
  549. spin_unlock(&inode->i_lock);
  550. return req;
  551. out_flushme:
  552. spin_unlock(&inode->i_lock);
  553. nfs_release_request(req);
  554. error = nfs_wb_page(inode, page);
  555. out_err:
  556. return ERR_PTR(error);
  557. }
  558. /*
  559. * Try to update an existing write request, or create one if there is none.
  560. *
  561. * Note: Should always be called with the Page Lock held to prevent races
  562. * if we have to add a new request. Also assumes that the caller has
  563. * already called nfs_flush_incompatible() if necessary.
  564. */
  565. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  566. struct page *page, unsigned int offset, unsigned int bytes)
  567. {
  568. struct inode *inode = page->mapping->host;
  569. struct nfs_page *req;
  570. int error;
  571. req = nfs_try_to_update_request(inode, page, offset, bytes);
  572. if (req != NULL)
  573. goto out;
  574. req = nfs_create_request(ctx, inode, page, offset, bytes);
  575. if (IS_ERR(req))
  576. goto out;
  577. error = nfs_inode_add_request(inode, req);
  578. if (error != 0) {
  579. nfs_release_request(req);
  580. req = ERR_PTR(error);
  581. }
  582. out:
  583. return req;
  584. }
  585. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  586. unsigned int offset, unsigned int count)
  587. {
  588. struct nfs_page *req;
  589. req = nfs_setup_write_request(ctx, page, offset, count);
  590. if (IS_ERR(req))
  591. return PTR_ERR(req);
  592. /* Update file length */
  593. nfs_grow_file(page, offset, count);
  594. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  595. nfs_mark_request_dirty(req);
  596. nfs_clear_page_tag_locked(req);
  597. return 0;
  598. }
  599. int nfs_flush_incompatible(struct file *file, struct page *page)
  600. {
  601. struct nfs_open_context *ctx = nfs_file_open_context(file);
  602. struct nfs_page *req;
  603. int do_flush, status;
  604. /*
  605. * Look for a request corresponding to this page. If there
  606. * is one, and it belongs to another file, we flush it out
  607. * before we try to copy anything into the page. Do this
  608. * due to the lack of an ACCESS-type call in NFSv2.
  609. * Also do the same if we find a request from an existing
  610. * dropped page.
  611. */
  612. do {
  613. req = nfs_page_find_request(page);
  614. if (req == NULL)
  615. return 0;
  616. do_flush = req->wb_page != page || req->wb_context != ctx ||
  617. req->wb_lock_context->lockowner != current->files ||
  618. req->wb_lock_context->pid != current->tgid;
  619. nfs_release_request(req);
  620. if (!do_flush)
  621. return 0;
  622. status = nfs_wb_page(page->mapping->host, page);
  623. } while (status == 0);
  624. return status;
  625. }
  626. /*
  627. * If the page cache is marked as unsafe or invalid, then we can't rely on
  628. * the PageUptodate() flag. In this case, we will need to turn off
  629. * write optimisations that depend on the page contents being correct.
  630. */
  631. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  632. {
  633. return PageUptodate(page) &&
  634. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  635. }
  636. /*
  637. * Update and possibly write a cached page of an NFS file.
  638. *
  639. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  640. * things with a page scheduled for an RPC call (e.g. invalidate it).
  641. */
  642. int nfs_updatepage(struct file *file, struct page *page,
  643. unsigned int offset, unsigned int count)
  644. {
  645. struct nfs_open_context *ctx = nfs_file_open_context(file);
  646. struct inode *inode = page->mapping->host;
  647. int status = 0;
  648. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  649. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  650. file->f_path.dentry->d_parent->d_name.name,
  651. file->f_path.dentry->d_name.name, count,
  652. (long long)(page_offset(page) + offset));
  653. /* If we're not using byte range locks, and we know the page
  654. * is up to date, it may be more efficient to extend the write
  655. * to cover the entire page in order to avoid fragmentation
  656. * inefficiencies.
  657. */
  658. if (nfs_write_pageuptodate(page, inode) &&
  659. inode->i_flock == NULL &&
  660. !(file->f_flags & O_DSYNC)) {
  661. count = max(count + offset, nfs_page_length(page));
  662. offset = 0;
  663. }
  664. status = nfs_writepage_setup(ctx, page, offset, count);
  665. if (status < 0)
  666. nfs_set_pageerror(page);
  667. else
  668. __set_page_dirty_nobuffers(page);
  669. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  670. status, (long long)i_size_read(inode));
  671. return status;
  672. }
  673. static void nfs_writepage_release(struct nfs_page *req,
  674. struct nfs_write_data *data)
  675. {
  676. struct page *page = req->wb_page;
  677. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
  678. nfs_inode_remove_request(req);
  679. nfs_clear_page_tag_locked(req);
  680. nfs_end_page_writeback(page);
  681. }
  682. static int flush_task_priority(int how)
  683. {
  684. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  685. case FLUSH_HIGHPRI:
  686. return RPC_PRIORITY_HIGH;
  687. case FLUSH_LOWPRI:
  688. return RPC_PRIORITY_LOW;
  689. }
  690. return RPC_PRIORITY_NORMAL;
  691. }
  692. int nfs_initiate_write(struct nfs_write_data *data,
  693. struct rpc_clnt *clnt,
  694. const struct rpc_call_ops *call_ops,
  695. int how)
  696. {
  697. struct inode *inode = data->inode;
  698. int priority = flush_task_priority(how);
  699. struct rpc_task *task;
  700. struct rpc_message msg = {
  701. .rpc_argp = &data->args,
  702. .rpc_resp = &data->res,
  703. .rpc_cred = data->cred,
  704. };
  705. struct rpc_task_setup task_setup_data = {
  706. .rpc_client = clnt,
  707. .task = &data->task,
  708. .rpc_message = &msg,
  709. .callback_ops = call_ops,
  710. .callback_data = data,
  711. .workqueue = nfsiod_workqueue,
  712. .flags = RPC_TASK_ASYNC,
  713. .priority = priority,
  714. };
  715. int ret = 0;
  716. /* Set up the initial task struct. */
  717. NFS_PROTO(inode)->write_setup(data, &msg);
  718. dprintk("NFS: %5u initiated write call "
  719. "(req %s/%lld, %u bytes @ offset %llu)\n",
  720. data->task.tk_pid,
  721. inode->i_sb->s_id,
  722. (long long)NFS_FILEID(inode),
  723. data->args.count,
  724. (unsigned long long)data->args.offset);
  725. task = rpc_run_task(&task_setup_data);
  726. if (IS_ERR(task)) {
  727. ret = PTR_ERR(task);
  728. goto out;
  729. }
  730. if (how & FLUSH_SYNC) {
  731. ret = rpc_wait_for_completion_task(task);
  732. if (ret == 0)
  733. ret = task->tk_status;
  734. }
  735. rpc_put_task(task);
  736. out:
  737. return ret;
  738. }
  739. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  740. /*
  741. * Set up the argument/result storage required for the RPC call.
  742. */
  743. static void nfs_write_rpcsetup(struct nfs_page *req,
  744. struct nfs_write_data *data,
  745. unsigned int count, unsigned int offset,
  746. int how)
  747. {
  748. struct inode *inode = req->wb_context->dentry->d_inode;
  749. /* Set up the RPC argument and reply structs
  750. * NB: take care not to mess about with data->commit et al. */
  751. data->req = req;
  752. data->inode = inode = req->wb_context->dentry->d_inode;
  753. data->cred = req->wb_context->cred;
  754. data->args.fh = NFS_FH(inode);
  755. data->args.offset = req_offset(req) + offset;
  756. /* pnfs_set_layoutcommit needs this */
  757. data->mds_offset = data->args.offset;
  758. data->args.pgbase = req->wb_pgbase + offset;
  759. data->args.pages = data->pagevec;
  760. data->args.count = count;
  761. data->args.context = get_nfs_open_context(req->wb_context);
  762. data->args.lock_context = req->wb_lock_context;
  763. data->args.stable = NFS_UNSTABLE;
  764. switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  765. case 0:
  766. break;
  767. case FLUSH_COND_STABLE:
  768. if (nfs_need_commit(NFS_I(inode)))
  769. break;
  770. default:
  771. data->args.stable = NFS_FILE_SYNC;
  772. }
  773. data->res.fattr = &data->fattr;
  774. data->res.count = count;
  775. data->res.verf = &data->verf;
  776. nfs_fattr_init(&data->fattr);
  777. }
  778. static int nfs_do_write(struct nfs_write_data *data,
  779. const struct rpc_call_ops *call_ops,
  780. int how)
  781. {
  782. struct inode *inode = data->args.context->dentry->d_inode;
  783. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  784. }
  785. static int nfs_do_multiple_writes(struct list_head *head,
  786. const struct rpc_call_ops *call_ops,
  787. int how)
  788. {
  789. struct nfs_write_data *data;
  790. int ret = 0;
  791. while (!list_empty(head)) {
  792. int ret2;
  793. data = list_entry(head->next, struct nfs_write_data, list);
  794. list_del_init(&data->list);
  795. ret2 = nfs_do_write(data, call_ops, how);
  796. if (ret == 0)
  797. ret = ret2;
  798. }
  799. return ret;
  800. }
  801. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  802. * call this on each, which will prepare them to be retried on next
  803. * writeback using standard nfs.
  804. */
  805. static void nfs_redirty_request(struct nfs_page *req)
  806. {
  807. struct page *page = req->wb_page;
  808. nfs_mark_request_dirty(req);
  809. nfs_clear_page_tag_locked(req);
  810. nfs_end_page_writeback(page);
  811. }
  812. /*
  813. * Generate multiple small requests to write out a single
  814. * contiguous dirty area on one page.
  815. */
  816. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
  817. {
  818. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  819. struct page *page = req->wb_page;
  820. struct nfs_write_data *data;
  821. size_t wsize = desc->pg_bsize, nbytes;
  822. unsigned int offset;
  823. int requests = 0;
  824. int ret = 0;
  825. nfs_list_remove_request(req);
  826. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  827. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  828. desc->pg_count > wsize))
  829. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  830. offset = 0;
  831. nbytes = desc->pg_count;
  832. do {
  833. size_t len = min(nbytes, wsize);
  834. data = nfs_writedata_alloc(1);
  835. if (!data)
  836. goto out_bad;
  837. data->pagevec[0] = page;
  838. nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
  839. list_add(&data->list, res);
  840. requests++;
  841. nbytes -= len;
  842. offset += len;
  843. } while (nbytes != 0);
  844. atomic_set(&req->wb_complete, requests);
  845. desc->pg_rpc_callops = &nfs_write_partial_ops;
  846. return ret;
  847. out_bad:
  848. while (!list_empty(res)) {
  849. data = list_entry(res->next, struct nfs_write_data, list);
  850. list_del(&data->list);
  851. nfs_writedata_free(data);
  852. }
  853. nfs_redirty_request(req);
  854. return -ENOMEM;
  855. }
  856. /*
  857. * Create an RPC task for the given write request and kick it.
  858. * The page must have been locked by the caller.
  859. *
  860. * It may happen that the page we're passed is not marked dirty.
  861. * This is the case if nfs_updatepage detects a conflicting request
  862. * that has been written but not committed.
  863. */
  864. static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
  865. {
  866. struct nfs_page *req;
  867. struct page **pages;
  868. struct nfs_write_data *data;
  869. struct list_head *head = &desc->pg_list;
  870. int ret = 0;
  871. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  872. desc->pg_count));
  873. if (!data) {
  874. while (!list_empty(head)) {
  875. req = nfs_list_entry(head->next);
  876. nfs_list_remove_request(req);
  877. nfs_redirty_request(req);
  878. }
  879. ret = -ENOMEM;
  880. goto out;
  881. }
  882. pages = data->pagevec;
  883. while (!list_empty(head)) {
  884. req = nfs_list_entry(head->next);
  885. nfs_list_remove_request(req);
  886. nfs_list_add_request(req, &data->pages);
  887. *pages++ = req->wb_page;
  888. }
  889. req = nfs_list_entry(data->pages.next);
  890. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  891. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  892. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  893. /* Set up the argument struct */
  894. nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
  895. list_add(&data->list, res);
  896. desc->pg_rpc_callops = &nfs_write_full_ops;
  897. out:
  898. return ret;
  899. }
  900. int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
  901. {
  902. if (desc->pg_bsize < PAGE_CACHE_SIZE)
  903. return nfs_flush_multi(desc, head);
  904. return nfs_flush_one(desc, head);
  905. }
  906. static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
  907. {
  908. LIST_HEAD(head);
  909. int ret;
  910. ret = nfs_generic_flush(desc, &head);
  911. if (ret == 0)
  912. ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
  913. desc->pg_ioflags);
  914. return ret;
  915. }
  916. static const struct nfs_pageio_ops nfs_pageio_write_ops = {
  917. .pg_test = nfs_generic_pg_test,
  918. .pg_doio = nfs_generic_pg_writepages,
  919. };
  920. void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
  921. struct inode *inode, int ioflags)
  922. {
  923. nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
  924. NFS_SERVER(inode)->wsize, ioflags);
  925. }
  926. void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
  927. {
  928. pgio->pg_ops = &nfs_pageio_write_ops;
  929. pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
  930. }
  931. EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
  932. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  933. struct inode *inode, int ioflags)
  934. {
  935. if (!pnfs_pageio_init_write(pgio, inode, ioflags))
  936. nfs_pageio_init_write_mds(pgio, inode, ioflags);
  937. }
  938. /*
  939. * Handle a write reply that flushed part of a page.
  940. */
  941. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  942. {
  943. struct nfs_write_data *data = calldata;
  944. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  945. task->tk_pid,
  946. data->req->wb_context->dentry->d_inode->i_sb->s_id,
  947. (long long)
  948. NFS_FILEID(data->req->wb_context->dentry->d_inode),
  949. data->req->wb_bytes, (long long)req_offset(data->req));
  950. nfs_writeback_done(task, data);
  951. }
  952. static void nfs_writeback_release_partial(void *calldata)
  953. {
  954. struct nfs_write_data *data = calldata;
  955. struct nfs_page *req = data->req;
  956. struct page *page = req->wb_page;
  957. int status = data->task.tk_status;
  958. if (status < 0) {
  959. nfs_set_pageerror(page);
  960. nfs_context_set_write_error(req->wb_context, status);
  961. dprintk(", error = %d\n", status);
  962. goto out;
  963. }
  964. if (nfs_write_need_commit(data)) {
  965. struct inode *inode = page->mapping->host;
  966. spin_lock(&inode->i_lock);
  967. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  968. /* Do nothing we need to resend the writes */
  969. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  970. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  971. dprintk(" defer commit\n");
  972. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  973. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  974. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  975. dprintk(" server reboot detected\n");
  976. }
  977. spin_unlock(&inode->i_lock);
  978. } else
  979. dprintk(" OK\n");
  980. out:
  981. if (atomic_dec_and_test(&req->wb_complete))
  982. nfs_writepage_release(req, data);
  983. nfs_writedata_release(calldata);
  984. }
  985. #if defined(CONFIG_NFS_V4_1)
  986. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  987. {
  988. struct nfs_write_data *data = calldata;
  989. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  990. &data->args.seq_args,
  991. &data->res.seq_res, task))
  992. return;
  993. rpc_call_start(task);
  994. }
  995. #endif /* CONFIG_NFS_V4_1 */
  996. static const struct rpc_call_ops nfs_write_partial_ops = {
  997. #if defined(CONFIG_NFS_V4_1)
  998. .rpc_call_prepare = nfs_write_prepare,
  999. #endif /* CONFIG_NFS_V4_1 */
  1000. .rpc_call_done = nfs_writeback_done_partial,
  1001. .rpc_release = nfs_writeback_release_partial,
  1002. };
  1003. /*
  1004. * Handle a write reply that flushes a whole page.
  1005. *
  1006. * FIXME: There is an inherent race with invalidate_inode_pages and
  1007. * writebacks since the page->count is kept > 1 for as long
  1008. * as the page has a write request pending.
  1009. */
  1010. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  1011. {
  1012. struct nfs_write_data *data = calldata;
  1013. nfs_writeback_done(task, data);
  1014. }
  1015. static void nfs_writeback_release_full(void *calldata)
  1016. {
  1017. struct nfs_write_data *data = calldata;
  1018. int status = data->task.tk_status;
  1019. /* Update attributes as result of writeback. */
  1020. while (!list_empty(&data->pages)) {
  1021. struct nfs_page *req = nfs_list_entry(data->pages.next);
  1022. struct page *page = req->wb_page;
  1023. nfs_list_remove_request(req);
  1024. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  1025. data->task.tk_pid,
  1026. req->wb_context->dentry->d_inode->i_sb->s_id,
  1027. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1028. req->wb_bytes,
  1029. (long long)req_offset(req));
  1030. if (status < 0) {
  1031. nfs_set_pageerror(page);
  1032. nfs_context_set_write_error(req->wb_context, status);
  1033. dprintk(", error = %d\n", status);
  1034. goto remove_request;
  1035. }
  1036. if (nfs_write_need_commit(data)) {
  1037. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1038. nfs_mark_request_commit(req, data->lseg);
  1039. dprintk(" marked for commit\n");
  1040. goto next;
  1041. }
  1042. dprintk(" OK\n");
  1043. remove_request:
  1044. nfs_inode_remove_request(req);
  1045. next:
  1046. nfs_clear_page_tag_locked(req);
  1047. nfs_end_page_writeback(page);
  1048. }
  1049. nfs_writedata_release(calldata);
  1050. }
  1051. static const struct rpc_call_ops nfs_write_full_ops = {
  1052. #if defined(CONFIG_NFS_V4_1)
  1053. .rpc_call_prepare = nfs_write_prepare,
  1054. #endif /* CONFIG_NFS_V4_1 */
  1055. .rpc_call_done = nfs_writeback_done_full,
  1056. .rpc_release = nfs_writeback_release_full,
  1057. };
  1058. /*
  1059. * This function is called when the WRITE call is complete.
  1060. */
  1061. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1062. {
  1063. struct nfs_writeargs *argp = &data->args;
  1064. struct nfs_writeres *resp = &data->res;
  1065. int status;
  1066. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1067. task->tk_pid, task->tk_status);
  1068. /*
  1069. * ->write_done will attempt to use post-op attributes to detect
  1070. * conflicting writes by other clients. A strict interpretation
  1071. * of close-to-open would allow us to continue caching even if
  1072. * another writer had changed the file, but some applications
  1073. * depend on tighter cache coherency when writing.
  1074. */
  1075. status = NFS_PROTO(data->inode)->write_done(task, data);
  1076. if (status != 0)
  1077. return;
  1078. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1079. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1080. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1081. /* We tried a write call, but the server did not
  1082. * commit data to stable storage even though we
  1083. * requested it.
  1084. * Note: There is a known bug in Tru64 < 5.0 in which
  1085. * the server reports NFS_DATA_SYNC, but performs
  1086. * NFS_FILE_SYNC. We therefore implement this checking
  1087. * as a dprintk() in order to avoid filling syslog.
  1088. */
  1089. static unsigned long complain;
  1090. /* Note this will print the MDS for a DS write */
  1091. if (time_before(complain, jiffies)) {
  1092. dprintk("NFS: faulty NFS server %s:"
  1093. " (committed = %d) != (stable = %d)\n",
  1094. NFS_SERVER(data->inode)->nfs_client->cl_hostname,
  1095. resp->verf->committed, argp->stable);
  1096. complain = jiffies + 300 * HZ;
  1097. }
  1098. }
  1099. #endif
  1100. /* Is this a short write? */
  1101. if (task->tk_status >= 0 && resp->count < argp->count) {
  1102. static unsigned long complain;
  1103. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1104. /* Has the server at least made some progress? */
  1105. if (resp->count != 0) {
  1106. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1107. if (resp->verf->committed != NFS_UNSTABLE) {
  1108. /* Resend from where the server left off */
  1109. data->mds_offset += resp->count;
  1110. argp->offset += resp->count;
  1111. argp->pgbase += resp->count;
  1112. argp->count -= resp->count;
  1113. } else {
  1114. /* Resend as a stable write in order to avoid
  1115. * headaches in the case of a server crash.
  1116. */
  1117. argp->stable = NFS_FILE_SYNC;
  1118. }
  1119. rpc_restart_call_prepare(task);
  1120. return;
  1121. }
  1122. if (time_before(complain, jiffies)) {
  1123. printk(KERN_WARNING
  1124. "NFS: Server wrote zero bytes, expected %u.\n",
  1125. argp->count);
  1126. complain = jiffies + 300 * HZ;
  1127. }
  1128. /* Can't do anything about it except throw an error. */
  1129. task->tk_status = -EIO;
  1130. }
  1131. return;
  1132. }
  1133. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1134. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1135. {
  1136. int ret;
  1137. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1138. return 1;
  1139. if (!may_wait)
  1140. return 0;
  1141. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1142. NFS_INO_COMMIT,
  1143. nfs_wait_bit_killable,
  1144. TASK_KILLABLE);
  1145. return (ret < 0) ? ret : 1;
  1146. }
  1147. void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1148. {
  1149. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1150. smp_mb__after_clear_bit();
  1151. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1152. }
  1153. EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
  1154. void nfs_commitdata_release(void *data)
  1155. {
  1156. struct nfs_write_data *wdata = data;
  1157. put_lseg(wdata->lseg);
  1158. put_nfs_open_context(wdata->args.context);
  1159. nfs_commit_free(wdata);
  1160. }
  1161. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1162. int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
  1163. const struct rpc_call_ops *call_ops,
  1164. int how)
  1165. {
  1166. struct rpc_task *task;
  1167. int priority = flush_task_priority(how);
  1168. struct rpc_message msg = {
  1169. .rpc_argp = &data->args,
  1170. .rpc_resp = &data->res,
  1171. .rpc_cred = data->cred,
  1172. };
  1173. struct rpc_task_setup task_setup_data = {
  1174. .task = &data->task,
  1175. .rpc_client = clnt,
  1176. .rpc_message = &msg,
  1177. .callback_ops = call_ops,
  1178. .callback_data = data,
  1179. .workqueue = nfsiod_workqueue,
  1180. .flags = RPC_TASK_ASYNC,
  1181. .priority = priority,
  1182. };
  1183. /* Set up the initial task struct. */
  1184. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1185. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1186. task = rpc_run_task(&task_setup_data);
  1187. if (IS_ERR(task))
  1188. return PTR_ERR(task);
  1189. if (how & FLUSH_SYNC)
  1190. rpc_wait_for_completion_task(task);
  1191. rpc_put_task(task);
  1192. return 0;
  1193. }
  1194. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1195. /*
  1196. * Set up the argument/result storage required for the RPC call.
  1197. */
  1198. void nfs_init_commit(struct nfs_write_data *data,
  1199. struct list_head *head,
  1200. struct pnfs_layout_segment *lseg)
  1201. {
  1202. struct nfs_page *first = nfs_list_entry(head->next);
  1203. struct inode *inode = first->wb_context->dentry->d_inode;
  1204. /* Set up the RPC argument and reply structs
  1205. * NB: take care not to mess about with data->commit et al. */
  1206. list_splice_init(head, &data->pages);
  1207. data->inode = inode;
  1208. data->cred = first->wb_context->cred;
  1209. data->lseg = lseg; /* reference transferred */
  1210. data->mds_ops = &nfs_commit_ops;
  1211. data->args.fh = NFS_FH(data->inode);
  1212. /* Note: we always request a commit of the entire inode */
  1213. data->args.offset = 0;
  1214. data->args.count = 0;
  1215. data->args.context = get_nfs_open_context(first->wb_context);
  1216. data->res.count = 0;
  1217. data->res.fattr = &data->fattr;
  1218. data->res.verf = &data->verf;
  1219. nfs_fattr_init(&data->fattr);
  1220. }
  1221. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1222. void nfs_retry_commit(struct list_head *page_list,
  1223. struct pnfs_layout_segment *lseg)
  1224. {
  1225. struct nfs_page *req;
  1226. while (!list_empty(page_list)) {
  1227. req = nfs_list_entry(page_list->next);
  1228. nfs_list_remove_request(req);
  1229. nfs_mark_request_commit(req, lseg);
  1230. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1231. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1232. BDI_RECLAIMABLE);
  1233. nfs_clear_page_tag_locked(req);
  1234. }
  1235. }
  1236. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1237. /*
  1238. * Commit dirty pages
  1239. */
  1240. static int
  1241. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1242. {
  1243. struct nfs_write_data *data;
  1244. data = nfs_commitdata_alloc();
  1245. if (!data)
  1246. goto out_bad;
  1247. /* Set up the argument struct */
  1248. nfs_init_commit(data, head, NULL);
  1249. return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
  1250. out_bad:
  1251. nfs_retry_commit(head, NULL);
  1252. nfs_commit_clear_lock(NFS_I(inode));
  1253. return -ENOMEM;
  1254. }
  1255. /*
  1256. * COMMIT call returned
  1257. */
  1258. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1259. {
  1260. struct nfs_write_data *data = calldata;
  1261. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1262. task->tk_pid, task->tk_status);
  1263. /* Call the NFS version-specific code */
  1264. NFS_PROTO(data->inode)->commit_done(task, data);
  1265. }
  1266. void nfs_commit_release_pages(struct nfs_write_data *data)
  1267. {
  1268. struct nfs_page *req;
  1269. int status = data->task.tk_status;
  1270. while (!list_empty(&data->pages)) {
  1271. req = nfs_list_entry(data->pages.next);
  1272. nfs_list_remove_request(req);
  1273. nfs_clear_request_commit(req);
  1274. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1275. req->wb_context->dentry->d_sb->s_id,
  1276. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1277. req->wb_bytes,
  1278. (long long)req_offset(req));
  1279. if (status < 0) {
  1280. nfs_context_set_write_error(req->wb_context, status);
  1281. nfs_inode_remove_request(req);
  1282. dprintk(", error = %d\n", status);
  1283. goto next;
  1284. }
  1285. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1286. * returned by the server against all stored verfs. */
  1287. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1288. /* We have a match */
  1289. nfs_inode_remove_request(req);
  1290. dprintk(" OK\n");
  1291. goto next;
  1292. }
  1293. /* We have a mismatch. Write the page again */
  1294. dprintk(" mismatch\n");
  1295. nfs_mark_request_dirty(req);
  1296. next:
  1297. nfs_clear_page_tag_locked(req);
  1298. }
  1299. }
  1300. EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
  1301. static void nfs_commit_release(void *calldata)
  1302. {
  1303. struct nfs_write_data *data = calldata;
  1304. nfs_commit_release_pages(data);
  1305. nfs_commit_clear_lock(NFS_I(data->inode));
  1306. nfs_commitdata_release(calldata);
  1307. }
  1308. static const struct rpc_call_ops nfs_commit_ops = {
  1309. #if defined(CONFIG_NFS_V4_1)
  1310. .rpc_call_prepare = nfs_write_prepare,
  1311. #endif /* CONFIG_NFS_V4_1 */
  1312. .rpc_call_done = nfs_commit_done,
  1313. .rpc_release = nfs_commit_release,
  1314. };
  1315. int nfs_commit_inode(struct inode *inode, int how)
  1316. {
  1317. LIST_HEAD(head);
  1318. int may_wait = how & FLUSH_SYNC;
  1319. int res;
  1320. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1321. if (res <= 0)
  1322. goto out_mark_dirty;
  1323. res = nfs_scan_commit(inode, &head, 0, 0);
  1324. if (res) {
  1325. int error;
  1326. error = pnfs_commit_list(inode, &head, how);
  1327. if (error == PNFS_NOT_ATTEMPTED)
  1328. error = nfs_commit_list(inode, &head, how);
  1329. if (error < 0)
  1330. return error;
  1331. if (!may_wait)
  1332. goto out_mark_dirty;
  1333. error = wait_on_bit(&NFS_I(inode)->flags,
  1334. NFS_INO_COMMIT,
  1335. nfs_wait_bit_killable,
  1336. TASK_KILLABLE);
  1337. if (error < 0)
  1338. return error;
  1339. } else
  1340. nfs_commit_clear_lock(NFS_I(inode));
  1341. return res;
  1342. /* Note: If we exit without ensuring that the commit is complete,
  1343. * we must mark the inode as dirty. Otherwise, future calls to
  1344. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1345. * that the data is on the disk.
  1346. */
  1347. out_mark_dirty:
  1348. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1349. return res;
  1350. }
  1351. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1352. {
  1353. struct nfs_inode *nfsi = NFS_I(inode);
  1354. int flags = FLUSH_SYNC;
  1355. int ret = 0;
  1356. /* no commits means nothing needs to be done */
  1357. if (!nfsi->ncommit)
  1358. return ret;
  1359. if (wbc->sync_mode == WB_SYNC_NONE) {
  1360. /* Don't commit yet if this is a non-blocking flush and there
  1361. * are a lot of outstanding writes for this mapping.
  1362. */
  1363. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1364. goto out_mark_dirty;
  1365. /* don't wait for the COMMIT response */
  1366. flags = 0;
  1367. }
  1368. ret = nfs_commit_inode(inode, flags);
  1369. if (ret >= 0) {
  1370. if (wbc->sync_mode == WB_SYNC_NONE) {
  1371. if (ret < wbc->nr_to_write)
  1372. wbc->nr_to_write -= ret;
  1373. else
  1374. wbc->nr_to_write = 0;
  1375. }
  1376. return 0;
  1377. }
  1378. out_mark_dirty:
  1379. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1380. return ret;
  1381. }
  1382. #else
  1383. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1384. {
  1385. return 0;
  1386. }
  1387. #endif
  1388. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1389. {
  1390. int ret;
  1391. ret = nfs_commit_unstable_pages(inode, wbc);
  1392. if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
  1393. int status;
  1394. bool sync = true;
  1395. if (wbc->sync_mode == WB_SYNC_NONE)
  1396. sync = false;
  1397. status = pnfs_layoutcommit_inode(inode, sync);
  1398. if (status < 0)
  1399. return status;
  1400. }
  1401. return ret;
  1402. }
  1403. /*
  1404. * flush the inode to disk.
  1405. */
  1406. int nfs_wb_all(struct inode *inode)
  1407. {
  1408. struct writeback_control wbc = {
  1409. .sync_mode = WB_SYNC_ALL,
  1410. .nr_to_write = LONG_MAX,
  1411. .range_start = 0,
  1412. .range_end = LLONG_MAX,
  1413. };
  1414. return sync_inode(inode, &wbc);
  1415. }
  1416. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1417. {
  1418. struct nfs_page *req;
  1419. int ret = 0;
  1420. BUG_ON(!PageLocked(page));
  1421. for (;;) {
  1422. wait_on_page_writeback(page);
  1423. req = nfs_page_find_request(page);
  1424. if (req == NULL)
  1425. break;
  1426. if (nfs_lock_request_dontget(req)) {
  1427. nfs_inode_remove_request(req);
  1428. /*
  1429. * In case nfs_inode_remove_request has marked the
  1430. * page as being dirty
  1431. */
  1432. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1433. nfs_unlock_request(req);
  1434. break;
  1435. }
  1436. ret = nfs_wait_on_request(req);
  1437. nfs_release_request(req);
  1438. if (ret < 0)
  1439. break;
  1440. }
  1441. return ret;
  1442. }
  1443. /*
  1444. * Write back all requests on one page - we do this before reading it.
  1445. */
  1446. int nfs_wb_page(struct inode *inode, struct page *page)
  1447. {
  1448. loff_t range_start = page_offset(page);
  1449. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1450. struct writeback_control wbc = {
  1451. .sync_mode = WB_SYNC_ALL,
  1452. .nr_to_write = 0,
  1453. .range_start = range_start,
  1454. .range_end = range_end,
  1455. };
  1456. int ret;
  1457. for (;;) {
  1458. wait_on_page_writeback(page);
  1459. if (clear_page_dirty_for_io(page)) {
  1460. ret = nfs_writepage_locked(page, &wbc);
  1461. if (ret < 0)
  1462. goto out_error;
  1463. continue;
  1464. }
  1465. if (!PagePrivate(page))
  1466. break;
  1467. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1468. if (ret < 0)
  1469. goto out_error;
  1470. }
  1471. return 0;
  1472. out_error:
  1473. return ret;
  1474. }
  1475. #ifdef CONFIG_MIGRATION
  1476. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1477. struct page *page, enum migrate_mode mode)
  1478. {
  1479. /*
  1480. * If PagePrivate is set, then the page is currently associated with
  1481. * an in-progress read or write request. Don't try to migrate it.
  1482. *
  1483. * FIXME: we could do this in principle, but we'll need a way to ensure
  1484. * that we can safely release the inode reference while holding
  1485. * the page lock.
  1486. */
  1487. if (PagePrivate(page))
  1488. return -EBUSY;
  1489. nfs_fscache_release_page(page, GFP_KERNEL);
  1490. return migrate_page(mapping, newpage, page, mode);
  1491. }
  1492. #endif
  1493. int __init nfs_init_writepagecache(void)
  1494. {
  1495. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1496. sizeof(struct nfs_write_data),
  1497. 0, SLAB_HWCACHE_ALIGN,
  1498. NULL);
  1499. if (nfs_wdata_cachep == NULL)
  1500. return -ENOMEM;
  1501. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1502. nfs_wdata_cachep);
  1503. if (nfs_wdata_mempool == NULL)
  1504. return -ENOMEM;
  1505. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1506. nfs_wdata_cachep);
  1507. if (nfs_commit_mempool == NULL)
  1508. return -ENOMEM;
  1509. /*
  1510. * NFS congestion size, scale with available memory.
  1511. *
  1512. * 64MB: 8192k
  1513. * 128MB: 11585k
  1514. * 256MB: 16384k
  1515. * 512MB: 23170k
  1516. * 1GB: 32768k
  1517. * 2GB: 46340k
  1518. * 4GB: 65536k
  1519. * 8GB: 92681k
  1520. * 16GB: 131072k
  1521. *
  1522. * This allows larger machines to have larger/more transfers.
  1523. * Limit the default to 256M
  1524. */
  1525. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1526. if (nfs_congestion_kb > 256*1024)
  1527. nfs_congestion_kb = 256*1024;
  1528. return 0;
  1529. }
  1530. void nfs_destroy_writepagecache(void)
  1531. {
  1532. mempool_destroy(nfs_commit_mempool);
  1533. mempool_destroy(nfs_wdata_mempool);
  1534. kmem_cache_destroy(nfs_wdata_cachep);
  1535. }