12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118 |
- /*
- * Generic VM initialization for x86-64 NUMA setups.
- * Copyright 2002,2003 Andi Kleen, SuSE Labs.
- */
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/string.h>
- #include <linux/init.h>
- #include <linux/bootmem.h>
- #include <linux/memblock.h>
- #include <linux/mmzone.h>
- #include <linux/ctype.h>
- #include <linux/module.h>
- #include <linux/nodemask.h>
- #include <linux/sched.h>
- #include <linux/acpi.h>
- #include <asm/e820.h>
- #include <asm/proto.h>
- #include <asm/dma.h>
- #include <asm/numa.h>
- #include <asm/acpi.h>
- #include <asm/amd_nb.h>
- struct numa_memblk {
- u64 start;
- u64 end;
- int nid;
- };
- struct numa_meminfo {
- int nr_blks;
- struct numa_memblk blk[NR_NODE_MEMBLKS];
- };
- struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
- EXPORT_SYMBOL(node_data);
- nodemask_t numa_nodes_parsed __initdata;
- struct memnode memnode;
- static unsigned long __initdata nodemap_addr;
- static unsigned long __initdata nodemap_size;
- static struct numa_meminfo numa_meminfo __initdata;
- static int numa_distance_cnt;
- static u8 *numa_distance;
- #ifdef CONFIG_NUMA_EMU
- static bool numa_emu_dist;
- #endif
- /*
- * Given a shift value, try to populate memnodemap[]
- * Returns :
- * 1 if OK
- * 0 if memnodmap[] too small (of shift too small)
- * -1 if node overlap or lost ram (shift too big)
- */
- static int __init populate_memnodemap(const struct numa_meminfo *mi, int shift)
- {
- unsigned long addr, end;
- int i, res = -1;
- memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
- for (i = 0; i < mi->nr_blks; i++) {
- addr = mi->blk[i].start;
- end = mi->blk[i].end;
- if (addr >= end)
- continue;
- if ((end >> shift) >= memnodemapsize)
- return 0;
- do {
- if (memnodemap[addr >> shift] != NUMA_NO_NODE)
- return -1;
- memnodemap[addr >> shift] = mi->blk[i].nid;
- addr += (1UL << shift);
- } while (addr < end);
- res = 1;
- }
- return res;
- }
- static int __init allocate_cachealigned_memnodemap(void)
- {
- unsigned long addr;
- memnodemap = memnode.embedded_map;
- if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
- return 0;
- addr = 0x8000;
- nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
- nodemap_addr = memblock_find_in_range(addr, get_max_mapped(),
- nodemap_size, L1_CACHE_BYTES);
- if (nodemap_addr == MEMBLOCK_ERROR) {
- printk(KERN_ERR
- "NUMA: Unable to allocate Memory to Node hash map\n");
- nodemap_addr = nodemap_size = 0;
- return -1;
- }
- memnodemap = phys_to_virt(nodemap_addr);
- memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
- printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
- nodemap_addr, nodemap_addr + nodemap_size);
- return 0;
- }
- /*
- * The LSB of all start and end addresses in the node map is the value of the
- * maximum possible shift.
- */
- static int __init extract_lsb_from_nodes(const struct numa_meminfo *mi)
- {
- int i, nodes_used = 0;
- unsigned long start, end;
- unsigned long bitfield = 0, memtop = 0;
- for (i = 0; i < mi->nr_blks; i++) {
- start = mi->blk[i].start;
- end = mi->blk[i].end;
- if (start >= end)
- continue;
- bitfield |= start;
- nodes_used++;
- if (end > memtop)
- memtop = end;
- }
- if (nodes_used <= 1)
- i = 63;
- else
- i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
- memnodemapsize = (memtop >> i)+1;
- return i;
- }
- static int __init compute_hash_shift(const struct numa_meminfo *mi)
- {
- int shift;
- shift = extract_lsb_from_nodes(mi);
- if (allocate_cachealigned_memnodemap())
- return -1;
- printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
- shift);
- if (populate_memnodemap(mi, shift) != 1) {
- printk(KERN_INFO "Your memory is not aligned you need to "
- "rebuild your kernel with a bigger NODEMAPSIZE "
- "shift=%d\n", shift);
- return -1;
- }
- return shift;
- }
- int __meminit __early_pfn_to_nid(unsigned long pfn)
- {
- return phys_to_nid(pfn << PAGE_SHIFT);
- }
- static void * __init early_node_mem(int nodeid, unsigned long start,
- unsigned long end, unsigned long size,
- unsigned long align)
- {
- unsigned long mem;
- /*
- * put it on high as possible
- * something will go with NODE_DATA
- */
- if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
- start = MAX_DMA_PFN<<PAGE_SHIFT;
- if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
- end > (MAX_DMA32_PFN<<PAGE_SHIFT))
- start = MAX_DMA32_PFN<<PAGE_SHIFT;
- mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
- if (mem != MEMBLOCK_ERROR)
- return __va(mem);
- /* extend the search scope */
- end = max_pfn_mapped << PAGE_SHIFT;
- start = MAX_DMA_PFN << PAGE_SHIFT;
- mem = memblock_find_in_range(start, end, size, align);
- if (mem != MEMBLOCK_ERROR)
- return __va(mem);
- printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
- size, nodeid);
- return NULL;
- }
- static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
- struct numa_meminfo *mi)
- {
- /* ignore zero length blks */
- if (start == end)
- return 0;
- /* whine about and ignore invalid blks */
- if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
- pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n",
- nid, start, end);
- return 0;
- }
- if (mi->nr_blks >= NR_NODE_MEMBLKS) {
- pr_err("NUMA: too many memblk ranges\n");
- return -EINVAL;
- }
- mi->blk[mi->nr_blks].start = start;
- mi->blk[mi->nr_blks].end = end;
- mi->blk[mi->nr_blks].nid = nid;
- mi->nr_blks++;
- return 0;
- }
- static void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
- {
- mi->nr_blks--;
- memmove(&mi->blk[idx], &mi->blk[idx + 1],
- (mi->nr_blks - idx) * sizeof(mi->blk[0]));
- }
- int __init numa_add_memblk(int nid, u64 start, u64 end)
- {
- return numa_add_memblk_to(nid, start, end, &numa_meminfo);
- }
- /* Initialize bootmem allocator for a node */
- void __init
- setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
- {
- unsigned long start_pfn, last_pfn, nodedata_phys;
- const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
- int nid;
- if (!end)
- return;
- /*
- * Don't confuse VM with a node that doesn't have the
- * minimum amount of memory:
- */
- if (end && (end - start) < NODE_MIN_SIZE)
- return;
- start = roundup(start, ZONE_ALIGN);
- printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
- start, end);
- start_pfn = start >> PAGE_SHIFT;
- last_pfn = end >> PAGE_SHIFT;
- node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
- SMP_CACHE_BYTES);
- if (node_data[nodeid] == NULL)
- return;
- nodedata_phys = __pa(node_data[nodeid]);
- memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
- printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
- nodedata_phys + pgdat_size - 1);
- nid = phys_to_nid(nodedata_phys);
- if (nid != nodeid)
- printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
- memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
- NODE_DATA(nodeid)->node_id = nodeid;
- NODE_DATA(nodeid)->node_start_pfn = start_pfn;
- NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
- node_set_online(nodeid);
- }
- static int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
- {
- const u64 low = 0;
- const u64 high = (u64)max_pfn << PAGE_SHIFT;
- int i, j, k;
- for (i = 0; i < mi->nr_blks; i++) {
- struct numa_memblk *bi = &mi->blk[i];
- /* make sure all blocks are inside the limits */
- bi->start = max(bi->start, low);
- bi->end = min(bi->end, high);
- /* and there's no empty block */
- if (bi->start == bi->end) {
- numa_remove_memblk_from(i--, mi);
- continue;
- }
- for (j = i + 1; j < mi->nr_blks; j++) {
- struct numa_memblk *bj = &mi->blk[j];
- unsigned long start, end;
- /*
- * See whether there are overlapping blocks. Whine
- * about but allow overlaps of the same nid. They
- * will be merged below.
- */
- if (bi->end > bj->start && bi->start < bj->end) {
- if (bi->nid != bj->nid) {
- pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
- bi->nid, bi->start, bi->end,
- bj->nid, bj->start, bj->end);
- return -EINVAL;
- }
- pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
- bi->nid, bi->start, bi->end,
- bj->start, bj->end);
- }
- /*
- * Join together blocks on the same node, holes
- * between which don't overlap with memory on other
- * nodes.
- */
- if (bi->nid != bj->nid)
- continue;
- start = max(min(bi->start, bj->start), low);
- end = min(max(bi->end, bj->end), high);
- for (k = 0; k < mi->nr_blks; k++) {
- struct numa_memblk *bk = &mi->blk[k];
- if (bi->nid == bk->nid)
- continue;
- if (start < bk->end && end > bk->start)
- break;
- }
- if (k < mi->nr_blks)
- continue;
- printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n",
- bi->nid, bi->start, bi->end, bj->start, bj->end,
- start, end);
- bi->start = start;
- bi->end = end;
- numa_remove_memblk_from(j--, mi);
- }
- }
- for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
- mi->blk[i].start = mi->blk[i].end = 0;
- mi->blk[i].nid = NUMA_NO_NODE;
- }
- return 0;
- }
- /*
- * Set nodes, which have memory in @mi, in *@nodemask.
- */
- static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
- const struct numa_meminfo *mi)
- {
- int i;
- for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
- if (mi->blk[i].start != mi->blk[i].end &&
- mi->blk[i].nid != NUMA_NO_NODE)
- node_set(mi->blk[i].nid, *nodemask);
- }
- /*
- * Reset distance table. The current table is freed. The next
- * numa_set_distance() call will create a new one.
- */
- static void __init numa_reset_distance(void)
- {
- size_t size;
- size = numa_distance_cnt * sizeof(numa_distance[0]);
- memblock_x86_free_range(__pa(numa_distance),
- __pa(numa_distance) + size);
- numa_distance = NULL;
- numa_distance_cnt = 0;
- }
- /*
- * Set the distance between node @from to @to to @distance. If distance
- * table doesn't exist, one which is large enough to accomodate all the
- * currently known nodes will be created.
- */
- void __init numa_set_distance(int from, int to, int distance)
- {
- if (!numa_distance) {
- nodemask_t nodes_parsed;
- size_t size;
- int i, j, cnt = 0;
- u64 phys;
- /* size the new table and allocate it */
- nodes_parsed = numa_nodes_parsed;
- numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
- for_each_node_mask(i, nodes_parsed)
- cnt = i;
- size = ++cnt * sizeof(numa_distance[0]);
- phys = memblock_find_in_range(0,
- (u64)max_pfn_mapped << PAGE_SHIFT,
- size, PAGE_SIZE);
- if (phys == MEMBLOCK_ERROR) {
- pr_warning("NUMA: Warning: can't allocate distance table!\n");
- /* don't retry until explicitly reset */
- numa_distance = (void *)1LU;
- return;
- }
- memblock_x86_reserve_range(phys, phys + size, "NUMA DIST");
- numa_distance = __va(phys);
- numa_distance_cnt = cnt;
- /* fill with the default distances */
- for (i = 0; i < cnt; i++)
- for (j = 0; j < cnt; j++)
- numa_distance[i * cnt + j] = i == j ?
- LOCAL_DISTANCE : REMOTE_DISTANCE;
- printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
- }
- if (from >= numa_distance_cnt || to >= numa_distance_cnt) {
- printk_once(KERN_DEBUG "NUMA: Debug: distance out of bound, from=%d to=%d distance=%d\n",
- from, to, distance);
- return;
- }
- if ((u8)distance != distance ||
- (from == to && distance != LOCAL_DISTANCE)) {
- pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
- from, to, distance);
- return;
- }
- numa_distance[from * numa_distance_cnt + to] = distance;
- }
- int __node_distance(int from, int to)
- {
- #if defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA_EMU)
- if (numa_emu_dist)
- return acpi_emu_node_distance(from, to);
- #endif
- if (from >= numa_distance_cnt || to >= numa_distance_cnt)
- return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
- return numa_distance[from * numa_distance_cnt + to];
- }
- EXPORT_SYMBOL(__node_distance);
- /*
- * Sanity check to catch more bad NUMA configurations (they are amazingly
- * common). Make sure the nodes cover all memory.
- */
- static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
- {
- unsigned long numaram, e820ram;
- int i;
- numaram = 0;
- for (i = 0; i < mi->nr_blks; i++) {
- unsigned long s = mi->blk[i].start >> PAGE_SHIFT;
- unsigned long e = mi->blk[i].end >> PAGE_SHIFT;
- numaram += e - s;
- numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
- if ((long)numaram < 0)
- numaram = 0;
- }
- e820ram = max_pfn - (memblock_x86_hole_size(0,
- max_pfn << PAGE_SHIFT) >> PAGE_SHIFT);
- /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
- if ((long)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
- printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n",
- (numaram << PAGE_SHIFT) >> 20,
- (e820ram << PAGE_SHIFT) >> 20);
- return false;
- }
- return true;
- }
- static int __init numa_register_memblks(struct numa_meminfo *mi)
- {
- int i, j, nid;
- /* Account for nodes with cpus and no memory */
- node_possible_map = numa_nodes_parsed;
- numa_nodemask_from_meminfo(&node_possible_map, mi);
- if (WARN_ON(nodes_empty(node_possible_map)))
- return -EINVAL;
- memnode_shift = compute_hash_shift(mi);
- if (memnode_shift < 0) {
- printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n");
- return -EINVAL;
- }
- for (i = 0; i < mi->nr_blks; i++)
- memblock_x86_register_active_regions(mi->blk[i].nid,
- mi->blk[i].start >> PAGE_SHIFT,
- mi->blk[i].end >> PAGE_SHIFT);
- /* for out of order entries */
- sort_node_map();
- if (!numa_meminfo_cover_memory(mi))
- return -EINVAL;
- init_memory_mapping_high();
- /*
- * Finally register nodes. Do it twice in case setup_node_bootmem
- * missed one due to missing bootmem.
- */
- for (i = 0; i < 2; i++) {
- for_each_node_mask(nid, node_possible_map) {
- u64 start = (u64)max_pfn << PAGE_SHIFT;
- u64 end = 0;
- if (node_online(nid))
- continue;
- for (j = 0; j < mi->nr_blks; j++) {
- if (nid != mi->blk[j].nid)
- continue;
- start = min(mi->blk[j].start, start);
- end = max(mi->blk[j].end, end);
- }
- if (start < end)
- setup_node_bootmem(nid, start, end);
- }
- }
- return 0;
- }
- #ifdef CONFIG_NUMA_EMU
- /* Numa emulation */
- static struct bootnode nodes[MAX_NUMNODES] __initdata;
- static struct bootnode physnodes[MAX_NUMNODES] __initdata;
- static int emu_nid_to_phys[MAX_NUMNODES] __cpuinitdata;
- static char *emu_cmdline __initdata;
- void __init numa_emu_cmdline(char *str)
- {
- emu_cmdline = str;
- }
- int __init find_node_by_addr(unsigned long addr)
- {
- const struct numa_meminfo *mi = &numa_meminfo;
- int i;
- for (i = 0; i < mi->nr_blks; i++) {
- /*
- * Find the real node that this emulated node appears on. For
- * the sake of simplicity, we only use a real node's starting
- * address to determine which emulated node it appears on.
- */
- if (addr >= mi->blk[i].start && addr < mi->blk[i].end)
- return mi->blk[i].nid;
- }
- return NUMA_NO_NODE;
- }
- static int __init setup_physnodes(unsigned long start, unsigned long end)
- {
- const struct numa_meminfo *mi = &numa_meminfo;
- int ret = 0;
- int i;
- memset(physnodes, 0, sizeof(physnodes));
- for (i = 0; i < mi->nr_blks; i++) {
- int nid = mi->blk[i].nid;
- if (physnodes[nid].start == physnodes[nid].end) {
- physnodes[nid].start = mi->blk[i].start;
- physnodes[nid].end = mi->blk[i].end;
- } else {
- physnodes[nid].start = min(physnodes[nid].start,
- mi->blk[i].start);
- physnodes[nid].end = max(physnodes[nid].end,
- mi->blk[i].end);
- }
- }
- /*
- * Basic sanity checking on the physical node map: there may be errors
- * if the SRAT or AMD code incorrectly reported the topology or the mem=
- * kernel parameter is used.
- */
- for (i = 0; i < MAX_NUMNODES; i++) {
- if (physnodes[i].start == physnodes[i].end)
- continue;
- if (physnodes[i].start > end) {
- physnodes[i].end = physnodes[i].start;
- continue;
- }
- if (physnodes[i].end < start) {
- physnodes[i].start = physnodes[i].end;
- continue;
- }
- if (physnodes[i].start < start)
- physnodes[i].start = start;
- if (physnodes[i].end > end)
- physnodes[i].end = end;
- ret++;
- }
- /*
- * If no physical topology was detected, a single node is faked to cover
- * the entire address space.
- */
- if (!ret) {
- physnodes[ret].start = start;
- physnodes[ret].end = end;
- ret = 1;
- }
- return ret;
- }
- static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
- {
- int i;
- BUG_ON(acpi && amd);
- #ifdef CONFIG_ACPI_NUMA
- if (acpi)
- acpi_fake_nodes(nodes, nr_nodes);
- #endif
- #ifdef CONFIG_AMD_NUMA
- if (amd)
- amd_fake_nodes(nodes, nr_nodes);
- #endif
- if (!acpi && !amd)
- for (i = 0; i < nr_cpu_ids; i++)
- numa_set_node(i, 0);
- }
- /*
- * Setups up nid to range from addr to addr + size. If the end
- * boundary is greater than max_addr, then max_addr is used instead.
- * The return value is 0 if there is additional memory left for
- * allocation past addr and -1 otherwise. addr is adjusted to be at
- * the end of the node.
- */
- static int __init setup_node_range(int nid, int physnid,
- u64 *addr, u64 size, u64 max_addr)
- {
- int ret = 0;
- nodes[nid].start = *addr;
- *addr += size;
- if (*addr >= max_addr) {
- *addr = max_addr;
- ret = -1;
- }
- nodes[nid].end = *addr;
- node_set(nid, node_possible_map);
- if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
- emu_nid_to_phys[nid] = physnid;
- printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
- nodes[nid].start, nodes[nid].end,
- (nodes[nid].end - nodes[nid].start) >> 20);
- return ret;
- }
- /*
- * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
- * to max_addr. The return value is the number of nodes allocated.
- */
- static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
- {
- nodemask_t physnode_mask = NODE_MASK_NONE;
- u64 size;
- int big;
- int ret = 0;
- int i;
- if (nr_nodes <= 0)
- return -1;
- if (nr_nodes > MAX_NUMNODES) {
- pr_info("numa=fake=%d too large, reducing to %d\n",
- nr_nodes, MAX_NUMNODES);
- nr_nodes = MAX_NUMNODES;
- }
- size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
- /*
- * Calculate the number of big nodes that can be allocated as a result
- * of consolidating the remainder.
- */
- big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
- FAKE_NODE_MIN_SIZE;
- size &= FAKE_NODE_MIN_HASH_MASK;
- if (!size) {
- pr_err("Not enough memory for each node. "
- "NUMA emulation disabled.\n");
- return -1;
- }
- for (i = 0; i < MAX_NUMNODES; i++)
- if (physnodes[i].start != physnodes[i].end)
- node_set(i, physnode_mask);
- /*
- * Continue to fill physical nodes with fake nodes until there is no
- * memory left on any of them.
- */
- while (nodes_weight(physnode_mask)) {
- for_each_node_mask(i, physnode_mask) {
- u64 end = physnodes[i].start + size;
- u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
- if (ret < big)
- end += FAKE_NODE_MIN_SIZE;
- /*
- * Continue to add memory to this fake node if its
- * non-reserved memory is less than the per-node size.
- */
- while (end - physnodes[i].start -
- memblock_x86_hole_size(physnodes[i].start, end) < size) {
- end += FAKE_NODE_MIN_SIZE;
- if (end > physnodes[i].end) {
- end = physnodes[i].end;
- break;
- }
- }
- /*
- * If there won't be at least FAKE_NODE_MIN_SIZE of
- * non-reserved memory in ZONE_DMA32 for the next node,
- * this one must extend to the boundary.
- */
- if (end < dma32_end && dma32_end - end -
- memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
- end = dma32_end;
- /*
- * If there won't be enough non-reserved memory for the
- * next node, this one must extend to the end of the
- * physical node.
- */
- if (physnodes[i].end - end -
- memblock_x86_hole_size(end, physnodes[i].end) < size)
- end = physnodes[i].end;
- /*
- * Avoid allocating more nodes than requested, which can
- * happen as a result of rounding down each node's size
- * to FAKE_NODE_MIN_SIZE.
- */
- if (nodes_weight(physnode_mask) + ret >= nr_nodes)
- end = physnodes[i].end;
- if (setup_node_range(ret++, i, &physnodes[i].start,
- end - physnodes[i].start,
- physnodes[i].end) < 0)
- node_clear(i, physnode_mask);
- }
- }
- return ret;
- }
- /*
- * Returns the end address of a node so that there is at least `size' amount of
- * non-reserved memory or `max_addr' is reached.
- */
- static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
- {
- u64 end = start + size;
- while (end - start - memblock_x86_hole_size(start, end) < size) {
- end += FAKE_NODE_MIN_SIZE;
- if (end > max_addr) {
- end = max_addr;
- break;
- }
- }
- return end;
- }
- /*
- * Sets up fake nodes of `size' interleaved over physical nodes ranging from
- * `addr' to `max_addr'. The return value is the number of nodes allocated.
- */
- static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
- {
- nodemask_t physnode_mask = NODE_MASK_NONE;
- u64 min_size;
- int ret = 0;
- int i;
- if (!size)
- return -1;
- /*
- * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
- * increased accordingly if the requested size is too small. This
- * creates a uniform distribution of node sizes across the entire
- * machine (but not necessarily over physical nodes).
- */
- min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
- MAX_NUMNODES;
- min_size = max(min_size, FAKE_NODE_MIN_SIZE);
- if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
- min_size = (min_size + FAKE_NODE_MIN_SIZE) &
- FAKE_NODE_MIN_HASH_MASK;
- if (size < min_size) {
- pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
- size >> 20, min_size >> 20);
- size = min_size;
- }
- size &= FAKE_NODE_MIN_HASH_MASK;
- for (i = 0; i < MAX_NUMNODES; i++)
- if (physnodes[i].start != physnodes[i].end)
- node_set(i, physnode_mask);
- /*
- * Fill physical nodes with fake nodes of size until there is no memory
- * left on any of them.
- */
- while (nodes_weight(physnode_mask)) {
- for_each_node_mask(i, physnode_mask) {
- u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
- u64 end;
- end = find_end_of_node(physnodes[i].start,
- physnodes[i].end, size);
- /*
- * If there won't be at least FAKE_NODE_MIN_SIZE of
- * non-reserved memory in ZONE_DMA32 for the next node,
- * this one must extend to the boundary.
- */
- if (end < dma32_end && dma32_end - end -
- memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
- end = dma32_end;
- /*
- * If there won't be enough non-reserved memory for the
- * next node, this one must extend to the end of the
- * physical node.
- */
- if (physnodes[i].end - end -
- memblock_x86_hole_size(end, physnodes[i].end) < size)
- end = physnodes[i].end;
- /*
- * Setup the fake node that will be allocated as bootmem
- * later. If setup_node_range() returns non-zero, there
- * is no more memory available on this physical node.
- */
- if (setup_node_range(ret++, i, &physnodes[i].start,
- end - physnodes[i].start,
- physnodes[i].end) < 0)
- node_clear(i, physnode_mask);
- }
- }
- return ret;
- }
- /*
- * Sets up the system RAM area from start_pfn to last_pfn according to the
- * numa=fake command-line option.
- */
- static int __init numa_emulation(int acpi, int amd)
- {
- static struct numa_meminfo ei __initdata;
- const u64 max_addr = max_pfn << PAGE_SHIFT;
- int num_nodes;
- int i;
- for (i = 0; i < MAX_NUMNODES; i++)
- emu_nid_to_phys[i] = NUMA_NO_NODE;
- /*
- * If the numa=fake command-line contains a 'M' or 'G', it represents
- * the fixed node size. Otherwise, if it is just a single number N,
- * split the system RAM into N fake nodes.
- */
- if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
- u64 size;
- size = memparse(emu_cmdline, &emu_cmdline);
- num_nodes = split_nodes_size_interleave(0, max_addr, size);
- } else {
- unsigned long n;
- n = simple_strtoul(emu_cmdline, NULL, 0);
- num_nodes = split_nodes_interleave(0, max_addr, n);
- }
- if (num_nodes < 0)
- return num_nodes;
- /* make sure all emulated nodes are mapped to a physical node */
- for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
- if (emu_nid_to_phys[i] == NUMA_NO_NODE)
- emu_nid_to_phys[i] = 0;
- ei.nr_blks = num_nodes;
- for (i = 0; i < ei.nr_blks; i++) {
- ei.blk[i].start = nodes[i].start;
- ei.blk[i].end = nodes[i].end;
- ei.blk[i].nid = i;
- }
- memnode_shift = compute_hash_shift(&ei);
- if (memnode_shift < 0) {
- memnode_shift = 0;
- printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
- "disabled.\n");
- return -1;
- }
- /*
- * We need to vacate all active ranges that may have been registered for
- * the e820 memory map.
- */
- remove_all_active_ranges();
- for_each_node_mask(i, node_possible_map)
- memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
- nodes[i].end >> PAGE_SHIFT);
- init_memory_mapping_high();
- for_each_node_mask(i, node_possible_map)
- setup_node_bootmem(i, nodes[i].start, nodes[i].end);
- fake_physnodes(acpi, amd, num_nodes);
- numa_init_array();
- numa_emu_dist = true;
- return 0;
- }
- #endif /* CONFIG_NUMA_EMU */
- static int dummy_numa_init(void)
- {
- printk(KERN_INFO "%s\n",
- numa_off ? "NUMA turned off" : "No NUMA configuration found");
- printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
- 0LU, max_pfn << PAGE_SHIFT);
- node_set(0, numa_nodes_parsed);
- numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT);
- return 0;
- }
- void __init initmem_init(void)
- {
- int (*numa_init[])(void) = { [2] = dummy_numa_init };
- int i, j;
- if (!numa_off) {
- #ifdef CONFIG_ACPI_NUMA
- numa_init[0] = x86_acpi_numa_init;
- #endif
- #ifdef CONFIG_AMD_NUMA
- numa_init[1] = amd_numa_init;
- #endif
- }
- for (i = 0; i < ARRAY_SIZE(numa_init); i++) {
- if (!numa_init[i])
- continue;
- for (j = 0; j < MAX_LOCAL_APIC; j++)
- set_apicid_to_node(j, NUMA_NO_NODE);
- nodes_clear(numa_nodes_parsed);
- nodes_clear(node_possible_map);
- nodes_clear(node_online_map);
- memset(&numa_meminfo, 0, sizeof(numa_meminfo));
- remove_all_active_ranges();
- numa_reset_distance();
- if (numa_init[i]() < 0)
- continue;
- if (numa_cleanup_meminfo(&numa_meminfo) < 0)
- continue;
- #ifdef CONFIG_NUMA_EMU
- setup_physnodes(0, max_pfn << PAGE_SHIFT);
- if (emu_cmdline && !numa_emulation(i == 0, i == 1))
- return;
- /* not emulating, build identity mapping for numa_add_cpu() */
- for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
- emu_nid_to_phys[j] = j;
- nodes_clear(node_possible_map);
- nodes_clear(node_online_map);
- #endif
- if (numa_register_memblks(&numa_meminfo) < 0)
- continue;
- for (j = 0; j < nr_cpu_ids; j++) {
- int nid = early_cpu_to_node(j);
- if (nid == NUMA_NO_NODE)
- continue;
- if (!node_online(nid))
- numa_clear_node(j);
- }
- numa_init_array();
- return;
- }
- BUG();
- }
- unsigned long __init numa_free_all_bootmem(void)
- {
- unsigned long pages = 0;
- int i;
- for_each_online_node(i)
- pages += free_all_bootmem_node(NODE_DATA(i));
- pages += free_all_memory_core_early(MAX_NUMNODES);
- return pages;
- }
- int __cpuinit numa_cpu_node(int cpu)
- {
- int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
- if (apicid != BAD_APICID)
- return __apicid_to_node[apicid];
- return NUMA_NO_NODE;
- }
- /*
- * UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use
- * of 64bit specific data structures. The distinction is artificial and
- * should be removed. numa_{add|remove}_cpu() are implemented in numa.c
- * for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when
- * enabled.
- *
- * NUMA emulation is planned to be made generic and the following and other
- * related code should be moved to numa.c.
- */
- #ifdef CONFIG_NUMA_EMU
- # ifndef CONFIG_DEBUG_PER_CPU_MAPS
- void __cpuinit numa_add_cpu(int cpu)
- {
- int physnid, nid;
- nid = numa_cpu_node(cpu);
- if (nid == NUMA_NO_NODE)
- nid = early_cpu_to_node(cpu);
- BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
- physnid = emu_nid_to_phys[nid];
- /*
- * Map the cpu to each emulated node that is allocated on the physical
- * node of the cpu's apic id.
- */
- for_each_online_node(nid)
- if (emu_nid_to_phys[nid] == physnid)
- cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
- }
- void __cpuinit numa_remove_cpu(int cpu)
- {
- int i;
- for_each_online_node(i)
- cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
- }
- # else /* !CONFIG_DEBUG_PER_CPU_MAPS */
- static void __cpuinit numa_set_cpumask(int cpu, int enable)
- {
- struct cpumask *mask;
- int nid, physnid, i;
- nid = early_cpu_to_node(cpu);
- if (nid == NUMA_NO_NODE) {
- /* early_cpu_to_node() already emits a warning and trace */
- return;
- }
- physnid = emu_nid_to_phys[nid];
- for_each_online_node(i) {
- if (emu_nid_to_phys[nid] != physnid)
- continue;
- mask = debug_cpumask_set_cpu(cpu, enable);
- if (!mask)
- return;
- if (enable)
- cpumask_set_cpu(cpu, mask);
- else
- cpumask_clear_cpu(cpu, mask);
- }
- }
- void __cpuinit numa_add_cpu(int cpu)
- {
- numa_set_cpumask(cpu, 1);
- }
- void __cpuinit numa_remove_cpu(int cpu)
- {
- numa_set_cpumask(cpu, 0);
- }
- # endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
- #endif /* CONFIG_NUMA_EMU */
|