mmu.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  79. #define PT64_LEVEL_BITS 9
  80. #define PT64_LEVEL_SHIFT(level) \
  81. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  82. #define PT64_LEVEL_MASK(level) \
  83. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  84. #define PT64_INDEX(address, level)\
  85. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  86. #define PT32_LEVEL_BITS 10
  87. #define PT32_LEVEL_SHIFT(level) \
  88. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  89. #define PT32_LEVEL_MASK(level) \
  90. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  91. #define PT32_LVL_OFFSET_MASK(level) \
  92. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT32_LEVEL_BITS))) - 1))
  94. #define PT32_INDEX(address, level)\
  95. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  96. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  97. #define PT64_DIR_BASE_ADDR_MASK \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  99. #define PT64_LVL_ADDR_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT64_LVL_OFFSET_MASK(level) \
  103. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  104. * PT64_LEVEL_BITS))) - 1))
  105. #define PT32_BASE_ADDR_MASK PAGE_MASK
  106. #define PT32_DIR_BASE_ADDR_MASK \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  108. #define PT32_LVL_ADDR_MASK(level) \
  109. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  110. * PT32_LEVEL_BITS))) - 1))
  111. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  112. | PT64_NX_MASK)
  113. #define RMAP_EXT 4
  114. #define ACC_EXEC_MASK 1
  115. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  116. #define ACC_USER_MASK PT_USER_MASK
  117. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  118. #include <trace/events/kvm.h>
  119. #define CREATE_TRACE_POINTS
  120. #include "mmutrace.h"
  121. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  122. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  123. struct kvm_rmap_desc {
  124. u64 *sptes[RMAP_EXT];
  125. struct kvm_rmap_desc *more;
  126. };
  127. struct kvm_shadow_walk_iterator {
  128. u64 addr;
  129. hpa_t shadow_addr;
  130. int level;
  131. u64 *sptep;
  132. unsigned index;
  133. };
  134. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  135. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  136. shadow_walk_okay(&(_walker)); \
  137. shadow_walk_next(&(_walker)))
  138. typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
  139. static struct kmem_cache *pte_chain_cache;
  140. static struct kmem_cache *rmap_desc_cache;
  141. static struct kmem_cache *mmu_page_header_cache;
  142. static u64 __read_mostly shadow_trap_nonpresent_pte;
  143. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  144. static u64 __read_mostly shadow_base_present_pte;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static inline u64 rsvd_bits(int s, int e)
  151. {
  152. return ((1ULL << (e - s + 1)) - 1) << s;
  153. }
  154. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  155. {
  156. shadow_trap_nonpresent_pte = trap_pte;
  157. shadow_notrap_nonpresent_pte = notrap_pte;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  160. void kvm_mmu_set_base_ptes(u64 base_pte)
  161. {
  162. shadow_base_present_pte = base_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  165. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  166. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  167. {
  168. shadow_user_mask = user_mask;
  169. shadow_accessed_mask = accessed_mask;
  170. shadow_dirty_mask = dirty_mask;
  171. shadow_nx_mask = nx_mask;
  172. shadow_x_mask = x_mask;
  173. }
  174. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  175. static bool is_write_protection(struct kvm_vcpu *vcpu)
  176. {
  177. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  178. }
  179. static int is_cpuid_PSE36(void)
  180. {
  181. return 1;
  182. }
  183. static int is_nx(struct kvm_vcpu *vcpu)
  184. {
  185. return vcpu->arch.efer & EFER_NX;
  186. }
  187. static int is_shadow_present_pte(u64 pte)
  188. {
  189. return pte != shadow_trap_nonpresent_pte
  190. && pte != shadow_notrap_nonpresent_pte;
  191. }
  192. static int is_large_pte(u64 pte)
  193. {
  194. return pte & PT_PAGE_SIZE_MASK;
  195. }
  196. static int is_writable_pte(unsigned long pte)
  197. {
  198. return pte & PT_WRITABLE_MASK;
  199. }
  200. static int is_dirty_gpte(unsigned long pte)
  201. {
  202. return pte & PT_DIRTY_MASK;
  203. }
  204. static int is_rmap_spte(u64 pte)
  205. {
  206. return is_shadow_present_pte(pte);
  207. }
  208. static int is_last_spte(u64 pte, int level)
  209. {
  210. if (level == PT_PAGE_TABLE_LEVEL)
  211. return 1;
  212. if (is_large_pte(pte))
  213. return 1;
  214. return 0;
  215. }
  216. static pfn_t spte_to_pfn(u64 pte)
  217. {
  218. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  219. }
  220. static gfn_t pse36_gfn_delta(u32 gpte)
  221. {
  222. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  223. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  224. }
  225. static void __set_spte(u64 *sptep, u64 spte)
  226. {
  227. #ifdef CONFIG_X86_64
  228. set_64bit((unsigned long *)sptep, spte);
  229. #else
  230. set_64bit((unsigned long long *)sptep, spte);
  231. #endif
  232. }
  233. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  234. struct kmem_cache *base_cache, int min)
  235. {
  236. void *obj;
  237. if (cache->nobjs >= min)
  238. return 0;
  239. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  240. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  241. if (!obj)
  242. return -ENOMEM;
  243. cache->objects[cache->nobjs++] = obj;
  244. }
  245. return 0;
  246. }
  247. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  248. struct kmem_cache *cache)
  249. {
  250. while (mc->nobjs)
  251. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  252. }
  253. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  254. int min)
  255. {
  256. struct page *page;
  257. if (cache->nobjs >= min)
  258. return 0;
  259. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  260. page = alloc_page(GFP_KERNEL);
  261. if (!page)
  262. return -ENOMEM;
  263. cache->objects[cache->nobjs++] = page_address(page);
  264. }
  265. return 0;
  266. }
  267. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  268. {
  269. while (mc->nobjs)
  270. free_page((unsigned long)mc->objects[--mc->nobjs]);
  271. }
  272. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  273. {
  274. int r;
  275. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  276. pte_chain_cache, 4);
  277. if (r)
  278. goto out;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  280. rmap_desc_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  284. if (r)
  285. goto out;
  286. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  287. mmu_page_header_cache, 4);
  288. out:
  289. return r;
  290. }
  291. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  292. {
  293. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  294. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  295. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  296. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  297. mmu_page_header_cache);
  298. }
  299. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  300. size_t size)
  301. {
  302. void *p;
  303. BUG_ON(!mc->nobjs);
  304. p = mc->objects[--mc->nobjs];
  305. return p;
  306. }
  307. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  308. {
  309. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  310. sizeof(struct kvm_pte_chain));
  311. }
  312. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  313. {
  314. kmem_cache_free(pte_chain_cache, pc);
  315. }
  316. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  317. {
  318. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  319. sizeof(struct kvm_rmap_desc));
  320. }
  321. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  322. {
  323. kmem_cache_free(rmap_desc_cache, rd);
  324. }
  325. /*
  326. * Return the pointer to the largepage write count for a given
  327. * gfn, handling slots that are not large page aligned.
  328. */
  329. static int *slot_largepage_idx(gfn_t gfn,
  330. struct kvm_memory_slot *slot,
  331. int level)
  332. {
  333. unsigned long idx;
  334. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  335. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  336. return &slot->lpage_info[level - 2][idx].write_count;
  337. }
  338. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  339. {
  340. struct kvm_memory_slot *slot;
  341. int *write_count;
  342. int i;
  343. gfn = unalias_gfn(kvm, gfn);
  344. slot = gfn_to_memslot_unaliased(kvm, gfn);
  345. for (i = PT_DIRECTORY_LEVEL;
  346. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  347. write_count = slot_largepage_idx(gfn, slot, i);
  348. *write_count += 1;
  349. }
  350. }
  351. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  352. {
  353. struct kvm_memory_slot *slot;
  354. int *write_count;
  355. int i;
  356. gfn = unalias_gfn(kvm, gfn);
  357. slot = gfn_to_memslot_unaliased(kvm, gfn);
  358. for (i = PT_DIRECTORY_LEVEL;
  359. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  360. write_count = slot_largepage_idx(gfn, slot, i);
  361. *write_count -= 1;
  362. WARN_ON(*write_count < 0);
  363. }
  364. }
  365. static int has_wrprotected_page(struct kvm *kvm,
  366. gfn_t gfn,
  367. int level)
  368. {
  369. struct kvm_memory_slot *slot;
  370. int *largepage_idx;
  371. gfn = unalias_gfn(kvm, gfn);
  372. slot = gfn_to_memslot_unaliased(kvm, gfn);
  373. if (slot) {
  374. largepage_idx = slot_largepage_idx(gfn, slot, level);
  375. return *largepage_idx;
  376. }
  377. return 1;
  378. }
  379. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  380. {
  381. unsigned long page_size;
  382. int i, ret = 0;
  383. page_size = kvm_host_page_size(kvm, gfn);
  384. for (i = PT_PAGE_TABLE_LEVEL;
  385. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  386. if (page_size >= KVM_HPAGE_SIZE(i))
  387. ret = i;
  388. else
  389. break;
  390. }
  391. return ret;
  392. }
  393. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  394. {
  395. struct kvm_memory_slot *slot;
  396. int host_level, level, max_level;
  397. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  398. if (slot && slot->dirty_bitmap)
  399. return PT_PAGE_TABLE_LEVEL;
  400. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  401. if (host_level == PT_PAGE_TABLE_LEVEL)
  402. return host_level;
  403. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  404. kvm_x86_ops->get_lpage_level() : host_level;
  405. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  406. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  407. break;
  408. return level - 1;
  409. }
  410. /*
  411. * Take gfn and return the reverse mapping to it.
  412. * Note: gfn must be unaliased before this function get called
  413. */
  414. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  415. {
  416. struct kvm_memory_slot *slot;
  417. unsigned long idx;
  418. slot = gfn_to_memslot(kvm, gfn);
  419. if (likely(level == PT_PAGE_TABLE_LEVEL))
  420. return &slot->rmap[gfn - slot->base_gfn];
  421. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  422. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  423. return &slot->lpage_info[level - 2][idx].rmap_pde;
  424. }
  425. /*
  426. * Reverse mapping data structures:
  427. *
  428. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  429. * that points to page_address(page).
  430. *
  431. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  432. * containing more mappings.
  433. *
  434. * Returns the number of rmap entries before the spte was added or zero if
  435. * the spte was not added.
  436. *
  437. */
  438. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  439. {
  440. struct kvm_mmu_page *sp;
  441. struct kvm_rmap_desc *desc;
  442. unsigned long *rmapp;
  443. int i, count = 0;
  444. if (!is_rmap_spte(*spte))
  445. return count;
  446. gfn = unalias_gfn(vcpu->kvm, gfn);
  447. sp = page_header(__pa(spte));
  448. sp->gfns[spte - sp->spt] = gfn;
  449. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  450. if (!*rmapp) {
  451. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  452. *rmapp = (unsigned long)spte;
  453. } else if (!(*rmapp & 1)) {
  454. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  455. desc = mmu_alloc_rmap_desc(vcpu);
  456. desc->sptes[0] = (u64 *)*rmapp;
  457. desc->sptes[1] = spte;
  458. *rmapp = (unsigned long)desc | 1;
  459. } else {
  460. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  461. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  462. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  463. desc = desc->more;
  464. count += RMAP_EXT;
  465. }
  466. if (desc->sptes[RMAP_EXT-1]) {
  467. desc->more = mmu_alloc_rmap_desc(vcpu);
  468. desc = desc->more;
  469. }
  470. for (i = 0; desc->sptes[i]; ++i)
  471. ;
  472. desc->sptes[i] = spte;
  473. }
  474. return count;
  475. }
  476. static void rmap_desc_remove_entry(unsigned long *rmapp,
  477. struct kvm_rmap_desc *desc,
  478. int i,
  479. struct kvm_rmap_desc *prev_desc)
  480. {
  481. int j;
  482. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  483. ;
  484. desc->sptes[i] = desc->sptes[j];
  485. desc->sptes[j] = NULL;
  486. if (j != 0)
  487. return;
  488. if (!prev_desc && !desc->more)
  489. *rmapp = (unsigned long)desc->sptes[0];
  490. else
  491. if (prev_desc)
  492. prev_desc->more = desc->more;
  493. else
  494. *rmapp = (unsigned long)desc->more | 1;
  495. mmu_free_rmap_desc(desc);
  496. }
  497. static void rmap_remove(struct kvm *kvm, u64 *spte)
  498. {
  499. struct kvm_rmap_desc *desc;
  500. struct kvm_rmap_desc *prev_desc;
  501. struct kvm_mmu_page *sp;
  502. pfn_t pfn;
  503. unsigned long *rmapp;
  504. int i;
  505. if (!is_rmap_spte(*spte))
  506. return;
  507. sp = page_header(__pa(spte));
  508. pfn = spte_to_pfn(*spte);
  509. if (*spte & shadow_accessed_mask)
  510. kvm_set_pfn_accessed(pfn);
  511. if (is_writable_pte(*spte))
  512. kvm_set_pfn_dirty(pfn);
  513. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  514. if (!*rmapp) {
  515. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  516. BUG();
  517. } else if (!(*rmapp & 1)) {
  518. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  519. if ((u64 *)*rmapp != spte) {
  520. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  521. spte, *spte);
  522. BUG();
  523. }
  524. *rmapp = 0;
  525. } else {
  526. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  527. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  528. prev_desc = NULL;
  529. while (desc) {
  530. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  531. if (desc->sptes[i] == spte) {
  532. rmap_desc_remove_entry(rmapp,
  533. desc, i,
  534. prev_desc);
  535. return;
  536. }
  537. prev_desc = desc;
  538. desc = desc->more;
  539. }
  540. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  541. BUG();
  542. }
  543. }
  544. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  545. {
  546. struct kvm_rmap_desc *desc;
  547. u64 *prev_spte;
  548. int i;
  549. if (!*rmapp)
  550. return NULL;
  551. else if (!(*rmapp & 1)) {
  552. if (!spte)
  553. return (u64 *)*rmapp;
  554. return NULL;
  555. }
  556. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  557. prev_spte = NULL;
  558. while (desc) {
  559. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  560. if (prev_spte == spte)
  561. return desc->sptes[i];
  562. prev_spte = desc->sptes[i];
  563. }
  564. desc = desc->more;
  565. }
  566. return NULL;
  567. }
  568. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  569. {
  570. unsigned long *rmapp;
  571. u64 *spte;
  572. int i, write_protected = 0;
  573. gfn = unalias_gfn(kvm, gfn);
  574. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  575. spte = rmap_next(kvm, rmapp, NULL);
  576. while (spte) {
  577. BUG_ON(!spte);
  578. BUG_ON(!(*spte & PT_PRESENT_MASK));
  579. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  580. if (is_writable_pte(*spte)) {
  581. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  582. write_protected = 1;
  583. }
  584. spte = rmap_next(kvm, rmapp, spte);
  585. }
  586. if (write_protected) {
  587. pfn_t pfn;
  588. spte = rmap_next(kvm, rmapp, NULL);
  589. pfn = spte_to_pfn(*spte);
  590. kvm_set_pfn_dirty(pfn);
  591. }
  592. /* check for huge page mappings */
  593. for (i = PT_DIRECTORY_LEVEL;
  594. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  595. rmapp = gfn_to_rmap(kvm, gfn, i);
  596. spte = rmap_next(kvm, rmapp, NULL);
  597. while (spte) {
  598. BUG_ON(!spte);
  599. BUG_ON(!(*spte & PT_PRESENT_MASK));
  600. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  601. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  602. if (is_writable_pte(*spte)) {
  603. rmap_remove(kvm, spte);
  604. --kvm->stat.lpages;
  605. __set_spte(spte, shadow_trap_nonpresent_pte);
  606. spte = NULL;
  607. write_protected = 1;
  608. }
  609. spte = rmap_next(kvm, rmapp, spte);
  610. }
  611. }
  612. return write_protected;
  613. }
  614. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  615. unsigned long data)
  616. {
  617. u64 *spte;
  618. int need_tlb_flush = 0;
  619. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  620. BUG_ON(!(*spte & PT_PRESENT_MASK));
  621. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  622. rmap_remove(kvm, spte);
  623. __set_spte(spte, shadow_trap_nonpresent_pte);
  624. need_tlb_flush = 1;
  625. }
  626. return need_tlb_flush;
  627. }
  628. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  629. unsigned long data)
  630. {
  631. int need_flush = 0;
  632. u64 *spte, new_spte;
  633. pte_t *ptep = (pte_t *)data;
  634. pfn_t new_pfn;
  635. WARN_ON(pte_huge(*ptep));
  636. new_pfn = pte_pfn(*ptep);
  637. spte = rmap_next(kvm, rmapp, NULL);
  638. while (spte) {
  639. BUG_ON(!is_shadow_present_pte(*spte));
  640. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  641. need_flush = 1;
  642. if (pte_write(*ptep)) {
  643. rmap_remove(kvm, spte);
  644. __set_spte(spte, shadow_trap_nonpresent_pte);
  645. spte = rmap_next(kvm, rmapp, NULL);
  646. } else {
  647. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  648. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  649. new_spte &= ~PT_WRITABLE_MASK;
  650. new_spte &= ~SPTE_HOST_WRITEABLE;
  651. if (is_writable_pte(*spte))
  652. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  653. __set_spte(spte, new_spte);
  654. spte = rmap_next(kvm, rmapp, spte);
  655. }
  656. }
  657. if (need_flush)
  658. kvm_flush_remote_tlbs(kvm);
  659. return 0;
  660. }
  661. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  662. unsigned long data,
  663. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  664. unsigned long data))
  665. {
  666. int i, j;
  667. int ret;
  668. int retval = 0;
  669. struct kvm_memslots *slots;
  670. slots = kvm_memslots(kvm);
  671. for (i = 0; i < slots->nmemslots; i++) {
  672. struct kvm_memory_slot *memslot = &slots->memslots[i];
  673. unsigned long start = memslot->userspace_addr;
  674. unsigned long end;
  675. end = start + (memslot->npages << PAGE_SHIFT);
  676. if (hva >= start && hva < end) {
  677. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  678. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  679. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  680. int idx = gfn_offset;
  681. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  682. ret |= handler(kvm,
  683. &memslot->lpage_info[j][idx].rmap_pde,
  684. data);
  685. }
  686. trace_kvm_age_page(hva, memslot, ret);
  687. retval |= ret;
  688. }
  689. }
  690. return retval;
  691. }
  692. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  693. {
  694. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  695. }
  696. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  697. {
  698. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  699. }
  700. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  701. unsigned long data)
  702. {
  703. u64 *spte;
  704. int young = 0;
  705. /*
  706. * Emulate the accessed bit for EPT, by checking if this page has
  707. * an EPT mapping, and clearing it if it does. On the next access,
  708. * a new EPT mapping will be established.
  709. * This has some overhead, but not as much as the cost of swapping
  710. * out actively used pages or breaking up actively used hugepages.
  711. */
  712. if (!shadow_accessed_mask)
  713. return kvm_unmap_rmapp(kvm, rmapp, data);
  714. spte = rmap_next(kvm, rmapp, NULL);
  715. while (spte) {
  716. int _young;
  717. u64 _spte = *spte;
  718. BUG_ON(!(_spte & PT_PRESENT_MASK));
  719. _young = _spte & PT_ACCESSED_MASK;
  720. if (_young) {
  721. young = 1;
  722. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  723. }
  724. spte = rmap_next(kvm, rmapp, spte);
  725. }
  726. return young;
  727. }
  728. #define RMAP_RECYCLE_THRESHOLD 1000
  729. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  730. {
  731. unsigned long *rmapp;
  732. struct kvm_mmu_page *sp;
  733. sp = page_header(__pa(spte));
  734. gfn = unalias_gfn(vcpu->kvm, gfn);
  735. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  736. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  737. kvm_flush_remote_tlbs(vcpu->kvm);
  738. }
  739. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  740. {
  741. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  742. }
  743. #ifdef MMU_DEBUG
  744. static int is_empty_shadow_page(u64 *spt)
  745. {
  746. u64 *pos;
  747. u64 *end;
  748. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  749. if (is_shadow_present_pte(*pos)) {
  750. printk(KERN_ERR "%s: %p %llx\n", __func__,
  751. pos, *pos);
  752. return 0;
  753. }
  754. return 1;
  755. }
  756. #endif
  757. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  758. {
  759. ASSERT(is_empty_shadow_page(sp->spt));
  760. list_del(&sp->link);
  761. __free_page(virt_to_page(sp->spt));
  762. __free_page(virt_to_page(sp->gfns));
  763. kmem_cache_free(mmu_page_header_cache, sp);
  764. ++kvm->arch.n_free_mmu_pages;
  765. }
  766. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  767. {
  768. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  769. }
  770. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  771. u64 *parent_pte)
  772. {
  773. struct kvm_mmu_page *sp;
  774. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  775. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  776. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  777. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  778. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  779. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  780. sp->multimapped = 0;
  781. sp->parent_pte = parent_pte;
  782. --vcpu->kvm->arch.n_free_mmu_pages;
  783. return sp;
  784. }
  785. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  786. struct kvm_mmu_page *sp, u64 *parent_pte)
  787. {
  788. struct kvm_pte_chain *pte_chain;
  789. struct hlist_node *node;
  790. int i;
  791. if (!parent_pte)
  792. return;
  793. if (!sp->multimapped) {
  794. u64 *old = sp->parent_pte;
  795. if (!old) {
  796. sp->parent_pte = parent_pte;
  797. return;
  798. }
  799. sp->multimapped = 1;
  800. pte_chain = mmu_alloc_pte_chain(vcpu);
  801. INIT_HLIST_HEAD(&sp->parent_ptes);
  802. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  803. pte_chain->parent_ptes[0] = old;
  804. }
  805. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  806. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  807. continue;
  808. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  809. if (!pte_chain->parent_ptes[i]) {
  810. pte_chain->parent_ptes[i] = parent_pte;
  811. return;
  812. }
  813. }
  814. pte_chain = mmu_alloc_pte_chain(vcpu);
  815. BUG_ON(!pte_chain);
  816. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  817. pte_chain->parent_ptes[0] = parent_pte;
  818. }
  819. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  820. u64 *parent_pte)
  821. {
  822. struct kvm_pte_chain *pte_chain;
  823. struct hlist_node *node;
  824. int i;
  825. if (!sp->multimapped) {
  826. BUG_ON(sp->parent_pte != parent_pte);
  827. sp->parent_pte = NULL;
  828. return;
  829. }
  830. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  831. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  832. if (!pte_chain->parent_ptes[i])
  833. break;
  834. if (pte_chain->parent_ptes[i] != parent_pte)
  835. continue;
  836. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  837. && pte_chain->parent_ptes[i + 1]) {
  838. pte_chain->parent_ptes[i]
  839. = pte_chain->parent_ptes[i + 1];
  840. ++i;
  841. }
  842. pte_chain->parent_ptes[i] = NULL;
  843. if (i == 0) {
  844. hlist_del(&pte_chain->link);
  845. mmu_free_pte_chain(pte_chain);
  846. if (hlist_empty(&sp->parent_ptes)) {
  847. sp->multimapped = 0;
  848. sp->parent_pte = NULL;
  849. }
  850. }
  851. return;
  852. }
  853. BUG();
  854. }
  855. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  856. {
  857. struct kvm_pte_chain *pte_chain;
  858. struct hlist_node *node;
  859. struct kvm_mmu_page *parent_sp;
  860. int i;
  861. if (!sp->multimapped && sp->parent_pte) {
  862. parent_sp = page_header(__pa(sp->parent_pte));
  863. fn(parent_sp);
  864. mmu_parent_walk(parent_sp, fn);
  865. return;
  866. }
  867. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  868. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  869. if (!pte_chain->parent_ptes[i])
  870. break;
  871. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  872. fn(parent_sp);
  873. mmu_parent_walk(parent_sp, fn);
  874. }
  875. }
  876. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  877. {
  878. unsigned int index;
  879. struct kvm_mmu_page *sp = page_header(__pa(spte));
  880. index = spte - sp->spt;
  881. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  882. sp->unsync_children++;
  883. WARN_ON(!sp->unsync_children);
  884. }
  885. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  886. {
  887. struct kvm_pte_chain *pte_chain;
  888. struct hlist_node *node;
  889. int i;
  890. if (!sp->parent_pte)
  891. return;
  892. if (!sp->multimapped) {
  893. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  894. return;
  895. }
  896. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  897. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  898. if (!pte_chain->parent_ptes[i])
  899. break;
  900. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  901. }
  902. }
  903. static int unsync_walk_fn(struct kvm_mmu_page *sp)
  904. {
  905. kvm_mmu_update_parents_unsync(sp);
  906. return 1;
  907. }
  908. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  909. {
  910. mmu_parent_walk(sp, unsync_walk_fn);
  911. kvm_mmu_update_parents_unsync(sp);
  912. }
  913. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  914. struct kvm_mmu_page *sp)
  915. {
  916. int i;
  917. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  918. sp->spt[i] = shadow_trap_nonpresent_pte;
  919. }
  920. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  921. struct kvm_mmu_page *sp)
  922. {
  923. return 1;
  924. }
  925. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  926. {
  927. }
  928. #define KVM_PAGE_ARRAY_NR 16
  929. struct kvm_mmu_pages {
  930. struct mmu_page_and_offset {
  931. struct kvm_mmu_page *sp;
  932. unsigned int idx;
  933. } page[KVM_PAGE_ARRAY_NR];
  934. unsigned int nr;
  935. };
  936. #define for_each_unsync_children(bitmap, idx) \
  937. for (idx = find_first_bit(bitmap, 512); \
  938. idx < 512; \
  939. idx = find_next_bit(bitmap, 512, idx+1))
  940. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  941. int idx)
  942. {
  943. int i;
  944. if (sp->unsync)
  945. for (i=0; i < pvec->nr; i++)
  946. if (pvec->page[i].sp == sp)
  947. return 0;
  948. pvec->page[pvec->nr].sp = sp;
  949. pvec->page[pvec->nr].idx = idx;
  950. pvec->nr++;
  951. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  952. }
  953. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  954. struct kvm_mmu_pages *pvec)
  955. {
  956. int i, ret, nr_unsync_leaf = 0;
  957. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  958. u64 ent = sp->spt[i];
  959. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  960. struct kvm_mmu_page *child;
  961. child = page_header(ent & PT64_BASE_ADDR_MASK);
  962. if (child->unsync_children) {
  963. if (mmu_pages_add(pvec, child, i))
  964. return -ENOSPC;
  965. ret = __mmu_unsync_walk(child, pvec);
  966. if (!ret)
  967. __clear_bit(i, sp->unsync_child_bitmap);
  968. else if (ret > 0)
  969. nr_unsync_leaf += ret;
  970. else
  971. return ret;
  972. }
  973. if (child->unsync) {
  974. nr_unsync_leaf++;
  975. if (mmu_pages_add(pvec, child, i))
  976. return -ENOSPC;
  977. }
  978. }
  979. }
  980. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  981. sp->unsync_children = 0;
  982. return nr_unsync_leaf;
  983. }
  984. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  985. struct kvm_mmu_pages *pvec)
  986. {
  987. if (!sp->unsync_children)
  988. return 0;
  989. mmu_pages_add(pvec, sp, 0);
  990. return __mmu_unsync_walk(sp, pvec);
  991. }
  992. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  993. {
  994. WARN_ON(!sp->unsync);
  995. trace_kvm_mmu_sync_page(sp);
  996. sp->unsync = 0;
  997. --kvm->stat.mmu_unsync;
  998. }
  999. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1000. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1001. bool clear_unsync)
  1002. {
  1003. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1004. kvm_mmu_zap_page(vcpu->kvm, sp);
  1005. return 1;
  1006. }
  1007. if (clear_unsync) {
  1008. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1009. kvm_flush_remote_tlbs(vcpu->kvm);
  1010. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1011. }
  1012. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1013. kvm_mmu_zap_page(vcpu->kvm, sp);
  1014. return 1;
  1015. }
  1016. kvm_mmu_flush_tlb(vcpu);
  1017. return 0;
  1018. }
  1019. static void mmu_convert_notrap(struct kvm_mmu_page *sp);
  1020. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1021. struct kvm_mmu_page *sp)
  1022. {
  1023. int ret;
  1024. ret = __kvm_sync_page(vcpu, sp, false);
  1025. if (!ret)
  1026. mmu_convert_notrap(sp);
  1027. return ret;
  1028. }
  1029. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1030. {
  1031. return __kvm_sync_page(vcpu, sp, true);
  1032. }
  1033. struct mmu_page_path {
  1034. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1035. unsigned int idx[PT64_ROOT_LEVEL-1];
  1036. };
  1037. #define for_each_sp(pvec, sp, parents, i) \
  1038. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1039. sp = pvec.page[i].sp; \
  1040. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1041. i = mmu_pages_next(&pvec, &parents, i))
  1042. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1043. struct mmu_page_path *parents,
  1044. int i)
  1045. {
  1046. int n;
  1047. for (n = i+1; n < pvec->nr; n++) {
  1048. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1049. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1050. parents->idx[0] = pvec->page[n].idx;
  1051. return n;
  1052. }
  1053. parents->parent[sp->role.level-2] = sp;
  1054. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1055. }
  1056. return n;
  1057. }
  1058. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1059. {
  1060. struct kvm_mmu_page *sp;
  1061. unsigned int level = 0;
  1062. do {
  1063. unsigned int idx = parents->idx[level];
  1064. sp = parents->parent[level];
  1065. if (!sp)
  1066. return;
  1067. --sp->unsync_children;
  1068. WARN_ON((int)sp->unsync_children < 0);
  1069. __clear_bit(idx, sp->unsync_child_bitmap);
  1070. level++;
  1071. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1072. }
  1073. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1074. struct mmu_page_path *parents,
  1075. struct kvm_mmu_pages *pvec)
  1076. {
  1077. parents->parent[parent->role.level-1] = NULL;
  1078. pvec->nr = 0;
  1079. }
  1080. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1081. struct kvm_mmu_page *parent)
  1082. {
  1083. int i;
  1084. struct kvm_mmu_page *sp;
  1085. struct mmu_page_path parents;
  1086. struct kvm_mmu_pages pages;
  1087. kvm_mmu_pages_init(parent, &parents, &pages);
  1088. while (mmu_unsync_walk(parent, &pages)) {
  1089. int protected = 0;
  1090. for_each_sp(pages, sp, parents, i)
  1091. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1092. if (protected)
  1093. kvm_flush_remote_tlbs(vcpu->kvm);
  1094. for_each_sp(pages, sp, parents, i) {
  1095. kvm_sync_page(vcpu, sp);
  1096. mmu_pages_clear_parents(&parents);
  1097. }
  1098. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1099. kvm_mmu_pages_init(parent, &parents, &pages);
  1100. }
  1101. }
  1102. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1103. gfn_t gfn,
  1104. gva_t gaddr,
  1105. unsigned level,
  1106. int direct,
  1107. unsigned access,
  1108. u64 *parent_pte)
  1109. {
  1110. union kvm_mmu_page_role role;
  1111. unsigned index;
  1112. unsigned quadrant;
  1113. struct hlist_head *bucket;
  1114. struct kvm_mmu_page *sp, *unsync_sp = NULL;
  1115. struct hlist_node *node, *tmp;
  1116. role = vcpu->arch.mmu.base_role;
  1117. role.level = level;
  1118. role.direct = direct;
  1119. if (role.direct)
  1120. role.cr4_pae = 0;
  1121. role.access = access;
  1122. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1123. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1124. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1125. role.quadrant = quadrant;
  1126. }
  1127. index = kvm_page_table_hashfn(gfn);
  1128. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1129. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1130. if (sp->gfn == gfn) {
  1131. if (sp->unsync)
  1132. unsync_sp = sp;
  1133. if (sp->role.word != role.word)
  1134. continue;
  1135. if (!direct && unsync_sp &&
  1136. kvm_sync_page_transient(vcpu, unsync_sp)) {
  1137. unsync_sp = NULL;
  1138. break;
  1139. }
  1140. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1141. if (sp->unsync_children) {
  1142. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1143. kvm_mmu_mark_parents_unsync(sp);
  1144. } else if (sp->unsync)
  1145. kvm_mmu_mark_parents_unsync(sp);
  1146. trace_kvm_mmu_get_page(sp, false);
  1147. return sp;
  1148. }
  1149. if (!direct && unsync_sp)
  1150. kvm_sync_page(vcpu, unsync_sp);
  1151. ++vcpu->kvm->stat.mmu_cache_miss;
  1152. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1153. if (!sp)
  1154. return sp;
  1155. sp->gfn = gfn;
  1156. sp->role = role;
  1157. hlist_add_head(&sp->hash_link, bucket);
  1158. if (!direct) {
  1159. if (rmap_write_protect(vcpu->kvm, gfn))
  1160. kvm_flush_remote_tlbs(vcpu->kvm);
  1161. account_shadowed(vcpu->kvm, gfn);
  1162. }
  1163. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1164. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1165. else
  1166. nonpaging_prefetch_page(vcpu, sp);
  1167. trace_kvm_mmu_get_page(sp, true);
  1168. return sp;
  1169. }
  1170. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1171. struct kvm_vcpu *vcpu, u64 addr)
  1172. {
  1173. iterator->addr = addr;
  1174. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1175. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1176. if (iterator->level == PT32E_ROOT_LEVEL) {
  1177. iterator->shadow_addr
  1178. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1179. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1180. --iterator->level;
  1181. if (!iterator->shadow_addr)
  1182. iterator->level = 0;
  1183. }
  1184. }
  1185. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1186. {
  1187. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1188. return false;
  1189. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1190. if (is_large_pte(*iterator->sptep))
  1191. return false;
  1192. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1193. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1194. return true;
  1195. }
  1196. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1197. {
  1198. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1199. --iterator->level;
  1200. }
  1201. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1202. struct kvm_mmu_page *sp)
  1203. {
  1204. unsigned i;
  1205. u64 *pt;
  1206. u64 ent;
  1207. pt = sp->spt;
  1208. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1209. ent = pt[i];
  1210. if (is_shadow_present_pte(ent)) {
  1211. if (!is_last_spte(ent, sp->role.level)) {
  1212. ent &= PT64_BASE_ADDR_MASK;
  1213. mmu_page_remove_parent_pte(page_header(ent),
  1214. &pt[i]);
  1215. } else {
  1216. if (is_large_pte(ent))
  1217. --kvm->stat.lpages;
  1218. rmap_remove(kvm, &pt[i]);
  1219. }
  1220. }
  1221. pt[i] = shadow_trap_nonpresent_pte;
  1222. }
  1223. }
  1224. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1225. {
  1226. mmu_page_remove_parent_pte(sp, parent_pte);
  1227. }
  1228. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1229. {
  1230. int i;
  1231. struct kvm_vcpu *vcpu;
  1232. kvm_for_each_vcpu(i, vcpu, kvm)
  1233. vcpu->arch.last_pte_updated = NULL;
  1234. }
  1235. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1236. {
  1237. u64 *parent_pte;
  1238. while (sp->multimapped || sp->parent_pte) {
  1239. if (!sp->multimapped)
  1240. parent_pte = sp->parent_pte;
  1241. else {
  1242. struct kvm_pte_chain *chain;
  1243. chain = container_of(sp->parent_ptes.first,
  1244. struct kvm_pte_chain, link);
  1245. parent_pte = chain->parent_ptes[0];
  1246. }
  1247. BUG_ON(!parent_pte);
  1248. kvm_mmu_put_page(sp, parent_pte);
  1249. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1250. }
  1251. }
  1252. static int mmu_zap_unsync_children(struct kvm *kvm,
  1253. struct kvm_mmu_page *parent)
  1254. {
  1255. int i, zapped = 0;
  1256. struct mmu_page_path parents;
  1257. struct kvm_mmu_pages pages;
  1258. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1259. return 0;
  1260. kvm_mmu_pages_init(parent, &parents, &pages);
  1261. while (mmu_unsync_walk(parent, &pages)) {
  1262. struct kvm_mmu_page *sp;
  1263. for_each_sp(pages, sp, parents, i) {
  1264. kvm_mmu_zap_page(kvm, sp);
  1265. mmu_pages_clear_parents(&parents);
  1266. zapped++;
  1267. }
  1268. kvm_mmu_pages_init(parent, &parents, &pages);
  1269. }
  1270. return zapped;
  1271. }
  1272. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1273. {
  1274. int ret;
  1275. trace_kvm_mmu_zap_page(sp);
  1276. ++kvm->stat.mmu_shadow_zapped;
  1277. ret = mmu_zap_unsync_children(kvm, sp);
  1278. kvm_mmu_page_unlink_children(kvm, sp);
  1279. kvm_mmu_unlink_parents(kvm, sp);
  1280. kvm_flush_remote_tlbs(kvm);
  1281. if (!sp->role.invalid && !sp->role.direct)
  1282. unaccount_shadowed(kvm, sp->gfn);
  1283. if (sp->unsync)
  1284. kvm_unlink_unsync_page(kvm, sp);
  1285. if (!sp->root_count) {
  1286. /* Count self */
  1287. ret++;
  1288. hlist_del(&sp->hash_link);
  1289. kvm_mmu_free_page(kvm, sp);
  1290. } else {
  1291. sp->role.invalid = 1;
  1292. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1293. kvm_reload_remote_mmus(kvm);
  1294. }
  1295. kvm_mmu_reset_last_pte_updated(kvm);
  1296. return ret;
  1297. }
  1298. /*
  1299. * Changing the number of mmu pages allocated to the vm
  1300. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1301. */
  1302. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1303. {
  1304. int used_pages;
  1305. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1306. used_pages = max(0, used_pages);
  1307. /*
  1308. * If we set the number of mmu pages to be smaller be than the
  1309. * number of actived pages , we must to free some mmu pages before we
  1310. * change the value
  1311. */
  1312. if (used_pages > kvm_nr_mmu_pages) {
  1313. while (used_pages > kvm_nr_mmu_pages &&
  1314. !list_empty(&kvm->arch.active_mmu_pages)) {
  1315. struct kvm_mmu_page *page;
  1316. page = container_of(kvm->arch.active_mmu_pages.prev,
  1317. struct kvm_mmu_page, link);
  1318. used_pages -= kvm_mmu_zap_page(kvm, page);
  1319. }
  1320. kvm_nr_mmu_pages = used_pages;
  1321. kvm->arch.n_free_mmu_pages = 0;
  1322. }
  1323. else
  1324. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1325. - kvm->arch.n_alloc_mmu_pages;
  1326. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1327. }
  1328. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1329. {
  1330. unsigned index;
  1331. struct hlist_head *bucket;
  1332. struct kvm_mmu_page *sp;
  1333. struct hlist_node *node, *n;
  1334. int r;
  1335. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1336. r = 0;
  1337. index = kvm_page_table_hashfn(gfn);
  1338. bucket = &kvm->arch.mmu_page_hash[index];
  1339. restart:
  1340. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1341. if (sp->gfn == gfn && !sp->role.direct) {
  1342. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1343. sp->role.word);
  1344. r = 1;
  1345. if (kvm_mmu_zap_page(kvm, sp))
  1346. goto restart;
  1347. }
  1348. return r;
  1349. }
  1350. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1351. {
  1352. unsigned index;
  1353. struct hlist_head *bucket;
  1354. struct kvm_mmu_page *sp;
  1355. struct hlist_node *node, *nn;
  1356. index = kvm_page_table_hashfn(gfn);
  1357. bucket = &kvm->arch.mmu_page_hash[index];
  1358. restart:
  1359. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1360. if (sp->gfn == gfn && !sp->role.direct
  1361. && !sp->role.invalid) {
  1362. pgprintk("%s: zap %lx %x\n",
  1363. __func__, gfn, sp->role.word);
  1364. if (kvm_mmu_zap_page(kvm, sp))
  1365. goto restart;
  1366. }
  1367. }
  1368. }
  1369. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1370. {
  1371. int slot = memslot_id(kvm, gfn);
  1372. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1373. __set_bit(slot, sp->slot_bitmap);
  1374. }
  1375. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1376. {
  1377. int i;
  1378. u64 *pt = sp->spt;
  1379. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1380. return;
  1381. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1382. if (pt[i] == shadow_notrap_nonpresent_pte)
  1383. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1384. }
  1385. }
  1386. /*
  1387. * The function is based on mtrr_type_lookup() in
  1388. * arch/x86/kernel/cpu/mtrr/generic.c
  1389. */
  1390. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1391. u64 start, u64 end)
  1392. {
  1393. int i;
  1394. u64 base, mask;
  1395. u8 prev_match, curr_match;
  1396. int num_var_ranges = KVM_NR_VAR_MTRR;
  1397. if (!mtrr_state->enabled)
  1398. return 0xFF;
  1399. /* Make end inclusive end, instead of exclusive */
  1400. end--;
  1401. /* Look in fixed ranges. Just return the type as per start */
  1402. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1403. int idx;
  1404. if (start < 0x80000) {
  1405. idx = 0;
  1406. idx += (start >> 16);
  1407. return mtrr_state->fixed_ranges[idx];
  1408. } else if (start < 0xC0000) {
  1409. idx = 1 * 8;
  1410. idx += ((start - 0x80000) >> 14);
  1411. return mtrr_state->fixed_ranges[idx];
  1412. } else if (start < 0x1000000) {
  1413. idx = 3 * 8;
  1414. idx += ((start - 0xC0000) >> 12);
  1415. return mtrr_state->fixed_ranges[idx];
  1416. }
  1417. }
  1418. /*
  1419. * Look in variable ranges
  1420. * Look of multiple ranges matching this address and pick type
  1421. * as per MTRR precedence
  1422. */
  1423. if (!(mtrr_state->enabled & 2))
  1424. return mtrr_state->def_type;
  1425. prev_match = 0xFF;
  1426. for (i = 0; i < num_var_ranges; ++i) {
  1427. unsigned short start_state, end_state;
  1428. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1429. continue;
  1430. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1431. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1432. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1433. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1434. start_state = ((start & mask) == (base & mask));
  1435. end_state = ((end & mask) == (base & mask));
  1436. if (start_state != end_state)
  1437. return 0xFE;
  1438. if ((start & mask) != (base & mask))
  1439. continue;
  1440. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1441. if (prev_match == 0xFF) {
  1442. prev_match = curr_match;
  1443. continue;
  1444. }
  1445. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1446. curr_match == MTRR_TYPE_UNCACHABLE)
  1447. return MTRR_TYPE_UNCACHABLE;
  1448. if ((prev_match == MTRR_TYPE_WRBACK &&
  1449. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1450. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1451. curr_match == MTRR_TYPE_WRBACK)) {
  1452. prev_match = MTRR_TYPE_WRTHROUGH;
  1453. curr_match = MTRR_TYPE_WRTHROUGH;
  1454. }
  1455. if (prev_match != curr_match)
  1456. return MTRR_TYPE_UNCACHABLE;
  1457. }
  1458. if (prev_match != 0xFF)
  1459. return prev_match;
  1460. return mtrr_state->def_type;
  1461. }
  1462. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1463. {
  1464. u8 mtrr;
  1465. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1466. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1467. if (mtrr == 0xfe || mtrr == 0xff)
  1468. mtrr = MTRR_TYPE_WRBACK;
  1469. return mtrr;
  1470. }
  1471. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1472. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1473. {
  1474. trace_kvm_mmu_unsync_page(sp);
  1475. ++vcpu->kvm->stat.mmu_unsync;
  1476. sp->unsync = 1;
  1477. kvm_mmu_mark_parents_unsync(sp);
  1478. mmu_convert_notrap(sp);
  1479. }
  1480. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1481. {
  1482. struct hlist_head *bucket;
  1483. struct kvm_mmu_page *s;
  1484. struct hlist_node *node, *n;
  1485. unsigned index;
  1486. index = kvm_page_table_hashfn(gfn);
  1487. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1488. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1489. if (s->gfn != gfn || s->role.direct || s->unsync ||
  1490. s->role.invalid)
  1491. continue;
  1492. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1493. __kvm_unsync_page(vcpu, s);
  1494. }
  1495. }
  1496. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1497. bool can_unsync)
  1498. {
  1499. unsigned index;
  1500. struct hlist_head *bucket;
  1501. struct kvm_mmu_page *s;
  1502. struct hlist_node *node, *n;
  1503. bool need_unsync = false;
  1504. index = kvm_page_table_hashfn(gfn);
  1505. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1506. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1507. if (s->gfn != gfn || s->role.direct || s->role.invalid)
  1508. continue;
  1509. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1510. return 1;
  1511. if (!need_unsync && !s->unsync) {
  1512. if (!can_unsync || !oos_shadow)
  1513. return 1;
  1514. need_unsync = true;
  1515. }
  1516. }
  1517. if (need_unsync)
  1518. kvm_unsync_pages(vcpu, gfn);
  1519. return 0;
  1520. }
  1521. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1522. unsigned pte_access, int user_fault,
  1523. int write_fault, int dirty, int level,
  1524. gfn_t gfn, pfn_t pfn, bool speculative,
  1525. bool can_unsync, bool reset_host_protection)
  1526. {
  1527. u64 spte;
  1528. int ret = 0;
  1529. /*
  1530. * We don't set the accessed bit, since we sometimes want to see
  1531. * whether the guest actually used the pte (in order to detect
  1532. * demand paging).
  1533. */
  1534. spte = shadow_base_present_pte | shadow_dirty_mask;
  1535. if (!speculative)
  1536. spte |= shadow_accessed_mask;
  1537. if (!dirty)
  1538. pte_access &= ~ACC_WRITE_MASK;
  1539. if (pte_access & ACC_EXEC_MASK)
  1540. spte |= shadow_x_mask;
  1541. else
  1542. spte |= shadow_nx_mask;
  1543. if (pte_access & ACC_USER_MASK)
  1544. spte |= shadow_user_mask;
  1545. if (level > PT_PAGE_TABLE_LEVEL)
  1546. spte |= PT_PAGE_SIZE_MASK;
  1547. if (tdp_enabled)
  1548. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1549. kvm_is_mmio_pfn(pfn));
  1550. if (reset_host_protection)
  1551. spte |= SPTE_HOST_WRITEABLE;
  1552. spte |= (u64)pfn << PAGE_SHIFT;
  1553. if ((pte_access & ACC_WRITE_MASK)
  1554. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1555. if (level > PT_PAGE_TABLE_LEVEL &&
  1556. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1557. ret = 1;
  1558. rmap_remove(vcpu->kvm, sptep);
  1559. spte = shadow_trap_nonpresent_pte;
  1560. goto set_pte;
  1561. }
  1562. spte |= PT_WRITABLE_MASK;
  1563. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1564. spte &= ~PT_USER_MASK;
  1565. /*
  1566. * Optimization: for pte sync, if spte was writable the hash
  1567. * lookup is unnecessary (and expensive). Write protection
  1568. * is responsibility of mmu_get_page / kvm_sync_page.
  1569. * Same reasoning can be applied to dirty page accounting.
  1570. */
  1571. if (!can_unsync && is_writable_pte(*sptep))
  1572. goto set_pte;
  1573. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1574. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1575. __func__, gfn);
  1576. ret = 1;
  1577. pte_access &= ~ACC_WRITE_MASK;
  1578. if (is_writable_pte(spte))
  1579. spte &= ~PT_WRITABLE_MASK;
  1580. }
  1581. }
  1582. if (pte_access & ACC_WRITE_MASK)
  1583. mark_page_dirty(vcpu->kvm, gfn);
  1584. set_pte:
  1585. __set_spte(sptep, spte);
  1586. return ret;
  1587. }
  1588. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1589. unsigned pt_access, unsigned pte_access,
  1590. int user_fault, int write_fault, int dirty,
  1591. int *ptwrite, int level, gfn_t gfn,
  1592. pfn_t pfn, bool speculative,
  1593. bool reset_host_protection)
  1594. {
  1595. int was_rmapped = 0;
  1596. int was_writable = is_writable_pte(*sptep);
  1597. int rmap_count;
  1598. pgprintk("%s: spte %llx access %x write_fault %d"
  1599. " user_fault %d gfn %lx\n",
  1600. __func__, *sptep, pt_access,
  1601. write_fault, user_fault, gfn);
  1602. if (is_rmap_spte(*sptep)) {
  1603. /*
  1604. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1605. * the parent of the now unreachable PTE.
  1606. */
  1607. if (level > PT_PAGE_TABLE_LEVEL &&
  1608. !is_large_pte(*sptep)) {
  1609. struct kvm_mmu_page *child;
  1610. u64 pte = *sptep;
  1611. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1612. mmu_page_remove_parent_pte(child, sptep);
  1613. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1614. kvm_flush_remote_tlbs(vcpu->kvm);
  1615. } else if (pfn != spte_to_pfn(*sptep)) {
  1616. pgprintk("hfn old %lx new %lx\n",
  1617. spte_to_pfn(*sptep), pfn);
  1618. rmap_remove(vcpu->kvm, sptep);
  1619. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1620. kvm_flush_remote_tlbs(vcpu->kvm);
  1621. } else
  1622. was_rmapped = 1;
  1623. }
  1624. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1625. dirty, level, gfn, pfn, speculative, true,
  1626. reset_host_protection)) {
  1627. if (write_fault)
  1628. *ptwrite = 1;
  1629. kvm_x86_ops->tlb_flush(vcpu);
  1630. }
  1631. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1632. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1633. is_large_pte(*sptep)? "2MB" : "4kB",
  1634. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1635. *sptep, sptep);
  1636. if (!was_rmapped && is_large_pte(*sptep))
  1637. ++vcpu->kvm->stat.lpages;
  1638. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1639. if (!was_rmapped) {
  1640. rmap_count = rmap_add(vcpu, sptep, gfn);
  1641. kvm_release_pfn_clean(pfn);
  1642. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1643. rmap_recycle(vcpu, sptep, gfn);
  1644. } else {
  1645. if (was_writable)
  1646. kvm_release_pfn_dirty(pfn);
  1647. else
  1648. kvm_release_pfn_clean(pfn);
  1649. }
  1650. if (speculative) {
  1651. vcpu->arch.last_pte_updated = sptep;
  1652. vcpu->arch.last_pte_gfn = gfn;
  1653. }
  1654. }
  1655. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1656. {
  1657. }
  1658. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1659. int level, gfn_t gfn, pfn_t pfn)
  1660. {
  1661. struct kvm_shadow_walk_iterator iterator;
  1662. struct kvm_mmu_page *sp;
  1663. int pt_write = 0;
  1664. gfn_t pseudo_gfn;
  1665. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1666. if (iterator.level == level) {
  1667. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1668. 0, write, 1, &pt_write,
  1669. level, gfn, pfn, false, true);
  1670. ++vcpu->stat.pf_fixed;
  1671. break;
  1672. }
  1673. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1674. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1675. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1676. iterator.level - 1,
  1677. 1, ACC_ALL, iterator.sptep);
  1678. if (!sp) {
  1679. pgprintk("nonpaging_map: ENOMEM\n");
  1680. kvm_release_pfn_clean(pfn);
  1681. return -ENOMEM;
  1682. }
  1683. __set_spte(iterator.sptep,
  1684. __pa(sp->spt)
  1685. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1686. | shadow_user_mask | shadow_x_mask);
  1687. }
  1688. }
  1689. return pt_write;
  1690. }
  1691. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1692. {
  1693. char buf[1];
  1694. void __user *hva;
  1695. int r;
  1696. /* Touch the page, so send SIGBUS */
  1697. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1698. r = copy_from_user(buf, hva, 1);
  1699. }
  1700. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1701. {
  1702. kvm_release_pfn_clean(pfn);
  1703. if (is_hwpoison_pfn(pfn)) {
  1704. kvm_send_hwpoison_signal(kvm, gfn);
  1705. return 0;
  1706. }
  1707. return 1;
  1708. }
  1709. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1710. {
  1711. int r;
  1712. int level;
  1713. pfn_t pfn;
  1714. unsigned long mmu_seq;
  1715. level = mapping_level(vcpu, gfn);
  1716. /*
  1717. * This path builds a PAE pagetable - so we can map 2mb pages at
  1718. * maximum. Therefore check if the level is larger than that.
  1719. */
  1720. if (level > PT_DIRECTORY_LEVEL)
  1721. level = PT_DIRECTORY_LEVEL;
  1722. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1723. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1724. smp_rmb();
  1725. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1726. /* mmio */
  1727. if (is_error_pfn(pfn))
  1728. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1729. spin_lock(&vcpu->kvm->mmu_lock);
  1730. if (mmu_notifier_retry(vcpu, mmu_seq))
  1731. goto out_unlock;
  1732. kvm_mmu_free_some_pages(vcpu);
  1733. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1734. spin_unlock(&vcpu->kvm->mmu_lock);
  1735. return r;
  1736. out_unlock:
  1737. spin_unlock(&vcpu->kvm->mmu_lock);
  1738. kvm_release_pfn_clean(pfn);
  1739. return 0;
  1740. }
  1741. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1742. {
  1743. int i;
  1744. struct kvm_mmu_page *sp;
  1745. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1746. return;
  1747. spin_lock(&vcpu->kvm->mmu_lock);
  1748. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1749. hpa_t root = vcpu->arch.mmu.root_hpa;
  1750. sp = page_header(root);
  1751. --sp->root_count;
  1752. if (!sp->root_count && sp->role.invalid)
  1753. kvm_mmu_zap_page(vcpu->kvm, sp);
  1754. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1755. spin_unlock(&vcpu->kvm->mmu_lock);
  1756. return;
  1757. }
  1758. for (i = 0; i < 4; ++i) {
  1759. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1760. if (root) {
  1761. root &= PT64_BASE_ADDR_MASK;
  1762. sp = page_header(root);
  1763. --sp->root_count;
  1764. if (!sp->root_count && sp->role.invalid)
  1765. kvm_mmu_zap_page(vcpu->kvm, sp);
  1766. }
  1767. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1768. }
  1769. spin_unlock(&vcpu->kvm->mmu_lock);
  1770. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1771. }
  1772. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1773. {
  1774. int ret = 0;
  1775. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1776. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1777. ret = 1;
  1778. }
  1779. return ret;
  1780. }
  1781. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1782. {
  1783. int i;
  1784. gfn_t root_gfn;
  1785. struct kvm_mmu_page *sp;
  1786. int direct = 0;
  1787. u64 pdptr;
  1788. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1789. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1790. hpa_t root = vcpu->arch.mmu.root_hpa;
  1791. ASSERT(!VALID_PAGE(root));
  1792. if (mmu_check_root(vcpu, root_gfn))
  1793. return 1;
  1794. if (tdp_enabled) {
  1795. direct = 1;
  1796. root_gfn = 0;
  1797. }
  1798. spin_lock(&vcpu->kvm->mmu_lock);
  1799. kvm_mmu_free_some_pages(vcpu);
  1800. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1801. PT64_ROOT_LEVEL, direct,
  1802. ACC_ALL, NULL);
  1803. root = __pa(sp->spt);
  1804. ++sp->root_count;
  1805. spin_unlock(&vcpu->kvm->mmu_lock);
  1806. vcpu->arch.mmu.root_hpa = root;
  1807. return 0;
  1808. }
  1809. direct = !is_paging(vcpu);
  1810. for (i = 0; i < 4; ++i) {
  1811. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1812. ASSERT(!VALID_PAGE(root));
  1813. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1814. pdptr = kvm_pdptr_read(vcpu, i);
  1815. if (!is_present_gpte(pdptr)) {
  1816. vcpu->arch.mmu.pae_root[i] = 0;
  1817. continue;
  1818. }
  1819. root_gfn = pdptr >> PAGE_SHIFT;
  1820. } else if (vcpu->arch.mmu.root_level == 0)
  1821. root_gfn = 0;
  1822. if (mmu_check_root(vcpu, root_gfn))
  1823. return 1;
  1824. if (tdp_enabled) {
  1825. direct = 1;
  1826. root_gfn = i << 30;
  1827. }
  1828. spin_lock(&vcpu->kvm->mmu_lock);
  1829. kvm_mmu_free_some_pages(vcpu);
  1830. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1831. PT32_ROOT_LEVEL, direct,
  1832. ACC_ALL, NULL);
  1833. root = __pa(sp->spt);
  1834. ++sp->root_count;
  1835. spin_unlock(&vcpu->kvm->mmu_lock);
  1836. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1837. }
  1838. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1839. return 0;
  1840. }
  1841. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1842. {
  1843. int i;
  1844. struct kvm_mmu_page *sp;
  1845. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1846. return;
  1847. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1848. hpa_t root = vcpu->arch.mmu.root_hpa;
  1849. sp = page_header(root);
  1850. mmu_sync_children(vcpu, sp);
  1851. return;
  1852. }
  1853. for (i = 0; i < 4; ++i) {
  1854. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1855. if (root && VALID_PAGE(root)) {
  1856. root &= PT64_BASE_ADDR_MASK;
  1857. sp = page_header(root);
  1858. mmu_sync_children(vcpu, sp);
  1859. }
  1860. }
  1861. }
  1862. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1863. {
  1864. spin_lock(&vcpu->kvm->mmu_lock);
  1865. mmu_sync_roots(vcpu);
  1866. spin_unlock(&vcpu->kvm->mmu_lock);
  1867. }
  1868. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1869. u32 access, u32 *error)
  1870. {
  1871. if (error)
  1872. *error = 0;
  1873. return vaddr;
  1874. }
  1875. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1876. u32 error_code)
  1877. {
  1878. gfn_t gfn;
  1879. int r;
  1880. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1881. r = mmu_topup_memory_caches(vcpu);
  1882. if (r)
  1883. return r;
  1884. ASSERT(vcpu);
  1885. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1886. gfn = gva >> PAGE_SHIFT;
  1887. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1888. error_code & PFERR_WRITE_MASK, gfn);
  1889. }
  1890. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1891. u32 error_code)
  1892. {
  1893. pfn_t pfn;
  1894. int r;
  1895. int level;
  1896. gfn_t gfn = gpa >> PAGE_SHIFT;
  1897. unsigned long mmu_seq;
  1898. ASSERT(vcpu);
  1899. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1900. r = mmu_topup_memory_caches(vcpu);
  1901. if (r)
  1902. return r;
  1903. level = mapping_level(vcpu, gfn);
  1904. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1905. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1906. smp_rmb();
  1907. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1908. if (is_error_pfn(pfn))
  1909. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1910. spin_lock(&vcpu->kvm->mmu_lock);
  1911. if (mmu_notifier_retry(vcpu, mmu_seq))
  1912. goto out_unlock;
  1913. kvm_mmu_free_some_pages(vcpu);
  1914. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1915. level, gfn, pfn);
  1916. spin_unlock(&vcpu->kvm->mmu_lock);
  1917. return r;
  1918. out_unlock:
  1919. spin_unlock(&vcpu->kvm->mmu_lock);
  1920. kvm_release_pfn_clean(pfn);
  1921. return 0;
  1922. }
  1923. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1924. {
  1925. mmu_free_roots(vcpu);
  1926. }
  1927. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1928. {
  1929. struct kvm_mmu *context = &vcpu->arch.mmu;
  1930. context->new_cr3 = nonpaging_new_cr3;
  1931. context->page_fault = nonpaging_page_fault;
  1932. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1933. context->free = nonpaging_free;
  1934. context->prefetch_page = nonpaging_prefetch_page;
  1935. context->sync_page = nonpaging_sync_page;
  1936. context->invlpg = nonpaging_invlpg;
  1937. context->root_level = 0;
  1938. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1939. context->root_hpa = INVALID_PAGE;
  1940. return 0;
  1941. }
  1942. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1943. {
  1944. ++vcpu->stat.tlb_flush;
  1945. kvm_x86_ops->tlb_flush(vcpu);
  1946. }
  1947. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1948. {
  1949. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1950. mmu_free_roots(vcpu);
  1951. }
  1952. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1953. u64 addr,
  1954. u32 err_code)
  1955. {
  1956. kvm_inject_page_fault(vcpu, addr, err_code);
  1957. }
  1958. static void paging_free(struct kvm_vcpu *vcpu)
  1959. {
  1960. nonpaging_free(vcpu);
  1961. }
  1962. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1963. {
  1964. int bit7;
  1965. bit7 = (gpte >> 7) & 1;
  1966. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1967. }
  1968. #define PTTYPE 64
  1969. #include "paging_tmpl.h"
  1970. #undef PTTYPE
  1971. #define PTTYPE 32
  1972. #include "paging_tmpl.h"
  1973. #undef PTTYPE
  1974. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1975. {
  1976. struct kvm_mmu *context = &vcpu->arch.mmu;
  1977. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1978. u64 exb_bit_rsvd = 0;
  1979. if (!is_nx(vcpu))
  1980. exb_bit_rsvd = rsvd_bits(63, 63);
  1981. switch (level) {
  1982. case PT32_ROOT_LEVEL:
  1983. /* no rsvd bits for 2 level 4K page table entries */
  1984. context->rsvd_bits_mask[0][1] = 0;
  1985. context->rsvd_bits_mask[0][0] = 0;
  1986. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1987. if (!is_pse(vcpu)) {
  1988. context->rsvd_bits_mask[1][1] = 0;
  1989. break;
  1990. }
  1991. if (is_cpuid_PSE36())
  1992. /* 36bits PSE 4MB page */
  1993. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1994. else
  1995. /* 32 bits PSE 4MB page */
  1996. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1997. break;
  1998. case PT32E_ROOT_LEVEL:
  1999. context->rsvd_bits_mask[0][2] =
  2000. rsvd_bits(maxphyaddr, 63) |
  2001. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2002. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2003. rsvd_bits(maxphyaddr, 62); /* PDE */
  2004. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2005. rsvd_bits(maxphyaddr, 62); /* PTE */
  2006. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2007. rsvd_bits(maxphyaddr, 62) |
  2008. rsvd_bits(13, 20); /* large page */
  2009. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2010. break;
  2011. case PT64_ROOT_LEVEL:
  2012. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2013. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2014. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2015. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2016. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2017. rsvd_bits(maxphyaddr, 51);
  2018. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2019. rsvd_bits(maxphyaddr, 51);
  2020. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2021. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2022. rsvd_bits(maxphyaddr, 51) |
  2023. rsvd_bits(13, 29);
  2024. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2025. rsvd_bits(maxphyaddr, 51) |
  2026. rsvd_bits(13, 20); /* large page */
  2027. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2028. break;
  2029. }
  2030. }
  2031. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2032. {
  2033. struct kvm_mmu *context = &vcpu->arch.mmu;
  2034. ASSERT(is_pae(vcpu));
  2035. context->new_cr3 = paging_new_cr3;
  2036. context->page_fault = paging64_page_fault;
  2037. context->gva_to_gpa = paging64_gva_to_gpa;
  2038. context->prefetch_page = paging64_prefetch_page;
  2039. context->sync_page = paging64_sync_page;
  2040. context->invlpg = paging64_invlpg;
  2041. context->free = paging_free;
  2042. context->root_level = level;
  2043. context->shadow_root_level = level;
  2044. context->root_hpa = INVALID_PAGE;
  2045. return 0;
  2046. }
  2047. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2048. {
  2049. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2050. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2051. }
  2052. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2053. {
  2054. struct kvm_mmu *context = &vcpu->arch.mmu;
  2055. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2056. context->new_cr3 = paging_new_cr3;
  2057. context->page_fault = paging32_page_fault;
  2058. context->gva_to_gpa = paging32_gva_to_gpa;
  2059. context->free = paging_free;
  2060. context->prefetch_page = paging32_prefetch_page;
  2061. context->sync_page = paging32_sync_page;
  2062. context->invlpg = paging32_invlpg;
  2063. context->root_level = PT32_ROOT_LEVEL;
  2064. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2065. context->root_hpa = INVALID_PAGE;
  2066. return 0;
  2067. }
  2068. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2069. {
  2070. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2071. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2072. }
  2073. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2074. {
  2075. struct kvm_mmu *context = &vcpu->arch.mmu;
  2076. context->new_cr3 = nonpaging_new_cr3;
  2077. context->page_fault = tdp_page_fault;
  2078. context->free = nonpaging_free;
  2079. context->prefetch_page = nonpaging_prefetch_page;
  2080. context->sync_page = nonpaging_sync_page;
  2081. context->invlpg = nonpaging_invlpg;
  2082. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2083. context->root_hpa = INVALID_PAGE;
  2084. if (!is_paging(vcpu)) {
  2085. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2086. context->root_level = 0;
  2087. } else if (is_long_mode(vcpu)) {
  2088. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2089. context->gva_to_gpa = paging64_gva_to_gpa;
  2090. context->root_level = PT64_ROOT_LEVEL;
  2091. } else if (is_pae(vcpu)) {
  2092. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2093. context->gva_to_gpa = paging64_gva_to_gpa;
  2094. context->root_level = PT32E_ROOT_LEVEL;
  2095. } else {
  2096. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2097. context->gva_to_gpa = paging32_gva_to_gpa;
  2098. context->root_level = PT32_ROOT_LEVEL;
  2099. }
  2100. return 0;
  2101. }
  2102. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2103. {
  2104. int r;
  2105. ASSERT(vcpu);
  2106. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2107. if (!is_paging(vcpu))
  2108. r = nonpaging_init_context(vcpu);
  2109. else if (is_long_mode(vcpu))
  2110. r = paging64_init_context(vcpu);
  2111. else if (is_pae(vcpu))
  2112. r = paging32E_init_context(vcpu);
  2113. else
  2114. r = paging32_init_context(vcpu);
  2115. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2116. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2117. return r;
  2118. }
  2119. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2120. {
  2121. vcpu->arch.update_pte.pfn = bad_pfn;
  2122. if (tdp_enabled)
  2123. return init_kvm_tdp_mmu(vcpu);
  2124. else
  2125. return init_kvm_softmmu(vcpu);
  2126. }
  2127. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2128. {
  2129. ASSERT(vcpu);
  2130. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2131. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2132. vcpu->arch.mmu.free(vcpu);
  2133. }
  2134. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2135. {
  2136. destroy_kvm_mmu(vcpu);
  2137. return init_kvm_mmu(vcpu);
  2138. }
  2139. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2140. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2141. {
  2142. int r;
  2143. r = mmu_topup_memory_caches(vcpu);
  2144. if (r)
  2145. goto out;
  2146. r = mmu_alloc_roots(vcpu);
  2147. spin_lock(&vcpu->kvm->mmu_lock);
  2148. mmu_sync_roots(vcpu);
  2149. spin_unlock(&vcpu->kvm->mmu_lock);
  2150. if (r)
  2151. goto out;
  2152. /* set_cr3() should ensure TLB has been flushed */
  2153. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2154. out:
  2155. return r;
  2156. }
  2157. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2158. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2159. {
  2160. mmu_free_roots(vcpu);
  2161. }
  2162. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2163. struct kvm_mmu_page *sp,
  2164. u64 *spte)
  2165. {
  2166. u64 pte;
  2167. struct kvm_mmu_page *child;
  2168. pte = *spte;
  2169. if (is_shadow_present_pte(pte)) {
  2170. if (is_last_spte(pte, sp->role.level))
  2171. rmap_remove(vcpu->kvm, spte);
  2172. else {
  2173. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2174. mmu_page_remove_parent_pte(child, spte);
  2175. }
  2176. }
  2177. __set_spte(spte, shadow_trap_nonpresent_pte);
  2178. if (is_large_pte(pte))
  2179. --vcpu->kvm->stat.lpages;
  2180. }
  2181. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2182. struct kvm_mmu_page *sp,
  2183. u64 *spte,
  2184. const void *new)
  2185. {
  2186. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2187. ++vcpu->kvm->stat.mmu_pde_zapped;
  2188. return;
  2189. }
  2190. ++vcpu->kvm->stat.mmu_pte_updated;
  2191. if (!sp->role.cr4_pae)
  2192. paging32_update_pte(vcpu, sp, spte, new);
  2193. else
  2194. paging64_update_pte(vcpu, sp, spte, new);
  2195. }
  2196. static bool need_remote_flush(u64 old, u64 new)
  2197. {
  2198. if (!is_shadow_present_pte(old))
  2199. return false;
  2200. if (!is_shadow_present_pte(new))
  2201. return true;
  2202. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2203. return true;
  2204. old ^= PT64_NX_MASK;
  2205. new ^= PT64_NX_MASK;
  2206. return (old & ~new & PT64_PERM_MASK) != 0;
  2207. }
  2208. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2209. {
  2210. if (need_remote_flush(old, new))
  2211. kvm_flush_remote_tlbs(vcpu->kvm);
  2212. else
  2213. kvm_mmu_flush_tlb(vcpu);
  2214. }
  2215. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2216. {
  2217. u64 *spte = vcpu->arch.last_pte_updated;
  2218. return !!(spte && (*spte & shadow_accessed_mask));
  2219. }
  2220. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2221. u64 gpte)
  2222. {
  2223. gfn_t gfn;
  2224. pfn_t pfn;
  2225. if (!is_present_gpte(gpte))
  2226. return;
  2227. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2228. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2229. smp_rmb();
  2230. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2231. if (is_error_pfn(pfn)) {
  2232. kvm_release_pfn_clean(pfn);
  2233. return;
  2234. }
  2235. vcpu->arch.update_pte.gfn = gfn;
  2236. vcpu->arch.update_pte.pfn = pfn;
  2237. }
  2238. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2239. {
  2240. u64 *spte = vcpu->arch.last_pte_updated;
  2241. if (spte
  2242. && vcpu->arch.last_pte_gfn == gfn
  2243. && shadow_accessed_mask
  2244. && !(*spte & shadow_accessed_mask)
  2245. && is_shadow_present_pte(*spte))
  2246. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2247. }
  2248. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2249. const u8 *new, int bytes,
  2250. bool guest_initiated)
  2251. {
  2252. gfn_t gfn = gpa >> PAGE_SHIFT;
  2253. struct kvm_mmu_page *sp;
  2254. struct hlist_node *node, *n;
  2255. struct hlist_head *bucket;
  2256. unsigned index;
  2257. u64 entry, gentry;
  2258. u64 *spte;
  2259. unsigned offset = offset_in_page(gpa);
  2260. unsigned pte_size;
  2261. unsigned page_offset;
  2262. unsigned misaligned;
  2263. unsigned quadrant;
  2264. int level;
  2265. int flooded = 0;
  2266. int npte;
  2267. int r;
  2268. int invlpg_counter;
  2269. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2270. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2271. /*
  2272. * Assume that the pte write on a page table of the same type
  2273. * as the current vcpu paging mode. This is nearly always true
  2274. * (might be false while changing modes). Note it is verified later
  2275. * by update_pte().
  2276. */
  2277. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2278. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2279. if (is_pae(vcpu)) {
  2280. gpa &= ~(gpa_t)7;
  2281. bytes = 8;
  2282. }
  2283. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2284. if (r)
  2285. gentry = 0;
  2286. new = (const u8 *)&gentry;
  2287. }
  2288. switch (bytes) {
  2289. case 4:
  2290. gentry = *(const u32 *)new;
  2291. break;
  2292. case 8:
  2293. gentry = *(const u64 *)new;
  2294. break;
  2295. default:
  2296. gentry = 0;
  2297. break;
  2298. }
  2299. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2300. spin_lock(&vcpu->kvm->mmu_lock);
  2301. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2302. gentry = 0;
  2303. kvm_mmu_access_page(vcpu, gfn);
  2304. kvm_mmu_free_some_pages(vcpu);
  2305. ++vcpu->kvm->stat.mmu_pte_write;
  2306. kvm_mmu_audit(vcpu, "pre pte write");
  2307. if (guest_initiated) {
  2308. if (gfn == vcpu->arch.last_pt_write_gfn
  2309. && !last_updated_pte_accessed(vcpu)) {
  2310. ++vcpu->arch.last_pt_write_count;
  2311. if (vcpu->arch.last_pt_write_count >= 3)
  2312. flooded = 1;
  2313. } else {
  2314. vcpu->arch.last_pt_write_gfn = gfn;
  2315. vcpu->arch.last_pt_write_count = 1;
  2316. vcpu->arch.last_pte_updated = NULL;
  2317. }
  2318. }
  2319. index = kvm_page_table_hashfn(gfn);
  2320. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2321. restart:
  2322. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2323. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2324. continue;
  2325. pte_size = sp->role.cr4_pae ? 8 : 4;
  2326. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2327. misaligned |= bytes < 4;
  2328. if (misaligned || flooded) {
  2329. /*
  2330. * Misaligned accesses are too much trouble to fix
  2331. * up; also, they usually indicate a page is not used
  2332. * as a page table.
  2333. *
  2334. * If we're seeing too many writes to a page,
  2335. * it may no longer be a page table, or we may be
  2336. * forking, in which case it is better to unmap the
  2337. * page.
  2338. */
  2339. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2340. gpa, bytes, sp->role.word);
  2341. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2342. goto restart;
  2343. ++vcpu->kvm->stat.mmu_flooded;
  2344. continue;
  2345. }
  2346. page_offset = offset;
  2347. level = sp->role.level;
  2348. npte = 1;
  2349. if (!sp->role.cr4_pae) {
  2350. page_offset <<= 1; /* 32->64 */
  2351. /*
  2352. * A 32-bit pde maps 4MB while the shadow pdes map
  2353. * only 2MB. So we need to double the offset again
  2354. * and zap two pdes instead of one.
  2355. */
  2356. if (level == PT32_ROOT_LEVEL) {
  2357. page_offset &= ~7; /* kill rounding error */
  2358. page_offset <<= 1;
  2359. npte = 2;
  2360. }
  2361. quadrant = page_offset >> PAGE_SHIFT;
  2362. page_offset &= ~PAGE_MASK;
  2363. if (quadrant != sp->role.quadrant)
  2364. continue;
  2365. }
  2366. spte = &sp->spt[page_offset / sizeof(*spte)];
  2367. while (npte--) {
  2368. entry = *spte;
  2369. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2370. if (gentry)
  2371. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2372. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2373. ++spte;
  2374. }
  2375. }
  2376. kvm_mmu_audit(vcpu, "post pte write");
  2377. spin_unlock(&vcpu->kvm->mmu_lock);
  2378. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2379. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2380. vcpu->arch.update_pte.pfn = bad_pfn;
  2381. }
  2382. }
  2383. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2384. {
  2385. gpa_t gpa;
  2386. int r;
  2387. if (tdp_enabled)
  2388. return 0;
  2389. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2390. spin_lock(&vcpu->kvm->mmu_lock);
  2391. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2392. spin_unlock(&vcpu->kvm->mmu_lock);
  2393. return r;
  2394. }
  2395. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2396. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2397. {
  2398. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2399. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2400. struct kvm_mmu_page *sp;
  2401. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2402. struct kvm_mmu_page, link);
  2403. kvm_mmu_zap_page(vcpu->kvm, sp);
  2404. ++vcpu->kvm->stat.mmu_recycled;
  2405. }
  2406. }
  2407. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2408. {
  2409. int r;
  2410. enum emulation_result er;
  2411. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2412. if (r < 0)
  2413. goto out;
  2414. if (!r) {
  2415. r = 1;
  2416. goto out;
  2417. }
  2418. r = mmu_topup_memory_caches(vcpu);
  2419. if (r)
  2420. goto out;
  2421. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2422. switch (er) {
  2423. case EMULATE_DONE:
  2424. return 1;
  2425. case EMULATE_DO_MMIO:
  2426. ++vcpu->stat.mmio_exits;
  2427. /* fall through */
  2428. case EMULATE_FAIL:
  2429. return 0;
  2430. default:
  2431. BUG();
  2432. }
  2433. out:
  2434. return r;
  2435. }
  2436. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2437. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2438. {
  2439. vcpu->arch.mmu.invlpg(vcpu, gva);
  2440. kvm_mmu_flush_tlb(vcpu);
  2441. ++vcpu->stat.invlpg;
  2442. }
  2443. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2444. void kvm_enable_tdp(void)
  2445. {
  2446. tdp_enabled = true;
  2447. }
  2448. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2449. void kvm_disable_tdp(void)
  2450. {
  2451. tdp_enabled = false;
  2452. }
  2453. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2454. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2455. {
  2456. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2457. }
  2458. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2459. {
  2460. struct page *page;
  2461. int i;
  2462. ASSERT(vcpu);
  2463. /*
  2464. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2465. * Therefore we need to allocate shadow page tables in the first
  2466. * 4GB of memory, which happens to fit the DMA32 zone.
  2467. */
  2468. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2469. if (!page)
  2470. return -ENOMEM;
  2471. vcpu->arch.mmu.pae_root = page_address(page);
  2472. for (i = 0; i < 4; ++i)
  2473. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2474. return 0;
  2475. }
  2476. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2477. {
  2478. ASSERT(vcpu);
  2479. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2480. return alloc_mmu_pages(vcpu);
  2481. }
  2482. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2483. {
  2484. ASSERT(vcpu);
  2485. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2486. return init_kvm_mmu(vcpu);
  2487. }
  2488. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2489. {
  2490. ASSERT(vcpu);
  2491. destroy_kvm_mmu(vcpu);
  2492. free_mmu_pages(vcpu);
  2493. mmu_free_memory_caches(vcpu);
  2494. }
  2495. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2496. {
  2497. struct kvm_mmu_page *sp;
  2498. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2499. int i;
  2500. u64 *pt;
  2501. if (!test_bit(slot, sp->slot_bitmap))
  2502. continue;
  2503. pt = sp->spt;
  2504. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2505. /* avoid RMW */
  2506. if (pt[i] & PT_WRITABLE_MASK)
  2507. pt[i] &= ~PT_WRITABLE_MASK;
  2508. }
  2509. kvm_flush_remote_tlbs(kvm);
  2510. }
  2511. void kvm_mmu_zap_all(struct kvm *kvm)
  2512. {
  2513. struct kvm_mmu_page *sp, *node;
  2514. spin_lock(&kvm->mmu_lock);
  2515. restart:
  2516. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2517. if (kvm_mmu_zap_page(kvm, sp))
  2518. goto restart;
  2519. spin_unlock(&kvm->mmu_lock);
  2520. kvm_flush_remote_tlbs(kvm);
  2521. }
  2522. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm)
  2523. {
  2524. struct kvm_mmu_page *page;
  2525. page = container_of(kvm->arch.active_mmu_pages.prev,
  2526. struct kvm_mmu_page, link);
  2527. return kvm_mmu_zap_page(kvm, page);
  2528. }
  2529. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2530. {
  2531. struct kvm *kvm;
  2532. struct kvm *kvm_freed = NULL;
  2533. int cache_count = 0;
  2534. spin_lock(&kvm_lock);
  2535. list_for_each_entry(kvm, &vm_list, vm_list) {
  2536. int npages, idx, freed_pages;
  2537. idx = srcu_read_lock(&kvm->srcu);
  2538. spin_lock(&kvm->mmu_lock);
  2539. npages = kvm->arch.n_alloc_mmu_pages -
  2540. kvm->arch.n_free_mmu_pages;
  2541. cache_count += npages;
  2542. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2543. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm);
  2544. cache_count -= freed_pages;
  2545. kvm_freed = kvm;
  2546. }
  2547. nr_to_scan--;
  2548. spin_unlock(&kvm->mmu_lock);
  2549. srcu_read_unlock(&kvm->srcu, idx);
  2550. }
  2551. if (kvm_freed)
  2552. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2553. spin_unlock(&kvm_lock);
  2554. return cache_count;
  2555. }
  2556. static struct shrinker mmu_shrinker = {
  2557. .shrink = mmu_shrink,
  2558. .seeks = DEFAULT_SEEKS * 10,
  2559. };
  2560. static void mmu_destroy_caches(void)
  2561. {
  2562. if (pte_chain_cache)
  2563. kmem_cache_destroy(pte_chain_cache);
  2564. if (rmap_desc_cache)
  2565. kmem_cache_destroy(rmap_desc_cache);
  2566. if (mmu_page_header_cache)
  2567. kmem_cache_destroy(mmu_page_header_cache);
  2568. }
  2569. void kvm_mmu_module_exit(void)
  2570. {
  2571. mmu_destroy_caches();
  2572. unregister_shrinker(&mmu_shrinker);
  2573. }
  2574. int kvm_mmu_module_init(void)
  2575. {
  2576. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2577. sizeof(struct kvm_pte_chain),
  2578. 0, 0, NULL);
  2579. if (!pte_chain_cache)
  2580. goto nomem;
  2581. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2582. sizeof(struct kvm_rmap_desc),
  2583. 0, 0, NULL);
  2584. if (!rmap_desc_cache)
  2585. goto nomem;
  2586. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2587. sizeof(struct kvm_mmu_page),
  2588. 0, 0, NULL);
  2589. if (!mmu_page_header_cache)
  2590. goto nomem;
  2591. register_shrinker(&mmu_shrinker);
  2592. return 0;
  2593. nomem:
  2594. mmu_destroy_caches();
  2595. return -ENOMEM;
  2596. }
  2597. /*
  2598. * Caculate mmu pages needed for kvm.
  2599. */
  2600. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2601. {
  2602. int i;
  2603. unsigned int nr_mmu_pages;
  2604. unsigned int nr_pages = 0;
  2605. struct kvm_memslots *slots;
  2606. slots = kvm_memslots(kvm);
  2607. for (i = 0; i < slots->nmemslots; i++)
  2608. nr_pages += slots->memslots[i].npages;
  2609. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2610. nr_mmu_pages = max(nr_mmu_pages,
  2611. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2612. return nr_mmu_pages;
  2613. }
  2614. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2615. unsigned len)
  2616. {
  2617. if (len > buffer->len)
  2618. return NULL;
  2619. return buffer->ptr;
  2620. }
  2621. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2622. unsigned len)
  2623. {
  2624. void *ret;
  2625. ret = pv_mmu_peek_buffer(buffer, len);
  2626. if (!ret)
  2627. return ret;
  2628. buffer->ptr += len;
  2629. buffer->len -= len;
  2630. buffer->processed += len;
  2631. return ret;
  2632. }
  2633. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2634. gpa_t addr, gpa_t value)
  2635. {
  2636. int bytes = 8;
  2637. int r;
  2638. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2639. bytes = 4;
  2640. r = mmu_topup_memory_caches(vcpu);
  2641. if (r)
  2642. return r;
  2643. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2644. return -EFAULT;
  2645. return 1;
  2646. }
  2647. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2648. {
  2649. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2650. return 1;
  2651. }
  2652. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2653. {
  2654. spin_lock(&vcpu->kvm->mmu_lock);
  2655. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2656. spin_unlock(&vcpu->kvm->mmu_lock);
  2657. return 1;
  2658. }
  2659. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2660. struct kvm_pv_mmu_op_buffer *buffer)
  2661. {
  2662. struct kvm_mmu_op_header *header;
  2663. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2664. if (!header)
  2665. return 0;
  2666. switch (header->op) {
  2667. case KVM_MMU_OP_WRITE_PTE: {
  2668. struct kvm_mmu_op_write_pte *wpte;
  2669. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2670. if (!wpte)
  2671. return 0;
  2672. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2673. wpte->pte_val);
  2674. }
  2675. case KVM_MMU_OP_FLUSH_TLB: {
  2676. struct kvm_mmu_op_flush_tlb *ftlb;
  2677. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2678. if (!ftlb)
  2679. return 0;
  2680. return kvm_pv_mmu_flush_tlb(vcpu);
  2681. }
  2682. case KVM_MMU_OP_RELEASE_PT: {
  2683. struct kvm_mmu_op_release_pt *rpt;
  2684. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2685. if (!rpt)
  2686. return 0;
  2687. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2688. }
  2689. default: return 0;
  2690. }
  2691. }
  2692. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2693. gpa_t addr, unsigned long *ret)
  2694. {
  2695. int r;
  2696. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2697. buffer->ptr = buffer->buf;
  2698. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2699. buffer->processed = 0;
  2700. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2701. if (r)
  2702. goto out;
  2703. while (buffer->len) {
  2704. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2705. if (r < 0)
  2706. goto out;
  2707. if (r == 0)
  2708. break;
  2709. }
  2710. r = 1;
  2711. out:
  2712. *ret = buffer->processed;
  2713. return r;
  2714. }
  2715. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2716. {
  2717. struct kvm_shadow_walk_iterator iterator;
  2718. int nr_sptes = 0;
  2719. spin_lock(&vcpu->kvm->mmu_lock);
  2720. for_each_shadow_entry(vcpu, addr, iterator) {
  2721. sptes[iterator.level-1] = *iterator.sptep;
  2722. nr_sptes++;
  2723. if (!is_shadow_present_pte(*iterator.sptep))
  2724. break;
  2725. }
  2726. spin_unlock(&vcpu->kvm->mmu_lock);
  2727. return nr_sptes;
  2728. }
  2729. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2730. #ifdef AUDIT
  2731. static const char *audit_msg;
  2732. static gva_t canonicalize(gva_t gva)
  2733. {
  2734. #ifdef CONFIG_X86_64
  2735. gva = (long long)(gva << 16) >> 16;
  2736. #endif
  2737. return gva;
  2738. }
  2739. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2740. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2741. inspect_spte_fn fn)
  2742. {
  2743. int i;
  2744. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2745. u64 ent = sp->spt[i];
  2746. if (is_shadow_present_pte(ent)) {
  2747. if (!is_last_spte(ent, sp->role.level)) {
  2748. struct kvm_mmu_page *child;
  2749. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2750. __mmu_spte_walk(kvm, child, fn);
  2751. } else
  2752. fn(kvm, &sp->spt[i]);
  2753. }
  2754. }
  2755. }
  2756. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2757. {
  2758. int i;
  2759. struct kvm_mmu_page *sp;
  2760. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2761. return;
  2762. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2763. hpa_t root = vcpu->arch.mmu.root_hpa;
  2764. sp = page_header(root);
  2765. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2766. return;
  2767. }
  2768. for (i = 0; i < 4; ++i) {
  2769. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2770. if (root && VALID_PAGE(root)) {
  2771. root &= PT64_BASE_ADDR_MASK;
  2772. sp = page_header(root);
  2773. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2774. }
  2775. }
  2776. return;
  2777. }
  2778. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2779. gva_t va, int level)
  2780. {
  2781. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2782. int i;
  2783. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2784. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2785. u64 ent = pt[i];
  2786. if (ent == shadow_trap_nonpresent_pte)
  2787. continue;
  2788. va = canonicalize(va);
  2789. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2790. audit_mappings_page(vcpu, ent, va, level - 1);
  2791. else {
  2792. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2793. gfn_t gfn = gpa >> PAGE_SHIFT;
  2794. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2795. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2796. if (is_error_pfn(pfn)) {
  2797. kvm_release_pfn_clean(pfn);
  2798. continue;
  2799. }
  2800. if (is_shadow_present_pte(ent)
  2801. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2802. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2803. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2804. audit_msg, vcpu->arch.mmu.root_level,
  2805. va, gpa, hpa, ent,
  2806. is_shadow_present_pte(ent));
  2807. else if (ent == shadow_notrap_nonpresent_pte
  2808. && !is_error_hpa(hpa))
  2809. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2810. " valid guest gva %lx\n", audit_msg, va);
  2811. kvm_release_pfn_clean(pfn);
  2812. }
  2813. }
  2814. }
  2815. static void audit_mappings(struct kvm_vcpu *vcpu)
  2816. {
  2817. unsigned i;
  2818. if (vcpu->arch.mmu.root_level == 4)
  2819. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2820. else
  2821. for (i = 0; i < 4; ++i)
  2822. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2823. audit_mappings_page(vcpu,
  2824. vcpu->arch.mmu.pae_root[i],
  2825. i << 30,
  2826. 2);
  2827. }
  2828. static int count_rmaps(struct kvm_vcpu *vcpu)
  2829. {
  2830. struct kvm *kvm = vcpu->kvm;
  2831. struct kvm_memslots *slots;
  2832. int nmaps = 0;
  2833. int i, j, k, idx;
  2834. idx = srcu_read_lock(&kvm->srcu);
  2835. slots = kvm_memslots(kvm);
  2836. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2837. struct kvm_memory_slot *m = &slots->memslots[i];
  2838. struct kvm_rmap_desc *d;
  2839. for (j = 0; j < m->npages; ++j) {
  2840. unsigned long *rmapp = &m->rmap[j];
  2841. if (!*rmapp)
  2842. continue;
  2843. if (!(*rmapp & 1)) {
  2844. ++nmaps;
  2845. continue;
  2846. }
  2847. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2848. while (d) {
  2849. for (k = 0; k < RMAP_EXT; ++k)
  2850. if (d->sptes[k])
  2851. ++nmaps;
  2852. else
  2853. break;
  2854. d = d->more;
  2855. }
  2856. }
  2857. }
  2858. srcu_read_unlock(&kvm->srcu, idx);
  2859. return nmaps;
  2860. }
  2861. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2862. {
  2863. unsigned long *rmapp;
  2864. struct kvm_mmu_page *rev_sp;
  2865. gfn_t gfn;
  2866. if (*sptep & PT_WRITABLE_MASK) {
  2867. rev_sp = page_header(__pa(sptep));
  2868. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2869. if (!gfn_to_memslot(kvm, gfn)) {
  2870. if (!printk_ratelimit())
  2871. return;
  2872. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2873. audit_msg, gfn);
  2874. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2875. audit_msg, (long int)(sptep - rev_sp->spt),
  2876. rev_sp->gfn);
  2877. dump_stack();
  2878. return;
  2879. }
  2880. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2881. rev_sp->role.level);
  2882. if (!*rmapp) {
  2883. if (!printk_ratelimit())
  2884. return;
  2885. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2886. audit_msg, *sptep);
  2887. dump_stack();
  2888. }
  2889. }
  2890. }
  2891. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2892. {
  2893. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2894. }
  2895. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2896. {
  2897. struct kvm_mmu_page *sp;
  2898. int i;
  2899. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2900. u64 *pt = sp->spt;
  2901. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2902. continue;
  2903. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2904. u64 ent = pt[i];
  2905. if (!(ent & PT_PRESENT_MASK))
  2906. continue;
  2907. if (!(ent & PT_WRITABLE_MASK))
  2908. continue;
  2909. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2910. }
  2911. }
  2912. return;
  2913. }
  2914. static void audit_rmap(struct kvm_vcpu *vcpu)
  2915. {
  2916. check_writable_mappings_rmap(vcpu);
  2917. count_rmaps(vcpu);
  2918. }
  2919. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2920. {
  2921. struct kvm_mmu_page *sp;
  2922. struct kvm_memory_slot *slot;
  2923. unsigned long *rmapp;
  2924. u64 *spte;
  2925. gfn_t gfn;
  2926. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2927. if (sp->role.direct)
  2928. continue;
  2929. if (sp->unsync)
  2930. continue;
  2931. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2932. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2933. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2934. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2935. while (spte) {
  2936. if (*spte & PT_WRITABLE_MASK)
  2937. printk(KERN_ERR "%s: (%s) shadow page has "
  2938. "writable mappings: gfn %lx role %x\n",
  2939. __func__, audit_msg, sp->gfn,
  2940. sp->role.word);
  2941. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2942. }
  2943. }
  2944. }
  2945. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2946. {
  2947. int olddbg = dbg;
  2948. dbg = 0;
  2949. audit_msg = msg;
  2950. audit_rmap(vcpu);
  2951. audit_write_protection(vcpu);
  2952. if (strcmp("pre pte write", audit_msg) != 0)
  2953. audit_mappings(vcpu);
  2954. audit_writable_sptes_have_rmaps(vcpu);
  2955. dbg = olddbg;
  2956. }
  2957. #endif