xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u16 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. };
  44. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  45. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid,
  47. struct list_head *bf_head);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
  54. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int txok);
  56. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  57. int nbad, int txok, bool update_rc);
  58. enum {
  59. MCS_HT20,
  60. MCS_HT20_SGI,
  61. MCS_HT40,
  62. MCS_HT40_SGI,
  63. };
  64. static int ath_max_4ms_framelen[4][32] = {
  65. [MCS_HT20] = {
  66. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  67. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  68. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  69. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  70. },
  71. [MCS_HT20_SGI] = {
  72. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  73. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  74. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  75. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  76. },
  77. [MCS_HT40] = {
  78. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  79. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  80. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  81. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  82. },
  83. [MCS_HT40_SGI] = {
  84. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  85. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  86. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  87. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  88. }
  89. };
  90. /*********************/
  91. /* Aggregation logic */
  92. /*********************/
  93. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  94. {
  95. struct ath_atx_ac *ac = tid->ac;
  96. if (tid->paused)
  97. return;
  98. if (tid->sched)
  99. return;
  100. tid->sched = true;
  101. list_add_tail(&tid->list, &ac->tid_q);
  102. if (ac->sched)
  103. return;
  104. ac->sched = true;
  105. list_add_tail(&ac->list, &txq->axq_acq);
  106. }
  107. static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  108. {
  109. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  110. spin_lock_bh(&txq->axq_lock);
  111. tid->paused++;
  112. spin_unlock_bh(&txq->axq_lock);
  113. }
  114. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  115. {
  116. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  117. BUG_ON(tid->paused <= 0);
  118. spin_lock_bh(&txq->axq_lock);
  119. tid->paused--;
  120. if (tid->paused > 0)
  121. goto unlock;
  122. if (list_empty(&tid->buf_q))
  123. goto unlock;
  124. ath_tx_queue_tid(txq, tid);
  125. ath_txq_schedule(sc, txq);
  126. unlock:
  127. spin_unlock_bh(&txq->axq_lock);
  128. }
  129. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  130. {
  131. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  132. struct ath_buf *bf;
  133. struct list_head bf_head;
  134. INIT_LIST_HEAD(&bf_head);
  135. BUG_ON(tid->paused <= 0);
  136. spin_lock_bh(&txq->axq_lock);
  137. tid->paused--;
  138. if (tid->paused > 0) {
  139. spin_unlock_bh(&txq->axq_lock);
  140. return;
  141. }
  142. while (!list_empty(&tid->buf_q)) {
  143. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  144. BUG_ON(bf_isretried(bf));
  145. list_move_tail(&bf->list, &bf_head);
  146. ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
  147. }
  148. spin_unlock_bh(&txq->axq_lock);
  149. }
  150. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  151. int seqno)
  152. {
  153. int index, cindex;
  154. index = ATH_BA_INDEX(tid->seq_start, seqno);
  155. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  156. tid->tx_buf[cindex] = NULL;
  157. while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
  158. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  159. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  160. }
  161. }
  162. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  163. struct ath_buf *bf)
  164. {
  165. int index, cindex;
  166. if (bf_isretried(bf))
  167. return;
  168. index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
  169. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  170. BUG_ON(tid->tx_buf[cindex] != NULL);
  171. tid->tx_buf[cindex] = bf;
  172. if (index >= ((tid->baw_tail - tid->baw_head) &
  173. (ATH_TID_MAX_BUFS - 1))) {
  174. tid->baw_tail = cindex;
  175. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  176. }
  177. }
  178. /*
  179. * TODO: For frame(s) that are in the retry state, we will reuse the
  180. * sequence number(s) without setting the retry bit. The
  181. * alternative is to give up on these and BAR the receiver's window
  182. * forward.
  183. */
  184. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  185. struct ath_atx_tid *tid)
  186. {
  187. struct ath_buf *bf;
  188. struct list_head bf_head;
  189. struct ath_tx_status ts;
  190. memset(&ts, 0, sizeof(ts));
  191. INIT_LIST_HEAD(&bf_head);
  192. for (;;) {
  193. if (list_empty(&tid->buf_q))
  194. break;
  195. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  196. list_move_tail(&bf->list, &bf_head);
  197. if (bf_isretried(bf))
  198. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  199. spin_unlock(&txq->axq_lock);
  200. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  201. spin_lock(&txq->axq_lock);
  202. }
  203. tid->seq_next = tid->seq_start;
  204. tid->baw_tail = tid->baw_head;
  205. }
  206. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_buf *bf)
  208. {
  209. struct sk_buff *skb;
  210. struct ieee80211_hdr *hdr;
  211. bf->bf_state.bf_type |= BUF_RETRY;
  212. bf->bf_retries++;
  213. TX_STAT_INC(txq->axq_qnum, a_retries);
  214. skb = bf->bf_mpdu;
  215. hdr = (struct ieee80211_hdr *)skb->data;
  216. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  217. }
  218. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  219. {
  220. struct ath_buf *bf = NULL;
  221. spin_lock_bh(&sc->tx.txbuflock);
  222. if (unlikely(list_empty(&sc->tx.txbuf))) {
  223. spin_unlock_bh(&sc->tx.txbuflock);
  224. return NULL;
  225. }
  226. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  227. list_del(&bf->list);
  228. spin_unlock_bh(&sc->tx.txbuflock);
  229. return bf;
  230. }
  231. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  232. {
  233. spin_lock_bh(&sc->tx.txbuflock);
  234. list_add_tail(&bf->list, &sc->tx.txbuf);
  235. spin_unlock_bh(&sc->tx.txbuflock);
  236. }
  237. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  238. {
  239. struct ath_buf *tbf;
  240. tbf = ath_tx_get_buffer(sc);
  241. if (WARN_ON(!tbf))
  242. return NULL;
  243. ATH_TXBUF_RESET(tbf);
  244. tbf->aphy = bf->aphy;
  245. tbf->bf_mpdu = bf->bf_mpdu;
  246. tbf->bf_buf_addr = bf->bf_buf_addr;
  247. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  248. tbf->bf_state = bf->bf_state;
  249. tbf->bf_dmacontext = bf->bf_dmacontext;
  250. return tbf;
  251. }
  252. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  253. struct ath_buf *bf, struct list_head *bf_q,
  254. struct ath_tx_status *ts, int txok)
  255. {
  256. struct ath_node *an = NULL;
  257. struct sk_buff *skb;
  258. struct ieee80211_sta *sta;
  259. struct ieee80211_hw *hw;
  260. struct ieee80211_hdr *hdr;
  261. struct ieee80211_tx_info *tx_info;
  262. struct ath_atx_tid *tid = NULL;
  263. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  264. struct list_head bf_head, bf_pending;
  265. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  266. u32 ba[WME_BA_BMP_SIZE >> 5];
  267. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  268. bool rc_update = true;
  269. struct ieee80211_tx_rate rates[4];
  270. skb = bf->bf_mpdu;
  271. hdr = (struct ieee80211_hdr *)skb->data;
  272. tx_info = IEEE80211_SKB_CB(skb);
  273. hw = bf->aphy->hw;
  274. memcpy(rates, tx_info->control.rates, sizeof(rates));
  275. rcu_read_lock();
  276. /* XXX: use ieee80211_find_sta! */
  277. sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
  278. if (!sta) {
  279. rcu_read_unlock();
  280. return;
  281. }
  282. an = (struct ath_node *)sta->drv_priv;
  283. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  284. isaggr = bf_isaggr(bf);
  285. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  286. if (isaggr && txok) {
  287. if (ts->ts_flags & ATH9K_TX_BA) {
  288. seq_st = ts->ts_seqnum;
  289. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  290. } else {
  291. /*
  292. * AR5416 can become deaf/mute when BA
  293. * issue happens. Chip needs to be reset.
  294. * But AP code may have sychronization issues
  295. * when perform internal reset in this routine.
  296. * Only enable reset in STA mode for now.
  297. */
  298. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  299. needreset = 1;
  300. }
  301. }
  302. INIT_LIST_HEAD(&bf_pending);
  303. INIT_LIST_HEAD(&bf_head);
  304. nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
  305. while (bf) {
  306. txfail = txpending = 0;
  307. bf_next = bf->bf_next;
  308. skb = bf->bf_mpdu;
  309. tx_info = IEEE80211_SKB_CB(skb);
  310. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
  311. /* transmit completion, subframe is
  312. * acked by block ack */
  313. acked_cnt++;
  314. } else if (!isaggr && txok) {
  315. /* transmit completion */
  316. acked_cnt++;
  317. } else {
  318. if (!(tid->state & AGGR_CLEANUP) &&
  319. !bf_last->bf_tx_aborted) {
  320. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  321. ath_tx_set_retry(sc, txq, bf);
  322. txpending = 1;
  323. } else {
  324. bf->bf_state.bf_type |= BUF_XRETRY;
  325. txfail = 1;
  326. sendbar = 1;
  327. txfail_cnt++;
  328. }
  329. } else {
  330. /*
  331. * cleanup in progress, just fail
  332. * the un-acked sub-frames
  333. */
  334. txfail = 1;
  335. }
  336. }
  337. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  338. bf_next == NULL) {
  339. /*
  340. * Make sure the last desc is reclaimed if it
  341. * not a holding desc.
  342. */
  343. if (!bf_last->bf_stale)
  344. list_move_tail(&bf->list, &bf_head);
  345. else
  346. INIT_LIST_HEAD(&bf_head);
  347. } else {
  348. BUG_ON(list_empty(bf_q));
  349. list_move_tail(&bf->list, &bf_head);
  350. }
  351. if (!txpending) {
  352. /*
  353. * complete the acked-ones/xretried ones; update
  354. * block-ack window
  355. */
  356. spin_lock_bh(&txq->axq_lock);
  357. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  358. spin_unlock_bh(&txq->axq_lock);
  359. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  360. memcpy(tx_info->control.rates, rates, sizeof(rates));
  361. ath_tx_rc_status(bf, ts, nbad, txok, true);
  362. rc_update = false;
  363. } else {
  364. ath_tx_rc_status(bf, ts, nbad, txok, false);
  365. }
  366. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  367. !txfail, sendbar);
  368. } else {
  369. /* retry the un-acked ones */
  370. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  371. if (bf->bf_next == NULL && bf_last->bf_stale) {
  372. struct ath_buf *tbf;
  373. tbf = ath_clone_txbuf(sc, bf_last);
  374. /*
  375. * Update tx baw and complete the
  376. * frame with failed status if we
  377. * run out of tx buf.
  378. */
  379. if (!tbf) {
  380. spin_lock_bh(&txq->axq_lock);
  381. ath_tx_update_baw(sc, tid,
  382. bf->bf_seqno);
  383. spin_unlock_bh(&txq->axq_lock);
  384. bf->bf_state.bf_type |=
  385. BUF_XRETRY;
  386. ath_tx_rc_status(bf, ts, nbad,
  387. 0, false);
  388. ath_tx_complete_buf(sc, bf, txq,
  389. &bf_head,
  390. ts, 0, 0);
  391. break;
  392. }
  393. ath9k_hw_cleartxdesc(sc->sc_ah,
  394. tbf->bf_desc);
  395. list_add_tail(&tbf->list, &bf_head);
  396. } else {
  397. /*
  398. * Clear descriptor status words for
  399. * software retry
  400. */
  401. ath9k_hw_cleartxdesc(sc->sc_ah,
  402. bf->bf_desc);
  403. }
  404. }
  405. /*
  406. * Put this buffer to the temporary pending
  407. * queue to retain ordering
  408. */
  409. list_splice_tail_init(&bf_head, &bf_pending);
  410. }
  411. bf = bf_next;
  412. }
  413. if (tid->state & AGGR_CLEANUP) {
  414. if (tid->baw_head == tid->baw_tail) {
  415. tid->state &= ~AGGR_ADDBA_COMPLETE;
  416. tid->state &= ~AGGR_CLEANUP;
  417. /* send buffered frames as singles */
  418. ath_tx_flush_tid(sc, tid);
  419. }
  420. rcu_read_unlock();
  421. return;
  422. }
  423. /* prepend un-acked frames to the beginning of the pending frame queue */
  424. if (!list_empty(&bf_pending)) {
  425. spin_lock_bh(&txq->axq_lock);
  426. list_splice(&bf_pending, &tid->buf_q);
  427. ath_tx_queue_tid(txq, tid);
  428. spin_unlock_bh(&txq->axq_lock);
  429. }
  430. rcu_read_unlock();
  431. if (needreset)
  432. ath_reset(sc, false);
  433. }
  434. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  435. struct ath_atx_tid *tid)
  436. {
  437. struct sk_buff *skb;
  438. struct ieee80211_tx_info *tx_info;
  439. struct ieee80211_tx_rate *rates;
  440. u32 max_4ms_framelen, frmlen;
  441. u16 aggr_limit, legacy = 0;
  442. int i;
  443. skb = bf->bf_mpdu;
  444. tx_info = IEEE80211_SKB_CB(skb);
  445. rates = tx_info->control.rates;
  446. /*
  447. * Find the lowest frame length among the rate series that will have a
  448. * 4ms transmit duration.
  449. * TODO - TXOP limit needs to be considered.
  450. */
  451. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  452. for (i = 0; i < 4; i++) {
  453. if (rates[i].count) {
  454. int modeidx;
  455. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  456. legacy = 1;
  457. break;
  458. }
  459. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  460. modeidx = MCS_HT40;
  461. else
  462. modeidx = MCS_HT20;
  463. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  464. modeidx++;
  465. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  466. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  467. }
  468. }
  469. /*
  470. * limit aggregate size by the minimum rate if rate selected is
  471. * not a probe rate, if rate selected is a probe rate then
  472. * avoid aggregation of this packet.
  473. */
  474. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  475. return 0;
  476. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  477. aggr_limit = min((max_4ms_framelen * 3) / 8,
  478. (u32)ATH_AMPDU_LIMIT_MAX);
  479. else
  480. aggr_limit = min(max_4ms_framelen,
  481. (u32)ATH_AMPDU_LIMIT_MAX);
  482. /*
  483. * h/w can accept aggregates upto 16 bit lengths (65535).
  484. * The IE, however can hold upto 65536, which shows up here
  485. * as zero. Ignore 65536 since we are constrained by hw.
  486. */
  487. if (tid->an->maxampdu)
  488. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  489. return aggr_limit;
  490. }
  491. /*
  492. * Returns the number of delimiters to be added to
  493. * meet the minimum required mpdudensity.
  494. */
  495. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  496. struct ath_buf *bf, u16 frmlen)
  497. {
  498. struct sk_buff *skb = bf->bf_mpdu;
  499. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  500. u32 nsymbits, nsymbols;
  501. u16 minlen;
  502. u8 flags, rix;
  503. int width, streams, half_gi, ndelim, mindelim;
  504. /* Select standard number of delimiters based on frame length alone */
  505. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  506. /*
  507. * If encryption enabled, hardware requires some more padding between
  508. * subframes.
  509. * TODO - this could be improved to be dependent on the rate.
  510. * The hardware can keep up at lower rates, but not higher rates
  511. */
  512. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
  513. ndelim += ATH_AGGR_ENCRYPTDELIM;
  514. /*
  515. * Convert desired mpdu density from microeconds to bytes based
  516. * on highest rate in rate series (i.e. first rate) to determine
  517. * required minimum length for subframe. Take into account
  518. * whether high rate is 20 or 40Mhz and half or full GI.
  519. *
  520. * If there is no mpdu density restriction, no further calculation
  521. * is needed.
  522. */
  523. if (tid->an->mpdudensity == 0)
  524. return ndelim;
  525. rix = tx_info->control.rates[0].idx;
  526. flags = tx_info->control.rates[0].flags;
  527. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  528. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  529. if (half_gi)
  530. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  531. else
  532. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  533. if (nsymbols == 0)
  534. nsymbols = 1;
  535. streams = HT_RC_2_STREAMS(rix);
  536. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  537. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  538. if (frmlen < minlen) {
  539. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  540. ndelim = max(mindelim, ndelim);
  541. }
  542. return ndelim;
  543. }
  544. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  545. struct ath_txq *txq,
  546. struct ath_atx_tid *tid,
  547. struct list_head *bf_q)
  548. {
  549. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  550. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  551. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  552. u16 aggr_limit = 0, al = 0, bpad = 0,
  553. al_delta, h_baw = tid->baw_size / 2;
  554. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  555. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  556. do {
  557. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  558. /* do not step over block-ack window */
  559. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
  560. status = ATH_AGGR_BAW_CLOSED;
  561. break;
  562. }
  563. if (!rl) {
  564. aggr_limit = ath_lookup_rate(sc, bf, tid);
  565. rl = 1;
  566. }
  567. /* do not exceed aggregation limit */
  568. al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
  569. if (nframes &&
  570. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  571. status = ATH_AGGR_LIMITED;
  572. break;
  573. }
  574. /* do not exceed subframe limit */
  575. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  576. status = ATH_AGGR_LIMITED;
  577. break;
  578. }
  579. nframes++;
  580. /* add padding for previous frame to aggregation length */
  581. al += bpad + al_delta;
  582. /*
  583. * Get the delimiters needed to meet the MPDU
  584. * density for this node.
  585. */
  586. ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
  587. bpad = PADBYTES(al_delta) + (ndelim << 2);
  588. bf->bf_next = NULL;
  589. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  590. /* link buffers of this frame to the aggregate */
  591. ath_tx_addto_baw(sc, tid, bf);
  592. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  593. list_move_tail(&bf->list, bf_q);
  594. if (bf_prev) {
  595. bf_prev->bf_next = bf;
  596. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  597. bf->bf_daddr);
  598. }
  599. bf_prev = bf;
  600. } while (!list_empty(&tid->buf_q));
  601. bf_first->bf_al = al;
  602. bf_first->bf_nframes = nframes;
  603. return status;
  604. #undef PADBYTES
  605. }
  606. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  607. struct ath_atx_tid *tid)
  608. {
  609. struct ath_buf *bf;
  610. enum ATH_AGGR_STATUS status;
  611. struct list_head bf_q;
  612. do {
  613. if (list_empty(&tid->buf_q))
  614. return;
  615. INIT_LIST_HEAD(&bf_q);
  616. status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
  617. /*
  618. * no frames picked up to be aggregated;
  619. * block-ack window is not open.
  620. */
  621. if (list_empty(&bf_q))
  622. break;
  623. bf = list_first_entry(&bf_q, struct ath_buf, list);
  624. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  625. /* if only one frame, send as non-aggregate */
  626. if (bf->bf_nframes == 1) {
  627. bf->bf_state.bf_type &= ~BUF_AGGR;
  628. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  629. ath_buf_set_rate(sc, bf);
  630. ath_tx_txqaddbuf(sc, txq, &bf_q);
  631. continue;
  632. }
  633. /* setup first desc of aggregate */
  634. bf->bf_state.bf_type |= BUF_AGGR;
  635. ath_buf_set_rate(sc, bf);
  636. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
  637. /* anchor last desc of aggregate */
  638. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  639. ath_tx_txqaddbuf(sc, txq, &bf_q);
  640. TX_STAT_INC(txq->axq_qnum, a_aggr);
  641. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  642. status != ATH_AGGR_BAW_CLOSED);
  643. }
  644. void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  645. u16 tid, u16 *ssn)
  646. {
  647. struct ath_atx_tid *txtid;
  648. struct ath_node *an;
  649. an = (struct ath_node *)sta->drv_priv;
  650. txtid = ATH_AN_2_TID(an, tid);
  651. txtid->state |= AGGR_ADDBA_PROGRESS;
  652. ath_tx_pause_tid(sc, txtid);
  653. *ssn = txtid->seq_start;
  654. }
  655. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  656. {
  657. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  658. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  659. struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
  660. struct ath_tx_status ts;
  661. struct ath_buf *bf;
  662. struct list_head bf_head;
  663. memset(&ts, 0, sizeof(ts));
  664. INIT_LIST_HEAD(&bf_head);
  665. if (txtid->state & AGGR_CLEANUP)
  666. return;
  667. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  668. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  669. return;
  670. }
  671. ath_tx_pause_tid(sc, txtid);
  672. /* drop all software retried frames and mark this TID */
  673. spin_lock_bh(&txq->axq_lock);
  674. while (!list_empty(&txtid->buf_q)) {
  675. bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
  676. if (!bf_isretried(bf)) {
  677. /*
  678. * NB: it's based on the assumption that
  679. * software retried frame will always stay
  680. * at the head of software queue.
  681. */
  682. break;
  683. }
  684. list_move_tail(&bf->list, &bf_head);
  685. ath_tx_update_baw(sc, txtid, bf->bf_seqno);
  686. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  687. }
  688. spin_unlock_bh(&txq->axq_lock);
  689. if (txtid->baw_head != txtid->baw_tail) {
  690. txtid->state |= AGGR_CLEANUP;
  691. } else {
  692. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  693. ath_tx_flush_tid(sc, txtid);
  694. }
  695. }
  696. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  697. {
  698. struct ath_atx_tid *txtid;
  699. struct ath_node *an;
  700. an = (struct ath_node *)sta->drv_priv;
  701. if (sc->sc_flags & SC_OP_TXAGGR) {
  702. txtid = ATH_AN_2_TID(an, tid);
  703. txtid->baw_size =
  704. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  705. txtid->state |= AGGR_ADDBA_COMPLETE;
  706. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  707. ath_tx_resume_tid(sc, txtid);
  708. }
  709. }
  710. bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
  711. {
  712. struct ath_atx_tid *txtid;
  713. if (!(sc->sc_flags & SC_OP_TXAGGR))
  714. return false;
  715. txtid = ATH_AN_2_TID(an, tidno);
  716. if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
  717. return true;
  718. return false;
  719. }
  720. /********************/
  721. /* Queue Management */
  722. /********************/
  723. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  724. struct ath_txq *txq)
  725. {
  726. struct ath_atx_ac *ac, *ac_tmp;
  727. struct ath_atx_tid *tid, *tid_tmp;
  728. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  729. list_del(&ac->list);
  730. ac->sched = false;
  731. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  732. list_del(&tid->list);
  733. tid->sched = false;
  734. ath_tid_drain(sc, txq, tid);
  735. }
  736. }
  737. }
  738. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  739. {
  740. struct ath_hw *ah = sc->sc_ah;
  741. struct ath_common *common = ath9k_hw_common(ah);
  742. struct ath9k_tx_queue_info qi;
  743. int qnum, i;
  744. memset(&qi, 0, sizeof(qi));
  745. qi.tqi_subtype = subtype;
  746. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  747. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  748. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  749. qi.tqi_physCompBuf = 0;
  750. /*
  751. * Enable interrupts only for EOL and DESC conditions.
  752. * We mark tx descriptors to receive a DESC interrupt
  753. * when a tx queue gets deep; otherwise waiting for the
  754. * EOL to reap descriptors. Note that this is done to
  755. * reduce interrupt load and this only defers reaping
  756. * descriptors, never transmitting frames. Aside from
  757. * reducing interrupts this also permits more concurrency.
  758. * The only potential downside is if the tx queue backs
  759. * up in which case the top half of the kernel may backup
  760. * due to a lack of tx descriptors.
  761. *
  762. * The UAPSD queue is an exception, since we take a desc-
  763. * based intr on the EOSP frames.
  764. */
  765. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  766. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  767. TXQ_FLAG_TXERRINT_ENABLE;
  768. } else {
  769. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  770. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  771. else
  772. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  773. TXQ_FLAG_TXDESCINT_ENABLE;
  774. }
  775. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  776. if (qnum == -1) {
  777. /*
  778. * NB: don't print a message, this happens
  779. * normally on parts with too few tx queues
  780. */
  781. return NULL;
  782. }
  783. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  784. ath_print(common, ATH_DBG_FATAL,
  785. "qnum %u out of range, max %u!\n",
  786. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  787. ath9k_hw_releasetxqueue(ah, qnum);
  788. return NULL;
  789. }
  790. if (!ATH_TXQ_SETUP(sc, qnum)) {
  791. struct ath_txq *txq = &sc->tx.txq[qnum];
  792. txq->axq_class = subtype;
  793. txq->axq_qnum = qnum;
  794. txq->axq_link = NULL;
  795. INIT_LIST_HEAD(&txq->axq_q);
  796. INIT_LIST_HEAD(&txq->axq_acq);
  797. spin_lock_init(&txq->axq_lock);
  798. txq->axq_depth = 0;
  799. txq->axq_tx_inprogress = false;
  800. sc->tx.txqsetup |= 1<<qnum;
  801. txq->txq_headidx = txq->txq_tailidx = 0;
  802. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  803. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  804. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  805. }
  806. return &sc->tx.txq[qnum];
  807. }
  808. int ath_txq_update(struct ath_softc *sc, int qnum,
  809. struct ath9k_tx_queue_info *qinfo)
  810. {
  811. struct ath_hw *ah = sc->sc_ah;
  812. int error = 0;
  813. struct ath9k_tx_queue_info qi;
  814. if (qnum == sc->beacon.beaconq) {
  815. /*
  816. * XXX: for beacon queue, we just save the parameter.
  817. * It will be picked up by ath_beaconq_config when
  818. * it's necessary.
  819. */
  820. sc->beacon.beacon_qi = *qinfo;
  821. return 0;
  822. }
  823. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  824. ath9k_hw_get_txq_props(ah, qnum, &qi);
  825. qi.tqi_aifs = qinfo->tqi_aifs;
  826. qi.tqi_cwmin = qinfo->tqi_cwmin;
  827. qi.tqi_cwmax = qinfo->tqi_cwmax;
  828. qi.tqi_burstTime = qinfo->tqi_burstTime;
  829. qi.tqi_readyTime = qinfo->tqi_readyTime;
  830. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  831. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  832. "Unable to update hardware queue %u!\n", qnum);
  833. error = -EIO;
  834. } else {
  835. ath9k_hw_resettxqueue(ah, qnum);
  836. }
  837. return error;
  838. }
  839. int ath_cabq_update(struct ath_softc *sc)
  840. {
  841. struct ath9k_tx_queue_info qi;
  842. int qnum = sc->beacon.cabq->axq_qnum;
  843. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  844. /*
  845. * Ensure the readytime % is within the bounds.
  846. */
  847. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  848. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  849. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  850. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  851. qi.tqi_readyTime = (sc->beacon_interval *
  852. sc->config.cabqReadytime) / 100;
  853. ath_txq_update(sc, qnum, &qi);
  854. return 0;
  855. }
  856. /*
  857. * Drain a given TX queue (could be Beacon or Data)
  858. *
  859. * This assumes output has been stopped and
  860. * we do not need to block ath_tx_tasklet.
  861. */
  862. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  863. {
  864. struct ath_buf *bf, *lastbf;
  865. struct list_head bf_head;
  866. struct ath_tx_status ts;
  867. memset(&ts, 0, sizeof(ts));
  868. INIT_LIST_HEAD(&bf_head);
  869. for (;;) {
  870. spin_lock_bh(&txq->axq_lock);
  871. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  872. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  873. txq->txq_headidx = txq->txq_tailidx = 0;
  874. spin_unlock_bh(&txq->axq_lock);
  875. break;
  876. } else {
  877. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  878. struct ath_buf, list);
  879. }
  880. } else {
  881. if (list_empty(&txq->axq_q)) {
  882. txq->axq_link = NULL;
  883. spin_unlock_bh(&txq->axq_lock);
  884. break;
  885. }
  886. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  887. list);
  888. if (bf->bf_stale) {
  889. list_del(&bf->list);
  890. spin_unlock_bh(&txq->axq_lock);
  891. ath_tx_return_buffer(sc, bf);
  892. continue;
  893. }
  894. }
  895. lastbf = bf->bf_lastbf;
  896. if (!retry_tx)
  897. lastbf->bf_tx_aborted = true;
  898. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  899. list_cut_position(&bf_head,
  900. &txq->txq_fifo[txq->txq_tailidx],
  901. &lastbf->list);
  902. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  903. } else {
  904. /* remove ath_buf's of the same mpdu from txq */
  905. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  906. }
  907. txq->axq_depth--;
  908. spin_unlock_bh(&txq->axq_lock);
  909. if (bf_isampdu(bf))
  910. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
  911. else
  912. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  913. }
  914. spin_lock_bh(&txq->axq_lock);
  915. txq->axq_tx_inprogress = false;
  916. spin_unlock_bh(&txq->axq_lock);
  917. /* flush any pending frames if aggregation is enabled */
  918. if (sc->sc_flags & SC_OP_TXAGGR) {
  919. if (!retry_tx) {
  920. spin_lock_bh(&txq->axq_lock);
  921. ath_txq_drain_pending_buffers(sc, txq);
  922. spin_unlock_bh(&txq->axq_lock);
  923. }
  924. }
  925. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  926. spin_lock_bh(&txq->axq_lock);
  927. while (!list_empty(&txq->txq_fifo_pending)) {
  928. bf = list_first_entry(&txq->txq_fifo_pending,
  929. struct ath_buf, list);
  930. list_cut_position(&bf_head,
  931. &txq->txq_fifo_pending,
  932. &bf->bf_lastbf->list);
  933. spin_unlock_bh(&txq->axq_lock);
  934. if (bf_isampdu(bf))
  935. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  936. &ts, 0);
  937. else
  938. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  939. &ts, 0, 0);
  940. spin_lock_bh(&txq->axq_lock);
  941. }
  942. spin_unlock_bh(&txq->axq_lock);
  943. }
  944. }
  945. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  946. {
  947. struct ath_hw *ah = sc->sc_ah;
  948. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  949. struct ath_txq *txq;
  950. int i, npend = 0;
  951. if (sc->sc_flags & SC_OP_INVALID)
  952. return;
  953. /* Stop beacon queue */
  954. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  955. /* Stop data queues */
  956. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  957. if (ATH_TXQ_SETUP(sc, i)) {
  958. txq = &sc->tx.txq[i];
  959. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  960. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  961. }
  962. }
  963. if (npend) {
  964. int r;
  965. ath_print(common, ATH_DBG_FATAL,
  966. "Failed to stop TX DMA. Resetting hardware!\n");
  967. spin_lock_bh(&sc->sc_resetlock);
  968. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  969. if (r)
  970. ath_print(common, ATH_DBG_FATAL,
  971. "Unable to reset hardware; reset status %d\n",
  972. r);
  973. spin_unlock_bh(&sc->sc_resetlock);
  974. }
  975. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  976. if (ATH_TXQ_SETUP(sc, i))
  977. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  978. }
  979. }
  980. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  981. {
  982. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  983. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  984. }
  985. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  986. {
  987. struct ath_atx_ac *ac;
  988. struct ath_atx_tid *tid;
  989. if (list_empty(&txq->axq_acq))
  990. return;
  991. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  992. list_del(&ac->list);
  993. ac->sched = false;
  994. do {
  995. if (list_empty(&ac->tid_q))
  996. return;
  997. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  998. list_del(&tid->list);
  999. tid->sched = false;
  1000. if (tid->paused)
  1001. continue;
  1002. ath_tx_sched_aggr(sc, txq, tid);
  1003. /*
  1004. * add tid to round-robin queue if more frames
  1005. * are pending for the tid
  1006. */
  1007. if (!list_empty(&tid->buf_q))
  1008. ath_tx_queue_tid(txq, tid);
  1009. break;
  1010. } while (!list_empty(&ac->tid_q));
  1011. if (!list_empty(&ac->tid_q)) {
  1012. if (!ac->sched) {
  1013. ac->sched = true;
  1014. list_add_tail(&ac->list, &txq->axq_acq);
  1015. }
  1016. }
  1017. }
  1018. int ath_tx_setup(struct ath_softc *sc, int haltype)
  1019. {
  1020. struct ath_txq *txq;
  1021. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  1022. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1023. "HAL AC %u out of range, max %zu!\n",
  1024. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  1025. return 0;
  1026. }
  1027. txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
  1028. if (txq != NULL) {
  1029. sc->tx.hwq_map[haltype] = txq->axq_qnum;
  1030. return 1;
  1031. } else
  1032. return 0;
  1033. }
  1034. /***********/
  1035. /* TX, DMA */
  1036. /***********/
  1037. /*
  1038. * Insert a chain of ath_buf (descriptors) on a txq and
  1039. * assume the descriptors are already chained together by caller.
  1040. */
  1041. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1042. struct list_head *head)
  1043. {
  1044. struct ath_hw *ah = sc->sc_ah;
  1045. struct ath_common *common = ath9k_hw_common(ah);
  1046. struct ath_buf *bf;
  1047. /*
  1048. * Insert the frame on the outbound list and
  1049. * pass it on to the hardware.
  1050. */
  1051. if (list_empty(head))
  1052. return;
  1053. bf = list_first_entry(head, struct ath_buf, list);
  1054. ath_print(common, ATH_DBG_QUEUE,
  1055. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1056. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1057. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1058. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1059. return;
  1060. }
  1061. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1062. ath_print(common, ATH_DBG_XMIT,
  1063. "Initializing tx fifo %d which "
  1064. "is non-empty\n",
  1065. txq->txq_headidx);
  1066. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1067. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1068. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1069. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1070. ath_print(common, ATH_DBG_XMIT,
  1071. "TXDP[%u] = %llx (%p)\n",
  1072. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1073. } else {
  1074. list_splice_tail_init(head, &txq->axq_q);
  1075. if (txq->axq_link == NULL) {
  1076. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1077. ath_print(common, ATH_DBG_XMIT,
  1078. "TXDP[%u] = %llx (%p)\n",
  1079. txq->axq_qnum, ito64(bf->bf_daddr),
  1080. bf->bf_desc);
  1081. } else {
  1082. *txq->axq_link = bf->bf_daddr;
  1083. ath_print(common, ATH_DBG_XMIT,
  1084. "link[%u] (%p)=%llx (%p)\n",
  1085. txq->axq_qnum, txq->axq_link,
  1086. ito64(bf->bf_daddr), bf->bf_desc);
  1087. }
  1088. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1089. &txq->axq_link);
  1090. ath9k_hw_txstart(ah, txq->axq_qnum);
  1091. }
  1092. txq->axq_depth++;
  1093. }
  1094. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1095. struct list_head *bf_head,
  1096. struct ath_tx_control *txctl)
  1097. {
  1098. struct ath_buf *bf;
  1099. bf = list_first_entry(bf_head, struct ath_buf, list);
  1100. bf->bf_state.bf_type |= BUF_AMPDU;
  1101. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1102. /*
  1103. * Do not queue to h/w when any of the following conditions is true:
  1104. * - there are pending frames in software queue
  1105. * - the TID is currently paused for ADDBA/BAR request
  1106. * - seqno is not within block-ack window
  1107. * - h/w queue depth exceeds low water mark
  1108. */
  1109. if (!list_empty(&tid->buf_q) || tid->paused ||
  1110. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
  1111. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1112. /*
  1113. * Add this frame to software queue for scheduling later
  1114. * for aggregation.
  1115. */
  1116. list_move_tail(&bf->list, &tid->buf_q);
  1117. ath_tx_queue_tid(txctl->txq, tid);
  1118. return;
  1119. }
  1120. /* Add sub-frame to BAW */
  1121. ath_tx_addto_baw(sc, tid, bf);
  1122. /* Queue to h/w without aggregation */
  1123. bf->bf_nframes = 1;
  1124. bf->bf_lastbf = bf;
  1125. ath_buf_set_rate(sc, bf);
  1126. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1127. }
  1128. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  1129. struct ath_atx_tid *tid,
  1130. struct list_head *bf_head)
  1131. {
  1132. struct ath_buf *bf;
  1133. bf = list_first_entry(bf_head, struct ath_buf, list);
  1134. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1135. /* update starting sequence number for subsequent ADDBA request */
  1136. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1137. bf->bf_nframes = 1;
  1138. bf->bf_lastbf = bf;
  1139. ath_buf_set_rate(sc, bf);
  1140. ath_tx_txqaddbuf(sc, txq, bf_head);
  1141. TX_STAT_INC(txq->axq_qnum, queued);
  1142. }
  1143. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1144. struct list_head *bf_head)
  1145. {
  1146. struct ath_buf *bf;
  1147. bf = list_first_entry(bf_head, struct ath_buf, list);
  1148. bf->bf_lastbf = bf;
  1149. bf->bf_nframes = 1;
  1150. ath_buf_set_rate(sc, bf);
  1151. ath_tx_txqaddbuf(sc, txq, bf_head);
  1152. TX_STAT_INC(txq->axq_qnum, queued);
  1153. }
  1154. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1155. {
  1156. struct ieee80211_hdr *hdr;
  1157. enum ath9k_pkt_type htype;
  1158. __le16 fc;
  1159. hdr = (struct ieee80211_hdr *)skb->data;
  1160. fc = hdr->frame_control;
  1161. if (ieee80211_is_beacon(fc))
  1162. htype = ATH9K_PKT_TYPE_BEACON;
  1163. else if (ieee80211_is_probe_resp(fc))
  1164. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1165. else if (ieee80211_is_atim(fc))
  1166. htype = ATH9K_PKT_TYPE_ATIM;
  1167. else if (ieee80211_is_pspoll(fc))
  1168. htype = ATH9K_PKT_TYPE_PSPOLL;
  1169. else
  1170. htype = ATH9K_PKT_TYPE_NORMAL;
  1171. return htype;
  1172. }
  1173. static int get_hw_crypto_keytype(struct sk_buff *skb)
  1174. {
  1175. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1176. if (tx_info->control.hw_key) {
  1177. if (tx_info->control.hw_key->alg == ALG_WEP)
  1178. return ATH9K_KEY_TYPE_WEP;
  1179. else if (tx_info->control.hw_key->alg == ALG_TKIP)
  1180. return ATH9K_KEY_TYPE_TKIP;
  1181. else if (tx_info->control.hw_key->alg == ALG_CCMP)
  1182. return ATH9K_KEY_TYPE_AES;
  1183. }
  1184. return ATH9K_KEY_TYPE_CLEAR;
  1185. }
  1186. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1187. struct ath_buf *bf)
  1188. {
  1189. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1190. struct ieee80211_hdr *hdr;
  1191. struct ath_node *an;
  1192. struct ath_atx_tid *tid;
  1193. __le16 fc;
  1194. u8 *qc;
  1195. if (!tx_info->control.sta)
  1196. return;
  1197. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1198. hdr = (struct ieee80211_hdr *)skb->data;
  1199. fc = hdr->frame_control;
  1200. if (ieee80211_is_data_qos(fc)) {
  1201. qc = ieee80211_get_qos_ctl(hdr);
  1202. bf->bf_tidno = qc[0] & 0xf;
  1203. }
  1204. /*
  1205. * For HT capable stations, we save tidno for later use.
  1206. * We also override seqno set by upper layer with the one
  1207. * in tx aggregation state.
  1208. */
  1209. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1210. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1211. bf->bf_seqno = tid->seq_next;
  1212. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1213. }
  1214. static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
  1215. {
  1216. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1217. int flags = 0;
  1218. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1219. flags |= ATH9K_TXDESC_INTREQ;
  1220. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1221. flags |= ATH9K_TXDESC_NOACK;
  1222. if (use_ldpc)
  1223. flags |= ATH9K_TXDESC_LDPC;
  1224. return flags;
  1225. }
  1226. /*
  1227. * rix - rate index
  1228. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1229. * width - 0 for 20 MHz, 1 for 40 MHz
  1230. * half_gi - to use 4us v/s 3.6 us for symbol time
  1231. */
  1232. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
  1233. int width, int half_gi, bool shortPreamble)
  1234. {
  1235. u32 nbits, nsymbits, duration, nsymbols;
  1236. int streams, pktlen;
  1237. pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
  1238. /* find number of symbols: PLCP + data */
  1239. streams = HT_RC_2_STREAMS(rix);
  1240. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1241. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1242. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1243. if (!half_gi)
  1244. duration = SYMBOL_TIME(nsymbols);
  1245. else
  1246. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1247. /* addup duration for legacy/ht training and signal fields */
  1248. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1249. return duration;
  1250. }
  1251. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
  1252. {
  1253. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1254. struct ath9k_11n_rate_series series[4];
  1255. struct sk_buff *skb;
  1256. struct ieee80211_tx_info *tx_info;
  1257. struct ieee80211_tx_rate *rates;
  1258. const struct ieee80211_rate *rate;
  1259. struct ieee80211_hdr *hdr;
  1260. int i, flags = 0;
  1261. u8 rix = 0, ctsrate = 0;
  1262. bool is_pspoll;
  1263. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1264. skb = bf->bf_mpdu;
  1265. tx_info = IEEE80211_SKB_CB(skb);
  1266. rates = tx_info->control.rates;
  1267. hdr = (struct ieee80211_hdr *)skb->data;
  1268. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1269. /*
  1270. * We check if Short Preamble is needed for the CTS rate by
  1271. * checking the BSS's global flag.
  1272. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1273. */
  1274. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1275. ctsrate = rate->hw_value;
  1276. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1277. ctsrate |= rate->hw_value_short;
  1278. for (i = 0; i < 4; i++) {
  1279. bool is_40, is_sgi, is_sp;
  1280. int phy;
  1281. if (!rates[i].count || (rates[i].idx < 0))
  1282. continue;
  1283. rix = rates[i].idx;
  1284. series[i].Tries = rates[i].count;
  1285. series[i].ChSel = common->tx_chainmask;
  1286. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1287. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1288. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1289. flags |= ATH9K_TXDESC_RTSENA;
  1290. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1291. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1292. flags |= ATH9K_TXDESC_CTSENA;
  1293. }
  1294. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1295. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1296. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1297. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1298. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1299. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1300. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1301. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1302. /* MCS rates */
  1303. series[i].Rate = rix | 0x80;
  1304. series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
  1305. is_40, is_sgi, is_sp);
  1306. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1307. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1308. continue;
  1309. }
  1310. /* legcay rates */
  1311. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1312. !(rate->flags & IEEE80211_RATE_ERP_G))
  1313. phy = WLAN_RC_PHY_CCK;
  1314. else
  1315. phy = WLAN_RC_PHY_OFDM;
  1316. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1317. series[i].Rate = rate->hw_value;
  1318. if (rate->hw_value_short) {
  1319. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1320. series[i].Rate |= rate->hw_value_short;
  1321. } else {
  1322. is_sp = false;
  1323. }
  1324. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1325. phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
  1326. }
  1327. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1328. if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
  1329. flags &= ~ATH9K_TXDESC_RTSENA;
  1330. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1331. if (flags & ATH9K_TXDESC_RTSENA)
  1332. flags &= ~ATH9K_TXDESC_CTSENA;
  1333. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1334. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1335. bf->bf_lastbf->bf_desc,
  1336. !is_pspoll, ctsrate,
  1337. 0, series, 4, flags);
  1338. if (sc->config.ath_aggr_prot && flags)
  1339. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1340. }
  1341. static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
  1342. struct sk_buff *skb,
  1343. struct ath_tx_control *txctl)
  1344. {
  1345. struct ath_wiphy *aphy = hw->priv;
  1346. struct ath_softc *sc = aphy->sc;
  1347. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1348. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1349. int hdrlen;
  1350. __le16 fc;
  1351. int padpos, padsize;
  1352. bool use_ldpc = false;
  1353. tx_info->pad[0] = 0;
  1354. switch (txctl->frame_type) {
  1355. case ATH9K_IFT_NOT_INTERNAL:
  1356. break;
  1357. case ATH9K_IFT_PAUSE:
  1358. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
  1359. /* fall through */
  1360. case ATH9K_IFT_UNPAUSE:
  1361. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
  1362. break;
  1363. }
  1364. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1365. fc = hdr->frame_control;
  1366. ATH_TXBUF_RESET(bf);
  1367. bf->aphy = aphy;
  1368. bf->bf_frmlen = skb->len + FCS_LEN;
  1369. /* Remove the padding size from bf_frmlen, if any */
  1370. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1371. padsize = padpos & 3;
  1372. if (padsize && skb->len>padpos+padsize) {
  1373. bf->bf_frmlen -= padsize;
  1374. }
  1375. if (!txctl->paprd && conf_is_ht(&hw->conf)) {
  1376. bf->bf_state.bf_type |= BUF_HT;
  1377. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1378. use_ldpc = true;
  1379. }
  1380. bf->bf_state.bfs_paprd = txctl->paprd;
  1381. if (txctl->paprd)
  1382. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1383. bf->bf_flags = setup_tx_flags(skb, use_ldpc);
  1384. bf->bf_keytype = get_hw_crypto_keytype(skb);
  1385. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
  1386. bf->bf_frmlen += tx_info->control.hw_key->icv_len;
  1387. bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
  1388. } else {
  1389. bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
  1390. }
  1391. if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
  1392. (sc->sc_flags & SC_OP_TXAGGR))
  1393. assign_aggr_tid_seqno(skb, bf);
  1394. bf->bf_mpdu = skb;
  1395. bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
  1396. skb->len, DMA_TO_DEVICE);
  1397. if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
  1398. bf->bf_mpdu = NULL;
  1399. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1400. "dma_mapping_error() on TX\n");
  1401. return -ENOMEM;
  1402. }
  1403. bf->bf_buf_addr = bf->bf_dmacontext;
  1404. /* tag if this is a nullfunc frame to enable PS when AP acks it */
  1405. if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
  1406. bf->bf_isnullfunc = true;
  1407. sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
  1408. } else
  1409. bf->bf_isnullfunc = false;
  1410. bf->bf_tx_aborted = false;
  1411. return 0;
  1412. }
  1413. /* FIXME: tx power */
  1414. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1415. struct ath_tx_control *txctl)
  1416. {
  1417. struct sk_buff *skb = bf->bf_mpdu;
  1418. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1419. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1420. struct ath_node *an = NULL;
  1421. struct list_head bf_head;
  1422. struct ath_desc *ds;
  1423. struct ath_atx_tid *tid;
  1424. struct ath_hw *ah = sc->sc_ah;
  1425. int frm_type;
  1426. __le16 fc;
  1427. frm_type = get_hw_packet_type(skb);
  1428. fc = hdr->frame_control;
  1429. INIT_LIST_HEAD(&bf_head);
  1430. list_add_tail(&bf->list, &bf_head);
  1431. ds = bf->bf_desc;
  1432. ath9k_hw_set_desc_link(ah, ds, 0);
  1433. ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
  1434. bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
  1435. ath9k_hw_filltxdesc(ah, ds,
  1436. skb->len, /* segment length */
  1437. true, /* first segment */
  1438. true, /* last segment */
  1439. ds, /* first descriptor */
  1440. bf->bf_buf_addr,
  1441. txctl->txq->axq_qnum);
  1442. if (bf->bf_state.bfs_paprd)
  1443. ar9003_hw_set_paprd_txdesc(ah, ds, bf->bf_state.bfs_paprd);
  1444. spin_lock_bh(&txctl->txq->axq_lock);
  1445. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1446. tx_info->control.sta) {
  1447. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1448. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1449. if (!ieee80211_is_data_qos(fc)) {
  1450. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1451. goto tx_done;
  1452. }
  1453. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1454. /*
  1455. * Try aggregation if it's a unicast data frame
  1456. * and the destination is HT capable.
  1457. */
  1458. ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
  1459. } else {
  1460. /*
  1461. * Send this frame as regular when ADDBA
  1462. * exchange is neither complete nor pending.
  1463. */
  1464. ath_tx_send_ht_normal(sc, txctl->txq,
  1465. tid, &bf_head);
  1466. }
  1467. } else {
  1468. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1469. }
  1470. tx_done:
  1471. spin_unlock_bh(&txctl->txq->axq_lock);
  1472. }
  1473. /* Upon failure caller should free skb */
  1474. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1475. struct ath_tx_control *txctl)
  1476. {
  1477. struct ath_wiphy *aphy = hw->priv;
  1478. struct ath_softc *sc = aphy->sc;
  1479. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1480. struct ath_txq *txq = txctl->txq;
  1481. struct ath_buf *bf;
  1482. int q, r;
  1483. bf = ath_tx_get_buffer(sc);
  1484. if (!bf) {
  1485. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1486. return -1;
  1487. }
  1488. r = ath_tx_setup_buffer(hw, bf, skb, txctl);
  1489. if (unlikely(r)) {
  1490. ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
  1491. /* upon ath_tx_processq() this TX queue will be resumed, we
  1492. * guarantee this will happen by knowing beforehand that
  1493. * we will at least have to run TX completionon one buffer
  1494. * on the queue */
  1495. spin_lock_bh(&txq->axq_lock);
  1496. if (!txq->stopped && txq->axq_depth > 1) {
  1497. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1498. txq->stopped = 1;
  1499. }
  1500. spin_unlock_bh(&txq->axq_lock);
  1501. ath_tx_return_buffer(sc, bf);
  1502. return r;
  1503. }
  1504. q = skb_get_queue_mapping(skb);
  1505. if (q >= 4)
  1506. q = 0;
  1507. spin_lock_bh(&txq->axq_lock);
  1508. if (++sc->tx.pending_frames[q] > ATH_MAX_QDEPTH && !txq->stopped) {
  1509. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1510. txq->stopped = 1;
  1511. }
  1512. spin_unlock_bh(&txq->axq_lock);
  1513. ath_tx_start_dma(sc, bf, txctl);
  1514. return 0;
  1515. }
  1516. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1517. {
  1518. struct ath_wiphy *aphy = hw->priv;
  1519. struct ath_softc *sc = aphy->sc;
  1520. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1521. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1522. int padpos, padsize;
  1523. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1524. struct ath_tx_control txctl;
  1525. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1526. /*
  1527. * As a temporary workaround, assign seq# here; this will likely need
  1528. * to be cleaned up to work better with Beacon transmission and virtual
  1529. * BSSes.
  1530. */
  1531. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1532. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1533. sc->tx.seq_no += 0x10;
  1534. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1535. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1536. }
  1537. /* Add the padding after the header if this is not already done */
  1538. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1539. padsize = padpos & 3;
  1540. if (padsize && skb->len>padpos) {
  1541. if (skb_headroom(skb) < padsize) {
  1542. ath_print(common, ATH_DBG_XMIT,
  1543. "TX CABQ padding failed\n");
  1544. dev_kfree_skb_any(skb);
  1545. return;
  1546. }
  1547. skb_push(skb, padsize);
  1548. memmove(skb->data, skb->data + padsize, padpos);
  1549. }
  1550. txctl.txq = sc->beacon.cabq;
  1551. ath_print(common, ATH_DBG_XMIT,
  1552. "transmitting CABQ packet, skb: %p\n", skb);
  1553. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1554. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1555. goto exit;
  1556. }
  1557. return;
  1558. exit:
  1559. dev_kfree_skb_any(skb);
  1560. }
  1561. /*****************/
  1562. /* TX Completion */
  1563. /*****************/
  1564. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1565. struct ath_wiphy *aphy, int tx_flags)
  1566. {
  1567. struct ieee80211_hw *hw = sc->hw;
  1568. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1569. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1570. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1571. int q, padpos, padsize;
  1572. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1573. if (aphy)
  1574. hw = aphy->hw;
  1575. if (tx_flags & ATH_TX_BAR)
  1576. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1577. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1578. /* Frame was ACKed */
  1579. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1580. }
  1581. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1582. padsize = padpos & 3;
  1583. if (padsize && skb->len>padpos+padsize) {
  1584. /*
  1585. * Remove MAC header padding before giving the frame back to
  1586. * mac80211.
  1587. */
  1588. memmove(skb->data + padsize, skb->data, padpos);
  1589. skb_pull(skb, padsize);
  1590. }
  1591. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1592. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1593. ath_print(common, ATH_DBG_PS,
  1594. "Going back to sleep after having "
  1595. "received TX status (0x%lx)\n",
  1596. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1597. PS_WAIT_FOR_CAB |
  1598. PS_WAIT_FOR_PSPOLL_DATA |
  1599. PS_WAIT_FOR_TX_ACK));
  1600. }
  1601. if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
  1602. ath9k_tx_status(hw, skb);
  1603. else {
  1604. q = skb_get_queue_mapping(skb);
  1605. if (q >= 4)
  1606. q = 0;
  1607. if (--sc->tx.pending_frames[q] < 0)
  1608. sc->tx.pending_frames[q] = 0;
  1609. ieee80211_tx_status(hw, skb);
  1610. }
  1611. }
  1612. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1613. struct ath_txq *txq, struct list_head *bf_q,
  1614. struct ath_tx_status *ts, int txok, int sendbar)
  1615. {
  1616. struct sk_buff *skb = bf->bf_mpdu;
  1617. unsigned long flags;
  1618. int tx_flags = 0;
  1619. if (sendbar)
  1620. tx_flags = ATH_TX_BAR;
  1621. if (!txok) {
  1622. tx_flags |= ATH_TX_ERROR;
  1623. if (bf_isxretried(bf))
  1624. tx_flags |= ATH_TX_XRETRY;
  1625. }
  1626. dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
  1627. if (bf->bf_state.bfs_paprd) {
  1628. if (time_after(jiffies,
  1629. bf->bf_state.bfs_paprd_timestamp +
  1630. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1631. dev_kfree_skb_any(skb);
  1632. else
  1633. complete(&sc->paprd_complete);
  1634. } else {
  1635. ath_tx_complete(sc, skb, bf->aphy, tx_flags);
  1636. ath_debug_stat_tx(sc, txq, bf, ts);
  1637. }
  1638. /*
  1639. * Return the list of ath_buf of this mpdu to free queue
  1640. */
  1641. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1642. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1643. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1644. }
  1645. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  1646. struct ath_tx_status *ts, int txok)
  1647. {
  1648. u16 seq_st = 0;
  1649. u32 ba[WME_BA_BMP_SIZE >> 5];
  1650. int ba_index;
  1651. int nbad = 0;
  1652. int isaggr = 0;
  1653. if (bf->bf_lastbf->bf_tx_aborted)
  1654. return 0;
  1655. isaggr = bf_isaggr(bf);
  1656. if (isaggr) {
  1657. seq_st = ts->ts_seqnum;
  1658. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  1659. }
  1660. while (bf) {
  1661. ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
  1662. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  1663. nbad++;
  1664. bf = bf->bf_next;
  1665. }
  1666. return nbad;
  1667. }
  1668. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1669. int nbad, int txok, bool update_rc)
  1670. {
  1671. struct sk_buff *skb = bf->bf_mpdu;
  1672. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1673. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1674. struct ieee80211_hw *hw = bf->aphy->hw;
  1675. u8 i, tx_rateindex;
  1676. if (txok)
  1677. tx_info->status.ack_signal = ts->ts_rssi;
  1678. tx_rateindex = ts->ts_rateindex;
  1679. WARN_ON(tx_rateindex >= hw->max_rates);
  1680. if (ts->ts_status & ATH9K_TXERR_FILT)
  1681. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1682. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
  1683. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1684. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1685. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1686. if (ieee80211_is_data(hdr->frame_control)) {
  1687. if (ts->ts_flags &
  1688. (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
  1689. tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
  1690. if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
  1691. (ts->ts_status & ATH9K_TXERR_FIFO))
  1692. tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
  1693. tx_info->status.ampdu_len = bf->bf_nframes;
  1694. tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
  1695. }
  1696. }
  1697. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1698. tx_info->status.rates[i].count = 0;
  1699. tx_info->status.rates[i].idx = -1;
  1700. }
  1701. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1702. }
  1703. static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
  1704. {
  1705. int qnum;
  1706. qnum = ath_get_mac80211_qnum(txq->axq_class, sc);
  1707. if (qnum == -1)
  1708. return;
  1709. spin_lock_bh(&txq->axq_lock);
  1710. if (txq->stopped && sc->tx.pending_frames[qnum] < ATH_MAX_QDEPTH) {
  1711. ath_mac80211_start_queue(sc, qnum);
  1712. txq->stopped = 0;
  1713. }
  1714. spin_unlock_bh(&txq->axq_lock);
  1715. }
  1716. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1717. {
  1718. struct ath_hw *ah = sc->sc_ah;
  1719. struct ath_common *common = ath9k_hw_common(ah);
  1720. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1721. struct list_head bf_head;
  1722. struct ath_desc *ds;
  1723. struct ath_tx_status ts;
  1724. int txok;
  1725. int status;
  1726. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1727. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1728. txq->axq_link);
  1729. for (;;) {
  1730. spin_lock_bh(&txq->axq_lock);
  1731. if (list_empty(&txq->axq_q)) {
  1732. txq->axq_link = NULL;
  1733. spin_unlock_bh(&txq->axq_lock);
  1734. break;
  1735. }
  1736. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1737. /*
  1738. * There is a race condition that a BH gets scheduled
  1739. * after sw writes TxE and before hw re-load the last
  1740. * descriptor to get the newly chained one.
  1741. * Software must keep the last DONE descriptor as a
  1742. * holding descriptor - software does so by marking
  1743. * it with the STALE flag.
  1744. */
  1745. bf_held = NULL;
  1746. if (bf->bf_stale) {
  1747. bf_held = bf;
  1748. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1749. spin_unlock_bh(&txq->axq_lock);
  1750. break;
  1751. } else {
  1752. bf = list_entry(bf_held->list.next,
  1753. struct ath_buf, list);
  1754. }
  1755. }
  1756. lastbf = bf->bf_lastbf;
  1757. ds = lastbf->bf_desc;
  1758. memset(&ts, 0, sizeof(ts));
  1759. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1760. if (status == -EINPROGRESS) {
  1761. spin_unlock_bh(&txq->axq_lock);
  1762. break;
  1763. }
  1764. /*
  1765. * We now know the nullfunc frame has been ACKed so we
  1766. * can disable RX.
  1767. */
  1768. if (bf->bf_isnullfunc &&
  1769. (ts.ts_status & ATH9K_TX_ACKED)) {
  1770. if ((sc->ps_flags & PS_ENABLED))
  1771. ath9k_enable_ps(sc);
  1772. else
  1773. sc->ps_flags |= PS_NULLFUNC_COMPLETED;
  1774. }
  1775. /*
  1776. * Remove ath_buf's of the same transmit unit from txq,
  1777. * however leave the last descriptor back as the holding
  1778. * descriptor for hw.
  1779. */
  1780. lastbf->bf_stale = true;
  1781. INIT_LIST_HEAD(&bf_head);
  1782. if (!list_is_singular(&lastbf->list))
  1783. list_cut_position(&bf_head,
  1784. &txq->axq_q, lastbf->list.prev);
  1785. txq->axq_depth--;
  1786. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1787. txq->axq_tx_inprogress = false;
  1788. if (bf_held)
  1789. list_del(&bf_held->list);
  1790. spin_unlock_bh(&txq->axq_lock);
  1791. if (bf_held)
  1792. ath_tx_return_buffer(sc, bf_held);
  1793. if (!bf_isampdu(bf)) {
  1794. /*
  1795. * This frame is sent out as a single frame.
  1796. * Use hardware retry status for this frame.
  1797. */
  1798. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1799. bf->bf_state.bf_type |= BUF_XRETRY;
  1800. ath_tx_rc_status(bf, &ts, 0, txok, true);
  1801. }
  1802. if (bf_isampdu(bf))
  1803. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
  1804. else
  1805. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1806. ath_wake_mac80211_queue(sc, txq);
  1807. spin_lock_bh(&txq->axq_lock);
  1808. if (sc->sc_flags & SC_OP_TXAGGR)
  1809. ath_txq_schedule(sc, txq);
  1810. spin_unlock_bh(&txq->axq_lock);
  1811. }
  1812. }
  1813. static void ath_tx_complete_poll_work(struct work_struct *work)
  1814. {
  1815. struct ath_softc *sc = container_of(work, struct ath_softc,
  1816. tx_complete_work.work);
  1817. struct ath_txq *txq;
  1818. int i;
  1819. bool needreset = false;
  1820. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1821. if (ATH_TXQ_SETUP(sc, i)) {
  1822. txq = &sc->tx.txq[i];
  1823. spin_lock_bh(&txq->axq_lock);
  1824. if (txq->axq_depth) {
  1825. if (txq->axq_tx_inprogress) {
  1826. needreset = true;
  1827. spin_unlock_bh(&txq->axq_lock);
  1828. break;
  1829. } else {
  1830. txq->axq_tx_inprogress = true;
  1831. }
  1832. }
  1833. spin_unlock_bh(&txq->axq_lock);
  1834. }
  1835. if (needreset) {
  1836. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1837. "tx hung, resetting the chip\n");
  1838. ath9k_ps_wakeup(sc);
  1839. ath_reset(sc, false);
  1840. ath9k_ps_restore(sc);
  1841. }
  1842. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1843. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1844. }
  1845. void ath_tx_tasklet(struct ath_softc *sc)
  1846. {
  1847. int i;
  1848. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1849. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1850. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1851. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1852. ath_tx_processq(sc, &sc->tx.txq[i]);
  1853. }
  1854. }
  1855. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1856. {
  1857. struct ath_tx_status txs;
  1858. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1859. struct ath_hw *ah = sc->sc_ah;
  1860. struct ath_txq *txq;
  1861. struct ath_buf *bf, *lastbf;
  1862. struct list_head bf_head;
  1863. int status;
  1864. int txok;
  1865. for (;;) {
  1866. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1867. if (status == -EINPROGRESS)
  1868. break;
  1869. if (status == -EIO) {
  1870. ath_print(common, ATH_DBG_XMIT,
  1871. "Error processing tx status\n");
  1872. break;
  1873. }
  1874. /* Skip beacon completions */
  1875. if (txs.qid == sc->beacon.beaconq)
  1876. continue;
  1877. txq = &sc->tx.txq[txs.qid];
  1878. spin_lock_bh(&txq->axq_lock);
  1879. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1880. spin_unlock_bh(&txq->axq_lock);
  1881. return;
  1882. }
  1883. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1884. struct ath_buf, list);
  1885. lastbf = bf->bf_lastbf;
  1886. INIT_LIST_HEAD(&bf_head);
  1887. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1888. &lastbf->list);
  1889. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1890. txq->axq_depth--;
  1891. txq->axq_tx_inprogress = false;
  1892. spin_unlock_bh(&txq->axq_lock);
  1893. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1894. /*
  1895. * Make sure null func frame is acked before configuring
  1896. * hw into ps mode.
  1897. */
  1898. if (bf->bf_isnullfunc && txok) {
  1899. if ((sc->ps_flags & PS_ENABLED))
  1900. ath9k_enable_ps(sc);
  1901. else
  1902. sc->ps_flags |= PS_NULLFUNC_COMPLETED;
  1903. }
  1904. if (!bf_isampdu(bf)) {
  1905. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1906. bf->bf_state.bf_type |= BUF_XRETRY;
  1907. ath_tx_rc_status(bf, &txs, 0, txok, true);
  1908. }
  1909. if (bf_isampdu(bf))
  1910. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
  1911. else
  1912. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1913. &txs, txok, 0);
  1914. ath_wake_mac80211_queue(sc, txq);
  1915. spin_lock_bh(&txq->axq_lock);
  1916. if (!list_empty(&txq->txq_fifo_pending)) {
  1917. INIT_LIST_HEAD(&bf_head);
  1918. bf = list_first_entry(&txq->txq_fifo_pending,
  1919. struct ath_buf, list);
  1920. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1921. &bf->bf_lastbf->list);
  1922. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1923. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1924. ath_txq_schedule(sc, txq);
  1925. spin_unlock_bh(&txq->axq_lock);
  1926. }
  1927. }
  1928. /*****************/
  1929. /* Init, Cleanup */
  1930. /*****************/
  1931. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1932. {
  1933. struct ath_descdma *dd = &sc->txsdma;
  1934. u8 txs_len = sc->sc_ah->caps.txs_len;
  1935. dd->dd_desc_len = size * txs_len;
  1936. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1937. &dd->dd_desc_paddr, GFP_KERNEL);
  1938. if (!dd->dd_desc)
  1939. return -ENOMEM;
  1940. return 0;
  1941. }
  1942. static int ath_tx_edma_init(struct ath_softc *sc)
  1943. {
  1944. int err;
  1945. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1946. if (!err)
  1947. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1948. sc->txsdma.dd_desc_paddr,
  1949. ATH_TXSTATUS_RING_SIZE);
  1950. return err;
  1951. }
  1952. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1953. {
  1954. struct ath_descdma *dd = &sc->txsdma;
  1955. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1956. dd->dd_desc_paddr);
  1957. }
  1958. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1959. {
  1960. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1961. int error = 0;
  1962. spin_lock_init(&sc->tx.txbuflock);
  1963. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1964. "tx", nbufs, 1, 1);
  1965. if (error != 0) {
  1966. ath_print(common, ATH_DBG_FATAL,
  1967. "Failed to allocate tx descriptors: %d\n", error);
  1968. goto err;
  1969. }
  1970. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1971. "beacon", ATH_BCBUF, 1, 1);
  1972. if (error != 0) {
  1973. ath_print(common, ATH_DBG_FATAL,
  1974. "Failed to allocate beacon descriptors: %d\n", error);
  1975. goto err;
  1976. }
  1977. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1978. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1979. error = ath_tx_edma_init(sc);
  1980. if (error)
  1981. goto err;
  1982. }
  1983. err:
  1984. if (error != 0)
  1985. ath_tx_cleanup(sc);
  1986. return error;
  1987. }
  1988. void ath_tx_cleanup(struct ath_softc *sc)
  1989. {
  1990. if (sc->beacon.bdma.dd_desc_len != 0)
  1991. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1992. if (sc->tx.txdma.dd_desc_len != 0)
  1993. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1994. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1995. ath_tx_edma_cleanup(sc);
  1996. }
  1997. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1998. {
  1999. struct ath_atx_tid *tid;
  2000. struct ath_atx_ac *ac;
  2001. int tidno, acno;
  2002. for (tidno = 0, tid = &an->tid[tidno];
  2003. tidno < WME_NUM_TID;
  2004. tidno++, tid++) {
  2005. tid->an = an;
  2006. tid->tidno = tidno;
  2007. tid->seq_start = tid->seq_next = 0;
  2008. tid->baw_size = WME_MAX_BA;
  2009. tid->baw_head = tid->baw_tail = 0;
  2010. tid->sched = false;
  2011. tid->paused = false;
  2012. tid->state &= ~AGGR_CLEANUP;
  2013. INIT_LIST_HEAD(&tid->buf_q);
  2014. acno = TID_TO_WME_AC(tidno);
  2015. tid->ac = &an->ac[acno];
  2016. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2017. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2018. }
  2019. for (acno = 0, ac = &an->ac[acno];
  2020. acno < WME_NUM_AC; acno++, ac++) {
  2021. ac->sched = false;
  2022. ac->qnum = sc->tx.hwq_map[acno];
  2023. INIT_LIST_HEAD(&ac->tid_q);
  2024. }
  2025. }
  2026. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2027. {
  2028. int i;
  2029. struct ath_atx_ac *ac, *ac_tmp;
  2030. struct ath_atx_tid *tid, *tid_tmp;
  2031. struct ath_txq *txq;
  2032. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2033. if (ATH_TXQ_SETUP(sc, i)) {
  2034. txq = &sc->tx.txq[i];
  2035. spin_lock_bh(&txq->axq_lock);
  2036. list_for_each_entry_safe(ac,
  2037. ac_tmp, &txq->axq_acq, list) {
  2038. tid = list_first_entry(&ac->tid_q,
  2039. struct ath_atx_tid, list);
  2040. if (tid && tid->an != an)
  2041. continue;
  2042. list_del(&ac->list);
  2043. ac->sched = false;
  2044. list_for_each_entry_safe(tid,
  2045. tid_tmp, &ac->tid_q, list) {
  2046. list_del(&tid->list);
  2047. tid->sched = false;
  2048. ath_tid_drain(sc, txq, tid);
  2049. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2050. tid->state &= ~AGGR_CLEANUP;
  2051. }
  2052. }
  2053. spin_unlock_bh(&txq->axq_lock);
  2054. }
  2055. }
  2056. }