hw.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
  48. {
  49. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  50. return priv_ops->macversion_supported(ah->hw_version.macVersion);
  51. }
  52. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  53. struct ath9k_channel *chan)
  54. {
  55. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  56. }
  57. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  58. {
  59. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  60. return;
  61. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  62. }
  63. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  64. {
  65. /* You will not have this callback if using the old ANI */
  66. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  67. return;
  68. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  69. }
  70. /********************/
  71. /* Helper Functions */
  72. /********************/
  73. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  74. {
  75. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  76. if (!ah->curchan) /* should really check for CCK instead */
  77. return usecs *ATH9K_CLOCK_RATE_CCK;
  78. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  79. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  80. if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  81. return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  82. else
  83. return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  88. if (conf_is_ht40(conf))
  89. return ath9k_hw_mac_clks(ah, usecs) * 2;
  90. else
  91. return ath9k_hw_mac_clks(ah, usecs);
  92. }
  93. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  94. {
  95. int i;
  96. BUG_ON(timeout < AH_TIME_QUANTUM);
  97. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  98. if ((REG_READ(ah, reg) & mask) == val)
  99. return true;
  100. udelay(AH_TIME_QUANTUM);
  101. }
  102. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  103. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  104. timeout, reg, REG_READ(ah, reg), mask, val);
  105. return false;
  106. }
  107. EXPORT_SYMBOL(ath9k_hw_wait);
  108. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  109. {
  110. u32 retval;
  111. int i;
  112. for (i = 0, retval = 0; i < n; i++) {
  113. retval = (retval << 1) | (val & 1);
  114. val >>= 1;
  115. }
  116. return retval;
  117. }
  118. bool ath9k_get_channel_edges(struct ath_hw *ah,
  119. u16 flags, u16 *low,
  120. u16 *high)
  121. {
  122. struct ath9k_hw_capabilities *pCap = &ah->caps;
  123. if (flags & CHANNEL_5GHZ) {
  124. *low = pCap->low_5ghz_chan;
  125. *high = pCap->high_5ghz_chan;
  126. return true;
  127. }
  128. if ((flags & CHANNEL_2GHZ)) {
  129. *low = pCap->low_2ghz_chan;
  130. *high = pCap->high_2ghz_chan;
  131. return true;
  132. }
  133. return false;
  134. }
  135. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  136. u8 phy, int kbps,
  137. u32 frameLen, u16 rateix,
  138. bool shortPreamble)
  139. {
  140. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  141. if (kbps == 0)
  142. return 0;
  143. switch (phy) {
  144. case WLAN_RC_PHY_CCK:
  145. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  146. if (shortPreamble)
  147. phyTime >>= 1;
  148. numBits = frameLen << 3;
  149. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  150. break;
  151. case WLAN_RC_PHY_OFDM:
  152. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_QUARTER
  157. + OFDM_PREAMBLE_TIME_QUARTER
  158. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  159. } else if (ah->curchan &&
  160. IS_CHAN_HALF_RATE(ah->curchan)) {
  161. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  162. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  163. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  164. txTime = OFDM_SIFS_TIME_HALF +
  165. OFDM_PREAMBLE_TIME_HALF
  166. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  167. } else {
  168. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  169. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  170. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  171. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  172. + (numSymbols * OFDM_SYMBOL_TIME);
  173. }
  174. break;
  175. default:
  176. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  177. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  178. txTime = 0;
  179. break;
  180. }
  181. return txTime;
  182. }
  183. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  184. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  185. struct ath9k_channel *chan,
  186. struct chan_centers *centers)
  187. {
  188. int8_t extoff;
  189. if (!IS_CHAN_HT40(chan)) {
  190. centers->ctl_center = centers->ext_center =
  191. centers->synth_center = chan->channel;
  192. return;
  193. }
  194. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  195. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  196. centers->synth_center =
  197. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  198. extoff = 1;
  199. } else {
  200. centers->synth_center =
  201. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  202. extoff = -1;
  203. }
  204. centers->ctl_center =
  205. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. /* 25 MHz spacing is supported by hw but not on upper layers */
  207. centers->ext_center =
  208. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  209. }
  210. /******************/
  211. /* Chip Revisions */
  212. /******************/
  213. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  214. {
  215. u32 val;
  216. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  217. if (val == 0xFF) {
  218. val = REG_READ(ah, AR_SREV);
  219. ah->hw_version.macVersion =
  220. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  221. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  222. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  223. } else {
  224. if (!AR_SREV_9100(ah))
  225. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  226. ah->hw_version.macRev = val & AR_SREV_REVISION;
  227. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  228. ah->is_pciexpress = true;
  229. }
  230. }
  231. /************************************/
  232. /* HW Attach, Detach, Init Routines */
  233. /************************************/
  234. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  235. {
  236. if (AR_SREV_9100(ah))
  237. return;
  238. ENABLE_REGWRITE_BUFFER(ah);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  245. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  246. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  248. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  249. REGWRITE_BUFFER_FLUSH(ah);
  250. DISABLE_REGWRITE_BUFFER(ah);
  251. }
  252. /* This should work for all families including legacy */
  253. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  254. {
  255. struct ath_common *common = ath9k_hw_common(ah);
  256. u32 regAddr[2] = { AR_STA_ID0 };
  257. u32 regHold[2];
  258. u32 patternData[4] = { 0x55555555,
  259. 0xaaaaaaaa,
  260. 0x66666666,
  261. 0x99999999 };
  262. int i, j, loop_max;
  263. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  264. loop_max = 2;
  265. regAddr[1] = AR_PHY_BASE + (8 << 2);
  266. } else
  267. loop_max = 1;
  268. for (i = 0; i < loop_max; i++) {
  269. u32 addr = regAddr[i];
  270. u32 wrData, rdData;
  271. regHold[i] = REG_READ(ah, addr);
  272. for (j = 0; j < 0x100; j++) {
  273. wrData = (j << 16) | j;
  274. REG_WRITE(ah, addr, wrData);
  275. rdData = REG_READ(ah, addr);
  276. if (rdData != wrData) {
  277. ath_print(common, ATH_DBG_FATAL,
  278. "address test failed "
  279. "addr: 0x%08x - wr:0x%08x != "
  280. "rd:0x%08x\n",
  281. addr, wrData, rdData);
  282. return false;
  283. }
  284. }
  285. for (j = 0; j < 4; j++) {
  286. wrData = patternData[j];
  287. REG_WRITE(ah, addr, wrData);
  288. rdData = REG_READ(ah, addr);
  289. if (wrData != rdData) {
  290. ath_print(common, ATH_DBG_FATAL,
  291. "address test failed "
  292. "addr: 0x%08x - wr:0x%08x != "
  293. "rd:0x%08x\n",
  294. addr, wrData, rdData);
  295. return false;
  296. }
  297. }
  298. REG_WRITE(ah, regAddr[i], regHold[i]);
  299. }
  300. udelay(100);
  301. return true;
  302. }
  303. static void ath9k_hw_init_config(struct ath_hw *ah)
  304. {
  305. int i;
  306. ah->config.dma_beacon_response_time = 2;
  307. ah->config.sw_beacon_response_time = 10;
  308. ah->config.additional_swba_backoff = 0;
  309. ah->config.ack_6mb = 0x0;
  310. ah->config.cwm_ignore_extcca = 0;
  311. ah->config.pcie_powersave_enable = 0;
  312. ah->config.pcie_clock_req = 0;
  313. ah->config.pcie_waen = 0;
  314. ah->config.analog_shiftreg = 1;
  315. ah->config.ofdm_trig_low = 200;
  316. ah->config.ofdm_trig_high = 500;
  317. ah->config.cck_trig_high = 200;
  318. ah->config.cck_trig_low = 100;
  319. ah->config.enable_ani = true;
  320. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  321. ah->config.spurchans[i][0] = AR_NO_SPUR;
  322. ah->config.spurchans[i][1] = AR_NO_SPUR;
  323. }
  324. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  325. ah->config.ht_enable = 1;
  326. else
  327. ah->config.ht_enable = 0;
  328. ah->config.rx_intr_mitigation = true;
  329. ah->config.pcieSerDesWrite = true;
  330. /*
  331. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  332. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  333. * This means we use it for all AR5416 devices, and the few
  334. * minor PCI AR9280 devices out there.
  335. *
  336. * Serialization is required because these devices do not handle
  337. * well the case of two concurrent reads/writes due to the latency
  338. * involved. During one read/write another read/write can be issued
  339. * on another CPU while the previous read/write may still be working
  340. * on our hardware, if we hit this case the hardware poops in a loop.
  341. * We prevent this by serializing reads and writes.
  342. *
  343. * This issue is not present on PCI-Express devices or pre-AR5416
  344. * devices (legacy, 802.11abg).
  345. */
  346. if (num_possible_cpus() > 1)
  347. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  348. }
  349. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  350. {
  351. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  352. regulatory->country_code = CTRY_DEFAULT;
  353. regulatory->power_limit = MAX_RATE_POWER;
  354. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  355. ah->hw_version.magic = AR5416_MAGIC;
  356. ah->hw_version.subvendorid = 0;
  357. ah->ah_flags = 0;
  358. if (!AR_SREV_9100(ah))
  359. ah->ah_flags = AH_USE_EEPROM;
  360. ah->atim_window = 0;
  361. ah->sta_id1_defaults =
  362. AR_STA_ID1_CRPT_MIC_ENABLE |
  363. AR_STA_ID1_MCAST_KSRCH;
  364. ah->beacon_interval = 100;
  365. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  366. ah->slottime = (u32) -1;
  367. ah->globaltxtimeout = (u32) -1;
  368. ah->power_mode = ATH9K_PM_UNDEFINED;
  369. }
  370. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  371. {
  372. struct ath_common *common = ath9k_hw_common(ah);
  373. u32 sum;
  374. int i;
  375. u16 eeval;
  376. u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  377. sum = 0;
  378. for (i = 0; i < 3; i++) {
  379. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  380. sum += eeval;
  381. common->macaddr[2 * i] = eeval >> 8;
  382. common->macaddr[2 * i + 1] = eeval & 0xff;
  383. }
  384. if (sum == 0 || sum == 0xffff * 3)
  385. return -EADDRNOTAVAIL;
  386. return 0;
  387. }
  388. static int ath9k_hw_post_init(struct ath_hw *ah)
  389. {
  390. int ecode;
  391. if (!AR_SREV_9271(ah)) {
  392. if (!ath9k_hw_chip_test(ah))
  393. return -ENODEV;
  394. }
  395. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  396. ecode = ar9002_hw_rf_claim(ah);
  397. if (ecode != 0)
  398. return ecode;
  399. }
  400. ecode = ath9k_hw_eeprom_init(ah);
  401. if (ecode != 0)
  402. return ecode;
  403. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  404. "Eeprom VER: %d, REV: %d\n",
  405. ah->eep_ops->get_eeprom_ver(ah),
  406. ah->eep_ops->get_eeprom_rev(ah));
  407. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  408. if (ecode) {
  409. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  410. "Failed allocating banks for "
  411. "external radio\n");
  412. return ecode;
  413. }
  414. if (!AR_SREV_9100(ah)) {
  415. ath9k_hw_ani_setup(ah);
  416. ath9k_hw_ani_init(ah);
  417. }
  418. return 0;
  419. }
  420. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  421. {
  422. if (AR_SREV_9300_20_OR_LATER(ah))
  423. ar9003_hw_attach_ops(ah);
  424. else
  425. ar9002_hw_attach_ops(ah);
  426. }
  427. /* Called for all hardware families */
  428. static int __ath9k_hw_init(struct ath_hw *ah)
  429. {
  430. struct ath_common *common = ath9k_hw_common(ah);
  431. int r = 0;
  432. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  433. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  434. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  435. ath_print(common, ATH_DBG_FATAL,
  436. "Couldn't reset chip\n");
  437. return -EIO;
  438. }
  439. ath9k_hw_init_defaults(ah);
  440. ath9k_hw_init_config(ah);
  441. ath9k_hw_attach_ops(ah);
  442. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  443. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  444. return -EIO;
  445. }
  446. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  447. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  448. (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
  449. ah->config.serialize_regmode =
  450. SER_REG_MODE_ON;
  451. } else {
  452. ah->config.serialize_regmode =
  453. SER_REG_MODE_OFF;
  454. }
  455. }
  456. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  457. ah->config.serialize_regmode);
  458. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  459. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  460. else
  461. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  462. if (!ath9k_hw_macversion_supported(ah)) {
  463. ath_print(common, ATH_DBG_FATAL,
  464. "Mac Chip Rev 0x%02x.%x is not supported by "
  465. "this driver\n", ah->hw_version.macVersion,
  466. ah->hw_version.macRev);
  467. return -EOPNOTSUPP;
  468. }
  469. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  470. ah->is_pciexpress = false;
  471. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  472. ath9k_hw_init_cal_settings(ah);
  473. ah->ani_function = ATH9K_ANI_ALL;
  474. if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  475. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  476. if (!AR_SREV_9300_20_OR_LATER(ah))
  477. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  478. ath9k_hw_init_mode_regs(ah);
  479. /*
  480. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  481. * We need to do this to avoid RMW of this register. We cannot
  482. * read the reg when chip is asleep.
  483. */
  484. ah->WARegVal = REG_READ(ah, AR_WA);
  485. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  486. AR_WA_ASPM_TIMER_BASED_DISABLE);
  487. if (ah->is_pciexpress)
  488. ath9k_hw_configpcipowersave(ah, 0, 0);
  489. else
  490. ath9k_hw_disablepcie(ah);
  491. if (!AR_SREV_9300_20_OR_LATER(ah))
  492. ar9002_hw_cck_chan14_spread(ah);
  493. r = ath9k_hw_post_init(ah);
  494. if (r)
  495. return r;
  496. ath9k_hw_init_mode_gain_regs(ah);
  497. r = ath9k_hw_fill_cap_info(ah);
  498. if (r)
  499. return r;
  500. r = ath9k_hw_init_macaddr(ah);
  501. if (r) {
  502. ath_print(common, ATH_DBG_FATAL,
  503. "Failed to initialize MAC address\n");
  504. return r;
  505. }
  506. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  507. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  508. else
  509. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  510. ath9k_init_nfcal_hist_buffer(ah);
  511. ah->bb_watchdog_timeout_ms = 25;
  512. common->state = ATH_HW_INITIALIZED;
  513. return 0;
  514. }
  515. int ath9k_hw_init(struct ath_hw *ah)
  516. {
  517. int ret;
  518. struct ath_common *common = ath9k_hw_common(ah);
  519. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  520. switch (ah->hw_version.devid) {
  521. case AR5416_DEVID_PCI:
  522. case AR5416_DEVID_PCIE:
  523. case AR5416_AR9100_DEVID:
  524. case AR9160_DEVID_PCI:
  525. case AR9280_DEVID_PCI:
  526. case AR9280_DEVID_PCIE:
  527. case AR9285_DEVID_PCIE:
  528. case AR9287_DEVID_PCI:
  529. case AR9287_DEVID_PCIE:
  530. case AR2427_DEVID_PCIE:
  531. case AR9300_DEVID_PCIE:
  532. break;
  533. default:
  534. if (common->bus_ops->ath_bus_type == ATH_USB)
  535. break;
  536. ath_print(common, ATH_DBG_FATAL,
  537. "Hardware device ID 0x%04x not supported\n",
  538. ah->hw_version.devid);
  539. return -EOPNOTSUPP;
  540. }
  541. ret = __ath9k_hw_init(ah);
  542. if (ret) {
  543. ath_print(common, ATH_DBG_FATAL,
  544. "Unable to initialize hardware; "
  545. "initialization status: %d\n", ret);
  546. return ret;
  547. }
  548. return 0;
  549. }
  550. EXPORT_SYMBOL(ath9k_hw_init);
  551. static void ath9k_hw_init_qos(struct ath_hw *ah)
  552. {
  553. ENABLE_REGWRITE_BUFFER(ah);
  554. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  555. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  556. REG_WRITE(ah, AR_QOS_NO_ACK,
  557. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  558. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  559. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  560. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  561. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  562. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  563. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  564. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  565. REGWRITE_BUFFER_FLUSH(ah);
  566. DISABLE_REGWRITE_BUFFER(ah);
  567. }
  568. static void ath9k_hw_init_pll(struct ath_hw *ah,
  569. struct ath9k_channel *chan)
  570. {
  571. u32 pll = ath9k_hw_compute_pll_control(ah, chan);
  572. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  573. /* Switch the core clock for ar9271 to 117Mhz */
  574. if (AR_SREV_9271(ah)) {
  575. udelay(500);
  576. REG_WRITE(ah, 0x50040, 0x304);
  577. }
  578. udelay(RTC_PLL_SETTLE_DELAY);
  579. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  580. }
  581. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  582. enum nl80211_iftype opmode)
  583. {
  584. u32 imr_reg = AR_IMR_TXERR |
  585. AR_IMR_TXURN |
  586. AR_IMR_RXERR |
  587. AR_IMR_RXORN |
  588. AR_IMR_BCNMISC;
  589. if (AR_SREV_9300_20_OR_LATER(ah)) {
  590. imr_reg |= AR_IMR_RXOK_HP;
  591. if (ah->config.rx_intr_mitigation)
  592. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  593. else
  594. imr_reg |= AR_IMR_RXOK_LP;
  595. } else {
  596. if (ah->config.rx_intr_mitigation)
  597. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  598. else
  599. imr_reg |= AR_IMR_RXOK;
  600. }
  601. if (ah->config.tx_intr_mitigation)
  602. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  603. else
  604. imr_reg |= AR_IMR_TXOK;
  605. if (opmode == NL80211_IFTYPE_AP)
  606. imr_reg |= AR_IMR_MIB;
  607. ENABLE_REGWRITE_BUFFER(ah);
  608. REG_WRITE(ah, AR_IMR, imr_reg);
  609. ah->imrs2_reg |= AR_IMR_S2_GTT;
  610. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  611. if (!AR_SREV_9100(ah)) {
  612. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  613. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  614. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  615. }
  616. REGWRITE_BUFFER_FLUSH(ah);
  617. DISABLE_REGWRITE_BUFFER(ah);
  618. if (AR_SREV_9300_20_OR_LATER(ah)) {
  619. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  620. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  621. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  622. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  623. }
  624. }
  625. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  626. {
  627. u32 val = ath9k_hw_mac_to_clks(ah, us);
  628. val = min(val, (u32) 0xFFFF);
  629. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  630. }
  631. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  632. {
  633. u32 val = ath9k_hw_mac_to_clks(ah, us);
  634. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  635. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  636. }
  637. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  638. {
  639. u32 val = ath9k_hw_mac_to_clks(ah, us);
  640. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  641. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  642. }
  643. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  644. {
  645. if (tu > 0xFFFF) {
  646. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  647. "bad global tx timeout %u\n", tu);
  648. ah->globaltxtimeout = (u32) -1;
  649. return false;
  650. } else {
  651. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  652. ah->globaltxtimeout = tu;
  653. return true;
  654. }
  655. }
  656. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  657. {
  658. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  659. int acktimeout;
  660. int slottime;
  661. int sifstime;
  662. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  663. ah->misc_mode);
  664. if (ah->misc_mode != 0)
  665. REG_WRITE(ah, AR_PCU_MISC,
  666. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  667. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  668. sifstime = 16;
  669. else
  670. sifstime = 10;
  671. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  672. slottime = ah->slottime + 3 * ah->coverage_class;
  673. acktimeout = slottime + sifstime;
  674. /*
  675. * Workaround for early ACK timeouts, add an offset to match the
  676. * initval's 64us ack timeout value.
  677. * This was initially only meant to work around an issue with delayed
  678. * BA frames in some implementations, but it has been found to fix ACK
  679. * timeout issues in other cases as well.
  680. */
  681. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  682. acktimeout += 64 - sifstime - ah->slottime;
  683. ath9k_hw_setslottime(ah, slottime);
  684. ath9k_hw_set_ack_timeout(ah, acktimeout);
  685. ath9k_hw_set_cts_timeout(ah, acktimeout);
  686. if (ah->globaltxtimeout != (u32) -1)
  687. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  688. }
  689. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  690. void ath9k_hw_deinit(struct ath_hw *ah)
  691. {
  692. struct ath_common *common = ath9k_hw_common(ah);
  693. if (common->state < ATH_HW_INITIALIZED)
  694. goto free_hw;
  695. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  696. free_hw:
  697. ath9k_hw_rf_free_ext_banks(ah);
  698. }
  699. EXPORT_SYMBOL(ath9k_hw_deinit);
  700. /*******/
  701. /* INI */
  702. /*******/
  703. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  704. {
  705. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  706. if (IS_CHAN_B(chan))
  707. ctl |= CTL_11B;
  708. else if (IS_CHAN_G(chan))
  709. ctl |= CTL_11G;
  710. else
  711. ctl |= CTL_11A;
  712. return ctl;
  713. }
  714. /****************************************/
  715. /* Reset and Channel Switching Routines */
  716. /****************************************/
  717. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  718. {
  719. struct ath_common *common = ath9k_hw_common(ah);
  720. u32 regval;
  721. ENABLE_REGWRITE_BUFFER(ah);
  722. /*
  723. * set AHB_MODE not to do cacheline prefetches
  724. */
  725. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  726. regval = REG_READ(ah, AR_AHB_MODE);
  727. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  728. }
  729. /*
  730. * let mac dma reads be in 128 byte chunks
  731. */
  732. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  733. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  734. REGWRITE_BUFFER_FLUSH(ah);
  735. DISABLE_REGWRITE_BUFFER(ah);
  736. /*
  737. * Restore TX Trigger Level to its pre-reset value.
  738. * The initial value depends on whether aggregation is enabled, and is
  739. * adjusted whenever underruns are detected.
  740. */
  741. if (!AR_SREV_9300_20_OR_LATER(ah))
  742. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  743. ENABLE_REGWRITE_BUFFER(ah);
  744. /*
  745. * let mac dma writes be in 128 byte chunks
  746. */
  747. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  748. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  749. /*
  750. * Setup receive FIFO threshold to hold off TX activities
  751. */
  752. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  753. if (AR_SREV_9300_20_OR_LATER(ah)) {
  754. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  755. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  756. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  757. ah->caps.rx_status_len);
  758. }
  759. /*
  760. * reduce the number of usable entries in PCU TXBUF to avoid
  761. * wrap around issues.
  762. */
  763. if (AR_SREV_9285(ah)) {
  764. /* For AR9285 the number of Fifos are reduced to half.
  765. * So set the usable tx buf size also to half to
  766. * avoid data/delimiter underruns
  767. */
  768. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  769. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  770. } else if (!AR_SREV_9271(ah)) {
  771. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  772. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  773. }
  774. REGWRITE_BUFFER_FLUSH(ah);
  775. DISABLE_REGWRITE_BUFFER(ah);
  776. if (AR_SREV_9300_20_OR_LATER(ah))
  777. ath9k_hw_reset_txstatus_ring(ah);
  778. }
  779. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  780. {
  781. u32 val;
  782. val = REG_READ(ah, AR_STA_ID1);
  783. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  784. switch (opmode) {
  785. case NL80211_IFTYPE_AP:
  786. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  787. | AR_STA_ID1_KSRCH_MODE);
  788. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  789. break;
  790. case NL80211_IFTYPE_ADHOC:
  791. case NL80211_IFTYPE_MESH_POINT:
  792. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  793. | AR_STA_ID1_KSRCH_MODE);
  794. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  795. break;
  796. case NL80211_IFTYPE_STATION:
  797. case NL80211_IFTYPE_MONITOR:
  798. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  799. break;
  800. }
  801. }
  802. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  803. u32 *coef_mantissa, u32 *coef_exponent)
  804. {
  805. u32 coef_exp, coef_man;
  806. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  807. if ((coef_scaled >> coef_exp) & 0x1)
  808. break;
  809. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  810. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  811. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  812. *coef_exponent = coef_exp - 16;
  813. }
  814. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  815. {
  816. u32 rst_flags;
  817. u32 tmpReg;
  818. if (AR_SREV_9100(ah)) {
  819. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  820. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  821. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  822. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  823. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  824. }
  825. ENABLE_REGWRITE_BUFFER(ah);
  826. if (AR_SREV_9300_20_OR_LATER(ah)) {
  827. REG_WRITE(ah, AR_WA, ah->WARegVal);
  828. udelay(10);
  829. }
  830. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  831. AR_RTC_FORCE_WAKE_ON_INT);
  832. if (AR_SREV_9100(ah)) {
  833. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  834. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  835. } else {
  836. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  837. if (tmpReg &
  838. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  839. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  840. u32 val;
  841. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  842. val = AR_RC_HOSTIF;
  843. if (!AR_SREV_9300_20_OR_LATER(ah))
  844. val |= AR_RC_AHB;
  845. REG_WRITE(ah, AR_RC, val);
  846. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  847. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  848. rst_flags = AR_RTC_RC_MAC_WARM;
  849. if (type == ATH9K_RESET_COLD)
  850. rst_flags |= AR_RTC_RC_MAC_COLD;
  851. }
  852. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  853. REGWRITE_BUFFER_FLUSH(ah);
  854. DISABLE_REGWRITE_BUFFER(ah);
  855. udelay(50);
  856. REG_WRITE(ah, AR_RTC_RC, 0);
  857. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  858. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  859. "RTC stuck in MAC reset\n");
  860. return false;
  861. }
  862. if (!AR_SREV_9100(ah))
  863. REG_WRITE(ah, AR_RC, 0);
  864. if (AR_SREV_9100(ah))
  865. udelay(50);
  866. return true;
  867. }
  868. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  869. {
  870. ENABLE_REGWRITE_BUFFER(ah);
  871. if (AR_SREV_9300_20_OR_LATER(ah)) {
  872. REG_WRITE(ah, AR_WA, ah->WARegVal);
  873. udelay(10);
  874. }
  875. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  876. AR_RTC_FORCE_WAKE_ON_INT);
  877. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  878. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  879. REG_WRITE(ah, AR_RTC_RESET, 0);
  880. udelay(2);
  881. REGWRITE_BUFFER_FLUSH(ah);
  882. DISABLE_REGWRITE_BUFFER(ah);
  883. if (!AR_SREV_9300_20_OR_LATER(ah))
  884. udelay(2);
  885. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  886. REG_WRITE(ah, AR_RC, 0);
  887. REG_WRITE(ah, AR_RTC_RESET, 1);
  888. if (!ath9k_hw_wait(ah,
  889. AR_RTC_STATUS,
  890. AR_RTC_STATUS_M,
  891. AR_RTC_STATUS_ON,
  892. AH_WAIT_TIMEOUT)) {
  893. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  894. "RTC not waking up\n");
  895. return false;
  896. }
  897. ath9k_hw_read_revisions(ah);
  898. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  899. }
  900. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  901. {
  902. if (AR_SREV_9300_20_OR_LATER(ah)) {
  903. REG_WRITE(ah, AR_WA, ah->WARegVal);
  904. udelay(10);
  905. }
  906. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  907. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  908. switch (type) {
  909. case ATH9K_RESET_POWER_ON:
  910. return ath9k_hw_set_reset_power_on(ah);
  911. case ATH9K_RESET_WARM:
  912. case ATH9K_RESET_COLD:
  913. return ath9k_hw_set_reset(ah, type);
  914. default:
  915. return false;
  916. }
  917. }
  918. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  919. struct ath9k_channel *chan)
  920. {
  921. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  922. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  923. return false;
  924. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  925. return false;
  926. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  927. return false;
  928. ah->chip_fullsleep = false;
  929. ath9k_hw_init_pll(ah, chan);
  930. ath9k_hw_set_rfmode(ah, chan);
  931. return true;
  932. }
  933. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  934. struct ath9k_channel *chan)
  935. {
  936. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  937. struct ath_common *common = ath9k_hw_common(ah);
  938. struct ieee80211_channel *channel = chan->chan;
  939. u32 qnum;
  940. int r;
  941. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  942. if (ath9k_hw_numtxpending(ah, qnum)) {
  943. ath_print(common, ATH_DBG_QUEUE,
  944. "Transmit frames pending on "
  945. "queue %d\n", qnum);
  946. return false;
  947. }
  948. }
  949. if (!ath9k_hw_rfbus_req(ah)) {
  950. ath_print(common, ATH_DBG_FATAL,
  951. "Could not kill baseband RX\n");
  952. return false;
  953. }
  954. ath9k_hw_set_channel_regs(ah, chan);
  955. r = ath9k_hw_rf_set_freq(ah, chan);
  956. if (r) {
  957. ath_print(common, ATH_DBG_FATAL,
  958. "Failed to set channel\n");
  959. return false;
  960. }
  961. ah->eep_ops->set_txpower(ah, chan,
  962. ath9k_regd_get_ctl(regulatory, chan),
  963. channel->max_antenna_gain * 2,
  964. channel->max_power * 2,
  965. min((u32) MAX_RATE_POWER,
  966. (u32) regulatory->power_limit));
  967. ath9k_hw_rfbus_done(ah);
  968. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  969. ath9k_hw_set_delta_slope(ah, chan);
  970. ath9k_hw_spur_mitigate_freq(ah, chan);
  971. if (!chan->oneTimeCalsDone)
  972. chan->oneTimeCalsDone = true;
  973. return true;
  974. }
  975. bool ath9k_hw_check_alive(struct ath_hw *ah)
  976. {
  977. int count = 50;
  978. u32 reg;
  979. if (AR_SREV_9285_10_OR_LATER(ah))
  980. return true;
  981. do {
  982. reg = REG_READ(ah, AR_OBS_BUS_1);
  983. if ((reg & 0x7E7FFFEF) == 0x00702400)
  984. continue;
  985. switch (reg & 0x7E000B00) {
  986. case 0x1E000000:
  987. case 0x52000B00:
  988. case 0x18000B00:
  989. continue;
  990. default:
  991. return true;
  992. }
  993. } while (count-- > 0);
  994. return false;
  995. }
  996. EXPORT_SYMBOL(ath9k_hw_check_alive);
  997. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  998. bool bChannelChange)
  999. {
  1000. struct ath_common *common = ath9k_hw_common(ah);
  1001. u32 saveLedState;
  1002. struct ath9k_channel *curchan = ah->curchan;
  1003. u32 saveDefAntenna;
  1004. u32 macStaId1;
  1005. u64 tsf = 0;
  1006. int i, r;
  1007. ah->txchainmask = common->tx_chainmask;
  1008. ah->rxchainmask = common->rx_chainmask;
  1009. if (!ah->chip_fullsleep) {
  1010. ath9k_hw_abortpcurecv(ah);
  1011. if (!ath9k_hw_stopdmarecv(ah)) {
  1012. ath_print(common, ATH_DBG_XMIT,
  1013. "Failed to stop receive dma\n");
  1014. bChannelChange = false;
  1015. }
  1016. }
  1017. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1018. return -EIO;
  1019. if (curchan && !ah->chip_fullsleep)
  1020. ath9k_hw_getnf(ah, curchan);
  1021. if (bChannelChange &&
  1022. (ah->chip_fullsleep != true) &&
  1023. (ah->curchan != NULL) &&
  1024. (chan->channel != ah->curchan->channel) &&
  1025. ((chan->channelFlags & CHANNEL_ALL) ==
  1026. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1027. !AR_SREV_9280(ah)) {
  1028. if (ath9k_hw_channel_change(ah, chan)) {
  1029. ath9k_hw_loadnf(ah, ah->curchan);
  1030. ath9k_hw_start_nfcal(ah);
  1031. return 0;
  1032. }
  1033. }
  1034. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1035. if (saveDefAntenna == 0)
  1036. saveDefAntenna = 1;
  1037. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1038. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1039. if (AR_SREV_9100(ah) ||
  1040. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1041. tsf = ath9k_hw_gettsf64(ah);
  1042. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1043. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1044. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1045. ath9k_hw_mark_phy_inactive(ah);
  1046. /* Only required on the first reset */
  1047. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1048. REG_WRITE(ah,
  1049. AR9271_RESET_POWER_DOWN_CONTROL,
  1050. AR9271_RADIO_RF_RST);
  1051. udelay(50);
  1052. }
  1053. if (!ath9k_hw_chip_reset(ah, chan)) {
  1054. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1055. return -EINVAL;
  1056. }
  1057. /* Only required on the first reset */
  1058. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1059. ah->htc_reset_init = false;
  1060. REG_WRITE(ah,
  1061. AR9271_RESET_POWER_DOWN_CONTROL,
  1062. AR9271_GATE_MAC_CTL);
  1063. udelay(50);
  1064. }
  1065. /* Restore TSF */
  1066. if (tsf)
  1067. ath9k_hw_settsf64(ah, tsf);
  1068. if (AR_SREV_9280_10_OR_LATER(ah))
  1069. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1070. if (!AR_SREV_9300_20_OR_LATER(ah))
  1071. ar9002_hw_enable_async_fifo(ah);
  1072. r = ath9k_hw_process_ini(ah, chan);
  1073. if (r)
  1074. return r;
  1075. /*
  1076. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1077. * right after the chip reset. When that happens, write a new
  1078. * value after the initvals have been applied, with an offset
  1079. * based on measured time difference
  1080. */
  1081. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1082. tsf += 1500;
  1083. ath9k_hw_settsf64(ah, tsf);
  1084. }
  1085. /* Setup MFP options for CCMP */
  1086. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1087. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1088. * frames when constructing CCMP AAD. */
  1089. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1090. 0xc7ff);
  1091. ah->sw_mgmt_crypto = false;
  1092. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1093. /* Disable hardware crypto for management frames */
  1094. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1095. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1096. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1097. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1098. ah->sw_mgmt_crypto = true;
  1099. } else
  1100. ah->sw_mgmt_crypto = true;
  1101. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1102. ath9k_hw_set_delta_slope(ah, chan);
  1103. ath9k_hw_spur_mitigate_freq(ah, chan);
  1104. ah->eep_ops->set_board_values(ah, chan);
  1105. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1106. ENABLE_REGWRITE_BUFFER(ah);
  1107. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1108. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1109. | macStaId1
  1110. | AR_STA_ID1_RTS_USE_DEF
  1111. | (ah->config.
  1112. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1113. | ah->sta_id1_defaults);
  1114. ath_hw_setbssidmask(common);
  1115. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1116. ath9k_hw_write_associd(ah);
  1117. REG_WRITE(ah, AR_ISR, ~0);
  1118. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1119. REGWRITE_BUFFER_FLUSH(ah);
  1120. DISABLE_REGWRITE_BUFFER(ah);
  1121. r = ath9k_hw_rf_set_freq(ah, chan);
  1122. if (r)
  1123. return r;
  1124. ENABLE_REGWRITE_BUFFER(ah);
  1125. for (i = 0; i < AR_NUM_DCU; i++)
  1126. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1127. REGWRITE_BUFFER_FLUSH(ah);
  1128. DISABLE_REGWRITE_BUFFER(ah);
  1129. ah->intr_txqs = 0;
  1130. for (i = 0; i < ah->caps.total_queues; i++)
  1131. ath9k_hw_resettxqueue(ah, i);
  1132. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1133. ath9k_hw_ani_cache_ini_regs(ah);
  1134. ath9k_hw_init_qos(ah);
  1135. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1136. ath9k_enable_rfkill(ah);
  1137. ath9k_hw_init_global_settings(ah);
  1138. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1139. ar9002_hw_update_async_fifo(ah);
  1140. ar9002_hw_enable_wep_aggregation(ah);
  1141. }
  1142. REG_WRITE(ah, AR_STA_ID1,
  1143. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1144. ath9k_hw_set_dma(ah);
  1145. REG_WRITE(ah, AR_OBS, 8);
  1146. if (ah->config.rx_intr_mitigation) {
  1147. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1148. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1149. }
  1150. if (ah->config.tx_intr_mitigation) {
  1151. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1152. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1153. }
  1154. ath9k_hw_init_bb(ah, chan);
  1155. if (!ath9k_hw_init_cal(ah, chan))
  1156. return -EIO;
  1157. ENABLE_REGWRITE_BUFFER(ah);
  1158. ath9k_hw_restore_chainmask(ah);
  1159. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1160. REGWRITE_BUFFER_FLUSH(ah);
  1161. DISABLE_REGWRITE_BUFFER(ah);
  1162. /*
  1163. * For big endian systems turn on swapping for descriptors
  1164. */
  1165. if (AR_SREV_9100(ah)) {
  1166. u32 mask;
  1167. mask = REG_READ(ah, AR_CFG);
  1168. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1169. ath_print(common, ATH_DBG_RESET,
  1170. "CFG Byte Swap Set 0x%x\n", mask);
  1171. } else {
  1172. mask =
  1173. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1174. REG_WRITE(ah, AR_CFG, mask);
  1175. ath_print(common, ATH_DBG_RESET,
  1176. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1177. }
  1178. } else {
  1179. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1180. /* Configure AR9271 target WLAN */
  1181. if (AR_SREV_9271(ah))
  1182. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1183. else
  1184. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1185. }
  1186. #ifdef __BIG_ENDIAN
  1187. else
  1188. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1189. #endif
  1190. }
  1191. if (ah->btcoex_hw.enabled)
  1192. ath9k_hw_btcoex_enable(ah);
  1193. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1194. ath9k_hw_loadnf(ah, curchan);
  1195. ath9k_hw_start_nfcal(ah);
  1196. ar9003_hw_bb_watchdog_config(ah);
  1197. }
  1198. return 0;
  1199. }
  1200. EXPORT_SYMBOL(ath9k_hw_reset);
  1201. /************************/
  1202. /* Key Cache Management */
  1203. /************************/
  1204. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  1205. {
  1206. u32 keyType;
  1207. if (entry >= ah->caps.keycache_size) {
  1208. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1209. "keychache entry %u out of range\n", entry);
  1210. return false;
  1211. }
  1212. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  1213. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  1214. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  1215. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  1216. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  1217. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  1218. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  1219. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  1220. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  1221. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1222. u16 micentry = entry + 64;
  1223. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  1224. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1225. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  1226. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1227. }
  1228. return true;
  1229. }
  1230. EXPORT_SYMBOL(ath9k_hw_keyreset);
  1231. static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  1232. {
  1233. u32 macHi, macLo;
  1234. u32 unicast_flag = AR_KEYTABLE_VALID;
  1235. if (entry >= ah->caps.keycache_size) {
  1236. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1237. "keychache entry %u out of range\n", entry);
  1238. return false;
  1239. }
  1240. if (mac != NULL) {
  1241. /*
  1242. * AR_KEYTABLE_VALID indicates that the address is a unicast
  1243. * address, which must match the transmitter address for
  1244. * decrypting frames.
  1245. * Not setting this bit allows the hardware to use the key
  1246. * for multicast frame decryption.
  1247. */
  1248. if (mac[0] & 0x01)
  1249. unicast_flag = 0;
  1250. macHi = (mac[5] << 8) | mac[4];
  1251. macLo = (mac[3] << 24) |
  1252. (mac[2] << 16) |
  1253. (mac[1] << 8) |
  1254. mac[0];
  1255. macLo >>= 1;
  1256. macLo |= (macHi & 1) << 31;
  1257. macHi >>= 1;
  1258. } else {
  1259. macLo = macHi = 0;
  1260. }
  1261. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  1262. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
  1263. return true;
  1264. }
  1265. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  1266. const struct ath9k_keyval *k,
  1267. const u8 *mac)
  1268. {
  1269. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  1270. struct ath_common *common = ath9k_hw_common(ah);
  1271. u32 key0, key1, key2, key3, key4;
  1272. u32 keyType;
  1273. if (entry >= pCap->keycache_size) {
  1274. ath_print(common, ATH_DBG_FATAL,
  1275. "keycache entry %u out of range\n", entry);
  1276. return false;
  1277. }
  1278. switch (k->kv_type) {
  1279. case ATH9K_CIPHER_AES_OCB:
  1280. keyType = AR_KEYTABLE_TYPE_AES;
  1281. break;
  1282. case ATH9K_CIPHER_AES_CCM:
  1283. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  1284. ath_print(common, ATH_DBG_ANY,
  1285. "AES-CCM not supported by mac rev 0x%x\n",
  1286. ah->hw_version.macRev);
  1287. return false;
  1288. }
  1289. keyType = AR_KEYTABLE_TYPE_CCM;
  1290. break;
  1291. case ATH9K_CIPHER_TKIP:
  1292. keyType = AR_KEYTABLE_TYPE_TKIP;
  1293. if (ATH9K_IS_MIC_ENABLED(ah)
  1294. && entry + 64 >= pCap->keycache_size) {
  1295. ath_print(common, ATH_DBG_ANY,
  1296. "entry %u inappropriate for TKIP\n", entry);
  1297. return false;
  1298. }
  1299. break;
  1300. case ATH9K_CIPHER_WEP:
  1301. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  1302. ath_print(common, ATH_DBG_ANY,
  1303. "WEP key length %u too small\n", k->kv_len);
  1304. return false;
  1305. }
  1306. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  1307. keyType = AR_KEYTABLE_TYPE_40;
  1308. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1309. keyType = AR_KEYTABLE_TYPE_104;
  1310. else
  1311. keyType = AR_KEYTABLE_TYPE_128;
  1312. break;
  1313. case ATH9K_CIPHER_CLR:
  1314. keyType = AR_KEYTABLE_TYPE_CLR;
  1315. break;
  1316. default:
  1317. ath_print(common, ATH_DBG_FATAL,
  1318. "cipher %u not supported\n", k->kv_type);
  1319. return false;
  1320. }
  1321. key0 = get_unaligned_le32(k->kv_val + 0);
  1322. key1 = get_unaligned_le16(k->kv_val + 4);
  1323. key2 = get_unaligned_le32(k->kv_val + 6);
  1324. key3 = get_unaligned_le16(k->kv_val + 10);
  1325. key4 = get_unaligned_le32(k->kv_val + 12);
  1326. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1327. key4 &= 0xff;
  1328. /*
  1329. * Note: Key cache registers access special memory area that requires
  1330. * two 32-bit writes to actually update the values in the internal
  1331. * memory. Consequently, the exact order and pairs used here must be
  1332. * maintained.
  1333. */
  1334. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1335. u16 micentry = entry + 64;
  1336. /*
  1337. * Write inverted key[47:0] first to avoid Michael MIC errors
  1338. * on frames that could be sent or received at the same time.
  1339. * The correct key will be written in the end once everything
  1340. * else is ready.
  1341. */
  1342. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  1343. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  1344. /* Write key[95:48] */
  1345. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1346. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1347. /* Write key[127:96] and key type */
  1348. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1349. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1350. /* Write MAC address for the entry */
  1351. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1352. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  1353. /*
  1354. * TKIP uses two key cache entries:
  1355. * Michael MIC TX/RX keys in the same key cache entry
  1356. * (idx = main index + 64):
  1357. * key0 [31:0] = RX key [31:0]
  1358. * key1 [15:0] = TX key [31:16]
  1359. * key1 [31:16] = reserved
  1360. * key2 [31:0] = RX key [63:32]
  1361. * key3 [15:0] = TX key [15:0]
  1362. * key3 [31:16] = reserved
  1363. * key4 [31:0] = TX key [63:32]
  1364. */
  1365. u32 mic0, mic1, mic2, mic3, mic4;
  1366. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1367. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1368. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  1369. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  1370. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  1371. /* Write RX[31:0] and TX[31:16] */
  1372. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1373. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  1374. /* Write RX[63:32] and TX[15:0] */
  1375. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1376. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  1377. /* Write TX[63:32] and keyType(reserved) */
  1378. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  1379. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1380. AR_KEYTABLE_TYPE_CLR);
  1381. } else {
  1382. /*
  1383. * TKIP uses four key cache entries (two for group
  1384. * keys):
  1385. * Michael MIC TX/RX keys are in different key cache
  1386. * entries (idx = main index + 64 for TX and
  1387. * main index + 32 + 96 for RX):
  1388. * key0 [31:0] = TX/RX MIC key [31:0]
  1389. * key1 [31:0] = reserved
  1390. * key2 [31:0] = TX/RX MIC key [63:32]
  1391. * key3 [31:0] = reserved
  1392. * key4 [31:0] = reserved
  1393. *
  1394. * Upper layer code will call this function separately
  1395. * for TX and RX keys when these registers offsets are
  1396. * used.
  1397. */
  1398. u32 mic0, mic2;
  1399. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1400. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1401. /* Write MIC key[31:0] */
  1402. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1403. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1404. /* Write MIC key[63:32] */
  1405. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1406. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1407. /* Write TX[63:32] and keyType(reserved) */
  1408. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  1409. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1410. AR_KEYTABLE_TYPE_CLR);
  1411. }
  1412. /* MAC address registers are reserved for the MIC entry */
  1413. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  1414. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  1415. /*
  1416. * Write the correct (un-inverted) key[47:0] last to enable
  1417. * TKIP now that all other registers are set with correct
  1418. * values.
  1419. */
  1420. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1421. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1422. } else {
  1423. /* Write key[47:0] */
  1424. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1425. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1426. /* Write key[95:48] */
  1427. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1428. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1429. /* Write key[127:96] and key type */
  1430. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1431. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1432. /* Write MAC address for the entry */
  1433. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1434. }
  1435. return true;
  1436. }
  1437. EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
  1438. /******************************/
  1439. /* Power Management (Chipset) */
  1440. /******************************/
  1441. /*
  1442. * Notify Power Mgt is disabled in self-generated frames.
  1443. * If requested, force chip to sleep.
  1444. */
  1445. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1446. {
  1447. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1448. if (setChip) {
  1449. /*
  1450. * Clear the RTC force wake bit to allow the
  1451. * mac to go to sleep.
  1452. */
  1453. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1454. AR_RTC_FORCE_WAKE_EN);
  1455. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1456. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1457. /* Shutdown chip. Active low */
  1458. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1459. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1460. AR_RTC_RESET_EN);
  1461. }
  1462. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1463. if (AR_SREV_9300_20_OR_LATER(ah))
  1464. REG_WRITE(ah, AR_WA,
  1465. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1466. }
  1467. /*
  1468. * Notify Power Management is enabled in self-generating
  1469. * frames. If request, set power mode of chip to
  1470. * auto/normal. Duration in units of 128us (1/8 TU).
  1471. */
  1472. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1473. {
  1474. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1475. if (setChip) {
  1476. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1477. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1478. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1479. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1480. AR_RTC_FORCE_WAKE_ON_INT);
  1481. } else {
  1482. /*
  1483. * Clear the RTC force wake bit to allow the
  1484. * mac to go to sleep.
  1485. */
  1486. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1487. AR_RTC_FORCE_WAKE_EN);
  1488. }
  1489. }
  1490. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1491. if (AR_SREV_9300_20_OR_LATER(ah))
  1492. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1493. }
  1494. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1495. {
  1496. u32 val;
  1497. int i;
  1498. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1499. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1500. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1501. udelay(10);
  1502. }
  1503. if (setChip) {
  1504. if ((REG_READ(ah, AR_RTC_STATUS) &
  1505. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1506. if (ath9k_hw_set_reset_reg(ah,
  1507. ATH9K_RESET_POWER_ON) != true) {
  1508. return false;
  1509. }
  1510. if (!AR_SREV_9300_20_OR_LATER(ah))
  1511. ath9k_hw_init_pll(ah, NULL);
  1512. }
  1513. if (AR_SREV_9100(ah))
  1514. REG_SET_BIT(ah, AR_RTC_RESET,
  1515. AR_RTC_RESET_EN);
  1516. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1517. AR_RTC_FORCE_WAKE_EN);
  1518. udelay(50);
  1519. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1520. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1521. if (val == AR_RTC_STATUS_ON)
  1522. break;
  1523. udelay(50);
  1524. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1525. AR_RTC_FORCE_WAKE_EN);
  1526. }
  1527. if (i == 0) {
  1528. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1529. "Failed to wakeup in %uus\n",
  1530. POWER_UP_TIME / 20);
  1531. return false;
  1532. }
  1533. }
  1534. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1535. return true;
  1536. }
  1537. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1538. {
  1539. struct ath_common *common = ath9k_hw_common(ah);
  1540. int status = true, setChip = true;
  1541. static const char *modes[] = {
  1542. "AWAKE",
  1543. "FULL-SLEEP",
  1544. "NETWORK SLEEP",
  1545. "UNDEFINED"
  1546. };
  1547. if (ah->power_mode == mode)
  1548. return status;
  1549. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  1550. modes[ah->power_mode], modes[mode]);
  1551. switch (mode) {
  1552. case ATH9K_PM_AWAKE:
  1553. status = ath9k_hw_set_power_awake(ah, setChip);
  1554. break;
  1555. case ATH9K_PM_FULL_SLEEP:
  1556. ath9k_set_power_sleep(ah, setChip);
  1557. ah->chip_fullsleep = true;
  1558. break;
  1559. case ATH9K_PM_NETWORK_SLEEP:
  1560. ath9k_set_power_network_sleep(ah, setChip);
  1561. break;
  1562. default:
  1563. ath_print(common, ATH_DBG_FATAL,
  1564. "Unknown power mode %u\n", mode);
  1565. return false;
  1566. }
  1567. ah->power_mode = mode;
  1568. return status;
  1569. }
  1570. EXPORT_SYMBOL(ath9k_hw_setpower);
  1571. /*******************/
  1572. /* Beacon Handling */
  1573. /*******************/
  1574. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1575. {
  1576. int flags = 0;
  1577. ah->beacon_interval = beacon_period;
  1578. ENABLE_REGWRITE_BUFFER(ah);
  1579. switch (ah->opmode) {
  1580. case NL80211_IFTYPE_STATION:
  1581. case NL80211_IFTYPE_MONITOR:
  1582. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1583. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  1584. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  1585. flags |= AR_TBTT_TIMER_EN;
  1586. break;
  1587. case NL80211_IFTYPE_ADHOC:
  1588. case NL80211_IFTYPE_MESH_POINT:
  1589. REG_SET_BIT(ah, AR_TXCFG,
  1590. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1591. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1592. TU_TO_USEC(next_beacon +
  1593. (ah->atim_window ? ah->
  1594. atim_window : 1)));
  1595. flags |= AR_NDP_TIMER_EN;
  1596. case NL80211_IFTYPE_AP:
  1597. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1598. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1599. TU_TO_USEC(next_beacon -
  1600. ah->config.
  1601. dma_beacon_response_time));
  1602. REG_WRITE(ah, AR_NEXT_SWBA,
  1603. TU_TO_USEC(next_beacon -
  1604. ah->config.
  1605. sw_beacon_response_time));
  1606. flags |=
  1607. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1608. break;
  1609. default:
  1610. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1611. "%s: unsupported opmode: %d\n",
  1612. __func__, ah->opmode);
  1613. return;
  1614. break;
  1615. }
  1616. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1617. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1618. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1619. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1620. REGWRITE_BUFFER_FLUSH(ah);
  1621. DISABLE_REGWRITE_BUFFER(ah);
  1622. beacon_period &= ~ATH9K_BEACON_ENA;
  1623. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1624. ath9k_hw_reset_tsf(ah);
  1625. }
  1626. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1627. }
  1628. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1629. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1630. const struct ath9k_beacon_state *bs)
  1631. {
  1632. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1633. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1634. struct ath_common *common = ath9k_hw_common(ah);
  1635. ENABLE_REGWRITE_BUFFER(ah);
  1636. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1637. REG_WRITE(ah, AR_BEACON_PERIOD,
  1638. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1639. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1640. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1641. REGWRITE_BUFFER_FLUSH(ah);
  1642. DISABLE_REGWRITE_BUFFER(ah);
  1643. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1644. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1645. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1646. if (bs->bs_sleepduration > beaconintval)
  1647. beaconintval = bs->bs_sleepduration;
  1648. dtimperiod = bs->bs_dtimperiod;
  1649. if (bs->bs_sleepduration > dtimperiod)
  1650. dtimperiod = bs->bs_sleepduration;
  1651. if (beaconintval == dtimperiod)
  1652. nextTbtt = bs->bs_nextdtim;
  1653. else
  1654. nextTbtt = bs->bs_nexttbtt;
  1655. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1656. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1657. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1658. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1659. ENABLE_REGWRITE_BUFFER(ah);
  1660. REG_WRITE(ah, AR_NEXT_DTIM,
  1661. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1662. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1663. REG_WRITE(ah, AR_SLEEP1,
  1664. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1665. | AR_SLEEP1_ASSUME_DTIM);
  1666. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1667. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1668. else
  1669. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1670. REG_WRITE(ah, AR_SLEEP2,
  1671. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1672. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1673. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1674. REGWRITE_BUFFER_FLUSH(ah);
  1675. DISABLE_REGWRITE_BUFFER(ah);
  1676. REG_SET_BIT(ah, AR_TIMER_MODE,
  1677. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1678. AR_DTIM_TIMER_EN);
  1679. /* TSF Out of Range Threshold */
  1680. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1681. }
  1682. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1683. /*******************/
  1684. /* HW Capabilities */
  1685. /*******************/
  1686. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1687. {
  1688. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1689. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1690. struct ath_common *common = ath9k_hw_common(ah);
  1691. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1692. u16 capField = 0, eeval;
  1693. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1694. regulatory->current_rd = eeval;
  1695. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1696. if (AR_SREV_9285_10_OR_LATER(ah))
  1697. eeval |= AR9285_RDEXT_DEFAULT;
  1698. regulatory->current_rd_ext = eeval;
  1699. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1700. if (ah->opmode != NL80211_IFTYPE_AP &&
  1701. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1702. if (regulatory->current_rd == 0x64 ||
  1703. regulatory->current_rd == 0x65)
  1704. regulatory->current_rd += 5;
  1705. else if (regulatory->current_rd == 0x41)
  1706. regulatory->current_rd = 0x43;
  1707. ath_print(common, ATH_DBG_REGULATORY,
  1708. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1709. }
  1710. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1711. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1712. ath_print(common, ATH_DBG_FATAL,
  1713. "no band has been marked as supported in EEPROM.\n");
  1714. return -EINVAL;
  1715. }
  1716. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  1717. if (eeval & AR5416_OPFLAGS_11A) {
  1718. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  1719. if (ah->config.ht_enable) {
  1720. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  1721. set_bit(ATH9K_MODE_11NA_HT20,
  1722. pCap->wireless_modes);
  1723. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  1724. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  1725. pCap->wireless_modes);
  1726. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  1727. pCap->wireless_modes);
  1728. }
  1729. }
  1730. }
  1731. if (eeval & AR5416_OPFLAGS_11G) {
  1732. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  1733. if (ah->config.ht_enable) {
  1734. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  1735. set_bit(ATH9K_MODE_11NG_HT20,
  1736. pCap->wireless_modes);
  1737. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  1738. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  1739. pCap->wireless_modes);
  1740. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  1741. pCap->wireless_modes);
  1742. }
  1743. }
  1744. }
  1745. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1746. /*
  1747. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1748. * the EEPROM.
  1749. */
  1750. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1751. !(eeval & AR5416_OPFLAGS_11A) &&
  1752. !(AR_SREV_9271(ah)))
  1753. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1754. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1755. else
  1756. /* Use rx_chainmask from EEPROM. */
  1757. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1758. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  1759. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1760. pCap->low_2ghz_chan = 2312;
  1761. pCap->high_2ghz_chan = 2732;
  1762. pCap->low_5ghz_chan = 4920;
  1763. pCap->high_5ghz_chan = 6100;
  1764. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  1765. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  1766. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  1767. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  1768. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  1769. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  1770. if (ah->config.ht_enable)
  1771. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1772. else
  1773. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1774. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  1775. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  1776. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  1777. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  1778. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1779. pCap->total_queues =
  1780. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1781. else
  1782. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1783. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1784. pCap->keycache_size =
  1785. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1786. else
  1787. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1788. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  1789. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1790. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1791. else
  1792. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1793. if (AR_SREV_9271(ah))
  1794. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1795. else if (AR_DEVID_7010(ah))
  1796. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1797. else if (AR_SREV_9285_10_OR_LATER(ah))
  1798. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1799. else if (AR_SREV_9280_10_OR_LATER(ah))
  1800. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1801. else
  1802. pCap->num_gpio_pins = AR_NUM_GPIO;
  1803. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1804. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1805. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1806. } else {
  1807. pCap->rts_aggr_limit = (8 * 1024);
  1808. }
  1809. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1810. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1811. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1812. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1813. ah->rfkill_gpio =
  1814. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1815. ah->rfkill_polarity =
  1816. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1817. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1818. }
  1819. #endif
  1820. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1821. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1822. else
  1823. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1824. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1825. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1826. else
  1827. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1828. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1829. pCap->reg_cap =
  1830. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1831. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1832. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1833. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1834. } else {
  1835. pCap->reg_cap =
  1836. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1837. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1838. }
  1839. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1840. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1841. AR_SREV_5416(ah))
  1842. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1843. pCap->num_antcfg_5ghz =
  1844. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  1845. pCap->num_antcfg_2ghz =
  1846. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  1847. if (AR_SREV_9280_10_OR_LATER(ah) &&
  1848. ath9k_hw_btcoex_supported(ah)) {
  1849. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1850. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1851. if (AR_SREV_9285(ah)) {
  1852. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1853. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1854. } else {
  1855. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1856. }
  1857. } else {
  1858. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1859. }
  1860. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1861. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
  1862. ATH9K_HW_CAP_FASTCLOCK;
  1863. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1864. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1865. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1866. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1867. pCap->txs_len = sizeof(struct ar9003_txs);
  1868. if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1869. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1870. } else {
  1871. pCap->tx_desc_len = sizeof(struct ath_desc);
  1872. if (AR_SREV_9280_20(ah) &&
  1873. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1874. AR5416_EEP_MINOR_VER_16) ||
  1875. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1876. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1877. }
  1878. if (AR_SREV_9300_20_OR_LATER(ah))
  1879. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1880. if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
  1881. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1882. return 0;
  1883. }
  1884. /****************************/
  1885. /* GPIO / RFKILL / Antennae */
  1886. /****************************/
  1887. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1888. u32 gpio, u32 type)
  1889. {
  1890. int addr;
  1891. u32 gpio_shift, tmp;
  1892. if (gpio > 11)
  1893. addr = AR_GPIO_OUTPUT_MUX3;
  1894. else if (gpio > 5)
  1895. addr = AR_GPIO_OUTPUT_MUX2;
  1896. else
  1897. addr = AR_GPIO_OUTPUT_MUX1;
  1898. gpio_shift = (gpio % 6) * 5;
  1899. if (AR_SREV_9280_20_OR_LATER(ah)
  1900. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1901. REG_RMW(ah, addr, (type << gpio_shift),
  1902. (0x1f << gpio_shift));
  1903. } else {
  1904. tmp = REG_READ(ah, addr);
  1905. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1906. tmp &= ~(0x1f << gpio_shift);
  1907. tmp |= (type << gpio_shift);
  1908. REG_WRITE(ah, addr, tmp);
  1909. }
  1910. }
  1911. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1912. {
  1913. u32 gpio_shift;
  1914. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1915. if (AR_DEVID_7010(ah)) {
  1916. gpio_shift = gpio;
  1917. REG_RMW(ah, AR7010_GPIO_OE,
  1918. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1919. (AR7010_GPIO_OE_MASK << gpio_shift));
  1920. return;
  1921. }
  1922. gpio_shift = gpio << 1;
  1923. REG_RMW(ah,
  1924. AR_GPIO_OE_OUT,
  1925. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1926. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1927. }
  1928. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1929. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1930. {
  1931. #define MS_REG_READ(x, y) \
  1932. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1933. if (gpio >= ah->caps.num_gpio_pins)
  1934. return 0xffffffff;
  1935. if (AR_DEVID_7010(ah)) {
  1936. u32 val;
  1937. val = REG_READ(ah, AR7010_GPIO_IN);
  1938. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1939. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1940. return MS_REG_READ(AR9300, gpio) != 0;
  1941. else if (AR_SREV_9271(ah))
  1942. return MS_REG_READ(AR9271, gpio) != 0;
  1943. else if (AR_SREV_9287_10_OR_LATER(ah))
  1944. return MS_REG_READ(AR9287, gpio) != 0;
  1945. else if (AR_SREV_9285_10_OR_LATER(ah))
  1946. return MS_REG_READ(AR9285, gpio) != 0;
  1947. else if (AR_SREV_9280_10_OR_LATER(ah))
  1948. return MS_REG_READ(AR928X, gpio) != 0;
  1949. else
  1950. return MS_REG_READ(AR, gpio) != 0;
  1951. }
  1952. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1953. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1954. u32 ah_signal_type)
  1955. {
  1956. u32 gpio_shift;
  1957. if (AR_DEVID_7010(ah)) {
  1958. gpio_shift = gpio;
  1959. REG_RMW(ah, AR7010_GPIO_OE,
  1960. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1961. (AR7010_GPIO_OE_MASK << gpio_shift));
  1962. return;
  1963. }
  1964. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1965. gpio_shift = 2 * gpio;
  1966. REG_RMW(ah,
  1967. AR_GPIO_OE_OUT,
  1968. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1969. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1970. }
  1971. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1972. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1973. {
  1974. if (AR_DEVID_7010(ah)) {
  1975. val = val ? 0 : 1;
  1976. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1977. AR_GPIO_BIT(gpio));
  1978. return;
  1979. }
  1980. if (AR_SREV_9271(ah))
  1981. val = ~val;
  1982. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1983. AR_GPIO_BIT(gpio));
  1984. }
  1985. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1986. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1987. {
  1988. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1989. }
  1990. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1991. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1992. {
  1993. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1994. }
  1995. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1996. /*********************/
  1997. /* General Operation */
  1998. /*********************/
  1999. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2000. {
  2001. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2002. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2003. if (phybits & AR_PHY_ERR_RADAR)
  2004. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2005. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2006. bits |= ATH9K_RX_FILTER_PHYERR;
  2007. return bits;
  2008. }
  2009. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2010. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2011. {
  2012. u32 phybits;
  2013. ENABLE_REGWRITE_BUFFER(ah);
  2014. REG_WRITE(ah, AR_RX_FILTER, bits);
  2015. phybits = 0;
  2016. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2017. phybits |= AR_PHY_ERR_RADAR;
  2018. if (bits & ATH9K_RX_FILTER_PHYERR)
  2019. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2020. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2021. if (phybits)
  2022. REG_WRITE(ah, AR_RXCFG,
  2023. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  2024. else
  2025. REG_WRITE(ah, AR_RXCFG,
  2026. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  2027. REGWRITE_BUFFER_FLUSH(ah);
  2028. DISABLE_REGWRITE_BUFFER(ah);
  2029. }
  2030. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2031. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2032. {
  2033. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2034. return false;
  2035. ath9k_hw_init_pll(ah, NULL);
  2036. return true;
  2037. }
  2038. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2039. bool ath9k_hw_disable(struct ath_hw *ah)
  2040. {
  2041. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2042. return false;
  2043. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2044. return false;
  2045. ath9k_hw_init_pll(ah, NULL);
  2046. return true;
  2047. }
  2048. EXPORT_SYMBOL(ath9k_hw_disable);
  2049. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  2050. {
  2051. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2052. struct ath9k_channel *chan = ah->curchan;
  2053. struct ieee80211_channel *channel = chan->chan;
  2054. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  2055. ah->eep_ops->set_txpower(ah, chan,
  2056. ath9k_regd_get_ctl(regulatory, chan),
  2057. channel->max_antenna_gain * 2,
  2058. channel->max_power * 2,
  2059. min((u32) MAX_RATE_POWER,
  2060. (u32) regulatory->power_limit));
  2061. }
  2062. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2063. void ath9k_hw_setopmode(struct ath_hw *ah)
  2064. {
  2065. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2066. }
  2067. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2068. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2069. {
  2070. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2071. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2072. }
  2073. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2074. void ath9k_hw_write_associd(struct ath_hw *ah)
  2075. {
  2076. struct ath_common *common = ath9k_hw_common(ah);
  2077. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2078. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2079. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2080. }
  2081. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2082. #define ATH9K_MAX_TSF_READ 10
  2083. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2084. {
  2085. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2086. int i;
  2087. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2088. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2089. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2090. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2091. if (tsf_upper2 == tsf_upper1)
  2092. break;
  2093. tsf_upper1 = tsf_upper2;
  2094. }
  2095. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2096. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2097. }
  2098. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2099. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2100. {
  2101. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2102. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2103. }
  2104. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2105. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2106. {
  2107. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2108. AH_TSF_WRITE_TIMEOUT))
  2109. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  2110. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2111. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2112. }
  2113. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2114. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2115. {
  2116. if (setting)
  2117. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2118. else
  2119. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2120. }
  2121. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2122. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2123. {
  2124. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2125. u32 macmode;
  2126. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2127. macmode = AR_2040_JOINED_RX_CLEAR;
  2128. else
  2129. macmode = 0;
  2130. REG_WRITE(ah, AR_2040_MODE, macmode);
  2131. }
  2132. /* HW Generic timers configuration */
  2133. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2134. {
  2135. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2136. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2137. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2138. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2139. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2140. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2141. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2142. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2143. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2144. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2145. AR_NDP2_TIMER_MODE, 0x0002},
  2146. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2147. AR_NDP2_TIMER_MODE, 0x0004},
  2148. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2149. AR_NDP2_TIMER_MODE, 0x0008},
  2150. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2151. AR_NDP2_TIMER_MODE, 0x0010},
  2152. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2153. AR_NDP2_TIMER_MODE, 0x0020},
  2154. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2155. AR_NDP2_TIMER_MODE, 0x0040},
  2156. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2157. AR_NDP2_TIMER_MODE, 0x0080}
  2158. };
  2159. /* HW generic timer primitives */
  2160. /* compute and clear index of rightmost 1 */
  2161. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2162. {
  2163. u32 b;
  2164. b = *mask;
  2165. b &= (0-b);
  2166. *mask &= ~b;
  2167. b *= debruijn32;
  2168. b >>= 27;
  2169. return timer_table->gen_timer_index[b];
  2170. }
  2171. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2172. {
  2173. return REG_READ(ah, AR_TSF_L32);
  2174. }
  2175. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2176. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2177. void (*trigger)(void *),
  2178. void (*overflow)(void *),
  2179. void *arg,
  2180. u8 timer_index)
  2181. {
  2182. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2183. struct ath_gen_timer *timer;
  2184. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2185. if (timer == NULL) {
  2186. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  2187. "Failed to allocate memory"
  2188. "for hw timer[%d]\n", timer_index);
  2189. return NULL;
  2190. }
  2191. /* allocate a hardware generic timer slot */
  2192. timer_table->timers[timer_index] = timer;
  2193. timer->index = timer_index;
  2194. timer->trigger = trigger;
  2195. timer->overflow = overflow;
  2196. timer->arg = arg;
  2197. return timer;
  2198. }
  2199. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2200. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2201. struct ath_gen_timer *timer,
  2202. u32 timer_next,
  2203. u32 timer_period)
  2204. {
  2205. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2206. u32 tsf;
  2207. BUG_ON(!timer_period);
  2208. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2209. tsf = ath9k_hw_gettsf32(ah);
  2210. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  2211. "curent tsf %x period %x"
  2212. "timer_next %x\n", tsf, timer_period, timer_next);
  2213. /*
  2214. * Pull timer_next forward if the current TSF already passed it
  2215. * because of software latency
  2216. */
  2217. if (timer_next < tsf)
  2218. timer_next = tsf + timer_period;
  2219. /*
  2220. * Program generic timer registers
  2221. */
  2222. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2223. timer_next);
  2224. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2225. timer_period);
  2226. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2227. gen_tmr_configuration[timer->index].mode_mask);
  2228. /* Enable both trigger and thresh interrupt masks */
  2229. REG_SET_BIT(ah, AR_IMR_S5,
  2230. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2231. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2232. }
  2233. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2234. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2235. {
  2236. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2237. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2238. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2239. return;
  2240. }
  2241. /* Clear generic timer enable bits. */
  2242. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2243. gen_tmr_configuration[timer->index].mode_mask);
  2244. /* Disable both trigger and thresh interrupt masks */
  2245. REG_CLR_BIT(ah, AR_IMR_S5,
  2246. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2247. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2248. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2249. }
  2250. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2251. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2252. {
  2253. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2254. /* free the hardware generic timer slot */
  2255. timer_table->timers[timer->index] = NULL;
  2256. kfree(timer);
  2257. }
  2258. EXPORT_SYMBOL(ath_gen_timer_free);
  2259. /*
  2260. * Generic Timer Interrupts handling
  2261. */
  2262. void ath_gen_timer_isr(struct ath_hw *ah)
  2263. {
  2264. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2265. struct ath_gen_timer *timer;
  2266. struct ath_common *common = ath9k_hw_common(ah);
  2267. u32 trigger_mask, thresh_mask, index;
  2268. /* get hardware generic timer interrupt status */
  2269. trigger_mask = ah->intr_gen_timer_trigger;
  2270. thresh_mask = ah->intr_gen_timer_thresh;
  2271. trigger_mask &= timer_table->timer_mask.val;
  2272. thresh_mask &= timer_table->timer_mask.val;
  2273. trigger_mask &= ~thresh_mask;
  2274. while (thresh_mask) {
  2275. index = rightmost_index(timer_table, &thresh_mask);
  2276. timer = timer_table->timers[index];
  2277. BUG_ON(!timer);
  2278. ath_print(common, ATH_DBG_HWTIMER,
  2279. "TSF overflow for Gen timer %d\n", index);
  2280. timer->overflow(timer->arg);
  2281. }
  2282. while (trigger_mask) {
  2283. index = rightmost_index(timer_table, &trigger_mask);
  2284. timer = timer_table->timers[index];
  2285. BUG_ON(!timer);
  2286. ath_print(common, ATH_DBG_HWTIMER,
  2287. "Gen timer[%d] trigger\n", index);
  2288. timer->trigger(timer->arg);
  2289. }
  2290. }
  2291. EXPORT_SYMBOL(ath_gen_timer_isr);
  2292. /********/
  2293. /* HTC */
  2294. /********/
  2295. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2296. {
  2297. ah->htc_reset_init = true;
  2298. }
  2299. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2300. static struct {
  2301. u32 version;
  2302. const char * name;
  2303. } ath_mac_bb_names[] = {
  2304. /* Devices with external radios */
  2305. { AR_SREV_VERSION_5416_PCI, "5416" },
  2306. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2307. { AR_SREV_VERSION_9100, "9100" },
  2308. { AR_SREV_VERSION_9160, "9160" },
  2309. /* Single-chip solutions */
  2310. { AR_SREV_VERSION_9280, "9280" },
  2311. { AR_SREV_VERSION_9285, "9285" },
  2312. { AR_SREV_VERSION_9287, "9287" },
  2313. { AR_SREV_VERSION_9271, "9271" },
  2314. { AR_SREV_VERSION_9300, "9300" },
  2315. };
  2316. /* For devices with external radios */
  2317. static struct {
  2318. u16 version;
  2319. const char * name;
  2320. } ath_rf_names[] = {
  2321. { 0, "5133" },
  2322. { AR_RAD5133_SREV_MAJOR, "5133" },
  2323. { AR_RAD5122_SREV_MAJOR, "5122" },
  2324. { AR_RAD2133_SREV_MAJOR, "2133" },
  2325. { AR_RAD2122_SREV_MAJOR, "2122" }
  2326. };
  2327. /*
  2328. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2329. */
  2330. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2331. {
  2332. int i;
  2333. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2334. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2335. return ath_mac_bb_names[i].name;
  2336. }
  2337. }
  2338. return "????";
  2339. }
  2340. /*
  2341. * Return the RF name. "????" is returned if the RF is unknown.
  2342. * Used for devices with external radios.
  2343. */
  2344. static const char *ath9k_hw_rf_name(u16 rf_version)
  2345. {
  2346. int i;
  2347. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2348. if (ath_rf_names[i].version == rf_version) {
  2349. return ath_rf_names[i].name;
  2350. }
  2351. }
  2352. return "????";
  2353. }
  2354. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2355. {
  2356. int used;
  2357. /* chipsets >= AR9280 are single-chip */
  2358. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2359. used = snprintf(hw_name, len,
  2360. "Atheros AR%s Rev:%x",
  2361. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2362. ah->hw_version.macRev);
  2363. }
  2364. else {
  2365. used = snprintf(hw_name, len,
  2366. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2367. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2368. ah->hw_version.macRev,
  2369. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2370. AR_RADIO_SREV_MAJOR)),
  2371. ah->hw_version.phyRev);
  2372. }
  2373. hw_name[used] = '\0';
  2374. }
  2375. EXPORT_SYMBOL(ath9k_hw_name);