hw.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30. #include "../wifi.h"
  31. #include "../efuse.h"
  32. #include "../base.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../usb.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "mac.h"
  40. #include "dm.h"
  41. #include "hw.h"
  42. #include "../rtl8192ce/hw.h"
  43. #include "trx.h"
  44. #include "led.h"
  45. #include "table.h"
  46. static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw)
  47. {
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  50. struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv);
  51. rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH;
  52. rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY;
  53. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  54. rtlphy->hwparam_tables[PHY_REG_PG].length =
  55. RTL8192CUPHY_REG_Array_PG_HPLength;
  56. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  57. RTL8192CUPHY_REG_Array_PG_HP;
  58. } else {
  59. rtlphy->hwparam_tables[PHY_REG_PG].length =
  60. RTL8192CUPHY_REG_ARRAY_PGLENGTH;
  61. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  62. RTL8192CUPHY_REG_ARRAY_PG;
  63. }
  64. /* 2T */
  65. rtlphy->hwparam_tables[PHY_REG_2T].length =
  66. RTL8192CUPHY_REG_2TARRAY_LENGTH;
  67. rtlphy->hwparam_tables[PHY_REG_2T].pdata =
  68. RTL8192CUPHY_REG_2TARRAY;
  69. rtlphy->hwparam_tables[RADIOA_2T].length =
  70. RTL8192CURADIOA_2TARRAYLENGTH;
  71. rtlphy->hwparam_tables[RADIOA_2T].pdata =
  72. RTL8192CURADIOA_2TARRAY;
  73. rtlphy->hwparam_tables[RADIOB_2T].length =
  74. RTL8192CURADIOB_2TARRAYLENGTH;
  75. rtlphy->hwparam_tables[RADIOB_2T].pdata =
  76. RTL8192CU_RADIOB_2TARRAY;
  77. rtlphy->hwparam_tables[AGCTAB_2T].length =
  78. RTL8192CUAGCTAB_2TARRAYLENGTH;
  79. rtlphy->hwparam_tables[AGCTAB_2T].pdata =
  80. RTL8192CUAGCTAB_2TARRAY;
  81. /* 1T */
  82. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  83. rtlphy->hwparam_tables[PHY_REG_1T].length =
  84. RTL8192CUPHY_REG_1T_HPArrayLength;
  85. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  86. RTL8192CUPHY_REG_1T_HPArray;
  87. rtlphy->hwparam_tables[RADIOA_1T].length =
  88. RTL8192CURadioA_1T_HPArrayLength;
  89. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  90. RTL8192CURadioA_1T_HPArray;
  91. rtlphy->hwparam_tables[RADIOB_1T].length =
  92. RTL8192CURADIOB_1TARRAYLENGTH;
  93. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  94. RTL8192CU_RADIOB_1TARRAY;
  95. rtlphy->hwparam_tables[AGCTAB_1T].length =
  96. RTL8192CUAGCTAB_1T_HPArrayLength;
  97. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  98. Rtl8192CUAGCTAB_1T_HPArray;
  99. } else {
  100. rtlphy->hwparam_tables[PHY_REG_1T].length =
  101. RTL8192CUPHY_REG_1TARRAY_LENGTH;
  102. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  103. RTL8192CUPHY_REG_1TARRAY;
  104. rtlphy->hwparam_tables[RADIOA_1T].length =
  105. RTL8192CURADIOA_1TARRAYLENGTH;
  106. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  107. RTL8192CU_RADIOA_1TARRAY;
  108. rtlphy->hwparam_tables[RADIOB_1T].length =
  109. RTL8192CURADIOB_1TARRAYLENGTH;
  110. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  111. RTL8192CU_RADIOB_1TARRAY;
  112. rtlphy->hwparam_tables[AGCTAB_1T].length =
  113. RTL8192CUAGCTAB_1TARRAYLENGTH;
  114. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  115. RTL8192CUAGCTAB_1TARRAY;
  116. }
  117. }
  118. static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  119. bool autoload_fail,
  120. u8 *hwinfo)
  121. {
  122. struct rtl_priv *rtlpriv = rtl_priv(hw);
  123. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  124. u8 rf_path, index, tempval;
  125. u16 i;
  126. for (rf_path = 0; rf_path < 2; rf_path++) {
  127. for (i = 0; i < 3; i++) {
  128. if (!autoload_fail) {
  129. rtlefuse->
  130. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  131. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  132. rtlefuse->
  133. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  134. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  135. i];
  136. } else {
  137. rtlefuse->
  138. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  139. EEPROM_DEFAULT_TXPOWERLEVEL;
  140. rtlefuse->
  141. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  142. EEPROM_DEFAULT_TXPOWERLEVEL;
  143. }
  144. }
  145. }
  146. for (i = 0; i < 3; i++) {
  147. if (!autoload_fail)
  148. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  149. else
  150. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  151. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_A][i] =
  152. (tempval & 0xf);
  153. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_B][i] =
  154. ((tempval & 0xf0) >> 4);
  155. }
  156. for (rf_path = 0; rf_path < 2; rf_path++)
  157. for (i = 0; i < 3; i++)
  158. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  159. ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
  160. i, rtlefuse->
  161. eeprom_chnlarea_txpwr_cck[rf_path][i]));
  162. for (rf_path = 0; rf_path < 2; rf_path++)
  163. for (i = 0; i < 3; i++)
  164. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  165. ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  166. rf_path, i,
  167. rtlefuse->
  168. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]));
  169. for (rf_path = 0; rf_path < 2; rf_path++)
  170. for (i = 0; i < 3; i++)
  171. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  172. ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  173. rf_path, i,
  174. rtlefuse->
  175. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  176. [i]));
  177. for (rf_path = 0; rf_path < 2; rf_path++) {
  178. for (i = 0; i < 14; i++) {
  179. index = _rtl92c_get_chnl_group((u8) i);
  180. rtlefuse->txpwrlevel_cck[rf_path][i] =
  181. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  182. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  183. rtlefuse->
  184. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  185. if ((rtlefuse->
  186. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  187. rtlefuse->
  188. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][index])
  189. > 0) {
  190. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  191. rtlefuse->
  192. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  193. [index] - rtlefuse->
  194. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  195. [index];
  196. } else {
  197. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  198. }
  199. }
  200. for (i = 0; i < 14; i++) {
  201. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  202. ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
  203. "[0x%x / 0x%x / 0x%x]\n", rf_path, i,
  204. rtlefuse->txpwrlevel_cck[rf_path][i],
  205. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  206. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
  207. }
  208. }
  209. for (i = 0; i < 3; i++) {
  210. if (!autoload_fail) {
  211. rtlefuse->eeprom_pwrlimit_ht40[i] =
  212. hwinfo[EEPROM_TXPWR_GROUP + i];
  213. rtlefuse->eeprom_pwrlimit_ht20[i] =
  214. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  215. } else {
  216. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  217. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  218. }
  219. }
  220. for (rf_path = 0; rf_path < 2; rf_path++) {
  221. for (i = 0; i < 14; i++) {
  222. index = _rtl92c_get_chnl_group((u8) i);
  223. if (rf_path == RF90_PATH_A) {
  224. rtlefuse->pwrgroup_ht20[rf_path][i] =
  225. (rtlefuse->eeprom_pwrlimit_ht20[index]
  226. & 0xf);
  227. rtlefuse->pwrgroup_ht40[rf_path][i] =
  228. (rtlefuse->eeprom_pwrlimit_ht40[index]
  229. & 0xf);
  230. } else if (rf_path == RF90_PATH_B) {
  231. rtlefuse->pwrgroup_ht20[rf_path][i] =
  232. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  233. & 0xf0) >> 4);
  234. rtlefuse->pwrgroup_ht40[rf_path][i] =
  235. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  236. & 0xf0) >> 4);
  237. }
  238. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  239. ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  240. rf_path, i,
  241. rtlefuse->pwrgroup_ht20[rf_path][i]));
  242. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  243. ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  244. rf_path, i,
  245. rtlefuse->pwrgroup_ht40[rf_path][i]));
  246. }
  247. }
  248. for (i = 0; i < 14; i++) {
  249. index = _rtl92c_get_chnl_group((u8) i);
  250. if (!autoload_fail)
  251. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  252. else
  253. tempval = EEPROM_DEFAULT_HT20_DIFF;
  254. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  255. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  256. ((tempval >> 4) & 0xF);
  257. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  258. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  259. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  260. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  261. index = _rtl92c_get_chnl_group((u8) i);
  262. if (!autoload_fail)
  263. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  264. else
  265. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  266. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  267. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  268. ((tempval >> 4) & 0xF);
  269. }
  270. rtlefuse->legacy_ht_txpowerdiff =
  271. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  272. for (i = 0; i < 14; i++)
  273. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  274. ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  275. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
  276. for (i = 0; i < 14; i++)
  277. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  278. ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
  279. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
  280. for (i = 0; i < 14; i++)
  281. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  282. ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  283. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
  284. for (i = 0; i < 14; i++)
  285. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  286. ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
  287. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
  288. if (!autoload_fail)
  289. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  290. else
  291. rtlefuse->eeprom_regulatory = 0;
  292. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  293. ("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
  294. if (!autoload_fail) {
  295. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  296. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  297. } else {
  298. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  299. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  300. }
  301. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  302. ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  303. rtlefuse->eeprom_tssi[RF90_PATH_A],
  304. rtlefuse->eeprom_tssi[RF90_PATH_B]));
  305. if (!autoload_fail)
  306. tempval = hwinfo[EEPROM_THERMAL_METER];
  307. else
  308. tempval = EEPROM_DEFAULT_THERMALMETER;
  309. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  310. if (rtlefuse->eeprom_thermalmeter < 0x06 ||
  311. rtlefuse->eeprom_thermalmeter > 0x1c)
  312. rtlefuse->eeprom_thermalmeter = 0x12;
  313. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  314. rtlefuse->apk_thermalmeterignore = true;
  315. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  316. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  317. ("thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter));
  318. }
  319. static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents)
  320. {
  321. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  322. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  323. u8 boardType;
  324. if (IS_NORMAL_CHIP(rtlhal->version)) {
  325. boardType = ((contents[EEPROM_RF_OPT1]) &
  326. BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/
  327. } else {
  328. boardType = contents[EEPROM_RF_OPT4];
  329. boardType &= BOARD_TYPE_TEST_MASK;
  330. }
  331. rtlefuse->board_type = boardType;
  332. if (IS_HIGHT_PA(rtlefuse->board_type))
  333. rtlefuse->external_pa = 1;
  334. pr_info("Board Type %x\n", rtlefuse->board_type);
  335. #ifdef CONFIG_ANTENNA_DIVERSITY
  336. /* Antenna Diversity setting. */
  337. if (registry_par->antdiv_cfg == 2) /* 2: From Efuse */
  338. rtl_efuse->antenna_cfg = (contents[EEPROM_RF_OPT1]&0x18)>>3;
  339. else
  340. rtl_efuse->antenna_cfg = registry_par->antdiv_cfg; /* 0:OFF, */
  341. pr_info("Antenna Config %x\n", rtl_efuse->antenna_cfg);
  342. #endif
  343. }
  344. #ifdef CONFIG_BT_COEXIST
  345. static void _update_bt_param(_adapter *padapter)
  346. {
  347. struct btcoexist_priv *pbtpriv = &(padapter->halpriv.bt_coexist);
  348. struct registry_priv *registry_par = &padapter->registrypriv;
  349. if (2 != registry_par->bt_iso) {
  350. /* 0:Low, 1:High, 2:From Efuse */
  351. pbtpriv->BT_Ant_isolation = registry_par->bt_iso;
  352. }
  353. if (registry_par->bt_sco == 1) {
  354. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy,
  355. * 5.OtherBusy */
  356. pbtpriv->BT_Service = BT_OtherAction;
  357. } else if (registry_par->bt_sco == 2) {
  358. pbtpriv->BT_Service = BT_SCO;
  359. } else if (registry_par->bt_sco == 4) {
  360. pbtpriv->BT_Service = BT_Busy;
  361. } else if (registry_par->bt_sco == 5) {
  362. pbtpriv->BT_Service = BT_OtherBusy;
  363. } else {
  364. pbtpriv->BT_Service = BT_Idle;
  365. }
  366. pbtpriv->BT_Ampdu = registry_par->bt_ampdu;
  367. pbtpriv->bCOBT = _TRUE;
  368. pbtpriv->BtEdcaUL = 0;
  369. pbtpriv->BtEdcaDL = 0;
  370. pbtpriv->BtRssiState = 0xff;
  371. pbtpriv->bInitSet = _FALSE;
  372. pbtpriv->bBTBusyTraffic = _FALSE;
  373. pbtpriv->bBTTrafficModeSet = _FALSE;
  374. pbtpriv->bBTNonTrafficModeSet = _FALSE;
  375. pbtpriv->CurrentState = 0;
  376. pbtpriv->PreviousState = 0;
  377. pr_info("BT Coexistance = %s\n",
  378. (pbtpriv->BT_Coexist == _TRUE) ? "enable" : "disable");
  379. if (pbtpriv->BT_Coexist) {
  380. if (pbtpriv->BT_Ant_Num == Ant_x2)
  381. pr_info("BlueTooth BT_Ant_Num = Antx2\n");
  382. else if (pbtpriv->BT_Ant_Num == Ant_x1)
  383. pr_info("BlueTooth BT_Ant_Num = Antx1\n");
  384. switch (pbtpriv->BT_CoexistType) {
  385. case BT_2Wire:
  386. pr_info("BlueTooth BT_CoexistType = BT_2Wire\n");
  387. break;
  388. case BT_ISSC_3Wire:
  389. pr_info("BlueTooth BT_CoexistType = BT_ISSC_3Wire\n");
  390. break;
  391. case BT_Accel:
  392. pr_info("BlueTooth BT_CoexistType = BT_Accel\n");
  393. break;
  394. case BT_CSR_BC4:
  395. pr_info("BlueTooth BT_CoexistType = BT_CSR_BC4\n");
  396. break;
  397. case BT_CSR_BC8:
  398. pr_info("BlueTooth BT_CoexistType = BT_CSR_BC8\n");
  399. break;
  400. case BT_RTL8756:
  401. pr_info("BlueTooth BT_CoexistType = BT_RTL8756\n");
  402. break;
  403. default:
  404. pr_info("BlueTooth BT_CoexistType = Unknown\n");
  405. break;
  406. }
  407. pr_info("BlueTooth BT_Ant_isolation = %d\n",
  408. pbtpriv->BT_Ant_isolation);
  409. switch (pbtpriv->BT_Service) {
  410. case BT_OtherAction:
  411. pr_info("BlueTooth BT_Service = BT_OtherAction\n");
  412. break;
  413. case BT_SCO:
  414. pr_info("BlueTooth BT_Service = BT_SCO\n");
  415. break;
  416. case BT_Busy:
  417. pr_info("BlueTooth BT_Service = BT_Busy\n");
  418. break;
  419. case BT_OtherBusy:
  420. pr_info("BlueTooth BT_Service = BT_OtherBusy\n");
  421. break;
  422. default:
  423. pr_info("BlueTooth BT_Service = BT_Idle\n");
  424. break;
  425. }
  426. pr_info("BT_RadioSharedType = 0x%x\n",
  427. pbtpriv->BT_RadioSharedType);
  428. }
  429. }
  430. #define GET_BT_COEXIST(priv) (&priv->bt_coexist)
  431. static void _rtl92cu_read_bluetooth_coexistInfo(struct ieee80211_hw *hw,
  432. u8 *contents,
  433. bool bautoloadfailed);
  434. {
  435. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
  436. bool isNormal = IS_NORMAL_CHIP(pHalData->VersionID);
  437. struct btcoexist_priv *pbtpriv = &pHalData->bt_coexist;
  438. u8 rf_opt4;
  439. _rtw_memset(pbtpriv, 0, sizeof(struct btcoexist_priv));
  440. if (AutoloadFail) {
  441. pbtpriv->BT_Coexist = _FALSE;
  442. pbtpriv->BT_CoexistType = BT_2Wire;
  443. pbtpriv->BT_Ant_Num = Ant_x2;
  444. pbtpriv->BT_Ant_isolation = 0;
  445. pbtpriv->BT_RadioSharedType = BT_Radio_Shared;
  446. return;
  447. }
  448. if (isNormal) {
  449. if (pHalData->BoardType == BOARD_USB_COMBO)
  450. pbtpriv->BT_Coexist = _TRUE;
  451. else
  452. pbtpriv->BT_Coexist = ((PROMContent[EEPROM_RF_OPT3] &
  453. 0x20) >> 5); /* bit[5] */
  454. rf_opt4 = PROMContent[EEPROM_RF_OPT4];
  455. pbtpriv->BT_CoexistType = ((rf_opt4&0xe)>>1); /* bit [3:1] */
  456. pbtpriv->BT_Ant_Num = (rf_opt4&0x1); /* bit [0] */
  457. pbtpriv->BT_Ant_isolation = ((rf_opt4&0x10)>>4); /* bit [4] */
  458. pbtpriv->BT_RadioSharedType = ((rf_opt4&0x20)>>5); /* bit [5] */
  459. } else {
  460. pbtpriv->BT_Coexist = (PROMContent[EEPROM_RF_OPT4] >> 4) ?
  461. _TRUE : _FALSE;
  462. }
  463. _update_bt_param(Adapter);
  464. }
  465. #endif
  466. static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw)
  467. {
  468. struct rtl_priv *rtlpriv = rtl_priv(hw);
  469. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  470. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  471. u16 i, usvalue;
  472. u8 hwinfo[HWSET_MAX_SIZE] = {0};
  473. u16 eeprom_id;
  474. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  475. rtl_efuse_shadow_map_update(hw);
  476. memcpy((void *)hwinfo,
  477. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  478. HWSET_MAX_SIZE);
  479. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  480. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  481. ("RTL819X Not boot from eeprom, check it !!"));
  482. }
  483. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, ("MAP\n"),
  484. hwinfo, HWSET_MAX_SIZE);
  485. eeprom_id = le16_to_cpu(*((__le16 *)&hwinfo[0]));
  486. if (eeprom_id != RTL8190_EEPROM_ID) {
  487. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  488. ("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
  489. rtlefuse->autoload_failflag = true;
  490. } else {
  491. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
  492. rtlefuse->autoload_failflag = false;
  493. }
  494. if (rtlefuse->autoload_failflag)
  495. return;
  496. for (i = 0; i < 6; i += 2) {
  497. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  498. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  499. }
  500. pr_info("MAC address: %pM\n", rtlefuse->dev_addr);
  501. _rtl92cu_read_txpower_info_from_hwpg(hw,
  502. rtlefuse->autoload_failflag, hwinfo);
  503. rtlefuse->eeprom_vid = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_VID]);
  504. rtlefuse->eeprom_did = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_DID]);
  505. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  506. (" VID = 0x%02x PID = 0x%02x\n",
  507. rtlefuse->eeprom_vid, rtlefuse->eeprom_did));
  508. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  509. rtlefuse->eeprom_version =
  510. le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_VERSION]);
  511. rtlefuse->txpwr_fromeprom = true;
  512. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
  513. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  514. ("EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid));
  515. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  516. switch (rtlefuse->eeprom_oemid) {
  517. case EEPROM_CID_DEFAULT:
  518. if (rtlefuse->eeprom_did == 0x8176) {
  519. if ((rtlefuse->eeprom_svid == 0x103C &&
  520. rtlefuse->eeprom_smid == 0x1629))
  521. rtlhal->oem_id = RT_CID_819x_HP;
  522. else
  523. rtlhal->oem_id = RT_CID_DEFAULT;
  524. } else {
  525. rtlhal->oem_id = RT_CID_DEFAULT;
  526. }
  527. break;
  528. case EEPROM_CID_TOSHIBA:
  529. rtlhal->oem_id = RT_CID_TOSHIBA;
  530. break;
  531. case EEPROM_CID_QMI:
  532. rtlhal->oem_id = RT_CID_819x_QMI;
  533. break;
  534. case EEPROM_CID_WHQL:
  535. default:
  536. rtlhal->oem_id = RT_CID_DEFAULT;
  537. break;
  538. }
  539. }
  540. _rtl92cu_read_board_type(hw, hwinfo);
  541. #ifdef CONFIG_BT_COEXIST
  542. _rtl92cu_read_bluetooth_coexistInfo(hw, hwinfo,
  543. rtlefuse->autoload_failflag);
  544. #endif
  545. }
  546. static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw)
  547. {
  548. struct rtl_priv *rtlpriv = rtl_priv(hw);
  549. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  550. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  551. switch (rtlhal->oem_id) {
  552. case RT_CID_819x_HP:
  553. usb_priv->ledctl.led_opendrain = true;
  554. break;
  555. case RT_CID_819x_Lenovo:
  556. case RT_CID_DEFAULT:
  557. case RT_CID_TOSHIBA:
  558. case RT_CID_CCX:
  559. case RT_CID_819x_Acer:
  560. case RT_CID_WHQL:
  561. default:
  562. break;
  563. }
  564. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  565. ("RT Customized ID: 0x%02X\n", rtlhal->oem_id));
  566. }
  567. void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw)
  568. {
  569. struct rtl_priv *rtlpriv = rtl_priv(hw);
  570. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  571. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  572. u8 tmp_u1b;
  573. if (!IS_NORMAL_CHIP(rtlhal->version))
  574. return;
  575. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  576. rtlefuse->epromtype = (tmp_u1b & BOOT_FROM_EEPROM) ?
  577. EEPROM_93C46 : EEPROM_BOOT_EFUSE;
  578. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from %s\n",
  579. (tmp_u1b & BOOT_FROM_EEPROM) ? "EERROM" : "EFUSE"));
  580. rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true;
  581. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload %s\n",
  582. (tmp_u1b & EEPROM_EN) ? "OK!!" : "ERR!!"));
  583. _rtl92cu_read_adapter_info(hw);
  584. _rtl92cu_hal_customized_behavior(hw);
  585. return;
  586. }
  587. static int _rtl92cu_init_power_on(struct ieee80211_hw *hw)
  588. {
  589. struct rtl_priv *rtlpriv = rtl_priv(hw);
  590. int status = 0;
  591. u16 value16;
  592. u8 value8;
  593. /* polling autoload done. */
  594. u32 pollingCount = 0;
  595. do {
  596. if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) {
  597. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  598. ("Autoload Done!\n"));
  599. break;
  600. }
  601. if (pollingCount++ > 100) {
  602. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  603. ("Failed to polling REG_APS_FSMCO[PFM_ALDN]"
  604. " done!\n"));
  605. return -ENODEV;
  606. }
  607. } while (true);
  608. /* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */
  609. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  610. /* Power on when re-enter from IPS/Radio off/card disable */
  611. /* enable SPS into PWM mode */
  612. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  613. udelay(100);
  614. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  615. if (0 == (value8 & LDV12_EN)) {
  616. value8 |= LDV12_EN;
  617. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  618. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  619. (" power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x.\n",
  620. value8));
  621. udelay(100);
  622. value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  623. value8 &= ~ISO_MD2PP;
  624. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8);
  625. }
  626. /* auto enable WLAN */
  627. pollingCount = 0;
  628. value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO);
  629. value16 |= APFM_ONMAC;
  630. rtl_write_word(rtlpriv, REG_APS_FSMCO, value16);
  631. do {
  632. if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) {
  633. pr_info("MAC auto ON okay!\n");
  634. break;
  635. }
  636. if (pollingCount++ > 100) {
  637. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  638. ("Failed to polling REG_APS_FSMCO[APFM_ONMAC]"
  639. " done!\n"));
  640. return -ENODEV;
  641. }
  642. } while (true);
  643. /* Enable Radio ,GPIO ,and LED function */
  644. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812);
  645. /* release RF digital isolation */
  646. value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  647. value16 &= ~ISO_DIOR;
  648. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16);
  649. /* Reconsider when to do this operation after asking HWSD. */
  650. pollingCount = 0;
  651. rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv,
  652. REG_APSD_CTRL) & ~BIT(6)));
  653. do {
  654. pollingCount++;
  655. } while ((pollingCount < 200) &&
  656. (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7)));
  657. /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
  658. value16 = rtl_read_word(rtlpriv, REG_CR);
  659. value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN |
  660. PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC);
  661. rtl_write_word(rtlpriv, REG_CR, value16);
  662. return status;
  663. }
  664. static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw,
  665. bool wmm_enable,
  666. u8 out_ep_num,
  667. u8 queue_sel)
  668. {
  669. struct rtl_priv *rtlpriv = rtl_priv(hw);
  670. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  671. bool isChipN = IS_NORMAL_CHIP(rtlhal->version);
  672. u32 outEPNum = (u32)out_ep_num;
  673. u32 numHQ = 0;
  674. u32 numLQ = 0;
  675. u32 numNQ = 0;
  676. u32 numPubQ;
  677. u32 value32;
  678. u8 value8;
  679. u32 txQPageNum, txQPageUnit, txQRemainPage;
  680. if (!wmm_enable) {
  681. numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ :
  682. CHIP_A_PAGE_NUM_PUBQ;
  683. txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ;
  684. txQPageUnit = txQPageNum/outEPNum;
  685. txQRemainPage = txQPageNum % outEPNum;
  686. if (queue_sel & TX_SELE_HQ)
  687. numHQ = txQPageUnit;
  688. if (queue_sel & TX_SELE_LQ)
  689. numLQ = txQPageUnit;
  690. /* HIGH priority queue always present in the configuration of
  691. * 2 out-ep. Remainder pages have assigned to High queue */
  692. if ((outEPNum > 1) && (txQRemainPage))
  693. numHQ += txQRemainPage;
  694. /* NOTE: This step done before writting REG_RQPN. */
  695. if (isChipN) {
  696. if (queue_sel & TX_SELE_NQ)
  697. numNQ = txQPageUnit;
  698. value8 = (u8)_NPQ(numNQ);
  699. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  700. }
  701. } else {
  702. /* for WMM ,number of out-ep must more than or equal to 2! */
  703. numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ :
  704. WMM_CHIP_A_PAGE_NUM_PUBQ;
  705. if (queue_sel & TX_SELE_HQ) {
  706. numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ :
  707. WMM_CHIP_A_PAGE_NUM_HPQ;
  708. }
  709. if (queue_sel & TX_SELE_LQ) {
  710. numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ :
  711. WMM_CHIP_A_PAGE_NUM_LPQ;
  712. }
  713. /* NOTE: This step done before writting REG_RQPN. */
  714. if (isChipN) {
  715. if (queue_sel & TX_SELE_NQ)
  716. numNQ = WMM_CHIP_B_PAGE_NUM_NPQ;
  717. value8 = (u8)_NPQ(numNQ);
  718. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  719. }
  720. }
  721. /* TX DMA */
  722. value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
  723. rtl_write_dword(rtlpriv, REG_RQPN, value32);
  724. }
  725. static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable)
  726. {
  727. struct rtl_priv *rtlpriv = rtl_priv(hw);
  728. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  729. u8 txpktbuf_bndy;
  730. u8 value8;
  731. if (!wmm_enable)
  732. txpktbuf_bndy = TX_PAGE_BOUNDARY;
  733. else /* for WMM */
  734. txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version))
  735. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  736. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  737. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  738. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  739. rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
  740. rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
  741. rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy);
  742. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  743. value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128);
  744. rtl_write_byte(rtlpriv, REG_PBP, value8);
  745. }
  746. static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ,
  747. u16 bkQ, u16 viQ, u16 voQ,
  748. u16 mgtQ, u16 hiQ)
  749. {
  750. struct rtl_priv *rtlpriv = rtl_priv(hw);
  751. u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7);
  752. value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
  753. _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
  754. _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
  755. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16);
  756. }
  757. static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw,
  758. bool wmm_enable,
  759. u8 queue_sel)
  760. {
  761. u16 uninitialized_var(value);
  762. switch (queue_sel) {
  763. case TX_SELE_HQ:
  764. value = QUEUE_HIGH;
  765. break;
  766. case TX_SELE_LQ:
  767. value = QUEUE_LOW;
  768. break;
  769. case TX_SELE_NQ:
  770. value = QUEUE_NORMAL;
  771. break;
  772. default:
  773. WARN_ON(1); /* Shall not reach here! */
  774. break;
  775. }
  776. _rtl92c_init_chipN_reg_priority(hw, value, value, value, value,
  777. value, value);
  778. pr_info("Tx queue select: 0x%02x\n", queue_sel);
  779. }
  780. static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw,
  781. bool wmm_enable,
  782. u8 queue_sel)
  783. {
  784. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  785. u16 uninitialized_var(valueHi);
  786. u16 uninitialized_var(valueLow);
  787. switch (queue_sel) {
  788. case (TX_SELE_HQ | TX_SELE_LQ):
  789. valueHi = QUEUE_HIGH;
  790. valueLow = QUEUE_LOW;
  791. break;
  792. case (TX_SELE_NQ | TX_SELE_LQ):
  793. valueHi = QUEUE_NORMAL;
  794. valueLow = QUEUE_LOW;
  795. break;
  796. case (TX_SELE_HQ | TX_SELE_NQ):
  797. valueHi = QUEUE_HIGH;
  798. valueLow = QUEUE_NORMAL;
  799. break;
  800. default:
  801. WARN_ON(1);
  802. break;
  803. }
  804. if (!wmm_enable) {
  805. beQ = valueLow;
  806. bkQ = valueLow;
  807. viQ = valueHi;
  808. voQ = valueHi;
  809. mgtQ = valueHi;
  810. hiQ = valueHi;
  811. } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
  812. beQ = valueHi;
  813. bkQ = valueLow;
  814. viQ = valueLow;
  815. voQ = valueHi;
  816. mgtQ = valueHi;
  817. hiQ = valueHi;
  818. }
  819. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  820. pr_info("Tx queue select: 0x%02x\n", queue_sel);
  821. }
  822. static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw,
  823. bool wmm_enable,
  824. u8 queue_sel)
  825. {
  826. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  827. struct rtl_priv *rtlpriv = rtl_priv(hw);
  828. if (!wmm_enable) { /* typical setting */
  829. beQ = QUEUE_LOW;
  830. bkQ = QUEUE_LOW;
  831. viQ = QUEUE_NORMAL;
  832. voQ = QUEUE_HIGH;
  833. mgtQ = QUEUE_HIGH;
  834. hiQ = QUEUE_HIGH;
  835. } else { /* for WMM */
  836. beQ = QUEUE_LOW;
  837. bkQ = QUEUE_NORMAL;
  838. viQ = QUEUE_NORMAL;
  839. voQ = QUEUE_HIGH;
  840. mgtQ = QUEUE_HIGH;
  841. hiQ = QUEUE_HIGH;
  842. }
  843. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  844. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  845. ("Tx queue select :0x%02x..\n", queue_sel));
  846. }
  847. static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw,
  848. bool wmm_enable,
  849. u8 out_ep_num,
  850. u8 queue_sel)
  851. {
  852. switch (out_ep_num) {
  853. case 1:
  854. _rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable,
  855. queue_sel);
  856. break;
  857. case 2:
  858. _rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable,
  859. queue_sel);
  860. break;
  861. case 3:
  862. _rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable,
  863. queue_sel);
  864. break;
  865. default:
  866. WARN_ON(1); /* Shall not reach here! */
  867. break;
  868. }
  869. }
  870. static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw,
  871. bool wmm_enable,
  872. u8 out_ep_num,
  873. u8 queue_sel)
  874. {
  875. u8 hq_sele = 0;
  876. struct rtl_priv *rtlpriv = rtl_priv(hw);
  877. switch (out_ep_num) {
  878. case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */
  879. if (!wmm_enable) /* typical setting */
  880. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ |
  881. HQSEL_HIQ;
  882. else /* for WMM */
  883. hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ |
  884. HQSEL_HIQ;
  885. break;
  886. case 1:
  887. if (TX_SELE_LQ == queue_sel) {
  888. /* map all endpoint to Low queue */
  889. hq_sele = 0;
  890. } else if (TX_SELE_HQ == queue_sel) {
  891. /* map all endpoint to High queue */
  892. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ |
  893. HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ;
  894. }
  895. break;
  896. default:
  897. WARN_ON(1); /* Shall not reach here! */
  898. break;
  899. }
  900. rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele);
  901. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  902. ("Tx queue select :0x%02x..\n", hq_sele));
  903. }
  904. static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw,
  905. bool wmm_enable,
  906. u8 out_ep_num,
  907. u8 queue_sel)
  908. {
  909. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  910. if (IS_NORMAL_CHIP(rtlhal->version))
  911. _rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num,
  912. queue_sel);
  913. else
  914. _rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num,
  915. queue_sel);
  916. }
  917. static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw)
  918. {
  919. }
  920. static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw)
  921. {
  922. u16 value16;
  923. struct rtl_priv *rtlpriv = rtl_priv(hw);
  924. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  925. mac->rx_conf = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APPFCS |
  926. RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
  927. RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32);
  928. rtl_write_dword(rtlpriv, REG_RCR, mac->rx_conf);
  929. /* Accept all multicast address */
  930. rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF);
  931. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF);
  932. /* Accept all management frames */
  933. value16 = 0xFFFF;
  934. rtl92c_set_mgt_filter(hw, value16);
  935. /* Reject all control frame - default value is 0 */
  936. rtl92c_set_ctrl_filter(hw, 0x0);
  937. /* Accept all data frames */
  938. value16 = 0xFFFF;
  939. rtl92c_set_data_filter(hw, value16);
  940. }
  941. static int _rtl92cu_init_mac(struct ieee80211_hw *hw)
  942. {
  943. struct rtl_priv *rtlpriv = rtl_priv(hw);
  944. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  945. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  946. struct rtl_usb *rtlusb = rtl_usbdev(usb_priv);
  947. int err = 0;
  948. u32 boundary = 0;
  949. u8 wmm_enable = false; /* TODO */
  950. u8 out_ep_nums = rtlusb->out_ep_nums;
  951. u8 queue_sel = rtlusb->out_queue_sel;
  952. err = _rtl92cu_init_power_on(hw);
  953. if (err) {
  954. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  955. ("Failed to init power on!\n"));
  956. return err;
  957. }
  958. if (!wmm_enable) {
  959. boundary = TX_PAGE_BOUNDARY;
  960. } else { /* for WMM */
  961. boundary = (IS_NORMAL_CHIP(rtlhal->version))
  962. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  963. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  964. }
  965. if (false == rtl92c_init_llt_table(hw, boundary)) {
  966. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  967. ("Failed to init LLT Table!\n"));
  968. return -EINVAL;
  969. }
  970. _rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums,
  971. queue_sel);
  972. _rtl92c_init_trx_buffer(hw, wmm_enable);
  973. _rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums,
  974. queue_sel);
  975. /* Get Rx PHY status in order to report RSSI and others. */
  976. rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE);
  977. rtl92c_init_interrupt(hw);
  978. rtl92c_init_network_type(hw);
  979. _rtl92cu_init_wmac_setting(hw);
  980. rtl92c_init_adaptive_ctrl(hw);
  981. rtl92c_init_edca(hw);
  982. rtl92c_init_rate_fallback(hw);
  983. rtl92c_init_retry_function(hw);
  984. _rtl92cu_init_usb_aggregation(hw);
  985. rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20);
  986. rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version));
  987. rtl92c_init_beacon_parameters(hw, rtlhal->version);
  988. rtl92c_init_ampdu_aggregation(hw);
  989. rtl92c_init_beacon_max_error(hw, true);
  990. return err;
  991. }
  992. void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw)
  993. {
  994. struct rtl_priv *rtlpriv = rtl_priv(hw);
  995. u8 sec_reg_value = 0x0;
  996. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  997. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  998. ("PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  999. rtlpriv->sec.pairwise_enc_algorithm,
  1000. rtlpriv->sec.group_enc_algorithm));
  1001. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  1002. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1003. ("not open sw encryption\n"));
  1004. return;
  1005. }
  1006. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  1007. if (rtlpriv->sec.use_defaultkey) {
  1008. sec_reg_value |= SCR_TxUseDK;
  1009. sec_reg_value |= SCR_RxUseDK;
  1010. }
  1011. if (IS_NORMAL_CHIP(rtlhal->version))
  1012. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  1013. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  1014. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1015. ("The SECR-value %x\n", sec_reg_value));
  1016. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  1017. }
  1018. static void _rtl92cu_hw_configure(struct ieee80211_hw *hw)
  1019. {
  1020. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1021. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1022. /* To Fix MAC loopback mode fail. */
  1023. rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f);
  1024. rtl_write_byte(rtlpriv, 0x15, 0xe9);
  1025. /* HW SEQ CTRL */
  1026. /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
  1027. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  1028. /* fixed USB interface interference issue */
  1029. rtl_write_byte(rtlpriv, 0xfe40, 0xe0);
  1030. rtl_write_byte(rtlpriv, 0xfe41, 0x8d);
  1031. rtl_write_byte(rtlpriv, 0xfe42, 0x80);
  1032. rtlusb->reg_bcn_ctrl_val = 0x18;
  1033. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
  1034. }
  1035. static void _InitPABias(struct ieee80211_hw *hw)
  1036. {
  1037. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1038. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1039. u8 pa_setting;
  1040. /* FIXED PA current issue */
  1041. pa_setting = efuse_read_1byte(hw, 0x1FA);
  1042. if (!(pa_setting & BIT(0))) {
  1043. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
  1044. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
  1045. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
  1046. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
  1047. }
  1048. if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) &&
  1049. IS_92C_SERIAL(rtlhal->version)) {
  1050. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
  1051. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
  1052. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
  1053. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
  1054. }
  1055. if (!(pa_setting & BIT(4))) {
  1056. pa_setting = rtl_read_byte(rtlpriv, 0x16);
  1057. pa_setting &= 0x0F;
  1058. rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90);
  1059. }
  1060. }
  1061. static void _InitAntenna_Selection(struct ieee80211_hw *hw)
  1062. {
  1063. #ifdef CONFIG_ANTENNA_DIVERSITY
  1064. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1065. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1066. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1067. if (pHalData->AntDivCfg == 0)
  1068. return;
  1069. if (rtlphy->rf_type == RF_1T1R) {
  1070. rtl_write_dword(rtlpriv, REG_LEDCFG0,
  1071. rtl_read_dword(rtlpriv,
  1072. REG_LEDCFG0)|BIT(23));
  1073. rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
  1074. if (rtl_get_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, 0x300) ==
  1075. Antenna_A)
  1076. pHalData->CurAntenna = Antenna_A;
  1077. else
  1078. pHalData->CurAntenna = Antenna_B;
  1079. }
  1080. #endif
  1081. }
  1082. static void _dump_registers(struct ieee80211_hw *hw)
  1083. {
  1084. }
  1085. static void _update_mac_setting(struct ieee80211_hw *hw)
  1086. {
  1087. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1088. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1089. mac->rx_conf = rtl_read_dword(rtlpriv, REG_RCR);
  1090. mac->rx_mgt_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1091. mac->rx_ctrl_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1092. mac->rx_data_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1093. }
  1094. int rtl92cu_hw_init(struct ieee80211_hw *hw)
  1095. {
  1096. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1097. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1098. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1099. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1100. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1101. int err = 0;
  1102. static bool iqk_initialized;
  1103. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU;
  1104. err = _rtl92cu_init_mac(hw);
  1105. if (err) {
  1106. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("init mac failed!\n"));
  1107. return err;
  1108. }
  1109. err = rtl92c_download_fw(hw);
  1110. if (err) {
  1111. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1112. ("Failed to download FW. Init HW without FW now..\n"));
  1113. err = 1;
  1114. rtlhal->fw_ready = false;
  1115. return err;
  1116. } else {
  1117. rtlhal->fw_ready = true;
  1118. }
  1119. rtlhal->last_hmeboxnum = 0; /* h2c */
  1120. _rtl92cu_phy_param_tab_init(hw);
  1121. rtl92cu_phy_mac_config(hw);
  1122. rtl92cu_phy_bb_config(hw);
  1123. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  1124. rtl92c_phy_rf_config(hw);
  1125. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  1126. !IS_92C_SERIAL(rtlhal->version)) {
  1127. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  1128. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  1129. }
  1130. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  1131. RF_CHNLBW, RFREG_OFFSET_MASK);
  1132. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  1133. RF_CHNLBW, RFREG_OFFSET_MASK);
  1134. rtl92cu_bb_block_on(hw);
  1135. rtl_cam_reset_all_entry(hw);
  1136. rtl92cu_enable_hw_security_config(hw);
  1137. ppsc->rfpwr_state = ERFON;
  1138. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  1139. if (ppsc->rfpwr_state == ERFON) {
  1140. rtl92c_phy_set_rfpath_switch(hw, 1);
  1141. if (iqk_initialized) {
  1142. rtl92c_phy_iq_calibrate(hw, false);
  1143. } else {
  1144. rtl92c_phy_iq_calibrate(hw, false);
  1145. iqk_initialized = true;
  1146. }
  1147. rtl92c_dm_check_txpower_tracking(hw);
  1148. rtl92c_phy_lc_calibrate(hw);
  1149. }
  1150. _rtl92cu_hw_configure(hw);
  1151. _InitPABias(hw);
  1152. _InitAntenna_Selection(hw);
  1153. _update_mac_setting(hw);
  1154. rtl92c_dm_init(hw);
  1155. _dump_registers(hw);
  1156. return err;
  1157. }
  1158. static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw)
  1159. {
  1160. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1161. /**************************************
  1162. a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
  1163. b. RF path 0 offset 0x00 = 0x00 disable RF
  1164. c. APSD_CTRL 0x600[7:0] = 0x40
  1165. d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
  1166. e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
  1167. ***************************************/
  1168. u8 eRFPath = 0, value8 = 0;
  1169. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1170. rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0);
  1171. value8 |= APSDOFF;
  1172. rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/
  1173. value8 = 0;
  1174. value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
  1175. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/
  1176. value8 &= (~FEN_BB_GLB_RSTn);
  1177. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/
  1178. }
  1179. static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1180. {
  1181. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1182. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1183. if (rtlhal->fw_version <= 0x20) {
  1184. /*****************************
  1185. f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
  1186. g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset)
  1187. h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE
  1188. i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable)
  1189. ******************************/
  1190. u16 valu16 = 0;
  1191. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1192. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1193. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 &
  1194. (~FEN_CPUEN))); /* reset MCU ,8051 */
  1195. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF;
  1196. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1197. (FEN_HWPDN|FEN_ELDR))); /* reset MAC */
  1198. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1199. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1200. FEN_CPUEN)); /* enable MCU ,8051 */
  1201. } else {
  1202. u8 retry_cnts = 0;
  1203. /* IF fw in RAM code, do reset */
  1204. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) {
  1205. /* reset MCU ready status */
  1206. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1207. if (rtlhal->fw_ready) {
  1208. /* 8051 reset by self */
  1209. rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20);
  1210. while ((retry_cnts++ < 100) &&
  1211. (FEN_CPUEN & rtl_read_word(rtlpriv,
  1212. REG_SYS_FUNC_EN))) {
  1213. udelay(50);
  1214. }
  1215. if (retry_cnts >= 100) {
  1216. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1217. ("#####=> 8051 reset failed!.."
  1218. ".......................\n"););
  1219. /* if 8051 reset fail, reset MAC. */
  1220. rtl_write_byte(rtlpriv,
  1221. REG_SYS_FUNC_EN + 1,
  1222. 0x50);
  1223. udelay(100);
  1224. }
  1225. }
  1226. }
  1227. /* Reset MAC and Enable 8051 */
  1228. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54);
  1229. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1230. }
  1231. if (bWithoutHWSM) {
  1232. /*****************************
  1233. Without HW auto state machine
  1234. g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
  1235. h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
  1236. i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
  1237. j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
  1238. ******************************/
  1239. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1240. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1241. rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F);
  1242. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9);
  1243. }
  1244. }
  1245. static void _ResetDigitalProcedure2(struct ieee80211_hw *hw)
  1246. {
  1247. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1248. /*****************************
  1249. k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
  1250. l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
  1251. m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
  1252. ******************************/
  1253. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1254. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82);
  1255. }
  1256. static void _DisableGPIO(struct ieee80211_hw *hw)
  1257. {
  1258. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1259. /***************************************
  1260. j. GPIO_PIN_CTRL 0x44[31:0]=0x000
  1261. k. Value = GPIO_PIN_CTRL[7:0]
  1262. l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level
  1263. m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
  1264. n. LEDCFG 0x4C[15:0] = 0x8080
  1265. ***************************************/
  1266. u8 value8;
  1267. u16 value16;
  1268. u32 value32;
  1269. /* 1. Disable GPIO[7:0] */
  1270. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000);
  1271. value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
  1272. value8 = (u8) (value32&0x000000FF);
  1273. value32 |= ((value8<<8) | 0x00FF0000);
  1274. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32);
  1275. /* 2. Disable GPIO[10:8] */
  1276. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00);
  1277. value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F;
  1278. value8 = (u8) (value16&0x000F);
  1279. value16 |= ((value8<<4) | 0x0780);
  1280. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16);
  1281. /* 3. Disable LED0 & 1 */
  1282. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1283. }
  1284. static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1285. {
  1286. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1287. u16 value16 = 0;
  1288. u8 value8 = 0;
  1289. if (bWithoutHWSM) {
  1290. /*****************************
  1291. n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
  1292. o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
  1293. r. When driver call disable, the ASIC will turn off remaining
  1294. clock automatically
  1295. ******************************/
  1296. rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
  1297. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  1298. value8 &= (~LDV12_EN);
  1299. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  1300. }
  1301. /*****************************
  1302. h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
  1303. i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
  1304. ******************************/
  1305. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1306. value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
  1307. rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16);
  1308. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1309. }
  1310. static void _CardDisableHWSM(struct ieee80211_hw *hw)
  1311. {
  1312. /* ==== RF Off Sequence ==== */
  1313. _DisableRFAFEAndResetBB(hw);
  1314. /* ==== Reset digital sequence ====== */
  1315. _ResetDigitalProcedure1(hw, false);
  1316. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1317. _DisableGPIO(hw);
  1318. /* ==== Disable analog sequence === */
  1319. _DisableAnalog(hw, false);
  1320. }
  1321. static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw)
  1322. {
  1323. /*==== RF Off Sequence ==== */
  1324. _DisableRFAFEAndResetBB(hw);
  1325. /* ==== Reset digital sequence ====== */
  1326. _ResetDigitalProcedure1(hw, true);
  1327. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1328. _DisableGPIO(hw);
  1329. /* ==== Reset digital sequence ====== */
  1330. _ResetDigitalProcedure2(hw);
  1331. /* ==== Disable analog sequence === */
  1332. _DisableAnalog(hw, true);
  1333. }
  1334. static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  1335. u8 set_bits, u8 clear_bits)
  1336. {
  1337. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1338. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1339. rtlusb->reg_bcn_ctrl_val |= set_bits;
  1340. rtlusb->reg_bcn_ctrl_val &= ~clear_bits;
  1341. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlusb->reg_bcn_ctrl_val);
  1342. }
  1343. static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw)
  1344. {
  1345. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1346. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1347. u8 tmp1byte = 0;
  1348. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1349. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1350. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1351. tmp1byte & (~BIT(6)));
  1352. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  1353. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1354. tmp1byte &= ~(BIT(0));
  1355. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1356. } else {
  1357. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1358. rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6));
  1359. }
  1360. }
  1361. static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw)
  1362. {
  1363. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1364. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1365. u8 tmp1byte = 0;
  1366. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1367. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1368. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1369. tmp1byte | BIT(6));
  1370. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  1371. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1372. tmp1byte |= BIT(0);
  1373. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1374. } else {
  1375. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1376. rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6)));
  1377. }
  1378. }
  1379. static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw)
  1380. {
  1381. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1382. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1383. if (IS_NORMAL_CHIP(rtlhal->version))
  1384. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1));
  1385. else
  1386. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1387. }
  1388. static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw)
  1389. {
  1390. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1391. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1392. if (IS_NORMAL_CHIP(rtlhal->version))
  1393. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0);
  1394. else
  1395. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1396. }
  1397. static int _rtl92cu_set_media_status(struct ieee80211_hw *hw,
  1398. enum nl80211_iftype type)
  1399. {
  1400. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1401. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1402. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1403. bt_msr &= 0xfc;
  1404. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
  1405. if (type == NL80211_IFTYPE_UNSPECIFIED || type ==
  1406. NL80211_IFTYPE_STATION) {
  1407. _rtl92cu_stop_tx_beacon(hw);
  1408. _rtl92cu_enable_bcn_sub_func(hw);
  1409. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
  1410. _rtl92cu_resume_tx_beacon(hw);
  1411. _rtl92cu_disable_bcn_sub_func(hw);
  1412. } else {
  1413. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Set HW_VAR_MEDIA_"
  1414. "STATUS:No such media status(%x).\n", type));
  1415. }
  1416. switch (type) {
  1417. case NL80211_IFTYPE_UNSPECIFIED:
  1418. bt_msr |= MSR_NOLINK;
  1419. ledaction = LED_CTL_LINK;
  1420. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1421. ("Set Network type to NO LINK!\n"));
  1422. break;
  1423. case NL80211_IFTYPE_ADHOC:
  1424. bt_msr |= MSR_ADHOC;
  1425. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1426. ("Set Network type to Ad Hoc!\n"));
  1427. break;
  1428. case NL80211_IFTYPE_STATION:
  1429. bt_msr |= MSR_INFRA;
  1430. ledaction = LED_CTL_LINK;
  1431. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1432. ("Set Network type to STA!\n"));
  1433. break;
  1434. case NL80211_IFTYPE_AP:
  1435. bt_msr |= MSR_AP;
  1436. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1437. ("Set Network type to AP!\n"));
  1438. break;
  1439. default:
  1440. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1441. ("Network type %d not support!\n", type));
  1442. goto error_out;
  1443. }
  1444. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1445. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1446. if ((bt_msr & 0xfc) == MSR_AP)
  1447. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1448. else
  1449. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1450. return 0;
  1451. error_out:
  1452. return 1;
  1453. }
  1454. void rtl92cu_card_disable(struct ieee80211_hw *hw)
  1455. {
  1456. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1457. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1458. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1459. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1460. enum nl80211_iftype opmode;
  1461. mac->link_state = MAC80211_NOLINK;
  1462. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1463. _rtl92cu_set_media_status(hw, opmode);
  1464. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1465. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1466. if (rtlusb->disableHWSM)
  1467. _CardDisableHWSM(hw);
  1468. else
  1469. _CardDisableWithoutHWSM(hw);
  1470. }
  1471. void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1472. {
  1473. /* dummy routine needed for callback from rtl_op_configure_filter() */
  1474. }
  1475. /*========================================================================== */
  1476. static void _rtl92cu_set_check_bssid(struct ieee80211_hw *hw,
  1477. enum nl80211_iftype type)
  1478. {
  1479. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1480. u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1481. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1482. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1483. u8 filterout_non_associated_bssid = false;
  1484. switch (type) {
  1485. case NL80211_IFTYPE_ADHOC:
  1486. case NL80211_IFTYPE_STATION:
  1487. filterout_non_associated_bssid = true;
  1488. break;
  1489. case NL80211_IFTYPE_UNSPECIFIED:
  1490. case NL80211_IFTYPE_AP:
  1491. default:
  1492. break;
  1493. }
  1494. if (filterout_non_associated_bssid) {
  1495. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1496. switch (rtlphy->current_io_type) {
  1497. case IO_CMD_RESUME_DM_BY_SCAN:
  1498. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1499. rtlpriv->cfg->ops->set_hw_reg(hw,
  1500. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1501. /* enable update TSF */
  1502. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1503. break;
  1504. case IO_CMD_PAUSE_DM_BY_SCAN:
  1505. reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1506. rtlpriv->cfg->ops->set_hw_reg(hw,
  1507. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1508. /* disable update TSF */
  1509. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1510. break;
  1511. }
  1512. } else {
  1513. reg_rcr |= (RCR_CBSSID);
  1514. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1515. (u8 *)(&reg_rcr));
  1516. _rtl92cu_set_bcn_ctrl_reg(hw, 0, (BIT(4)|BIT(5)));
  1517. }
  1518. } else if (filterout_non_associated_bssid == false) {
  1519. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1520. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1521. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1522. (u8 *)(&reg_rcr));
  1523. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1524. } else {
  1525. reg_rcr &= (~RCR_CBSSID);
  1526. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1527. (u8 *)(&reg_rcr));
  1528. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4)|BIT(5)), 0);
  1529. }
  1530. }
  1531. }
  1532. int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1533. {
  1534. if (_rtl92cu_set_media_status(hw, type))
  1535. return -EOPNOTSUPP;
  1536. _rtl92cu_set_check_bssid(hw, type);
  1537. return 0;
  1538. }
  1539. static void _InitBeaconParameters(struct ieee80211_hw *hw)
  1540. {
  1541. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1542. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1543. rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010);
  1544. /* TODO: Remove these magic number */
  1545. rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);
  1546. rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
  1547. rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
  1548. /* Change beacon AIFS to the largest number
  1549. * beacause test chip does not contension before sending beacon. */
  1550. if (IS_NORMAL_CHIP(rtlhal->version))
  1551. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
  1552. else
  1553. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
  1554. }
  1555. static void _beacon_function_enable(struct ieee80211_hw *hw, bool Enable,
  1556. bool Linked)
  1557. {
  1558. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1559. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00);
  1560. rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F);
  1561. }
  1562. void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw)
  1563. {
  1564. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1565. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1566. u16 bcn_interval, atim_window;
  1567. u32 value32;
  1568. bcn_interval = mac->beacon_interval;
  1569. atim_window = 2; /*FIX MERGE */
  1570. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1571. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1572. _InitBeaconParameters(hw);
  1573. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  1574. /*
  1575. * Force beacon frame transmission even after receiving beacon frame
  1576. * from other ad hoc STA
  1577. *
  1578. *
  1579. * Reset TSF Timer to zero, added by Roger. 2008.06.24
  1580. */
  1581. value32 = rtl_read_dword(rtlpriv, REG_TCR);
  1582. value32 &= ~TSFRST;
  1583. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1584. value32 |= TSFRST;
  1585. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1586. RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD,
  1587. ("SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n",
  1588. value32));
  1589. /* TODO: Modify later (Find the right parameters)
  1590. * NOTE: Fix test chip's bug (about contention windows's randomness) */
  1591. if ((mac->opmode == NL80211_IFTYPE_ADHOC) ||
  1592. (mac->opmode == NL80211_IFTYPE_AP)) {
  1593. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50);
  1594. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50);
  1595. }
  1596. _beacon_function_enable(hw, true, true);
  1597. }
  1598. void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw)
  1599. {
  1600. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1601. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1602. u16 bcn_interval = mac->beacon_interval;
  1603. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1604. ("beacon_interval:%d\n", bcn_interval));
  1605. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1606. }
  1607. void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw,
  1608. u32 add_msr, u32 rm_msr)
  1609. {
  1610. }
  1611. void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1612. {
  1613. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1614. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1615. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1616. switch (variable) {
  1617. case HW_VAR_RCR:
  1618. *((u32 *)(val)) = mac->rx_conf;
  1619. break;
  1620. case HW_VAR_RF_STATE:
  1621. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  1622. break;
  1623. case HW_VAR_FWLPS_RF_ON:{
  1624. enum rf_pwrstate rfState;
  1625. u32 val_rcr;
  1626. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  1627. (u8 *)(&rfState));
  1628. if (rfState == ERFOFF) {
  1629. *((bool *) (val)) = true;
  1630. } else {
  1631. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1632. val_rcr &= 0x00070000;
  1633. if (val_rcr)
  1634. *((bool *) (val)) = false;
  1635. else
  1636. *((bool *) (val)) = true;
  1637. }
  1638. break;
  1639. }
  1640. case HW_VAR_FW_PSMODE_STATUS:
  1641. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  1642. break;
  1643. case HW_VAR_CORRECT_TSF:{
  1644. u64 tsf;
  1645. u32 *ptsf_low = (u32 *)&tsf;
  1646. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  1647. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  1648. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  1649. *((u64 *)(val)) = tsf;
  1650. break;
  1651. }
  1652. case HW_VAR_MGT_FILTER:
  1653. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1654. break;
  1655. case HW_VAR_CTRL_FILTER:
  1656. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1657. break;
  1658. case HW_VAR_DATA_FILTER:
  1659. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1660. break;
  1661. default:
  1662. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1663. ("switch case not process\n"));
  1664. break;
  1665. }
  1666. }
  1667. void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1668. {
  1669. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1670. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1671. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1672. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1673. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1674. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1675. enum wireless_mode wirelessmode = mac->mode;
  1676. u8 idx = 0;
  1677. switch (variable) {
  1678. case HW_VAR_ETHER_ADDR:{
  1679. for (idx = 0; idx < ETH_ALEN; idx++) {
  1680. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  1681. val[idx]);
  1682. }
  1683. break;
  1684. }
  1685. case HW_VAR_BASIC_RATE:{
  1686. u16 rate_cfg = ((u16 *) val)[0];
  1687. u8 rate_index = 0;
  1688. rate_cfg &= 0x15f;
  1689. /* TODO */
  1690. /* if (mac->current_network.vender == HT_IOT_PEER_CISCO
  1691. * && ((rate_cfg & 0x150) == 0)) {
  1692. * rate_cfg |= 0x010;
  1693. * } */
  1694. rate_cfg |= 0x01;
  1695. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  1696. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  1697. (rate_cfg >> 8) & 0xff);
  1698. while (rate_cfg > 0x1) {
  1699. rate_cfg >>= 1;
  1700. rate_index++;
  1701. }
  1702. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  1703. rate_index);
  1704. break;
  1705. }
  1706. case HW_VAR_BSSID:{
  1707. for (idx = 0; idx < ETH_ALEN; idx++) {
  1708. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  1709. val[idx]);
  1710. }
  1711. break;
  1712. }
  1713. case HW_VAR_SIFS:{
  1714. rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]);
  1715. rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]);
  1716. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  1717. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  1718. rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]);
  1719. rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]);
  1720. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1721. ("HW_VAR_SIFS\n"));
  1722. break;
  1723. }
  1724. case HW_VAR_SLOT_TIME:{
  1725. u8 e_aci;
  1726. u8 QOS_MODE = 1;
  1727. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  1728. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1729. ("HW_VAR_SLOT_TIME %x\n", val[0]));
  1730. if (QOS_MODE) {
  1731. for (e_aci = 0; e_aci < AC_MAX; e_aci++)
  1732. rtlpriv->cfg->ops->set_hw_reg(hw,
  1733. HW_VAR_AC_PARAM,
  1734. (u8 *)(&e_aci));
  1735. } else {
  1736. u8 sifstime = 0;
  1737. u8 u1bAIFS;
  1738. if (IS_WIRELESS_MODE_A(wirelessmode) ||
  1739. IS_WIRELESS_MODE_N_24G(wirelessmode) ||
  1740. IS_WIRELESS_MODE_N_5G(wirelessmode))
  1741. sifstime = 16;
  1742. else
  1743. sifstime = 10;
  1744. u1bAIFS = sifstime + (2 * val[0]);
  1745. rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM,
  1746. u1bAIFS);
  1747. rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM,
  1748. u1bAIFS);
  1749. rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM,
  1750. u1bAIFS);
  1751. rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM,
  1752. u1bAIFS);
  1753. }
  1754. break;
  1755. }
  1756. case HW_VAR_ACK_PREAMBLE:{
  1757. u8 reg_tmp;
  1758. u8 short_preamble = (bool) (*(u8 *) val);
  1759. reg_tmp = 0;
  1760. if (short_preamble)
  1761. reg_tmp |= 0x80;
  1762. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  1763. break;
  1764. }
  1765. case HW_VAR_AMPDU_MIN_SPACE:{
  1766. u8 min_spacing_to_set;
  1767. u8 sec_min_space;
  1768. min_spacing_to_set = *((u8 *) val);
  1769. if (min_spacing_to_set <= 7) {
  1770. switch (rtlpriv->sec.pairwise_enc_algorithm) {
  1771. case NO_ENCRYPTION:
  1772. case AESCCMP_ENCRYPTION:
  1773. sec_min_space = 0;
  1774. break;
  1775. case WEP40_ENCRYPTION:
  1776. case WEP104_ENCRYPTION:
  1777. case TKIP_ENCRYPTION:
  1778. sec_min_space = 6;
  1779. break;
  1780. default:
  1781. sec_min_space = 7;
  1782. break;
  1783. }
  1784. if (min_spacing_to_set < sec_min_space)
  1785. min_spacing_to_set = sec_min_space;
  1786. mac->min_space_cfg = ((mac->min_space_cfg &
  1787. 0xf8) |
  1788. min_spacing_to_set);
  1789. *val = min_spacing_to_set;
  1790. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1791. ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  1792. mac->min_space_cfg));
  1793. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1794. mac->min_space_cfg);
  1795. }
  1796. break;
  1797. }
  1798. case HW_VAR_SHORTGI_DENSITY:{
  1799. u8 density_to_set;
  1800. density_to_set = *((u8 *) val);
  1801. density_to_set &= 0x1f;
  1802. mac->min_space_cfg &= 0x07;
  1803. mac->min_space_cfg |= (density_to_set << 3);
  1804. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1805. ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  1806. mac->min_space_cfg));
  1807. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1808. mac->min_space_cfg);
  1809. break;
  1810. }
  1811. case HW_VAR_AMPDU_FACTOR:{
  1812. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  1813. u8 factor_toset;
  1814. u8 *p_regtoset = NULL;
  1815. u8 index = 0;
  1816. p_regtoset = regtoset_normal;
  1817. factor_toset = *((u8 *) val);
  1818. if (factor_toset <= 3) {
  1819. factor_toset = (1 << (factor_toset + 2));
  1820. if (factor_toset > 0xf)
  1821. factor_toset = 0xf;
  1822. for (index = 0; index < 4; index++) {
  1823. if ((p_regtoset[index] & 0xf0) >
  1824. (factor_toset << 4))
  1825. p_regtoset[index] =
  1826. (p_regtoset[index] & 0x0f)
  1827. | (factor_toset << 4);
  1828. if ((p_regtoset[index] & 0x0f) >
  1829. factor_toset)
  1830. p_regtoset[index] =
  1831. (p_regtoset[index] & 0xf0)
  1832. | (factor_toset);
  1833. rtl_write_byte(rtlpriv,
  1834. (REG_AGGLEN_LMT + index),
  1835. p_regtoset[index]);
  1836. }
  1837. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1838. ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
  1839. factor_toset));
  1840. }
  1841. break;
  1842. }
  1843. case HW_VAR_AC_PARAM:{
  1844. u8 e_aci = *((u8 *) val);
  1845. u32 u4b_ac_param;
  1846. u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min);
  1847. u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max);
  1848. u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op);
  1849. u4b_ac_param = (u32) mac->ac[e_aci].aifs;
  1850. u4b_ac_param |= (u32) ((cw_min & 0xF) <<
  1851. AC_PARAM_ECW_MIN_OFFSET);
  1852. u4b_ac_param |= (u32) ((cw_max & 0xF) <<
  1853. AC_PARAM_ECW_MAX_OFFSET);
  1854. u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET;
  1855. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1856. ("queue:%x, ac_param:%x\n", e_aci,
  1857. u4b_ac_param));
  1858. switch (e_aci) {
  1859. case AC1_BK:
  1860. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM,
  1861. u4b_ac_param);
  1862. break;
  1863. case AC0_BE:
  1864. rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM,
  1865. u4b_ac_param);
  1866. break;
  1867. case AC2_VI:
  1868. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM,
  1869. u4b_ac_param);
  1870. break;
  1871. case AC3_VO:
  1872. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM,
  1873. u4b_ac_param);
  1874. break;
  1875. default:
  1876. RT_ASSERT(false, ("SetHwReg8185(): invalid"
  1877. " aci: %d !\n", e_aci));
  1878. break;
  1879. }
  1880. if (rtlusb->acm_method != eAcmWay2_SW)
  1881. rtlpriv->cfg->ops->set_hw_reg(hw,
  1882. HW_VAR_ACM_CTRL, (u8 *)(&e_aci));
  1883. break;
  1884. }
  1885. case HW_VAR_ACM_CTRL:{
  1886. u8 e_aci = *((u8 *) val);
  1887. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)
  1888. (&(mac->ac[0].aifs));
  1889. u8 acm = p_aci_aifsn->f.acm;
  1890. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  1891. acm_ctrl =
  1892. acm_ctrl | ((rtlusb->acm_method == 2) ? 0x0 : 0x1);
  1893. if (acm) {
  1894. switch (e_aci) {
  1895. case AC0_BE:
  1896. acm_ctrl |= AcmHw_BeqEn;
  1897. break;
  1898. case AC2_VI:
  1899. acm_ctrl |= AcmHw_ViqEn;
  1900. break;
  1901. case AC3_VO:
  1902. acm_ctrl |= AcmHw_VoqEn;
  1903. break;
  1904. default:
  1905. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1906. ("HW_VAR_ACM_CTRL acm set "
  1907. "failed: eACI is %d\n", acm));
  1908. break;
  1909. }
  1910. } else {
  1911. switch (e_aci) {
  1912. case AC0_BE:
  1913. acm_ctrl &= (~AcmHw_BeqEn);
  1914. break;
  1915. case AC2_VI:
  1916. acm_ctrl &= (~AcmHw_ViqEn);
  1917. break;
  1918. case AC3_VO:
  1919. acm_ctrl &= (~AcmHw_BeqEn);
  1920. break;
  1921. default:
  1922. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1923. ("switch case not process\n"));
  1924. break;
  1925. }
  1926. }
  1927. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  1928. ("SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
  1929. "Write 0x%X\n", acm_ctrl));
  1930. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  1931. break;
  1932. }
  1933. case HW_VAR_RCR:{
  1934. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  1935. mac->rx_conf = ((u32 *) (val))[0];
  1936. RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
  1937. ("### Set RCR(0x%08x) ###\n", mac->rx_conf));
  1938. break;
  1939. }
  1940. case HW_VAR_RETRY_LIMIT:{
  1941. u8 retry_limit = ((u8 *) (val))[0];
  1942. rtl_write_word(rtlpriv, REG_RL,
  1943. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  1944. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  1945. RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG, ("Set HW_VAR_R"
  1946. "ETRY_LIMIT(0x%08x)\n", retry_limit));
  1947. break;
  1948. }
  1949. case HW_VAR_DUAL_TSF_RST:
  1950. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  1951. break;
  1952. case HW_VAR_EFUSE_BYTES:
  1953. rtlefuse->efuse_usedbytes = *((u16 *) val);
  1954. break;
  1955. case HW_VAR_EFUSE_USAGE:
  1956. rtlefuse->efuse_usedpercentage = *((u8 *) val);
  1957. break;
  1958. case HW_VAR_IO_CMD:
  1959. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  1960. break;
  1961. case HW_VAR_WPA_CONFIG:
  1962. rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
  1963. break;
  1964. case HW_VAR_SET_RPWM:{
  1965. u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM);
  1966. if (rpwm_val & BIT(7))
  1967. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1968. (*(u8 *)val));
  1969. else
  1970. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1971. ((*(u8 *)val) | BIT(7)));
  1972. break;
  1973. }
  1974. case HW_VAR_H2C_FW_PWRMODE:{
  1975. u8 psmode = (*(u8 *) val);
  1976. if ((psmode != FW_PS_ACTIVE_MODE) &&
  1977. (!IS_92C_SERIAL(rtlhal->version)))
  1978. rtl92c_dm_rf_saving(hw, true);
  1979. rtl92c_set_fw_pwrmode_cmd(hw, (*(u8 *) val));
  1980. break;
  1981. }
  1982. case HW_VAR_FW_PSMODE_STATUS:
  1983. ppsc->fw_current_inpsmode = *((bool *) val);
  1984. break;
  1985. case HW_VAR_H2C_FW_JOINBSSRPT:{
  1986. u8 mstatus = (*(u8 *) val);
  1987. u8 tmp_reg422;
  1988. bool recover = false;
  1989. if (mstatus == RT_MEDIA_CONNECT) {
  1990. rtlpriv->cfg->ops->set_hw_reg(hw,
  1991. HW_VAR_AID, NULL);
  1992. rtl_write_byte(rtlpriv, REG_CR + 1, 0x03);
  1993. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  1994. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1995. tmp_reg422 = rtl_read_byte(rtlpriv,
  1996. REG_FWHW_TXQ_CTRL + 2);
  1997. if (tmp_reg422 & BIT(6))
  1998. recover = true;
  1999. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  2000. tmp_reg422 & (~BIT(6)));
  2001. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  2002. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2003. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  2004. if (recover)
  2005. rtl_write_byte(rtlpriv,
  2006. REG_FWHW_TXQ_CTRL + 2,
  2007. tmp_reg422 | BIT(6));
  2008. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  2009. }
  2010. rtl92c_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
  2011. break;
  2012. }
  2013. case HW_VAR_AID:{
  2014. u16 u2btmp;
  2015. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  2016. u2btmp &= 0xC000;
  2017. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  2018. (u2btmp | mac->assoc_id));
  2019. break;
  2020. }
  2021. case HW_VAR_CORRECT_TSF:{
  2022. u8 btype_ibss = ((u8 *) (val))[0];
  2023. if (btype_ibss)
  2024. _rtl92cu_stop_tx_beacon(hw);
  2025. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  2026. rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf &
  2027. 0xffffffff));
  2028. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  2029. (u32)((mac->tsf >> 32) & 0xffffffff));
  2030. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2031. if (btype_ibss)
  2032. _rtl92cu_resume_tx_beacon(hw);
  2033. break;
  2034. }
  2035. case HW_VAR_MGT_FILTER:
  2036. rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val);
  2037. break;
  2038. case HW_VAR_CTRL_FILTER:
  2039. rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val);
  2040. break;
  2041. case HW_VAR_DATA_FILTER:
  2042. rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val);
  2043. break;
  2044. default:
  2045. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("switch case "
  2046. "not process\n"));
  2047. break;
  2048. }
  2049. }
  2050. void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw,
  2051. struct ieee80211_sta *sta,
  2052. u8 rssi_level)
  2053. {
  2054. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2055. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2056. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2057. u32 ratr_value = (u32) mac->basic_rates;
  2058. u8 *mcsrate = mac->mcs;
  2059. u8 ratr_index = 0;
  2060. u8 nmode = mac->ht_enable;
  2061. u8 mimo_ps = 1;
  2062. u16 shortgi_rate = 0;
  2063. u32 tmp_ratr_value = 0;
  2064. u8 curtxbw_40mhz = mac->bw_40;
  2065. u8 curshortgi_40mhz = mac->sgi_40;
  2066. u8 curshortgi_20mhz = mac->sgi_20;
  2067. enum wireless_mode wirelessmode = mac->mode;
  2068. ratr_value |= ((*(u16 *) (mcsrate))) << 12;
  2069. switch (wirelessmode) {
  2070. case WIRELESS_MODE_B:
  2071. if (ratr_value & 0x0000000c)
  2072. ratr_value &= 0x0000000d;
  2073. else
  2074. ratr_value &= 0x0000000f;
  2075. break;
  2076. case WIRELESS_MODE_G:
  2077. ratr_value &= 0x00000FF5;
  2078. break;
  2079. case WIRELESS_MODE_N_24G:
  2080. case WIRELESS_MODE_N_5G:
  2081. nmode = 1;
  2082. if (mimo_ps == 0) {
  2083. ratr_value &= 0x0007F005;
  2084. } else {
  2085. u32 ratr_mask;
  2086. if (get_rf_type(rtlphy) == RF_1T2R ||
  2087. get_rf_type(rtlphy) == RF_1T1R)
  2088. ratr_mask = 0x000ff005;
  2089. else
  2090. ratr_mask = 0x0f0ff005;
  2091. if (curtxbw_40mhz)
  2092. ratr_mask |= 0x00000010;
  2093. ratr_value &= ratr_mask;
  2094. }
  2095. break;
  2096. default:
  2097. if (rtlphy->rf_type == RF_1T2R)
  2098. ratr_value &= 0x000ff0ff;
  2099. else
  2100. ratr_value &= 0x0f0ff0ff;
  2101. break;
  2102. }
  2103. ratr_value &= 0x0FFFFFFF;
  2104. if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
  2105. (!curtxbw_40mhz && curshortgi_20mhz))) {
  2106. ratr_value |= 0x10000000;
  2107. tmp_ratr_value = (ratr_value >> 12);
  2108. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  2109. if ((1 << shortgi_rate) & tmp_ratr_value)
  2110. break;
  2111. }
  2112. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  2113. (shortgi_rate << 4) | (shortgi_rate);
  2114. }
  2115. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  2116. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("%x\n", rtl_read_dword(rtlpriv,
  2117. REG_ARFR0)));
  2118. }
  2119. void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw, u8 rssi_level)
  2120. {
  2121. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2122. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2123. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2124. u32 ratr_bitmap = (u32) mac->basic_rates;
  2125. u8 *p_mcsrate = mac->mcs;
  2126. u8 ratr_index = 0;
  2127. u8 curtxbw_40mhz = mac->bw_40;
  2128. u8 curshortgi_40mhz = mac->sgi_40;
  2129. u8 curshortgi_20mhz = mac->sgi_20;
  2130. enum wireless_mode wirelessmode = mac->mode;
  2131. bool shortgi = false;
  2132. u8 rate_mask[5];
  2133. u8 macid = 0;
  2134. u8 mimops = 1;
  2135. ratr_bitmap |= (p_mcsrate[1] << 20) | (p_mcsrate[0] << 12);
  2136. switch (wirelessmode) {
  2137. case WIRELESS_MODE_B:
  2138. ratr_index = RATR_INX_WIRELESS_B;
  2139. if (ratr_bitmap & 0x0000000c)
  2140. ratr_bitmap &= 0x0000000d;
  2141. else
  2142. ratr_bitmap &= 0x0000000f;
  2143. break;
  2144. case WIRELESS_MODE_G:
  2145. ratr_index = RATR_INX_WIRELESS_GB;
  2146. if (rssi_level == 1)
  2147. ratr_bitmap &= 0x00000f00;
  2148. else if (rssi_level == 2)
  2149. ratr_bitmap &= 0x00000ff0;
  2150. else
  2151. ratr_bitmap &= 0x00000ff5;
  2152. break;
  2153. case WIRELESS_MODE_A:
  2154. ratr_index = RATR_INX_WIRELESS_A;
  2155. ratr_bitmap &= 0x00000ff0;
  2156. break;
  2157. case WIRELESS_MODE_N_24G:
  2158. case WIRELESS_MODE_N_5G:
  2159. ratr_index = RATR_INX_WIRELESS_NGB;
  2160. if (mimops == 0) {
  2161. if (rssi_level == 1)
  2162. ratr_bitmap &= 0x00070000;
  2163. else if (rssi_level == 2)
  2164. ratr_bitmap &= 0x0007f000;
  2165. else
  2166. ratr_bitmap &= 0x0007f005;
  2167. } else {
  2168. if (rtlphy->rf_type == RF_1T2R ||
  2169. rtlphy->rf_type == RF_1T1R) {
  2170. if (curtxbw_40mhz) {
  2171. if (rssi_level == 1)
  2172. ratr_bitmap &= 0x000f0000;
  2173. else if (rssi_level == 2)
  2174. ratr_bitmap &= 0x000ff000;
  2175. else
  2176. ratr_bitmap &= 0x000ff015;
  2177. } else {
  2178. if (rssi_level == 1)
  2179. ratr_bitmap &= 0x000f0000;
  2180. else if (rssi_level == 2)
  2181. ratr_bitmap &= 0x000ff000;
  2182. else
  2183. ratr_bitmap &= 0x000ff005;
  2184. }
  2185. } else {
  2186. if (curtxbw_40mhz) {
  2187. if (rssi_level == 1)
  2188. ratr_bitmap &= 0x0f0f0000;
  2189. else if (rssi_level == 2)
  2190. ratr_bitmap &= 0x0f0ff000;
  2191. else
  2192. ratr_bitmap &= 0x0f0ff015;
  2193. } else {
  2194. if (rssi_level == 1)
  2195. ratr_bitmap &= 0x0f0f0000;
  2196. else if (rssi_level == 2)
  2197. ratr_bitmap &= 0x0f0ff000;
  2198. else
  2199. ratr_bitmap &= 0x0f0ff005;
  2200. }
  2201. }
  2202. }
  2203. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  2204. (!curtxbw_40mhz && curshortgi_20mhz)) {
  2205. if (macid == 0)
  2206. shortgi = true;
  2207. else if (macid == 1)
  2208. shortgi = false;
  2209. }
  2210. break;
  2211. default:
  2212. ratr_index = RATR_INX_WIRELESS_NGB;
  2213. if (rtlphy->rf_type == RF_1T2R)
  2214. ratr_bitmap &= 0x000ff0ff;
  2215. else
  2216. ratr_bitmap &= 0x0f0ff0ff;
  2217. break;
  2218. }
  2219. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("ratr_bitmap :%x\n",
  2220. ratr_bitmap));
  2221. *(u32 *)&rate_mask = ((ratr_bitmap & 0x0fffffff) |
  2222. ratr_index << 28);
  2223. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  2224. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("Rate_index:%x, "
  2225. "ratr_val:%x, %x:%x:%x:%x:%x\n",
  2226. ratr_index, ratr_bitmap,
  2227. rate_mask[0], rate_mask[1],
  2228. rate_mask[2], rate_mask[3],
  2229. rate_mask[4]));
  2230. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  2231. }
  2232. void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw)
  2233. {
  2234. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2235. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2236. u16 sifs_timer;
  2237. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  2238. (u8 *)&mac->slot_time);
  2239. if (!mac->ht_enable)
  2240. sifs_timer = 0x0a0a;
  2241. else
  2242. sifs_timer = 0x0e0e;
  2243. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2244. }
  2245. bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid)
  2246. {
  2247. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2248. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2249. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2250. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2251. u8 u1tmp = 0;
  2252. bool actuallyset = false;
  2253. unsigned long flag = 0;
  2254. /* to do - usb autosuspend */
  2255. u8 usb_autosuspend = 0;
  2256. if (ppsc->swrf_processing)
  2257. return false;
  2258. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2259. if (ppsc->rfchange_inprogress) {
  2260. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2261. return false;
  2262. } else {
  2263. ppsc->rfchange_inprogress = true;
  2264. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2265. }
  2266. cur_rfstate = ppsc->rfpwr_state;
  2267. if (usb_autosuspend) {
  2268. /* to do................... */
  2269. } else {
  2270. if (ppsc->pwrdown_mode) {
  2271. u1tmp = rtl_read_byte(rtlpriv, REG_HSISR);
  2272. e_rfpowerstate_toset = (u1tmp & BIT(7)) ?
  2273. ERFOFF : ERFON;
  2274. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2275. ("pwrdown, 0x5c(BIT7)=%02x\n", u1tmp));
  2276. } else {
  2277. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
  2278. rtl_read_byte(rtlpriv,
  2279. REG_MAC_PINMUX_CFG) & ~(BIT(3)));
  2280. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  2281. e_rfpowerstate_toset = (u1tmp & BIT(3)) ?
  2282. ERFON : ERFOFF;
  2283. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2284. ("GPIO_IN=%02x\n", u1tmp));
  2285. }
  2286. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("N-SS RF =%x\n",
  2287. e_rfpowerstate_toset));
  2288. }
  2289. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  2290. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW "
  2291. "Radio ON, RF ON\n"));
  2292. ppsc->hwradiooff = false;
  2293. actuallyset = true;
  2294. } else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset ==
  2295. ERFOFF)) {
  2296. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW"
  2297. " Radio OFF\n"));
  2298. ppsc->hwradiooff = true;
  2299. actuallyset = true;
  2300. } else {
  2301. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD ,
  2302. ("pHalData->bHwRadioOff and eRfPowerStateToSet do not"
  2303. " match: pHalData->bHwRadioOff %x, eRfPowerStateToSet "
  2304. "%x\n", ppsc->hwradiooff, e_rfpowerstate_toset));
  2305. }
  2306. if (actuallyset) {
  2307. ppsc->hwradiooff = true;
  2308. if (e_rfpowerstate_toset == ERFON) {
  2309. if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) &&
  2310. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM))
  2311. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2312. else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2313. && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3))
  2314. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2315. }
  2316. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2317. ppsc->rfchange_inprogress = false;
  2318. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2319. /* For power down module, we need to enable register block
  2320. * contrl reg at 0x1c. Then enable power down control bit
  2321. * of register 0x04 BIT4 and BIT15 as 1.
  2322. */
  2323. if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) {
  2324. /* Enable register area 0x0-0xc. */
  2325. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  2326. if (IS_HARDWARE_TYPE_8723U(rtlhal)) {
  2327. /*
  2328. * We should configure HW PDn source for WiFi
  2329. * ONLY, and then our HW will be set in
  2330. * power-down mode if PDn source from all
  2331. * functions are configured.
  2332. */
  2333. u1tmp = rtl_read_byte(rtlpriv,
  2334. REG_MULTI_FUNC_CTRL);
  2335. rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL,
  2336. (u1tmp|WL_HWPDN_EN));
  2337. } else {
  2338. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812);
  2339. }
  2340. }
  2341. if (e_rfpowerstate_toset == ERFOFF) {
  2342. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2343. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2344. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2345. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2346. }
  2347. } else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) {
  2348. /* Enter D3 or ASPM after GPIO had been done. */
  2349. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2350. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2351. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2352. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2353. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2354. ppsc->rfchange_inprogress = false;
  2355. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2356. } else {
  2357. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2358. ppsc->rfchange_inprogress = false;
  2359. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2360. }
  2361. *valid = 1;
  2362. return !ppsc->hwradiooff;
  2363. }