xmit.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  54. struct ath_tx_status *ts, int nframes, int nbad,
  55. int txok);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  59. struct ath_txq *txq,
  60. struct ath_atx_tid *tid,
  61. struct sk_buff *skb);
  62. enum {
  63. MCS_HT20,
  64. MCS_HT20_SGI,
  65. MCS_HT40,
  66. MCS_HT40_SGI,
  67. };
  68. static int ath_max_4ms_framelen[4][32] = {
  69. [MCS_HT20] = {
  70. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  71. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  72. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  73. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  74. },
  75. [MCS_HT20_SGI] = {
  76. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  77. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  78. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  79. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  80. },
  81. [MCS_HT40] = {
  82. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  83. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  84. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  85. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  86. },
  87. [MCS_HT40_SGI] = {
  88. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  89. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  90. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  91. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  92. }
  93. };
  94. /*********************/
  95. /* Aggregation logic */
  96. /*********************/
  97. static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  98. __acquires(&txq->axq_lock)
  99. {
  100. spin_lock_bh(&txq->axq_lock);
  101. }
  102. static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  103. __releases(&txq->axq_lock)
  104. {
  105. spin_unlock_bh(&txq->axq_lock);
  106. }
  107. static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  108. __releases(&txq->axq_lock)
  109. {
  110. struct sk_buff_head q;
  111. struct sk_buff *skb;
  112. __skb_queue_head_init(&q);
  113. skb_queue_splice_init(&txq->complete_q, &q);
  114. spin_unlock_bh(&txq->axq_lock);
  115. while ((skb = __skb_dequeue(&q)))
  116. ieee80211_tx_status(sc->hw, skb);
  117. }
  118. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  119. {
  120. struct ath_atx_ac *ac = tid->ac;
  121. if (tid->paused)
  122. return;
  123. if (tid->sched)
  124. return;
  125. tid->sched = true;
  126. list_add_tail(&tid->list, &ac->tid_q);
  127. if (ac->sched)
  128. return;
  129. ac->sched = true;
  130. list_add_tail(&ac->list, &txq->axq_acq);
  131. }
  132. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  133. {
  134. struct ath_txq *txq = tid->ac->txq;
  135. WARN_ON(!tid->paused);
  136. ath_txq_lock(sc, txq);
  137. tid->paused = false;
  138. if (skb_queue_empty(&tid->buf_q))
  139. goto unlock;
  140. ath_tx_queue_tid(txq, tid);
  141. ath_txq_schedule(sc, txq);
  142. unlock:
  143. ath_txq_unlock_complete(sc, txq);
  144. }
  145. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  146. {
  147. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  148. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  149. sizeof(tx_info->rate_driver_data));
  150. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  151. }
  152. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  153. {
  154. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  155. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  156. }
  157. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  158. {
  159. struct ath_txq *txq = tid->ac->txq;
  160. struct sk_buff *skb;
  161. struct ath_buf *bf;
  162. struct list_head bf_head;
  163. struct ath_tx_status ts;
  164. struct ath_frame_info *fi;
  165. bool sendbar = false;
  166. INIT_LIST_HEAD(&bf_head);
  167. memset(&ts, 0, sizeof(ts));
  168. while ((skb = __skb_dequeue(&tid->buf_q))) {
  169. fi = get_frame_info(skb);
  170. bf = fi->bf;
  171. if (bf && fi->retries) {
  172. list_add_tail(&bf->list, &bf_head);
  173. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  174. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  175. sendbar = true;
  176. } else {
  177. ath_tx_send_normal(sc, txq, NULL, skb);
  178. }
  179. }
  180. if (tid->baw_head == tid->baw_tail) {
  181. tid->state &= ~AGGR_ADDBA_COMPLETE;
  182. tid->state &= ~AGGR_CLEANUP;
  183. }
  184. if (sendbar) {
  185. ath_txq_unlock(sc, txq);
  186. ath_send_bar(tid, tid->seq_start);
  187. ath_txq_lock(sc, txq);
  188. }
  189. }
  190. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  191. int seqno)
  192. {
  193. int index, cindex;
  194. index = ATH_BA_INDEX(tid->seq_start, seqno);
  195. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  196. __clear_bit(cindex, tid->tx_buf);
  197. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  198. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  199. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  200. if (tid->bar_index >= 0)
  201. tid->bar_index--;
  202. }
  203. }
  204. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  205. u16 seqno)
  206. {
  207. int index, cindex;
  208. index = ATH_BA_INDEX(tid->seq_start, seqno);
  209. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  210. __set_bit(cindex, tid->tx_buf);
  211. if (index >= ((tid->baw_tail - tid->baw_head) &
  212. (ATH_TID_MAX_BUFS - 1))) {
  213. tid->baw_tail = cindex;
  214. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  215. }
  216. }
  217. /*
  218. * TODO: For frame(s) that are in the retry state, we will reuse the
  219. * sequence number(s) without setting the retry bit. The
  220. * alternative is to give up on these and BAR the receiver's window
  221. * forward.
  222. */
  223. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  224. struct ath_atx_tid *tid)
  225. {
  226. struct sk_buff *skb;
  227. struct ath_buf *bf;
  228. struct list_head bf_head;
  229. struct ath_tx_status ts;
  230. struct ath_frame_info *fi;
  231. memset(&ts, 0, sizeof(ts));
  232. INIT_LIST_HEAD(&bf_head);
  233. while ((skb = __skb_dequeue(&tid->buf_q))) {
  234. fi = get_frame_info(skb);
  235. bf = fi->bf;
  236. if (!bf) {
  237. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  238. continue;
  239. }
  240. list_add_tail(&bf->list, &bf_head);
  241. if (fi->retries)
  242. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  243. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  244. }
  245. tid->seq_next = tid->seq_start;
  246. tid->baw_tail = tid->baw_head;
  247. tid->bar_index = -1;
  248. }
  249. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  250. struct sk_buff *skb, int count)
  251. {
  252. struct ath_frame_info *fi = get_frame_info(skb);
  253. struct ath_buf *bf = fi->bf;
  254. struct ieee80211_hdr *hdr;
  255. int prev = fi->retries;
  256. TX_STAT_INC(txq->axq_qnum, a_retries);
  257. fi->retries += count;
  258. if (prev > 0)
  259. return;
  260. hdr = (struct ieee80211_hdr *)skb->data;
  261. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  262. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  263. sizeof(*hdr), DMA_TO_DEVICE);
  264. }
  265. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  266. {
  267. struct ath_buf *bf = NULL;
  268. spin_lock_bh(&sc->tx.txbuflock);
  269. if (unlikely(list_empty(&sc->tx.txbuf))) {
  270. spin_unlock_bh(&sc->tx.txbuflock);
  271. return NULL;
  272. }
  273. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  274. list_del(&bf->list);
  275. spin_unlock_bh(&sc->tx.txbuflock);
  276. return bf;
  277. }
  278. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  279. {
  280. spin_lock_bh(&sc->tx.txbuflock);
  281. list_add_tail(&bf->list, &sc->tx.txbuf);
  282. spin_unlock_bh(&sc->tx.txbuflock);
  283. }
  284. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  285. {
  286. struct ath_buf *tbf;
  287. tbf = ath_tx_get_buffer(sc);
  288. if (WARN_ON(!tbf))
  289. return NULL;
  290. ATH_TXBUF_RESET(tbf);
  291. tbf->bf_mpdu = bf->bf_mpdu;
  292. tbf->bf_buf_addr = bf->bf_buf_addr;
  293. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  294. tbf->bf_state = bf->bf_state;
  295. return tbf;
  296. }
  297. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  298. struct ath_tx_status *ts, int txok,
  299. int *nframes, int *nbad)
  300. {
  301. struct ath_frame_info *fi;
  302. u16 seq_st = 0;
  303. u32 ba[WME_BA_BMP_SIZE >> 5];
  304. int ba_index;
  305. int isaggr = 0;
  306. *nbad = 0;
  307. *nframes = 0;
  308. isaggr = bf_isaggr(bf);
  309. if (isaggr) {
  310. seq_st = ts->ts_seqnum;
  311. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  312. }
  313. while (bf) {
  314. fi = get_frame_info(bf->bf_mpdu);
  315. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  316. (*nframes)++;
  317. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  318. (*nbad)++;
  319. bf = bf->bf_next;
  320. }
  321. }
  322. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  323. struct ath_buf *bf, struct list_head *bf_q,
  324. struct ath_tx_status *ts, int txok, bool retry)
  325. {
  326. struct ath_node *an = NULL;
  327. struct sk_buff *skb;
  328. struct ieee80211_sta *sta;
  329. struct ieee80211_hw *hw = sc->hw;
  330. struct ieee80211_hdr *hdr;
  331. struct ieee80211_tx_info *tx_info;
  332. struct ath_atx_tid *tid = NULL;
  333. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  334. struct list_head bf_head;
  335. struct sk_buff_head bf_pending;
  336. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  337. u32 ba[WME_BA_BMP_SIZE >> 5];
  338. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  339. bool rc_update = true;
  340. struct ieee80211_tx_rate rates[4];
  341. struct ath_frame_info *fi;
  342. int nframes;
  343. u8 tidno;
  344. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  345. int i, retries;
  346. int bar_index = -1;
  347. skb = bf->bf_mpdu;
  348. hdr = (struct ieee80211_hdr *)skb->data;
  349. tx_info = IEEE80211_SKB_CB(skb);
  350. memcpy(rates, tx_info->control.rates, sizeof(rates));
  351. retries = ts->ts_longretry + 1;
  352. for (i = 0; i < ts->ts_rateindex; i++)
  353. retries += rates[i].count;
  354. rcu_read_lock();
  355. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  356. if (!sta) {
  357. rcu_read_unlock();
  358. INIT_LIST_HEAD(&bf_head);
  359. while (bf) {
  360. bf_next = bf->bf_next;
  361. if (!bf->bf_stale || bf_next != NULL)
  362. list_move_tail(&bf->list, &bf_head);
  363. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  364. bf = bf_next;
  365. }
  366. return;
  367. }
  368. an = (struct ath_node *)sta->drv_priv;
  369. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  370. tid = ATH_AN_2_TID(an, tidno);
  371. seq_first = tid->seq_start;
  372. /*
  373. * The hardware occasionally sends a tx status for the wrong TID.
  374. * In this case, the BA status cannot be considered valid and all
  375. * subframes need to be retransmitted
  376. */
  377. if (tidno != ts->tid)
  378. txok = false;
  379. isaggr = bf_isaggr(bf);
  380. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  381. if (isaggr && txok) {
  382. if (ts->ts_flags & ATH9K_TX_BA) {
  383. seq_st = ts->ts_seqnum;
  384. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  385. } else {
  386. /*
  387. * AR5416 can become deaf/mute when BA
  388. * issue happens. Chip needs to be reset.
  389. * But AP code may have sychronization issues
  390. * when perform internal reset in this routine.
  391. * Only enable reset in STA mode for now.
  392. */
  393. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  394. needreset = 1;
  395. }
  396. }
  397. __skb_queue_head_init(&bf_pending);
  398. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  399. while (bf) {
  400. u16 seqno = bf->bf_state.seqno;
  401. txfail = txpending = sendbar = 0;
  402. bf_next = bf->bf_next;
  403. skb = bf->bf_mpdu;
  404. tx_info = IEEE80211_SKB_CB(skb);
  405. fi = get_frame_info(skb);
  406. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  407. /* transmit completion, subframe is
  408. * acked by block ack */
  409. acked_cnt++;
  410. } else if (!isaggr && txok) {
  411. /* transmit completion */
  412. acked_cnt++;
  413. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  414. /*
  415. * cleanup in progress, just fail
  416. * the un-acked sub-frames
  417. */
  418. txfail = 1;
  419. } else if (flush) {
  420. txpending = 1;
  421. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  422. if (txok || !an->sleeping)
  423. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  424. retries);
  425. txpending = 1;
  426. } else {
  427. txfail = 1;
  428. txfail_cnt++;
  429. bar_index = max_t(int, bar_index,
  430. ATH_BA_INDEX(seq_first, seqno));
  431. }
  432. /*
  433. * Make sure the last desc is reclaimed if it
  434. * not a holding desc.
  435. */
  436. INIT_LIST_HEAD(&bf_head);
  437. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  438. bf_next != NULL || !bf_last->bf_stale)
  439. list_move_tail(&bf->list, &bf_head);
  440. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  441. /*
  442. * complete the acked-ones/xretried ones; update
  443. * block-ack window
  444. */
  445. ath_tx_update_baw(sc, tid, seqno);
  446. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  447. memcpy(tx_info->control.rates, rates, sizeof(rates));
  448. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  449. rc_update = false;
  450. }
  451. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  452. !txfail);
  453. } else {
  454. /* retry the un-acked ones */
  455. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  456. bf->bf_next == NULL && bf_last->bf_stale) {
  457. struct ath_buf *tbf;
  458. tbf = ath_clone_txbuf(sc, bf_last);
  459. /*
  460. * Update tx baw and complete the
  461. * frame with failed status if we
  462. * run out of tx buf.
  463. */
  464. if (!tbf) {
  465. ath_tx_update_baw(sc, tid, seqno);
  466. ath_tx_complete_buf(sc, bf, txq,
  467. &bf_head, ts, 0);
  468. bar_index = max_t(int, bar_index,
  469. ATH_BA_INDEX(seq_first, seqno));
  470. break;
  471. }
  472. fi->bf = tbf;
  473. }
  474. /*
  475. * Put this buffer to the temporary pending
  476. * queue to retain ordering
  477. */
  478. __skb_queue_tail(&bf_pending, skb);
  479. }
  480. bf = bf_next;
  481. }
  482. /* prepend un-acked frames to the beginning of the pending frame queue */
  483. if (!skb_queue_empty(&bf_pending)) {
  484. if (an->sleeping)
  485. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  486. skb_queue_splice(&bf_pending, &tid->buf_q);
  487. if (!an->sleeping) {
  488. ath_tx_queue_tid(txq, tid);
  489. if (ts->ts_status & ATH9K_TXERR_FILT)
  490. tid->ac->clear_ps_filter = true;
  491. }
  492. }
  493. if (bar_index >= 0) {
  494. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  495. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  496. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  497. ath_txq_unlock(sc, txq);
  498. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  499. ath_txq_lock(sc, txq);
  500. }
  501. if (tid->state & AGGR_CLEANUP)
  502. ath_tx_flush_tid(sc, tid);
  503. rcu_read_unlock();
  504. if (needreset) {
  505. RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
  506. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  507. }
  508. }
  509. static bool ath_lookup_legacy(struct ath_buf *bf)
  510. {
  511. struct sk_buff *skb;
  512. struct ieee80211_tx_info *tx_info;
  513. struct ieee80211_tx_rate *rates;
  514. int i;
  515. skb = bf->bf_mpdu;
  516. tx_info = IEEE80211_SKB_CB(skb);
  517. rates = tx_info->control.rates;
  518. for (i = 0; i < 4; i++) {
  519. if (!rates[i].count || rates[i].idx < 0)
  520. break;
  521. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  522. return true;
  523. }
  524. return false;
  525. }
  526. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  527. struct ath_atx_tid *tid)
  528. {
  529. struct sk_buff *skb;
  530. struct ieee80211_tx_info *tx_info;
  531. struct ieee80211_tx_rate *rates;
  532. struct ath_mci_profile *mci = &sc->btcoex.mci;
  533. u32 max_4ms_framelen, frmlen;
  534. u16 aggr_limit, legacy = 0;
  535. int i;
  536. skb = bf->bf_mpdu;
  537. tx_info = IEEE80211_SKB_CB(skb);
  538. rates = tx_info->control.rates;
  539. /*
  540. * Find the lowest frame length among the rate series that will have a
  541. * 4ms transmit duration.
  542. * TODO - TXOP limit needs to be considered.
  543. */
  544. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  545. for (i = 0; i < 4; i++) {
  546. int modeidx;
  547. if (!rates[i].count)
  548. continue;
  549. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  550. legacy = 1;
  551. break;
  552. }
  553. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  554. modeidx = MCS_HT40;
  555. else
  556. modeidx = MCS_HT20;
  557. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  558. modeidx++;
  559. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  560. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  561. }
  562. /*
  563. * limit aggregate size by the minimum rate if rate selected is
  564. * not a probe rate, if rate selected is a probe rate then
  565. * avoid aggregation of this packet.
  566. */
  567. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  568. return 0;
  569. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && mci->aggr_limit)
  570. aggr_limit = (max_4ms_framelen * mci->aggr_limit) >> 4;
  571. else if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  572. aggr_limit = min((max_4ms_framelen * 3) / 8,
  573. (u32)ATH_AMPDU_LIMIT_MAX);
  574. else
  575. aggr_limit = min(max_4ms_framelen,
  576. (u32)ATH_AMPDU_LIMIT_MAX);
  577. /*
  578. * h/w can accept aggregates up to 16 bit lengths (65535).
  579. * The IE, however can hold up to 65536, which shows up here
  580. * as zero. Ignore 65536 since we are constrained by hw.
  581. */
  582. if (tid->an->maxampdu)
  583. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  584. return aggr_limit;
  585. }
  586. /*
  587. * Returns the number of delimiters to be added to
  588. * meet the minimum required mpdudensity.
  589. */
  590. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  591. struct ath_buf *bf, u16 frmlen,
  592. bool first_subfrm)
  593. {
  594. #define FIRST_DESC_NDELIMS 60
  595. struct sk_buff *skb = bf->bf_mpdu;
  596. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  597. u32 nsymbits, nsymbols;
  598. u16 minlen;
  599. u8 flags, rix;
  600. int width, streams, half_gi, ndelim, mindelim;
  601. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  602. /* Select standard number of delimiters based on frame length alone */
  603. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  604. /*
  605. * If encryption enabled, hardware requires some more padding between
  606. * subframes.
  607. * TODO - this could be improved to be dependent on the rate.
  608. * The hardware can keep up at lower rates, but not higher rates
  609. */
  610. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  611. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  612. ndelim += ATH_AGGR_ENCRYPTDELIM;
  613. /*
  614. * Add delimiter when using RTS/CTS with aggregation
  615. * and non enterprise AR9003 card
  616. */
  617. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  618. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  619. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  620. /*
  621. * Convert desired mpdu density from microeconds to bytes based
  622. * on highest rate in rate series (i.e. first rate) to determine
  623. * required minimum length for subframe. Take into account
  624. * whether high rate is 20 or 40Mhz and half or full GI.
  625. *
  626. * If there is no mpdu density restriction, no further calculation
  627. * is needed.
  628. */
  629. if (tid->an->mpdudensity == 0)
  630. return ndelim;
  631. rix = tx_info->control.rates[0].idx;
  632. flags = tx_info->control.rates[0].flags;
  633. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  634. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  635. if (half_gi)
  636. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  637. else
  638. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  639. if (nsymbols == 0)
  640. nsymbols = 1;
  641. streams = HT_RC_2_STREAMS(rix);
  642. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  643. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  644. if (frmlen < minlen) {
  645. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  646. ndelim = max(mindelim, ndelim);
  647. }
  648. return ndelim;
  649. }
  650. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  651. struct ath_txq *txq,
  652. struct ath_atx_tid *tid,
  653. struct list_head *bf_q,
  654. int *aggr_len)
  655. {
  656. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  657. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  658. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  659. u16 aggr_limit = 0, al = 0, bpad = 0,
  660. al_delta, h_baw = tid->baw_size / 2;
  661. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  662. struct ieee80211_tx_info *tx_info;
  663. struct ath_frame_info *fi;
  664. struct sk_buff *skb;
  665. u16 seqno;
  666. do {
  667. skb = skb_peek(&tid->buf_q);
  668. fi = get_frame_info(skb);
  669. bf = fi->bf;
  670. if (!fi->bf)
  671. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  672. if (!bf)
  673. continue;
  674. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  675. seqno = bf->bf_state.seqno;
  676. /* do not step over block-ack window */
  677. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  678. status = ATH_AGGR_BAW_CLOSED;
  679. break;
  680. }
  681. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  682. struct ath_tx_status ts = {};
  683. struct list_head bf_head;
  684. INIT_LIST_HEAD(&bf_head);
  685. list_add(&bf->list, &bf_head);
  686. __skb_unlink(skb, &tid->buf_q);
  687. ath_tx_update_baw(sc, tid, seqno);
  688. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  689. continue;
  690. }
  691. if (!bf_first)
  692. bf_first = bf;
  693. if (!rl) {
  694. aggr_limit = ath_lookup_rate(sc, bf, tid);
  695. rl = 1;
  696. }
  697. /* do not exceed aggregation limit */
  698. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  699. if (nframes &&
  700. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  701. ath_lookup_legacy(bf))) {
  702. status = ATH_AGGR_LIMITED;
  703. break;
  704. }
  705. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  706. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  707. break;
  708. /* do not exceed subframe limit */
  709. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  710. status = ATH_AGGR_LIMITED;
  711. break;
  712. }
  713. /* add padding for previous frame to aggregation length */
  714. al += bpad + al_delta;
  715. /*
  716. * Get the delimiters needed to meet the MPDU
  717. * density for this node.
  718. */
  719. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  720. !nframes);
  721. bpad = PADBYTES(al_delta) + (ndelim << 2);
  722. nframes++;
  723. bf->bf_next = NULL;
  724. /* link buffers of this frame to the aggregate */
  725. if (!fi->retries)
  726. ath_tx_addto_baw(sc, tid, seqno);
  727. bf->bf_state.ndelim = ndelim;
  728. __skb_unlink(skb, &tid->buf_q);
  729. list_add_tail(&bf->list, bf_q);
  730. if (bf_prev)
  731. bf_prev->bf_next = bf;
  732. bf_prev = bf;
  733. } while (!skb_queue_empty(&tid->buf_q));
  734. *aggr_len = al;
  735. return status;
  736. #undef PADBYTES
  737. }
  738. /*
  739. * rix - rate index
  740. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  741. * width - 0 for 20 MHz, 1 for 40 MHz
  742. * half_gi - to use 4us v/s 3.6 us for symbol time
  743. */
  744. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  745. int width, int half_gi, bool shortPreamble)
  746. {
  747. u32 nbits, nsymbits, duration, nsymbols;
  748. int streams;
  749. /* find number of symbols: PLCP + data */
  750. streams = HT_RC_2_STREAMS(rix);
  751. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  752. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  753. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  754. if (!half_gi)
  755. duration = SYMBOL_TIME(nsymbols);
  756. else
  757. duration = SYMBOL_TIME_HALFGI(nsymbols);
  758. /* addup duration for legacy/ht training and signal fields */
  759. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  760. return duration;
  761. }
  762. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  763. struct ath_tx_info *info, int len)
  764. {
  765. struct ath_hw *ah = sc->sc_ah;
  766. struct sk_buff *skb;
  767. struct ieee80211_tx_info *tx_info;
  768. struct ieee80211_tx_rate *rates;
  769. const struct ieee80211_rate *rate;
  770. struct ieee80211_hdr *hdr;
  771. int i;
  772. u8 rix = 0;
  773. skb = bf->bf_mpdu;
  774. tx_info = IEEE80211_SKB_CB(skb);
  775. rates = tx_info->control.rates;
  776. hdr = (struct ieee80211_hdr *)skb->data;
  777. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  778. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  779. /*
  780. * We check if Short Preamble is needed for the CTS rate by
  781. * checking the BSS's global flag.
  782. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  783. */
  784. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  785. info->rtscts_rate = rate->hw_value;
  786. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  787. info->rtscts_rate |= rate->hw_value_short;
  788. for (i = 0; i < 4; i++) {
  789. bool is_40, is_sgi, is_sp;
  790. int phy;
  791. if (!rates[i].count || (rates[i].idx < 0))
  792. continue;
  793. rix = rates[i].idx;
  794. info->rates[i].Tries = rates[i].count;
  795. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  796. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  797. info->flags |= ATH9K_TXDESC_RTSENA;
  798. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  799. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  800. info->flags |= ATH9K_TXDESC_CTSENA;
  801. }
  802. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  803. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  804. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  805. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  806. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  807. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  808. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  809. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  810. /* MCS rates */
  811. info->rates[i].Rate = rix | 0x80;
  812. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  813. ah->txchainmask, info->rates[i].Rate);
  814. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  815. is_40, is_sgi, is_sp);
  816. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  817. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  818. continue;
  819. }
  820. /* legacy rates */
  821. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  822. !(rate->flags & IEEE80211_RATE_ERP_G))
  823. phy = WLAN_RC_PHY_CCK;
  824. else
  825. phy = WLAN_RC_PHY_OFDM;
  826. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  827. info->rates[i].Rate = rate->hw_value;
  828. if (rate->hw_value_short) {
  829. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  830. info->rates[i].Rate |= rate->hw_value_short;
  831. } else {
  832. is_sp = false;
  833. }
  834. if (bf->bf_state.bfs_paprd)
  835. info->rates[i].ChSel = ah->txchainmask;
  836. else
  837. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  838. ah->txchainmask, info->rates[i].Rate);
  839. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  840. phy, rate->bitrate * 100, len, rix, is_sp);
  841. }
  842. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  843. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  844. info->flags &= ~ATH9K_TXDESC_RTSENA;
  845. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  846. if (info->flags & ATH9K_TXDESC_RTSENA)
  847. info->flags &= ~ATH9K_TXDESC_CTSENA;
  848. }
  849. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  850. {
  851. struct ieee80211_hdr *hdr;
  852. enum ath9k_pkt_type htype;
  853. __le16 fc;
  854. hdr = (struct ieee80211_hdr *)skb->data;
  855. fc = hdr->frame_control;
  856. if (ieee80211_is_beacon(fc))
  857. htype = ATH9K_PKT_TYPE_BEACON;
  858. else if (ieee80211_is_probe_resp(fc))
  859. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  860. else if (ieee80211_is_atim(fc))
  861. htype = ATH9K_PKT_TYPE_ATIM;
  862. else if (ieee80211_is_pspoll(fc))
  863. htype = ATH9K_PKT_TYPE_PSPOLL;
  864. else
  865. htype = ATH9K_PKT_TYPE_NORMAL;
  866. return htype;
  867. }
  868. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  869. struct ath_txq *txq, int len)
  870. {
  871. struct ath_hw *ah = sc->sc_ah;
  872. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  873. struct ath_buf *bf_first = bf;
  874. struct ath_tx_info info;
  875. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  876. memset(&info, 0, sizeof(info));
  877. info.is_first = true;
  878. info.is_last = true;
  879. info.txpower = MAX_RATE_POWER;
  880. info.qcu = txq->axq_qnum;
  881. info.flags = ATH9K_TXDESC_INTREQ;
  882. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  883. info.flags |= ATH9K_TXDESC_NOACK;
  884. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  885. info.flags |= ATH9K_TXDESC_LDPC;
  886. ath_buf_set_rate(sc, bf, &info, len);
  887. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  888. info.flags |= ATH9K_TXDESC_CLRDMASK;
  889. if (bf->bf_state.bfs_paprd)
  890. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  891. while (bf) {
  892. struct sk_buff *skb = bf->bf_mpdu;
  893. struct ath_frame_info *fi = get_frame_info(skb);
  894. info.type = get_hw_packet_type(skb);
  895. if (bf->bf_next)
  896. info.link = bf->bf_next->bf_daddr;
  897. else
  898. info.link = 0;
  899. info.buf_addr[0] = bf->bf_buf_addr;
  900. info.buf_len[0] = skb->len;
  901. info.pkt_len = fi->framelen;
  902. info.keyix = fi->keyix;
  903. info.keytype = fi->keytype;
  904. if (aggr) {
  905. if (bf == bf_first)
  906. info.aggr = AGGR_BUF_FIRST;
  907. else if (!bf->bf_next)
  908. info.aggr = AGGR_BUF_LAST;
  909. else
  910. info.aggr = AGGR_BUF_MIDDLE;
  911. info.ndelim = bf->bf_state.ndelim;
  912. info.aggr_len = len;
  913. }
  914. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  915. bf = bf->bf_next;
  916. }
  917. }
  918. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  919. struct ath_atx_tid *tid)
  920. {
  921. struct ath_buf *bf;
  922. enum ATH_AGGR_STATUS status;
  923. struct ieee80211_tx_info *tx_info;
  924. struct list_head bf_q;
  925. int aggr_len;
  926. do {
  927. if (skb_queue_empty(&tid->buf_q))
  928. return;
  929. INIT_LIST_HEAD(&bf_q);
  930. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  931. /*
  932. * no frames picked up to be aggregated;
  933. * block-ack window is not open.
  934. */
  935. if (list_empty(&bf_q))
  936. break;
  937. bf = list_first_entry(&bf_q, struct ath_buf, list);
  938. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  939. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  940. if (tid->ac->clear_ps_filter) {
  941. tid->ac->clear_ps_filter = false;
  942. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  943. } else {
  944. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  945. }
  946. /* if only one frame, send as non-aggregate */
  947. if (bf == bf->bf_lastbf) {
  948. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  949. bf->bf_state.bf_type = BUF_AMPDU;
  950. } else {
  951. TX_STAT_INC(txq->axq_qnum, a_aggr);
  952. }
  953. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  954. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  955. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  956. status != ATH_AGGR_BAW_CLOSED);
  957. }
  958. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  959. u16 tid, u16 *ssn)
  960. {
  961. struct ath_atx_tid *txtid;
  962. struct ath_node *an;
  963. an = (struct ath_node *)sta->drv_priv;
  964. txtid = ATH_AN_2_TID(an, tid);
  965. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  966. return -EAGAIN;
  967. txtid->state |= AGGR_ADDBA_PROGRESS;
  968. txtid->paused = true;
  969. *ssn = txtid->seq_start = txtid->seq_next;
  970. txtid->bar_index = -1;
  971. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  972. txtid->baw_head = txtid->baw_tail = 0;
  973. return 0;
  974. }
  975. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  976. {
  977. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  978. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  979. struct ath_txq *txq = txtid->ac->txq;
  980. if (txtid->state & AGGR_CLEANUP)
  981. return;
  982. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  983. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  984. return;
  985. }
  986. ath_txq_lock(sc, txq);
  987. txtid->paused = true;
  988. /*
  989. * If frames are still being transmitted for this TID, they will be
  990. * cleaned up during tx completion. To prevent race conditions, this
  991. * TID can only be reused after all in-progress subframes have been
  992. * completed.
  993. */
  994. if (txtid->baw_head != txtid->baw_tail)
  995. txtid->state |= AGGR_CLEANUP;
  996. else
  997. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  998. ath_tx_flush_tid(sc, txtid);
  999. ath_txq_unlock_complete(sc, txq);
  1000. }
  1001. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1002. struct ath_node *an)
  1003. {
  1004. struct ath_atx_tid *tid;
  1005. struct ath_atx_ac *ac;
  1006. struct ath_txq *txq;
  1007. bool buffered;
  1008. int tidno;
  1009. for (tidno = 0, tid = &an->tid[tidno];
  1010. tidno < WME_NUM_TID; tidno++, tid++) {
  1011. if (!tid->sched)
  1012. continue;
  1013. ac = tid->ac;
  1014. txq = ac->txq;
  1015. ath_txq_lock(sc, txq);
  1016. buffered = !skb_queue_empty(&tid->buf_q);
  1017. tid->sched = false;
  1018. list_del(&tid->list);
  1019. if (ac->sched) {
  1020. ac->sched = false;
  1021. list_del(&ac->list);
  1022. }
  1023. ath_txq_unlock(sc, txq);
  1024. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1025. }
  1026. }
  1027. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1028. {
  1029. struct ath_atx_tid *tid;
  1030. struct ath_atx_ac *ac;
  1031. struct ath_txq *txq;
  1032. int tidno;
  1033. for (tidno = 0, tid = &an->tid[tidno];
  1034. tidno < WME_NUM_TID; tidno++, tid++) {
  1035. ac = tid->ac;
  1036. txq = ac->txq;
  1037. ath_txq_lock(sc, txq);
  1038. ac->clear_ps_filter = true;
  1039. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1040. ath_tx_queue_tid(txq, tid);
  1041. ath_txq_schedule(sc, txq);
  1042. }
  1043. ath_txq_unlock_complete(sc, txq);
  1044. }
  1045. }
  1046. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1047. {
  1048. struct ath_atx_tid *txtid;
  1049. struct ath_node *an;
  1050. an = (struct ath_node *)sta->drv_priv;
  1051. if (sc->sc_flags & SC_OP_TXAGGR) {
  1052. txtid = ATH_AN_2_TID(an, tid);
  1053. txtid->baw_size =
  1054. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1055. txtid->state |= AGGR_ADDBA_COMPLETE;
  1056. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1057. ath_tx_resume_tid(sc, txtid);
  1058. }
  1059. }
  1060. /********************/
  1061. /* Queue Management */
  1062. /********************/
  1063. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1064. struct ath_txq *txq)
  1065. {
  1066. struct ath_atx_ac *ac, *ac_tmp;
  1067. struct ath_atx_tid *tid, *tid_tmp;
  1068. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1069. list_del(&ac->list);
  1070. ac->sched = false;
  1071. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1072. list_del(&tid->list);
  1073. tid->sched = false;
  1074. ath_tid_drain(sc, txq, tid);
  1075. }
  1076. }
  1077. }
  1078. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1079. {
  1080. struct ath_hw *ah = sc->sc_ah;
  1081. struct ath9k_tx_queue_info qi;
  1082. static const int subtype_txq_to_hwq[] = {
  1083. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1084. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1085. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1086. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1087. };
  1088. int axq_qnum, i;
  1089. memset(&qi, 0, sizeof(qi));
  1090. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1091. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1092. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1093. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1094. qi.tqi_physCompBuf = 0;
  1095. /*
  1096. * Enable interrupts only for EOL and DESC conditions.
  1097. * We mark tx descriptors to receive a DESC interrupt
  1098. * when a tx queue gets deep; otherwise waiting for the
  1099. * EOL to reap descriptors. Note that this is done to
  1100. * reduce interrupt load and this only defers reaping
  1101. * descriptors, never transmitting frames. Aside from
  1102. * reducing interrupts this also permits more concurrency.
  1103. * The only potential downside is if the tx queue backs
  1104. * up in which case the top half of the kernel may backup
  1105. * due to a lack of tx descriptors.
  1106. *
  1107. * The UAPSD queue is an exception, since we take a desc-
  1108. * based intr on the EOSP frames.
  1109. */
  1110. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1111. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  1112. TXQ_FLAG_TXERRINT_ENABLE;
  1113. } else {
  1114. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1115. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1116. else
  1117. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1118. TXQ_FLAG_TXDESCINT_ENABLE;
  1119. }
  1120. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1121. if (axq_qnum == -1) {
  1122. /*
  1123. * NB: don't print a message, this happens
  1124. * normally on parts with too few tx queues
  1125. */
  1126. return NULL;
  1127. }
  1128. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1129. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1130. txq->axq_qnum = axq_qnum;
  1131. txq->mac80211_qnum = -1;
  1132. txq->axq_link = NULL;
  1133. __skb_queue_head_init(&txq->complete_q);
  1134. INIT_LIST_HEAD(&txq->axq_q);
  1135. INIT_LIST_HEAD(&txq->axq_acq);
  1136. spin_lock_init(&txq->axq_lock);
  1137. txq->axq_depth = 0;
  1138. txq->axq_ampdu_depth = 0;
  1139. txq->axq_tx_inprogress = false;
  1140. sc->tx.txqsetup |= 1<<axq_qnum;
  1141. txq->txq_headidx = txq->txq_tailidx = 0;
  1142. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1143. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1144. }
  1145. return &sc->tx.txq[axq_qnum];
  1146. }
  1147. int ath_txq_update(struct ath_softc *sc, int qnum,
  1148. struct ath9k_tx_queue_info *qinfo)
  1149. {
  1150. struct ath_hw *ah = sc->sc_ah;
  1151. int error = 0;
  1152. struct ath9k_tx_queue_info qi;
  1153. if (qnum == sc->beacon.beaconq) {
  1154. /*
  1155. * XXX: for beacon queue, we just save the parameter.
  1156. * It will be picked up by ath_beaconq_config when
  1157. * it's necessary.
  1158. */
  1159. sc->beacon.beacon_qi = *qinfo;
  1160. return 0;
  1161. }
  1162. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1163. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1164. qi.tqi_aifs = qinfo->tqi_aifs;
  1165. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1166. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1167. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1168. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1169. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1170. ath_err(ath9k_hw_common(sc->sc_ah),
  1171. "Unable to update hardware queue %u!\n", qnum);
  1172. error = -EIO;
  1173. } else {
  1174. ath9k_hw_resettxqueue(ah, qnum);
  1175. }
  1176. return error;
  1177. }
  1178. int ath_cabq_update(struct ath_softc *sc)
  1179. {
  1180. struct ath9k_tx_queue_info qi;
  1181. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1182. int qnum = sc->beacon.cabq->axq_qnum;
  1183. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1184. /*
  1185. * Ensure the readytime % is within the bounds.
  1186. */
  1187. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1188. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1189. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1190. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1191. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1192. sc->config.cabqReadytime) / 100;
  1193. ath_txq_update(sc, qnum, &qi);
  1194. return 0;
  1195. }
  1196. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1197. {
  1198. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1199. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1200. }
  1201. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1202. struct list_head *list, bool retry_tx)
  1203. {
  1204. struct ath_buf *bf, *lastbf;
  1205. struct list_head bf_head;
  1206. struct ath_tx_status ts;
  1207. memset(&ts, 0, sizeof(ts));
  1208. ts.ts_status = ATH9K_TX_FLUSH;
  1209. INIT_LIST_HEAD(&bf_head);
  1210. while (!list_empty(list)) {
  1211. bf = list_first_entry(list, struct ath_buf, list);
  1212. if (bf->bf_stale) {
  1213. list_del(&bf->list);
  1214. ath_tx_return_buffer(sc, bf);
  1215. continue;
  1216. }
  1217. lastbf = bf->bf_lastbf;
  1218. list_cut_position(&bf_head, list, &lastbf->list);
  1219. txq->axq_depth--;
  1220. if (bf_is_ampdu_not_probing(bf))
  1221. txq->axq_ampdu_depth--;
  1222. if (bf_isampdu(bf))
  1223. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1224. retry_tx);
  1225. else
  1226. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1227. }
  1228. }
  1229. /*
  1230. * Drain a given TX queue (could be Beacon or Data)
  1231. *
  1232. * This assumes output has been stopped and
  1233. * we do not need to block ath_tx_tasklet.
  1234. */
  1235. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1236. {
  1237. ath_txq_lock(sc, txq);
  1238. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1239. int idx = txq->txq_tailidx;
  1240. while (!list_empty(&txq->txq_fifo[idx])) {
  1241. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1242. retry_tx);
  1243. INCR(idx, ATH_TXFIFO_DEPTH);
  1244. }
  1245. txq->txq_tailidx = idx;
  1246. }
  1247. txq->axq_link = NULL;
  1248. txq->axq_tx_inprogress = false;
  1249. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1250. /* flush any pending frames if aggregation is enabled */
  1251. if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
  1252. ath_txq_drain_pending_buffers(sc, txq);
  1253. ath_txq_unlock_complete(sc, txq);
  1254. }
  1255. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1256. {
  1257. struct ath_hw *ah = sc->sc_ah;
  1258. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1259. struct ath_txq *txq;
  1260. int i;
  1261. u32 npend = 0;
  1262. if (sc->sc_flags & SC_OP_INVALID)
  1263. return true;
  1264. ath9k_hw_abort_tx_dma(ah);
  1265. /* Check if any queue remains active */
  1266. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1267. if (!ATH_TXQ_SETUP(sc, i))
  1268. continue;
  1269. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1270. npend |= BIT(i);
  1271. }
  1272. if (npend)
  1273. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1274. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1275. if (!ATH_TXQ_SETUP(sc, i))
  1276. continue;
  1277. /*
  1278. * The caller will resume queues with ieee80211_wake_queues.
  1279. * Mark the queue as not stopped to prevent ath_tx_complete
  1280. * from waking the queue too early.
  1281. */
  1282. txq = &sc->tx.txq[i];
  1283. txq->stopped = false;
  1284. ath_draintxq(sc, txq, retry_tx);
  1285. }
  1286. return !npend;
  1287. }
  1288. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1289. {
  1290. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1291. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1292. }
  1293. /* For each axq_acq entry, for each tid, try to schedule packets
  1294. * for transmit until ampdu_depth has reached min Q depth.
  1295. */
  1296. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1297. {
  1298. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1299. struct ath_atx_tid *tid, *last_tid;
  1300. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1301. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1302. return;
  1303. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1304. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1305. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1306. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1307. list_del(&ac->list);
  1308. ac->sched = false;
  1309. while (!list_empty(&ac->tid_q)) {
  1310. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1311. list);
  1312. list_del(&tid->list);
  1313. tid->sched = false;
  1314. if (tid->paused)
  1315. continue;
  1316. ath_tx_sched_aggr(sc, txq, tid);
  1317. /*
  1318. * add tid to round-robin queue if more frames
  1319. * are pending for the tid
  1320. */
  1321. if (!skb_queue_empty(&tid->buf_q))
  1322. ath_tx_queue_tid(txq, tid);
  1323. if (tid == last_tid ||
  1324. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1325. break;
  1326. }
  1327. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1328. ac->sched = true;
  1329. list_add_tail(&ac->list, &txq->axq_acq);
  1330. }
  1331. if (ac == last_ac ||
  1332. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1333. return;
  1334. }
  1335. }
  1336. /***********/
  1337. /* TX, DMA */
  1338. /***********/
  1339. /*
  1340. * Insert a chain of ath_buf (descriptors) on a txq and
  1341. * assume the descriptors are already chained together by caller.
  1342. */
  1343. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1344. struct list_head *head, bool internal)
  1345. {
  1346. struct ath_hw *ah = sc->sc_ah;
  1347. struct ath_common *common = ath9k_hw_common(ah);
  1348. struct ath_buf *bf, *bf_last;
  1349. bool puttxbuf = false;
  1350. bool edma;
  1351. /*
  1352. * Insert the frame on the outbound list and
  1353. * pass it on to the hardware.
  1354. */
  1355. if (list_empty(head))
  1356. return;
  1357. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1358. bf = list_first_entry(head, struct ath_buf, list);
  1359. bf_last = list_entry(head->prev, struct ath_buf, list);
  1360. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1361. txq->axq_qnum, txq->axq_depth);
  1362. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1363. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1364. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1365. puttxbuf = true;
  1366. } else {
  1367. list_splice_tail_init(head, &txq->axq_q);
  1368. if (txq->axq_link) {
  1369. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1370. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1371. txq->axq_qnum, txq->axq_link,
  1372. ito64(bf->bf_daddr), bf->bf_desc);
  1373. } else if (!edma)
  1374. puttxbuf = true;
  1375. txq->axq_link = bf_last->bf_desc;
  1376. }
  1377. if (puttxbuf) {
  1378. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1379. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1380. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1381. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1382. }
  1383. if (!edma) {
  1384. TX_STAT_INC(txq->axq_qnum, txstart);
  1385. ath9k_hw_txstart(ah, txq->axq_qnum);
  1386. }
  1387. if (!internal) {
  1388. txq->axq_depth++;
  1389. if (bf_is_ampdu_not_probing(bf))
  1390. txq->axq_ampdu_depth++;
  1391. }
  1392. }
  1393. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1394. struct sk_buff *skb, struct ath_tx_control *txctl)
  1395. {
  1396. struct ath_frame_info *fi = get_frame_info(skb);
  1397. struct list_head bf_head;
  1398. struct ath_buf *bf;
  1399. /*
  1400. * Do not queue to h/w when any of the following conditions is true:
  1401. * - there are pending frames in software queue
  1402. * - the TID is currently paused for ADDBA/BAR request
  1403. * - seqno is not within block-ack window
  1404. * - h/w queue depth exceeds low water mark
  1405. */
  1406. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1407. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1408. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1409. /*
  1410. * Add this frame to software queue for scheduling later
  1411. * for aggregation.
  1412. */
  1413. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1414. __skb_queue_tail(&tid->buf_q, skb);
  1415. if (!txctl->an || !txctl->an->sleeping)
  1416. ath_tx_queue_tid(txctl->txq, tid);
  1417. return;
  1418. }
  1419. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1420. if (!bf)
  1421. return;
  1422. bf->bf_state.bf_type = BUF_AMPDU;
  1423. INIT_LIST_HEAD(&bf_head);
  1424. list_add(&bf->list, &bf_head);
  1425. /* Add sub-frame to BAW */
  1426. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1427. /* Queue to h/w without aggregation */
  1428. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1429. bf->bf_lastbf = bf;
  1430. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1431. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1432. }
  1433. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1434. struct ath_atx_tid *tid, struct sk_buff *skb)
  1435. {
  1436. struct ath_frame_info *fi = get_frame_info(skb);
  1437. struct list_head bf_head;
  1438. struct ath_buf *bf;
  1439. bf = fi->bf;
  1440. if (!bf)
  1441. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1442. if (!bf)
  1443. return;
  1444. INIT_LIST_HEAD(&bf_head);
  1445. list_add_tail(&bf->list, &bf_head);
  1446. bf->bf_state.bf_type = 0;
  1447. bf->bf_lastbf = bf;
  1448. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1449. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1450. TX_STAT_INC(txq->axq_qnum, queued);
  1451. }
  1452. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1453. int framelen)
  1454. {
  1455. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1456. struct ieee80211_sta *sta = tx_info->control.sta;
  1457. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1458. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1459. struct ath_frame_info *fi = get_frame_info(skb);
  1460. struct ath_node *an = NULL;
  1461. enum ath9k_key_type keytype;
  1462. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1463. if (sta)
  1464. an = (struct ath_node *) sta->drv_priv;
  1465. memset(fi, 0, sizeof(*fi));
  1466. if (hw_key)
  1467. fi->keyix = hw_key->hw_key_idx;
  1468. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1469. fi->keyix = an->ps_key;
  1470. else
  1471. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1472. fi->keytype = keytype;
  1473. fi->framelen = framelen;
  1474. }
  1475. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1476. {
  1477. struct ath_hw *ah = sc->sc_ah;
  1478. struct ath9k_channel *curchan = ah->curchan;
  1479. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1480. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1481. (chainmask == 0x7) && (rate < 0x90))
  1482. return 0x3;
  1483. else
  1484. return chainmask;
  1485. }
  1486. /*
  1487. * Assign a descriptor (and sequence number if necessary,
  1488. * and map buffer for DMA. Frees skb on error
  1489. */
  1490. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1491. struct ath_txq *txq,
  1492. struct ath_atx_tid *tid,
  1493. struct sk_buff *skb)
  1494. {
  1495. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1496. struct ath_frame_info *fi = get_frame_info(skb);
  1497. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1498. struct ath_buf *bf;
  1499. u16 seqno;
  1500. bf = ath_tx_get_buffer(sc);
  1501. if (!bf) {
  1502. ath_dbg(common, XMIT, "TX buffers are full\n");
  1503. goto error;
  1504. }
  1505. ATH_TXBUF_RESET(bf);
  1506. if (tid) {
  1507. seqno = tid->seq_next;
  1508. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1509. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1510. bf->bf_state.seqno = seqno;
  1511. }
  1512. bf->bf_mpdu = skb;
  1513. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1514. skb->len, DMA_TO_DEVICE);
  1515. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1516. bf->bf_mpdu = NULL;
  1517. bf->bf_buf_addr = 0;
  1518. ath_err(ath9k_hw_common(sc->sc_ah),
  1519. "dma_mapping_error() on TX\n");
  1520. ath_tx_return_buffer(sc, bf);
  1521. goto error;
  1522. }
  1523. fi->bf = bf;
  1524. return bf;
  1525. error:
  1526. dev_kfree_skb_any(skb);
  1527. return NULL;
  1528. }
  1529. /* FIXME: tx power */
  1530. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1531. struct ath_tx_control *txctl)
  1532. {
  1533. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1534. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1535. struct ath_atx_tid *tid = NULL;
  1536. struct ath_buf *bf;
  1537. u8 tidno;
  1538. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1539. ieee80211_is_data_qos(hdr->frame_control)) {
  1540. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1541. IEEE80211_QOS_CTL_TID_MASK;
  1542. tid = ATH_AN_2_TID(txctl->an, tidno);
  1543. WARN_ON(tid->ac->txq != txctl->txq);
  1544. }
  1545. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1546. /*
  1547. * Try aggregation if it's a unicast data frame
  1548. * and the destination is HT capable.
  1549. */
  1550. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1551. } else {
  1552. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1553. if (!bf)
  1554. return;
  1555. bf->bf_state.bfs_paprd = txctl->paprd;
  1556. if (txctl->paprd)
  1557. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1558. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1559. }
  1560. }
  1561. /* Upon failure caller should free skb */
  1562. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1563. struct ath_tx_control *txctl)
  1564. {
  1565. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1566. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1567. struct ieee80211_sta *sta = info->control.sta;
  1568. struct ieee80211_vif *vif = info->control.vif;
  1569. struct ath_softc *sc = hw->priv;
  1570. struct ath_txq *txq = txctl->txq;
  1571. int padpos, padsize;
  1572. int frmlen = skb->len + FCS_LEN;
  1573. int q;
  1574. /* NOTE: sta can be NULL according to net/mac80211.h */
  1575. if (sta)
  1576. txctl->an = (struct ath_node *)sta->drv_priv;
  1577. if (info->control.hw_key)
  1578. frmlen += info->control.hw_key->icv_len;
  1579. /*
  1580. * As a temporary workaround, assign seq# here; this will likely need
  1581. * to be cleaned up to work better with Beacon transmission and virtual
  1582. * BSSes.
  1583. */
  1584. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1585. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1586. sc->tx.seq_no += 0x10;
  1587. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1588. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1589. }
  1590. /* Add the padding after the header if this is not already done */
  1591. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1592. padsize = padpos & 3;
  1593. if (padsize && skb->len > padpos) {
  1594. if (skb_headroom(skb) < padsize)
  1595. return -ENOMEM;
  1596. skb_push(skb, padsize);
  1597. memmove(skb->data, skb->data + padsize, padpos);
  1598. hdr = (struct ieee80211_hdr *) skb->data;
  1599. }
  1600. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1601. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1602. !ieee80211_is_data(hdr->frame_control))
  1603. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1604. setup_frame_info(hw, skb, frmlen);
  1605. /*
  1606. * At this point, the vif, hw_key and sta pointers in the tx control
  1607. * info are no longer valid (overwritten by the ath_frame_info data.
  1608. */
  1609. q = skb_get_queue_mapping(skb);
  1610. ath_txq_lock(sc, txq);
  1611. if (txq == sc->tx.txq_map[q] &&
  1612. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1613. ieee80211_stop_queue(sc->hw, q);
  1614. txq->stopped = true;
  1615. }
  1616. ath_tx_start_dma(sc, skb, txctl);
  1617. ath_txq_unlock(sc, txq);
  1618. return 0;
  1619. }
  1620. /*****************/
  1621. /* TX Completion */
  1622. /*****************/
  1623. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1624. int tx_flags, struct ath_txq *txq)
  1625. {
  1626. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1627. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1628. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1629. int q, padpos, padsize;
  1630. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1631. if (!(tx_flags & ATH_TX_ERROR))
  1632. /* Frame was ACKed */
  1633. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1634. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1635. padsize = padpos & 3;
  1636. if (padsize && skb->len>padpos+padsize) {
  1637. /*
  1638. * Remove MAC header padding before giving the frame back to
  1639. * mac80211.
  1640. */
  1641. memmove(skb->data + padsize, skb->data, padpos);
  1642. skb_pull(skb, padsize);
  1643. }
  1644. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1645. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1646. ath_dbg(common, PS,
  1647. "Going back to sleep after having received TX status (0x%lx)\n",
  1648. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1649. PS_WAIT_FOR_CAB |
  1650. PS_WAIT_FOR_PSPOLL_DATA |
  1651. PS_WAIT_FOR_TX_ACK));
  1652. }
  1653. q = skb_get_queue_mapping(skb);
  1654. if (txq == sc->tx.txq_map[q]) {
  1655. if (WARN_ON(--txq->pending_frames < 0))
  1656. txq->pending_frames = 0;
  1657. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1658. ieee80211_wake_queue(sc->hw, q);
  1659. txq->stopped = false;
  1660. }
  1661. }
  1662. __skb_queue_tail(&txq->complete_q, skb);
  1663. }
  1664. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1665. struct ath_txq *txq, struct list_head *bf_q,
  1666. struct ath_tx_status *ts, int txok)
  1667. {
  1668. struct sk_buff *skb = bf->bf_mpdu;
  1669. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1670. unsigned long flags;
  1671. int tx_flags = 0;
  1672. if (!txok)
  1673. tx_flags |= ATH_TX_ERROR;
  1674. if (ts->ts_status & ATH9K_TXERR_FILT)
  1675. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1676. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1677. bf->bf_buf_addr = 0;
  1678. if (bf->bf_state.bfs_paprd) {
  1679. if (time_after(jiffies,
  1680. bf->bf_state.bfs_paprd_timestamp +
  1681. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1682. dev_kfree_skb_any(skb);
  1683. else
  1684. complete(&sc->paprd_complete);
  1685. } else {
  1686. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1687. ath_tx_complete(sc, skb, tx_flags, txq);
  1688. }
  1689. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1690. * accidentally reference it later.
  1691. */
  1692. bf->bf_mpdu = NULL;
  1693. /*
  1694. * Return the list of ath_buf of this mpdu to free queue
  1695. */
  1696. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1697. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1698. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1699. }
  1700. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1701. struct ath_tx_status *ts, int nframes, int nbad,
  1702. int txok)
  1703. {
  1704. struct sk_buff *skb = bf->bf_mpdu;
  1705. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1706. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1707. struct ieee80211_hw *hw = sc->hw;
  1708. struct ath_hw *ah = sc->sc_ah;
  1709. u8 i, tx_rateindex;
  1710. if (txok)
  1711. tx_info->status.ack_signal = ts->ts_rssi;
  1712. tx_rateindex = ts->ts_rateindex;
  1713. WARN_ON(tx_rateindex >= hw->max_rates);
  1714. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1715. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1716. BUG_ON(nbad > nframes);
  1717. }
  1718. tx_info->status.ampdu_len = nframes;
  1719. tx_info->status.ampdu_ack_len = nframes - nbad;
  1720. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1721. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1722. /*
  1723. * If an underrun error is seen assume it as an excessive
  1724. * retry only if max frame trigger level has been reached
  1725. * (2 KB for single stream, and 4 KB for dual stream).
  1726. * Adjust the long retry as if the frame was tried
  1727. * hw->max_rate_tries times to affect how rate control updates
  1728. * PER for the failed rate.
  1729. * In case of congestion on the bus penalizing this type of
  1730. * underruns should help hardware actually transmit new frames
  1731. * successfully by eventually preferring slower rates.
  1732. * This itself should also alleviate congestion on the bus.
  1733. */
  1734. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1735. ATH9K_TX_DELIM_UNDERRUN)) &&
  1736. ieee80211_is_data(hdr->frame_control) &&
  1737. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1738. tx_info->status.rates[tx_rateindex].count =
  1739. hw->max_rate_tries;
  1740. }
  1741. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1742. tx_info->status.rates[i].count = 0;
  1743. tx_info->status.rates[i].idx = -1;
  1744. }
  1745. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1746. }
  1747. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1748. struct ath_tx_status *ts, struct ath_buf *bf,
  1749. struct list_head *bf_head)
  1750. {
  1751. int txok;
  1752. txq->axq_depth--;
  1753. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1754. txq->axq_tx_inprogress = false;
  1755. if (bf_is_ampdu_not_probing(bf))
  1756. txq->axq_ampdu_depth--;
  1757. if (!bf_isampdu(bf)) {
  1758. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1759. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1760. } else
  1761. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1762. if (sc->sc_flags & SC_OP_TXAGGR)
  1763. ath_txq_schedule(sc, txq);
  1764. }
  1765. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1766. {
  1767. struct ath_hw *ah = sc->sc_ah;
  1768. struct ath_common *common = ath9k_hw_common(ah);
  1769. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1770. struct list_head bf_head;
  1771. struct ath_desc *ds;
  1772. struct ath_tx_status ts;
  1773. int status;
  1774. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1775. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1776. txq->axq_link);
  1777. ath_txq_lock(sc, txq);
  1778. for (;;) {
  1779. if (work_pending(&sc->hw_reset_work))
  1780. break;
  1781. if (list_empty(&txq->axq_q)) {
  1782. txq->axq_link = NULL;
  1783. if (sc->sc_flags & SC_OP_TXAGGR)
  1784. ath_txq_schedule(sc, txq);
  1785. break;
  1786. }
  1787. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1788. /*
  1789. * There is a race condition that a BH gets scheduled
  1790. * after sw writes TxE and before hw re-load the last
  1791. * descriptor to get the newly chained one.
  1792. * Software must keep the last DONE descriptor as a
  1793. * holding descriptor - software does so by marking
  1794. * it with the STALE flag.
  1795. */
  1796. bf_held = NULL;
  1797. if (bf->bf_stale) {
  1798. bf_held = bf;
  1799. if (list_is_last(&bf_held->list, &txq->axq_q))
  1800. break;
  1801. bf = list_entry(bf_held->list.next, struct ath_buf,
  1802. list);
  1803. }
  1804. lastbf = bf->bf_lastbf;
  1805. ds = lastbf->bf_desc;
  1806. memset(&ts, 0, sizeof(ts));
  1807. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1808. if (status == -EINPROGRESS)
  1809. break;
  1810. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1811. /*
  1812. * Remove ath_buf's of the same transmit unit from txq,
  1813. * however leave the last descriptor back as the holding
  1814. * descriptor for hw.
  1815. */
  1816. lastbf->bf_stale = true;
  1817. INIT_LIST_HEAD(&bf_head);
  1818. if (!list_is_singular(&lastbf->list))
  1819. list_cut_position(&bf_head,
  1820. &txq->axq_q, lastbf->list.prev);
  1821. if (bf_held) {
  1822. list_del(&bf_held->list);
  1823. ath_tx_return_buffer(sc, bf_held);
  1824. }
  1825. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1826. }
  1827. ath_txq_unlock_complete(sc, txq);
  1828. }
  1829. static void ath_tx_complete_poll_work(struct work_struct *work)
  1830. {
  1831. struct ath_softc *sc = container_of(work, struct ath_softc,
  1832. tx_complete_work.work);
  1833. struct ath_txq *txq;
  1834. int i;
  1835. bool needreset = false;
  1836. #ifdef CONFIG_ATH9K_DEBUGFS
  1837. sc->tx_complete_poll_work_seen++;
  1838. #endif
  1839. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1840. if (ATH_TXQ_SETUP(sc, i)) {
  1841. txq = &sc->tx.txq[i];
  1842. ath_txq_lock(sc, txq);
  1843. if (txq->axq_depth) {
  1844. if (txq->axq_tx_inprogress) {
  1845. needreset = true;
  1846. ath_txq_unlock(sc, txq);
  1847. break;
  1848. } else {
  1849. txq->axq_tx_inprogress = true;
  1850. }
  1851. }
  1852. ath_txq_unlock_complete(sc, txq);
  1853. }
  1854. if (needreset) {
  1855. ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
  1856. "tx hung, resetting the chip\n");
  1857. RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
  1858. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1859. }
  1860. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1861. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1862. }
  1863. void ath_tx_tasklet(struct ath_softc *sc)
  1864. {
  1865. int i;
  1866. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1867. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1868. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1869. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1870. ath_tx_processq(sc, &sc->tx.txq[i]);
  1871. }
  1872. }
  1873. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1874. {
  1875. struct ath_tx_status ts;
  1876. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1877. struct ath_hw *ah = sc->sc_ah;
  1878. struct ath_txq *txq;
  1879. struct ath_buf *bf, *lastbf;
  1880. struct list_head bf_head;
  1881. int status;
  1882. for (;;) {
  1883. if (work_pending(&sc->hw_reset_work))
  1884. break;
  1885. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1886. if (status == -EINPROGRESS)
  1887. break;
  1888. if (status == -EIO) {
  1889. ath_dbg(common, XMIT, "Error processing tx status\n");
  1890. break;
  1891. }
  1892. /* Skip beacon completions */
  1893. if (ts.qid == sc->beacon.beaconq)
  1894. continue;
  1895. txq = &sc->tx.txq[ts.qid];
  1896. ath_txq_lock(sc, txq);
  1897. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1898. ath_txq_unlock(sc, txq);
  1899. return;
  1900. }
  1901. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1902. struct ath_buf, list);
  1903. lastbf = bf->bf_lastbf;
  1904. INIT_LIST_HEAD(&bf_head);
  1905. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1906. &lastbf->list);
  1907. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1908. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1909. if (!list_empty(&txq->axq_q)) {
  1910. struct list_head bf_q;
  1911. INIT_LIST_HEAD(&bf_q);
  1912. txq->axq_link = NULL;
  1913. list_splice_tail_init(&txq->axq_q, &bf_q);
  1914. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1915. }
  1916. }
  1917. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1918. ath_txq_unlock_complete(sc, txq);
  1919. }
  1920. }
  1921. /*****************/
  1922. /* Init, Cleanup */
  1923. /*****************/
  1924. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1925. {
  1926. struct ath_descdma *dd = &sc->txsdma;
  1927. u8 txs_len = sc->sc_ah->caps.txs_len;
  1928. dd->dd_desc_len = size * txs_len;
  1929. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1930. &dd->dd_desc_paddr, GFP_KERNEL);
  1931. if (!dd->dd_desc)
  1932. return -ENOMEM;
  1933. return 0;
  1934. }
  1935. static int ath_tx_edma_init(struct ath_softc *sc)
  1936. {
  1937. int err;
  1938. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1939. if (!err)
  1940. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1941. sc->txsdma.dd_desc_paddr,
  1942. ATH_TXSTATUS_RING_SIZE);
  1943. return err;
  1944. }
  1945. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1946. {
  1947. struct ath_descdma *dd = &sc->txsdma;
  1948. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1949. dd->dd_desc_paddr);
  1950. }
  1951. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1952. {
  1953. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1954. int error = 0;
  1955. spin_lock_init(&sc->tx.txbuflock);
  1956. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1957. "tx", nbufs, 1, 1);
  1958. if (error != 0) {
  1959. ath_err(common,
  1960. "Failed to allocate tx descriptors: %d\n", error);
  1961. goto err;
  1962. }
  1963. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1964. "beacon", ATH_BCBUF, 1, 1);
  1965. if (error != 0) {
  1966. ath_err(common,
  1967. "Failed to allocate beacon descriptors: %d\n", error);
  1968. goto err;
  1969. }
  1970. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1971. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1972. error = ath_tx_edma_init(sc);
  1973. if (error)
  1974. goto err;
  1975. }
  1976. err:
  1977. if (error != 0)
  1978. ath_tx_cleanup(sc);
  1979. return error;
  1980. }
  1981. void ath_tx_cleanup(struct ath_softc *sc)
  1982. {
  1983. if (sc->beacon.bdma.dd_desc_len != 0)
  1984. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1985. if (sc->tx.txdma.dd_desc_len != 0)
  1986. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1987. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1988. ath_tx_edma_cleanup(sc);
  1989. }
  1990. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1991. {
  1992. struct ath_atx_tid *tid;
  1993. struct ath_atx_ac *ac;
  1994. int tidno, acno;
  1995. for (tidno = 0, tid = &an->tid[tidno];
  1996. tidno < WME_NUM_TID;
  1997. tidno++, tid++) {
  1998. tid->an = an;
  1999. tid->tidno = tidno;
  2000. tid->seq_start = tid->seq_next = 0;
  2001. tid->baw_size = WME_MAX_BA;
  2002. tid->baw_head = tid->baw_tail = 0;
  2003. tid->sched = false;
  2004. tid->paused = false;
  2005. tid->state &= ~AGGR_CLEANUP;
  2006. __skb_queue_head_init(&tid->buf_q);
  2007. acno = TID_TO_WME_AC(tidno);
  2008. tid->ac = &an->ac[acno];
  2009. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2010. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2011. }
  2012. for (acno = 0, ac = &an->ac[acno];
  2013. acno < WME_NUM_AC; acno++, ac++) {
  2014. ac->sched = false;
  2015. ac->txq = sc->tx.txq_map[acno];
  2016. INIT_LIST_HEAD(&ac->tid_q);
  2017. }
  2018. }
  2019. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2020. {
  2021. struct ath_atx_ac *ac;
  2022. struct ath_atx_tid *tid;
  2023. struct ath_txq *txq;
  2024. int tidno;
  2025. for (tidno = 0, tid = &an->tid[tidno];
  2026. tidno < WME_NUM_TID; tidno++, tid++) {
  2027. ac = tid->ac;
  2028. txq = ac->txq;
  2029. ath_txq_lock(sc, txq);
  2030. if (tid->sched) {
  2031. list_del(&tid->list);
  2032. tid->sched = false;
  2033. }
  2034. if (ac->sched) {
  2035. list_del(&ac->list);
  2036. tid->ac->sched = false;
  2037. }
  2038. ath_tid_drain(sc, txq, tid);
  2039. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2040. tid->state &= ~AGGR_CLEANUP;
  2041. ath_txq_unlock(sc, txq);
  2042. }
  2043. }