hw.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  25. MODULE_AUTHOR("Atheros Communications");
  26. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  27. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  28. MODULE_LICENSE("Dual BSD/GPL");
  29. static int __init ath9k_init(void)
  30. {
  31. return 0;
  32. }
  33. module_init(ath9k_init);
  34. static void __exit ath9k_exit(void)
  35. {
  36. return;
  37. }
  38. module_exit(ath9k_exit);
  39. /* Private hardware callbacks */
  40. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  41. {
  42. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  43. }
  44. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  70. {
  71. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  72. struct ath_common *common = ath9k_hw_common(ah);
  73. unsigned int clockrate;
  74. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  75. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  76. clockrate = 117;
  77. else if (!ah->curchan) /* should really check for CCK instead */
  78. clockrate = ATH9K_CLOCK_RATE_CCK;
  79. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  80. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  81. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  82. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  83. else
  84. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  85. if (conf_is_ht40(conf))
  86. clockrate *= 2;
  87. if (ah->curchan) {
  88. if (IS_CHAN_HALF_RATE(ah->curchan))
  89. clockrate /= 2;
  90. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  91. clockrate /= 4;
  92. }
  93. common->clockrate = clockrate;
  94. }
  95. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  96. {
  97. struct ath_common *common = ath9k_hw_common(ah);
  98. return usecs * common->clockrate;
  99. }
  100. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  101. {
  102. int i;
  103. BUG_ON(timeout < AH_TIME_QUANTUM);
  104. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  105. if ((REG_READ(ah, reg) & mask) == val)
  106. return true;
  107. udelay(AH_TIME_QUANTUM);
  108. }
  109. ath_dbg(ath9k_hw_common(ah), ANY,
  110. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  111. timeout, reg, REG_READ(ah, reg), mask, val);
  112. return false;
  113. }
  114. EXPORT_SYMBOL(ath9k_hw_wait);
  115. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  116. int column, unsigned int *writecnt)
  117. {
  118. int r;
  119. ENABLE_REGWRITE_BUFFER(ah);
  120. for (r = 0; r < array->ia_rows; r++) {
  121. REG_WRITE(ah, INI_RA(array, r, 0),
  122. INI_RA(array, r, column));
  123. DO_DELAY(*writecnt);
  124. }
  125. REGWRITE_BUFFER_FLUSH(ah);
  126. }
  127. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  128. {
  129. u32 retval;
  130. int i;
  131. for (i = 0, retval = 0; i < n; i++) {
  132. retval = (retval << 1) | (val & 1);
  133. val >>= 1;
  134. }
  135. return retval;
  136. }
  137. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  138. u8 phy, int kbps,
  139. u32 frameLen, u16 rateix,
  140. bool shortPreamble)
  141. {
  142. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  143. if (kbps == 0)
  144. return 0;
  145. switch (phy) {
  146. case WLAN_RC_PHY_CCK:
  147. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  148. if (shortPreamble)
  149. phyTime >>= 1;
  150. numBits = frameLen << 3;
  151. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  152. break;
  153. case WLAN_RC_PHY_OFDM:
  154. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  155. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  156. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  157. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  158. txTime = OFDM_SIFS_TIME_QUARTER
  159. + OFDM_PREAMBLE_TIME_QUARTER
  160. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  161. } else if (ah->curchan &&
  162. IS_CHAN_HALF_RATE(ah->curchan)) {
  163. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  164. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  165. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  166. txTime = OFDM_SIFS_TIME_HALF +
  167. OFDM_PREAMBLE_TIME_HALF
  168. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  169. } else {
  170. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  171. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  172. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  173. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  174. + (numSymbols * OFDM_SYMBOL_TIME);
  175. }
  176. break;
  177. default:
  178. ath_err(ath9k_hw_common(ah),
  179. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  180. txTime = 0;
  181. break;
  182. }
  183. return txTime;
  184. }
  185. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  186. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  187. struct ath9k_channel *chan,
  188. struct chan_centers *centers)
  189. {
  190. int8_t extoff;
  191. if (!IS_CHAN_HT40(chan)) {
  192. centers->ctl_center = centers->ext_center =
  193. centers->synth_center = chan->channel;
  194. return;
  195. }
  196. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  197. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  198. centers->synth_center =
  199. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  200. extoff = 1;
  201. } else {
  202. centers->synth_center =
  203. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  204. extoff = -1;
  205. }
  206. centers->ctl_center =
  207. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  208. /* 25 MHz spacing is supported by hw but not on upper layers */
  209. centers->ext_center =
  210. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  211. }
  212. /******************/
  213. /* Chip Revisions */
  214. /******************/
  215. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  216. {
  217. u32 val;
  218. switch (ah->hw_version.devid) {
  219. case AR5416_AR9100_DEVID:
  220. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  221. break;
  222. case AR9300_DEVID_AR9330:
  223. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  224. if (ah->get_mac_revision) {
  225. ah->hw_version.macRev = ah->get_mac_revision();
  226. } else {
  227. val = REG_READ(ah, AR_SREV);
  228. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  229. }
  230. return;
  231. case AR9300_DEVID_AR9340:
  232. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  233. val = REG_READ(ah, AR_SREV);
  234. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  235. return;
  236. }
  237. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  238. if (val == 0xFF) {
  239. val = REG_READ(ah, AR_SREV);
  240. ah->hw_version.macVersion =
  241. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  242. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  243. if (AR_SREV_9462(ah))
  244. ah->is_pciexpress = true;
  245. else
  246. ah->is_pciexpress = (val &
  247. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  248. } else {
  249. if (!AR_SREV_9100(ah))
  250. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  251. ah->hw_version.macRev = val & AR_SREV_REVISION;
  252. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  253. ah->is_pciexpress = true;
  254. }
  255. }
  256. /************************************/
  257. /* HW Attach, Detach, Init Routines */
  258. /************************************/
  259. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  260. {
  261. if (!AR_SREV_5416(ah))
  262. return;
  263. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  264. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  265. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  266. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  267. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  268. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  269. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  270. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  271. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  272. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  273. }
  274. static void ath9k_hw_aspm_init(struct ath_hw *ah)
  275. {
  276. struct ath_common *common = ath9k_hw_common(ah);
  277. if (common->bus_ops->aspm_init)
  278. common->bus_ops->aspm_init(common);
  279. }
  280. /* This should work for all families including legacy */
  281. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  282. {
  283. struct ath_common *common = ath9k_hw_common(ah);
  284. u32 regAddr[2] = { AR_STA_ID0 };
  285. u32 regHold[2];
  286. static const u32 patternData[4] = {
  287. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  288. };
  289. int i, j, loop_max;
  290. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  291. loop_max = 2;
  292. regAddr[1] = AR_PHY_BASE + (8 << 2);
  293. } else
  294. loop_max = 1;
  295. for (i = 0; i < loop_max; i++) {
  296. u32 addr = regAddr[i];
  297. u32 wrData, rdData;
  298. regHold[i] = REG_READ(ah, addr);
  299. for (j = 0; j < 0x100; j++) {
  300. wrData = (j << 16) | j;
  301. REG_WRITE(ah, addr, wrData);
  302. rdData = REG_READ(ah, addr);
  303. if (rdData != wrData) {
  304. ath_err(common,
  305. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  306. addr, wrData, rdData);
  307. return false;
  308. }
  309. }
  310. for (j = 0; j < 4; j++) {
  311. wrData = patternData[j];
  312. REG_WRITE(ah, addr, wrData);
  313. rdData = REG_READ(ah, addr);
  314. if (wrData != rdData) {
  315. ath_err(common,
  316. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  317. addr, wrData, rdData);
  318. return false;
  319. }
  320. }
  321. REG_WRITE(ah, regAddr[i], regHold[i]);
  322. }
  323. udelay(100);
  324. return true;
  325. }
  326. static void ath9k_hw_init_config(struct ath_hw *ah)
  327. {
  328. int i;
  329. ah->config.dma_beacon_response_time = 2;
  330. ah->config.sw_beacon_response_time = 10;
  331. ah->config.additional_swba_backoff = 0;
  332. ah->config.ack_6mb = 0x0;
  333. ah->config.cwm_ignore_extcca = 0;
  334. ah->config.pcie_clock_req = 0;
  335. ah->config.pcie_waen = 0;
  336. ah->config.analog_shiftreg = 1;
  337. ah->config.enable_ani = true;
  338. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  339. ah->config.spurchans[i][0] = AR_NO_SPUR;
  340. ah->config.spurchans[i][1] = AR_NO_SPUR;
  341. }
  342. /* PAPRD needs some more work to be enabled */
  343. ah->config.paprd_disable = 1;
  344. ah->config.rx_intr_mitigation = true;
  345. ah->config.pcieSerDesWrite = true;
  346. /*
  347. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  348. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  349. * This means we use it for all AR5416 devices, and the few
  350. * minor PCI AR9280 devices out there.
  351. *
  352. * Serialization is required because these devices do not handle
  353. * well the case of two concurrent reads/writes due to the latency
  354. * involved. During one read/write another read/write can be issued
  355. * on another CPU while the previous read/write may still be working
  356. * on our hardware, if we hit this case the hardware poops in a loop.
  357. * We prevent this by serializing reads and writes.
  358. *
  359. * This issue is not present on PCI-Express devices or pre-AR5416
  360. * devices (legacy, 802.11abg).
  361. */
  362. if (num_possible_cpus() > 1)
  363. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  364. }
  365. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  366. {
  367. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  368. regulatory->country_code = CTRY_DEFAULT;
  369. regulatory->power_limit = MAX_RATE_POWER;
  370. ah->hw_version.magic = AR5416_MAGIC;
  371. ah->hw_version.subvendorid = 0;
  372. ah->atim_window = 0;
  373. ah->sta_id1_defaults =
  374. AR_STA_ID1_CRPT_MIC_ENABLE |
  375. AR_STA_ID1_MCAST_KSRCH;
  376. if (AR_SREV_9100(ah))
  377. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  378. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  379. ah->slottime = ATH9K_SLOT_TIME_9;
  380. ah->globaltxtimeout = (u32) -1;
  381. ah->power_mode = ATH9K_PM_UNDEFINED;
  382. }
  383. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  384. {
  385. struct ath_common *common = ath9k_hw_common(ah);
  386. u32 sum;
  387. int i;
  388. u16 eeval;
  389. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  390. sum = 0;
  391. for (i = 0; i < 3; i++) {
  392. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  393. sum += eeval;
  394. common->macaddr[2 * i] = eeval >> 8;
  395. common->macaddr[2 * i + 1] = eeval & 0xff;
  396. }
  397. if (sum == 0 || sum == 0xffff * 3)
  398. return -EADDRNOTAVAIL;
  399. return 0;
  400. }
  401. static int ath9k_hw_post_init(struct ath_hw *ah)
  402. {
  403. struct ath_common *common = ath9k_hw_common(ah);
  404. int ecode;
  405. if (common->bus_ops->ath_bus_type != ATH_USB) {
  406. if (!ath9k_hw_chip_test(ah))
  407. return -ENODEV;
  408. }
  409. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  410. ecode = ar9002_hw_rf_claim(ah);
  411. if (ecode != 0)
  412. return ecode;
  413. }
  414. ecode = ath9k_hw_eeprom_init(ah);
  415. if (ecode != 0)
  416. return ecode;
  417. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  418. ah->eep_ops->get_eeprom_ver(ah),
  419. ah->eep_ops->get_eeprom_rev(ah));
  420. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  421. if (ecode) {
  422. ath_err(ath9k_hw_common(ah),
  423. "Failed allocating banks for external radio\n");
  424. ath9k_hw_rf_free_ext_banks(ah);
  425. return ecode;
  426. }
  427. if (ah->config.enable_ani) {
  428. ath9k_hw_ani_setup(ah);
  429. ath9k_hw_ani_init(ah);
  430. }
  431. return 0;
  432. }
  433. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  434. {
  435. if (AR_SREV_9300_20_OR_LATER(ah))
  436. ar9003_hw_attach_ops(ah);
  437. else
  438. ar9002_hw_attach_ops(ah);
  439. }
  440. /* Called for all hardware families */
  441. static int __ath9k_hw_init(struct ath_hw *ah)
  442. {
  443. struct ath_common *common = ath9k_hw_common(ah);
  444. int r = 0;
  445. ath9k_hw_read_revisions(ah);
  446. /*
  447. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  448. * We need to do this to avoid RMW of this register. We cannot
  449. * read the reg when chip is asleep.
  450. */
  451. ah->WARegVal = REG_READ(ah, AR_WA);
  452. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  453. AR_WA_ASPM_TIMER_BASED_DISABLE);
  454. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  455. ath_err(common, "Couldn't reset chip\n");
  456. return -EIO;
  457. }
  458. if (AR_SREV_9462(ah))
  459. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  460. ath9k_hw_init_defaults(ah);
  461. ath9k_hw_init_config(ah);
  462. ath9k_hw_attach_ops(ah);
  463. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  464. ath_err(common, "Couldn't wakeup chip\n");
  465. return -EIO;
  466. }
  467. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  468. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  469. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  470. !ah->is_pciexpress)) {
  471. ah->config.serialize_regmode =
  472. SER_REG_MODE_ON;
  473. } else {
  474. ah->config.serialize_regmode =
  475. SER_REG_MODE_OFF;
  476. }
  477. }
  478. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  479. ah->config.serialize_regmode);
  480. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  481. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  482. else
  483. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  484. switch (ah->hw_version.macVersion) {
  485. case AR_SREV_VERSION_5416_PCI:
  486. case AR_SREV_VERSION_5416_PCIE:
  487. case AR_SREV_VERSION_9160:
  488. case AR_SREV_VERSION_9100:
  489. case AR_SREV_VERSION_9280:
  490. case AR_SREV_VERSION_9285:
  491. case AR_SREV_VERSION_9287:
  492. case AR_SREV_VERSION_9271:
  493. case AR_SREV_VERSION_9300:
  494. case AR_SREV_VERSION_9330:
  495. case AR_SREV_VERSION_9485:
  496. case AR_SREV_VERSION_9340:
  497. case AR_SREV_VERSION_9462:
  498. break;
  499. default:
  500. ath_err(common,
  501. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  502. ah->hw_version.macVersion, ah->hw_version.macRev);
  503. return -EOPNOTSUPP;
  504. }
  505. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  506. AR_SREV_9330(ah))
  507. ah->is_pciexpress = false;
  508. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  509. ath9k_hw_init_cal_settings(ah);
  510. ah->ani_function = ATH9K_ANI_ALL;
  511. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  512. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  513. if (!AR_SREV_9300_20_OR_LATER(ah))
  514. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  515. /* disable ANI for 9340 */
  516. if (AR_SREV_9340(ah))
  517. ah->config.enable_ani = false;
  518. ath9k_hw_init_mode_regs(ah);
  519. if (!ah->is_pciexpress)
  520. ath9k_hw_disablepcie(ah);
  521. if (!AR_SREV_9300_20_OR_LATER(ah))
  522. ar9002_hw_cck_chan14_spread(ah);
  523. r = ath9k_hw_post_init(ah);
  524. if (r)
  525. return r;
  526. ath9k_hw_init_mode_gain_regs(ah);
  527. r = ath9k_hw_fill_cap_info(ah);
  528. if (r)
  529. return r;
  530. if (ah->is_pciexpress)
  531. ath9k_hw_aspm_init(ah);
  532. r = ath9k_hw_init_macaddr(ah);
  533. if (r) {
  534. ath_err(common, "Failed to initialize MAC address\n");
  535. return r;
  536. }
  537. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  538. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  539. else
  540. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  541. if (AR_SREV_9330(ah))
  542. ah->bb_watchdog_timeout_ms = 85;
  543. else
  544. ah->bb_watchdog_timeout_ms = 25;
  545. common->state = ATH_HW_INITIALIZED;
  546. return 0;
  547. }
  548. int ath9k_hw_init(struct ath_hw *ah)
  549. {
  550. int ret;
  551. struct ath_common *common = ath9k_hw_common(ah);
  552. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  553. switch (ah->hw_version.devid) {
  554. case AR5416_DEVID_PCI:
  555. case AR5416_DEVID_PCIE:
  556. case AR5416_AR9100_DEVID:
  557. case AR9160_DEVID_PCI:
  558. case AR9280_DEVID_PCI:
  559. case AR9280_DEVID_PCIE:
  560. case AR9285_DEVID_PCIE:
  561. case AR9287_DEVID_PCI:
  562. case AR9287_DEVID_PCIE:
  563. case AR2427_DEVID_PCIE:
  564. case AR9300_DEVID_PCIE:
  565. case AR9300_DEVID_AR9485_PCIE:
  566. case AR9300_DEVID_AR9330:
  567. case AR9300_DEVID_AR9340:
  568. case AR9300_DEVID_AR9580:
  569. case AR9300_DEVID_AR9462:
  570. break;
  571. default:
  572. if (common->bus_ops->ath_bus_type == ATH_USB)
  573. break;
  574. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  575. ah->hw_version.devid);
  576. return -EOPNOTSUPP;
  577. }
  578. ret = __ath9k_hw_init(ah);
  579. if (ret) {
  580. ath_err(common,
  581. "Unable to initialize hardware; initialization status: %d\n",
  582. ret);
  583. return ret;
  584. }
  585. return 0;
  586. }
  587. EXPORT_SYMBOL(ath9k_hw_init);
  588. static void ath9k_hw_init_qos(struct ath_hw *ah)
  589. {
  590. ENABLE_REGWRITE_BUFFER(ah);
  591. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  592. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  593. REG_WRITE(ah, AR_QOS_NO_ACK,
  594. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  595. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  596. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  597. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  598. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  599. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  600. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  601. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  602. REGWRITE_BUFFER_FLUSH(ah);
  603. }
  604. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  605. {
  606. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  607. udelay(100);
  608. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  609. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  610. udelay(100);
  611. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  612. }
  613. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  614. static void ath9k_hw_init_pll(struct ath_hw *ah,
  615. struct ath9k_channel *chan)
  616. {
  617. u32 pll;
  618. if (AR_SREV_9485(ah)) {
  619. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  620. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  621. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  622. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  623. AR_CH0_DPLL2_KD, 0x40);
  624. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  625. AR_CH0_DPLL2_KI, 0x4);
  626. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  627. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  628. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  629. AR_CH0_BB_DPLL1_NINI, 0x58);
  630. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  631. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  632. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  633. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  634. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  635. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  636. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  637. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  638. /* program BB PLL phase_shift to 0x6 */
  639. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  640. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  641. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  642. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  643. udelay(1000);
  644. } else if (AR_SREV_9330(ah)) {
  645. u32 ddr_dpll2, pll_control2, kd;
  646. if (ah->is_clk_25mhz) {
  647. ddr_dpll2 = 0x18e82f01;
  648. pll_control2 = 0xe04a3d;
  649. kd = 0x1d;
  650. } else {
  651. ddr_dpll2 = 0x19e82f01;
  652. pll_control2 = 0x886666;
  653. kd = 0x3d;
  654. }
  655. /* program DDR PLL ki and kd value */
  656. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  657. /* program DDR PLL phase_shift */
  658. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  659. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  660. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  661. udelay(1000);
  662. /* program refdiv, nint, frac to RTC register */
  663. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  664. /* program BB PLL kd and ki value */
  665. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  666. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  667. /* program BB PLL phase_shift */
  668. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  669. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  670. } else if (AR_SREV_9340(ah)) {
  671. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  672. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  673. udelay(1000);
  674. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  675. udelay(100);
  676. if (ah->is_clk_25mhz) {
  677. pll2_divint = 0x54;
  678. pll2_divfrac = 0x1eb85;
  679. refdiv = 3;
  680. } else {
  681. pll2_divint = 88;
  682. pll2_divfrac = 0;
  683. refdiv = 5;
  684. }
  685. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  686. regval |= (0x1 << 16);
  687. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  688. udelay(100);
  689. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  690. (pll2_divint << 18) | pll2_divfrac);
  691. udelay(100);
  692. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  693. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  694. (0x4 << 26) | (0x18 << 19);
  695. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  696. REG_WRITE(ah, AR_PHY_PLL_MODE,
  697. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  698. udelay(1000);
  699. }
  700. pll = ath9k_hw_compute_pll_control(ah, chan);
  701. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  702. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  703. udelay(1000);
  704. /* Switch the core clock for ar9271 to 117Mhz */
  705. if (AR_SREV_9271(ah)) {
  706. udelay(500);
  707. REG_WRITE(ah, 0x50040, 0x304);
  708. }
  709. udelay(RTC_PLL_SETTLE_DELAY);
  710. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  711. if (AR_SREV_9340(ah)) {
  712. if (ah->is_clk_25mhz) {
  713. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  714. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  715. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  716. } else {
  717. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  718. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  719. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  720. }
  721. udelay(100);
  722. }
  723. }
  724. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  725. enum nl80211_iftype opmode)
  726. {
  727. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  728. u32 imr_reg = AR_IMR_TXERR |
  729. AR_IMR_TXURN |
  730. AR_IMR_RXERR |
  731. AR_IMR_RXORN |
  732. AR_IMR_BCNMISC;
  733. if (AR_SREV_9340(ah))
  734. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  735. if (AR_SREV_9300_20_OR_LATER(ah)) {
  736. imr_reg |= AR_IMR_RXOK_HP;
  737. if (ah->config.rx_intr_mitigation)
  738. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  739. else
  740. imr_reg |= AR_IMR_RXOK_LP;
  741. } else {
  742. if (ah->config.rx_intr_mitigation)
  743. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  744. else
  745. imr_reg |= AR_IMR_RXOK;
  746. }
  747. if (ah->config.tx_intr_mitigation)
  748. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  749. else
  750. imr_reg |= AR_IMR_TXOK;
  751. if (opmode == NL80211_IFTYPE_AP)
  752. imr_reg |= AR_IMR_MIB;
  753. ENABLE_REGWRITE_BUFFER(ah);
  754. REG_WRITE(ah, AR_IMR, imr_reg);
  755. ah->imrs2_reg |= AR_IMR_S2_GTT;
  756. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  757. if (!AR_SREV_9100(ah)) {
  758. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  759. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  760. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  761. }
  762. REGWRITE_BUFFER_FLUSH(ah);
  763. if (AR_SREV_9300_20_OR_LATER(ah)) {
  764. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  765. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  766. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  767. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  768. }
  769. }
  770. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  771. {
  772. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  773. val = min(val, (u32) 0xFFFF);
  774. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  775. }
  776. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  777. {
  778. u32 val = ath9k_hw_mac_to_clks(ah, us);
  779. val = min(val, (u32) 0xFFFF);
  780. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  781. }
  782. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  783. {
  784. u32 val = ath9k_hw_mac_to_clks(ah, us);
  785. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  786. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  787. }
  788. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  789. {
  790. u32 val = ath9k_hw_mac_to_clks(ah, us);
  791. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  792. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  793. }
  794. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  795. {
  796. if (tu > 0xFFFF) {
  797. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  798. tu);
  799. ah->globaltxtimeout = (u32) -1;
  800. return false;
  801. } else {
  802. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  803. ah->globaltxtimeout = tu;
  804. return true;
  805. }
  806. }
  807. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  808. {
  809. struct ath_common *common = ath9k_hw_common(ah);
  810. struct ieee80211_conf *conf = &common->hw->conf;
  811. const struct ath9k_channel *chan = ah->curchan;
  812. int acktimeout, ctstimeout;
  813. int slottime;
  814. int sifstime;
  815. int rx_lat = 0, tx_lat = 0, eifs = 0;
  816. u32 reg;
  817. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  818. ah->misc_mode);
  819. if (!chan)
  820. return;
  821. if (ah->misc_mode != 0)
  822. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  823. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  824. rx_lat = 41;
  825. else
  826. rx_lat = 37;
  827. tx_lat = 54;
  828. if (IS_CHAN_HALF_RATE(chan)) {
  829. eifs = 175;
  830. rx_lat *= 2;
  831. tx_lat *= 2;
  832. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  833. tx_lat += 11;
  834. slottime = 13;
  835. sifstime = 32;
  836. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  837. eifs = 340;
  838. rx_lat = (rx_lat * 4) - 1;
  839. tx_lat *= 4;
  840. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  841. tx_lat += 22;
  842. slottime = 21;
  843. sifstime = 64;
  844. } else {
  845. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  846. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  847. reg = AR_USEC_ASYNC_FIFO;
  848. } else {
  849. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  850. common->clockrate;
  851. reg = REG_READ(ah, AR_USEC);
  852. }
  853. rx_lat = MS(reg, AR_USEC_RX_LAT);
  854. tx_lat = MS(reg, AR_USEC_TX_LAT);
  855. slottime = ah->slottime;
  856. if (IS_CHAN_5GHZ(chan))
  857. sifstime = 16;
  858. else
  859. sifstime = 10;
  860. }
  861. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  862. acktimeout = slottime + sifstime + 3 * ah->coverage_class;
  863. ctstimeout = acktimeout;
  864. /*
  865. * Workaround for early ACK timeouts, add an offset to match the
  866. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  867. * This was initially only meant to work around an issue with delayed
  868. * BA frames in some implementations, but it has been found to fix ACK
  869. * timeout issues in other cases as well.
  870. */
  871. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
  872. acktimeout += 64 - sifstime - ah->slottime;
  873. ctstimeout += 48 - sifstime - ah->slottime;
  874. }
  875. ath9k_hw_set_sifs_time(ah, sifstime);
  876. ath9k_hw_setslottime(ah, slottime);
  877. ath9k_hw_set_ack_timeout(ah, acktimeout);
  878. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  879. if (ah->globaltxtimeout != (u32) -1)
  880. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  881. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  882. REG_RMW(ah, AR_USEC,
  883. (common->clockrate - 1) |
  884. SM(rx_lat, AR_USEC_RX_LAT) |
  885. SM(tx_lat, AR_USEC_TX_LAT),
  886. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  887. }
  888. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  889. void ath9k_hw_deinit(struct ath_hw *ah)
  890. {
  891. struct ath_common *common = ath9k_hw_common(ah);
  892. if (common->state < ATH_HW_INITIALIZED)
  893. goto free_hw;
  894. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  895. free_hw:
  896. ath9k_hw_rf_free_ext_banks(ah);
  897. }
  898. EXPORT_SYMBOL(ath9k_hw_deinit);
  899. /*******/
  900. /* INI */
  901. /*******/
  902. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  903. {
  904. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  905. if (IS_CHAN_B(chan))
  906. ctl |= CTL_11B;
  907. else if (IS_CHAN_G(chan))
  908. ctl |= CTL_11G;
  909. else
  910. ctl |= CTL_11A;
  911. return ctl;
  912. }
  913. /****************************************/
  914. /* Reset and Channel Switching Routines */
  915. /****************************************/
  916. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  917. {
  918. struct ath_common *common = ath9k_hw_common(ah);
  919. ENABLE_REGWRITE_BUFFER(ah);
  920. /*
  921. * set AHB_MODE not to do cacheline prefetches
  922. */
  923. if (!AR_SREV_9300_20_OR_LATER(ah))
  924. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  925. /*
  926. * let mac dma reads be in 128 byte chunks
  927. */
  928. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  929. REGWRITE_BUFFER_FLUSH(ah);
  930. /*
  931. * Restore TX Trigger Level to its pre-reset value.
  932. * The initial value depends on whether aggregation is enabled, and is
  933. * adjusted whenever underruns are detected.
  934. */
  935. if (!AR_SREV_9300_20_OR_LATER(ah))
  936. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  937. ENABLE_REGWRITE_BUFFER(ah);
  938. /*
  939. * let mac dma writes be in 128 byte chunks
  940. */
  941. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  942. /*
  943. * Setup receive FIFO threshold to hold off TX activities
  944. */
  945. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  946. if (AR_SREV_9300_20_OR_LATER(ah)) {
  947. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  948. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  949. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  950. ah->caps.rx_status_len);
  951. }
  952. /*
  953. * reduce the number of usable entries in PCU TXBUF to avoid
  954. * wrap around issues.
  955. */
  956. if (AR_SREV_9285(ah)) {
  957. /* For AR9285 the number of Fifos are reduced to half.
  958. * So set the usable tx buf size also to half to
  959. * avoid data/delimiter underruns
  960. */
  961. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  962. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  963. } else if (!AR_SREV_9271(ah)) {
  964. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  965. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  966. }
  967. REGWRITE_BUFFER_FLUSH(ah);
  968. if (AR_SREV_9300_20_OR_LATER(ah))
  969. ath9k_hw_reset_txstatus_ring(ah);
  970. }
  971. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  972. {
  973. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  974. u32 set = AR_STA_ID1_KSRCH_MODE;
  975. switch (opmode) {
  976. case NL80211_IFTYPE_ADHOC:
  977. case NL80211_IFTYPE_MESH_POINT:
  978. set |= AR_STA_ID1_ADHOC;
  979. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  980. break;
  981. case NL80211_IFTYPE_AP:
  982. set |= AR_STA_ID1_STA_AP;
  983. /* fall through */
  984. case NL80211_IFTYPE_STATION:
  985. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  986. break;
  987. default:
  988. if (!ah->is_monitoring)
  989. set = 0;
  990. break;
  991. }
  992. REG_RMW(ah, AR_STA_ID1, set, mask);
  993. }
  994. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  995. u32 *coef_mantissa, u32 *coef_exponent)
  996. {
  997. u32 coef_exp, coef_man;
  998. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  999. if ((coef_scaled >> coef_exp) & 0x1)
  1000. break;
  1001. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1002. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1003. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1004. *coef_exponent = coef_exp - 16;
  1005. }
  1006. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1007. {
  1008. u32 rst_flags;
  1009. u32 tmpReg;
  1010. if (AR_SREV_9100(ah)) {
  1011. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1012. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1013. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1014. }
  1015. ENABLE_REGWRITE_BUFFER(ah);
  1016. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1017. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1018. udelay(10);
  1019. }
  1020. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1021. AR_RTC_FORCE_WAKE_ON_INT);
  1022. if (AR_SREV_9100(ah)) {
  1023. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1024. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1025. } else {
  1026. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1027. if (tmpReg &
  1028. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1029. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1030. u32 val;
  1031. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1032. val = AR_RC_HOSTIF;
  1033. if (!AR_SREV_9300_20_OR_LATER(ah))
  1034. val |= AR_RC_AHB;
  1035. REG_WRITE(ah, AR_RC, val);
  1036. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1037. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1038. rst_flags = AR_RTC_RC_MAC_WARM;
  1039. if (type == ATH9K_RESET_COLD)
  1040. rst_flags |= AR_RTC_RC_MAC_COLD;
  1041. }
  1042. if (AR_SREV_9330(ah)) {
  1043. int npend = 0;
  1044. int i;
  1045. /* AR9330 WAR:
  1046. * call external reset function to reset WMAC if:
  1047. * - doing a cold reset
  1048. * - we have pending frames in the TX queues
  1049. */
  1050. for (i = 0; i < AR_NUM_QCU; i++) {
  1051. npend = ath9k_hw_numtxpending(ah, i);
  1052. if (npend)
  1053. break;
  1054. }
  1055. if (ah->external_reset &&
  1056. (npend || type == ATH9K_RESET_COLD)) {
  1057. int reset_err = 0;
  1058. ath_dbg(ath9k_hw_common(ah), RESET,
  1059. "reset MAC via external reset\n");
  1060. reset_err = ah->external_reset();
  1061. if (reset_err) {
  1062. ath_err(ath9k_hw_common(ah),
  1063. "External reset failed, err=%d\n",
  1064. reset_err);
  1065. return false;
  1066. }
  1067. REG_WRITE(ah, AR_RTC_RESET, 1);
  1068. }
  1069. }
  1070. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1071. REGWRITE_BUFFER_FLUSH(ah);
  1072. udelay(50);
  1073. REG_WRITE(ah, AR_RTC_RC, 0);
  1074. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1075. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1076. return false;
  1077. }
  1078. if (!AR_SREV_9100(ah))
  1079. REG_WRITE(ah, AR_RC, 0);
  1080. if (AR_SREV_9100(ah))
  1081. udelay(50);
  1082. return true;
  1083. }
  1084. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1085. {
  1086. ENABLE_REGWRITE_BUFFER(ah);
  1087. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1088. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1089. udelay(10);
  1090. }
  1091. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1092. AR_RTC_FORCE_WAKE_ON_INT);
  1093. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1094. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1095. REG_WRITE(ah, AR_RTC_RESET, 0);
  1096. REGWRITE_BUFFER_FLUSH(ah);
  1097. if (!AR_SREV_9300_20_OR_LATER(ah))
  1098. udelay(2);
  1099. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1100. REG_WRITE(ah, AR_RC, 0);
  1101. REG_WRITE(ah, AR_RTC_RESET, 1);
  1102. if (!ath9k_hw_wait(ah,
  1103. AR_RTC_STATUS,
  1104. AR_RTC_STATUS_M,
  1105. AR_RTC_STATUS_ON,
  1106. AH_WAIT_TIMEOUT)) {
  1107. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1108. return false;
  1109. }
  1110. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1111. }
  1112. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1113. {
  1114. bool ret = false;
  1115. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1116. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1117. udelay(10);
  1118. }
  1119. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1120. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1121. switch (type) {
  1122. case ATH9K_RESET_POWER_ON:
  1123. ret = ath9k_hw_set_reset_power_on(ah);
  1124. break;
  1125. case ATH9K_RESET_WARM:
  1126. case ATH9K_RESET_COLD:
  1127. ret = ath9k_hw_set_reset(ah, type);
  1128. break;
  1129. default:
  1130. break;
  1131. }
  1132. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1133. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1134. return ret;
  1135. }
  1136. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1137. struct ath9k_channel *chan)
  1138. {
  1139. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  1140. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1141. return false;
  1142. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1143. return false;
  1144. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1145. return false;
  1146. ah->chip_fullsleep = false;
  1147. ath9k_hw_init_pll(ah, chan);
  1148. ath9k_hw_set_rfmode(ah, chan);
  1149. return true;
  1150. }
  1151. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1152. struct ath9k_channel *chan)
  1153. {
  1154. struct ath_common *common = ath9k_hw_common(ah);
  1155. u32 qnum;
  1156. int r;
  1157. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1158. bool band_switch, mode_diff;
  1159. u8 ini_reloaded;
  1160. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1161. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1162. CHANNEL_5GHZ));
  1163. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1164. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1165. if (ath9k_hw_numtxpending(ah, qnum)) {
  1166. ath_dbg(common, QUEUE,
  1167. "Transmit frames pending on queue %d\n", qnum);
  1168. return false;
  1169. }
  1170. }
  1171. if (!ath9k_hw_rfbus_req(ah)) {
  1172. ath_err(common, "Could not kill baseband RX\n");
  1173. return false;
  1174. }
  1175. if (edma && (band_switch || mode_diff)) {
  1176. ath9k_hw_mark_phy_inactive(ah);
  1177. udelay(5);
  1178. ath9k_hw_init_pll(ah, NULL);
  1179. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1180. ath_err(common, "Failed to do fast channel change\n");
  1181. return false;
  1182. }
  1183. }
  1184. ath9k_hw_set_channel_regs(ah, chan);
  1185. r = ath9k_hw_rf_set_freq(ah, chan);
  1186. if (r) {
  1187. ath_err(common, "Failed to set channel\n");
  1188. return false;
  1189. }
  1190. ath9k_hw_set_clockrate(ah);
  1191. ath9k_hw_apply_txpower(ah, chan);
  1192. ath9k_hw_rfbus_done(ah);
  1193. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1194. ath9k_hw_set_delta_slope(ah, chan);
  1195. ath9k_hw_spur_mitigate_freq(ah, chan);
  1196. if (edma && (band_switch || mode_diff)) {
  1197. ah->ah_flags |= AH_FASTCC;
  1198. if (band_switch || ini_reloaded)
  1199. ah->eep_ops->set_board_values(ah, chan);
  1200. ath9k_hw_init_bb(ah, chan);
  1201. if (band_switch || ini_reloaded)
  1202. ath9k_hw_init_cal(ah, chan);
  1203. ah->ah_flags &= ~AH_FASTCC;
  1204. }
  1205. return true;
  1206. }
  1207. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1208. {
  1209. u32 gpio_mask = ah->gpio_mask;
  1210. int i;
  1211. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1212. if (!(gpio_mask & 1))
  1213. continue;
  1214. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1215. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1216. }
  1217. }
  1218. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1219. {
  1220. int count = 50;
  1221. u32 reg;
  1222. if (AR_SREV_9285_12_OR_LATER(ah))
  1223. return true;
  1224. do {
  1225. reg = REG_READ(ah, AR_OBS_BUS_1);
  1226. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1227. continue;
  1228. switch (reg & 0x7E000B00) {
  1229. case 0x1E000000:
  1230. case 0x52000B00:
  1231. case 0x18000B00:
  1232. continue;
  1233. default:
  1234. return true;
  1235. }
  1236. } while (count-- > 0);
  1237. return false;
  1238. }
  1239. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1240. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1241. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1242. {
  1243. struct ath_common *common = ath9k_hw_common(ah);
  1244. struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
  1245. u32 saveLedState;
  1246. struct ath9k_channel *curchan = ah->curchan;
  1247. u32 saveDefAntenna;
  1248. u32 macStaId1;
  1249. u64 tsf = 0;
  1250. int i, r;
  1251. bool allow_fbs = false;
  1252. bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
  1253. bool save_fullsleep = ah->chip_fullsleep;
  1254. if (mci) {
  1255. ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
  1256. if (mci_hw->bt_state == MCI_BT_CAL_START) {
  1257. u32 payload[4] = {0, 0, 0, 0};
  1258. ath_dbg(common, MCI, "MCI stop rx for BT CAL\n");
  1259. mci_hw->bt_state = MCI_BT_CAL;
  1260. /*
  1261. * MCI FIX: disable mci interrupt here. This is to avoid
  1262. * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
  1263. * lead to mci_intr reentry.
  1264. */
  1265. ar9003_mci_disable_interrupt(ah);
  1266. ath_dbg(common, MCI, "send WLAN_CAL_GRANT\n");
  1267. MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
  1268. ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
  1269. 16, true, false);
  1270. ath_dbg(common, MCI, "\nMCI BT is calibrating\n");
  1271. /* Wait BT calibration to be completed for 25ms */
  1272. if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
  1273. 0, 25000))
  1274. ath_dbg(common, MCI,
  1275. "MCI got BT_CAL_DONE\n");
  1276. else
  1277. ath_dbg(common, MCI,
  1278. "MCI ### BT cal takes to long, force bt_state to be bt_awake\n");
  1279. mci_hw->bt_state = MCI_BT_AWAKE;
  1280. /* MCI FIX: enable mci interrupt here */
  1281. ar9003_mci_enable_interrupt(ah);
  1282. return true;
  1283. }
  1284. }
  1285. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1286. return -EIO;
  1287. if (curchan && !ah->chip_fullsleep)
  1288. ath9k_hw_getnf(ah, curchan);
  1289. ah->caldata = caldata;
  1290. if (caldata &&
  1291. (chan->channel != caldata->channel ||
  1292. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1293. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1294. /* Operating channel changed, reset channel calibration data */
  1295. memset(caldata, 0, sizeof(*caldata));
  1296. ath9k_init_nfcal_hist_buffer(ah, chan);
  1297. }
  1298. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1299. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1300. bChannelChange = false;
  1301. if (caldata &&
  1302. caldata->done_txiqcal_once &&
  1303. caldata->done_txclcal_once &&
  1304. caldata->rtt_hist.num_readings)
  1305. allow_fbs = true;
  1306. if (bChannelChange &&
  1307. (ah->chip_fullsleep != true) &&
  1308. (ah->curchan != NULL) &&
  1309. (chan->channel != ah->curchan->channel) &&
  1310. (allow_fbs ||
  1311. ((chan->channelFlags & CHANNEL_ALL) ==
  1312. (ah->curchan->channelFlags & CHANNEL_ALL)))) {
  1313. if (ath9k_hw_channel_change(ah, chan)) {
  1314. ath9k_hw_loadnf(ah, ah->curchan);
  1315. ath9k_hw_start_nfcal(ah, true);
  1316. if (mci && mci_hw->ready)
  1317. ar9003_mci_2g5g_switch(ah, true);
  1318. if (AR_SREV_9271(ah))
  1319. ar9002_hw_load_ani_reg(ah, chan);
  1320. return 0;
  1321. }
  1322. }
  1323. if (mci) {
  1324. ar9003_mci_disable_interrupt(ah);
  1325. if (mci_hw->ready && !save_fullsleep) {
  1326. ar9003_mci_mute_bt(ah);
  1327. udelay(20);
  1328. REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
  1329. }
  1330. mci_hw->bt_state = MCI_BT_SLEEP;
  1331. mci_hw->ready = false;
  1332. }
  1333. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1334. if (saveDefAntenna == 0)
  1335. saveDefAntenna = 1;
  1336. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1337. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1338. if (AR_SREV_9100(ah) ||
  1339. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1340. tsf = ath9k_hw_gettsf64(ah);
  1341. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1342. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1343. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1344. ath9k_hw_mark_phy_inactive(ah);
  1345. ah->paprd_table_write_done = false;
  1346. /* Only required on the first reset */
  1347. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1348. REG_WRITE(ah,
  1349. AR9271_RESET_POWER_DOWN_CONTROL,
  1350. AR9271_RADIO_RF_RST);
  1351. udelay(50);
  1352. }
  1353. if (!ath9k_hw_chip_reset(ah, chan)) {
  1354. ath_err(common, "Chip reset failed\n");
  1355. return -EINVAL;
  1356. }
  1357. /* Only required on the first reset */
  1358. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1359. ah->htc_reset_init = false;
  1360. REG_WRITE(ah,
  1361. AR9271_RESET_POWER_DOWN_CONTROL,
  1362. AR9271_GATE_MAC_CTL);
  1363. udelay(50);
  1364. }
  1365. /* Restore TSF */
  1366. if (tsf)
  1367. ath9k_hw_settsf64(ah, tsf);
  1368. if (AR_SREV_9280_20_OR_LATER(ah))
  1369. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1370. if (!AR_SREV_9300_20_OR_LATER(ah))
  1371. ar9002_hw_enable_async_fifo(ah);
  1372. r = ath9k_hw_process_ini(ah, chan);
  1373. if (r)
  1374. return r;
  1375. if (mci)
  1376. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1377. /*
  1378. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1379. * right after the chip reset. When that happens, write a new
  1380. * value after the initvals have been applied, with an offset
  1381. * based on measured time difference
  1382. */
  1383. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1384. tsf += 1500;
  1385. ath9k_hw_settsf64(ah, tsf);
  1386. }
  1387. /* Setup MFP options for CCMP */
  1388. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1389. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1390. * frames when constructing CCMP AAD. */
  1391. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1392. 0xc7ff);
  1393. ah->sw_mgmt_crypto = false;
  1394. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1395. /* Disable hardware crypto for management frames */
  1396. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1397. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1398. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1399. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1400. ah->sw_mgmt_crypto = true;
  1401. } else
  1402. ah->sw_mgmt_crypto = true;
  1403. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1404. ath9k_hw_set_delta_slope(ah, chan);
  1405. ath9k_hw_spur_mitigate_freq(ah, chan);
  1406. ah->eep_ops->set_board_values(ah, chan);
  1407. ENABLE_REGWRITE_BUFFER(ah);
  1408. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1409. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1410. | macStaId1
  1411. | AR_STA_ID1_RTS_USE_DEF
  1412. | (ah->config.
  1413. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1414. | ah->sta_id1_defaults);
  1415. ath_hw_setbssidmask(common);
  1416. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1417. ath9k_hw_write_associd(ah);
  1418. REG_WRITE(ah, AR_ISR, ~0);
  1419. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1420. REGWRITE_BUFFER_FLUSH(ah);
  1421. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1422. r = ath9k_hw_rf_set_freq(ah, chan);
  1423. if (r)
  1424. return r;
  1425. ath9k_hw_set_clockrate(ah);
  1426. ENABLE_REGWRITE_BUFFER(ah);
  1427. for (i = 0; i < AR_NUM_DCU; i++)
  1428. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1429. REGWRITE_BUFFER_FLUSH(ah);
  1430. ah->intr_txqs = 0;
  1431. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1432. ath9k_hw_resettxqueue(ah, i);
  1433. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1434. ath9k_hw_ani_cache_ini_regs(ah);
  1435. ath9k_hw_init_qos(ah);
  1436. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1437. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1438. ath9k_hw_init_global_settings(ah);
  1439. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1440. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1441. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1442. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1443. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1444. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1445. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1446. }
  1447. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1448. ath9k_hw_set_dma(ah);
  1449. REG_WRITE(ah, AR_OBS, 8);
  1450. if (ah->config.rx_intr_mitigation) {
  1451. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1452. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1453. }
  1454. if (ah->config.tx_intr_mitigation) {
  1455. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1456. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1457. }
  1458. ath9k_hw_init_bb(ah, chan);
  1459. if (caldata) {
  1460. caldata->done_txiqcal_once = false;
  1461. caldata->done_txclcal_once = false;
  1462. caldata->rtt_hist.num_readings = 0;
  1463. }
  1464. if (!ath9k_hw_init_cal(ah, chan))
  1465. return -EIO;
  1466. ath9k_hw_loadnf(ah, chan);
  1467. ath9k_hw_start_nfcal(ah, true);
  1468. if (mci && mci_hw->ready) {
  1469. if (IS_CHAN_2GHZ(chan) &&
  1470. (mci_hw->bt_state == MCI_BT_SLEEP)) {
  1471. if (ar9003_mci_check_int(ah,
  1472. AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
  1473. ar9003_mci_check_int(ah,
  1474. AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) {
  1475. /*
  1476. * BT is sleeping. Check if BT wakes up during
  1477. * WLAN calibration. If BT wakes up during
  1478. * WLAN calibration, need to go through all
  1479. * message exchanges again and recal.
  1480. */
  1481. ath_dbg(common, MCI,
  1482. "MCI BT wakes up during WLAN calibration\n");
  1483. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  1484. AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
  1485. AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
  1486. ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
  1487. ar9003_mci_remote_reset(ah, true);
  1488. ar9003_mci_send_sys_waking(ah, true);
  1489. udelay(1);
  1490. if (IS_CHAN_2GHZ(chan))
  1491. ar9003_mci_send_lna_transfer(ah, true);
  1492. mci_hw->bt_state = MCI_BT_AWAKE;
  1493. ath_dbg(common, MCI, "MCI re-cal\n");
  1494. if (caldata) {
  1495. caldata->done_txiqcal_once = false;
  1496. caldata->done_txclcal_once = false;
  1497. caldata->rtt_hist.num_readings = 0;
  1498. }
  1499. if (!ath9k_hw_init_cal(ah, chan))
  1500. return -EIO;
  1501. }
  1502. }
  1503. ar9003_mci_enable_interrupt(ah);
  1504. }
  1505. ENABLE_REGWRITE_BUFFER(ah);
  1506. ath9k_hw_restore_chainmask(ah);
  1507. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1508. REGWRITE_BUFFER_FLUSH(ah);
  1509. /*
  1510. * For big endian systems turn on swapping for descriptors
  1511. */
  1512. if (AR_SREV_9100(ah)) {
  1513. u32 mask;
  1514. mask = REG_READ(ah, AR_CFG);
  1515. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1516. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1517. mask);
  1518. } else {
  1519. mask =
  1520. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1521. REG_WRITE(ah, AR_CFG, mask);
  1522. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1523. REG_READ(ah, AR_CFG));
  1524. }
  1525. } else {
  1526. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1527. /* Configure AR9271 target WLAN */
  1528. if (AR_SREV_9271(ah))
  1529. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1530. else
  1531. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1532. }
  1533. #ifdef __BIG_ENDIAN
  1534. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1535. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1536. else
  1537. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1538. #endif
  1539. }
  1540. if (ah->btcoex_hw.enabled &&
  1541. ath9k_hw_get_btcoex_scheme(ah) != ATH_BTCOEX_CFG_NONE)
  1542. ath9k_hw_btcoex_enable(ah);
  1543. if (mci && mci_hw->ready) {
  1544. /*
  1545. * check BT state again to make
  1546. * sure it's not changed.
  1547. */
  1548. ar9003_mci_sync_bt_state(ah);
  1549. ar9003_mci_2g5g_switch(ah, true);
  1550. if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
  1551. (mci_hw->query_bt == true)) {
  1552. mci_hw->need_flush_btinfo = true;
  1553. }
  1554. }
  1555. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1556. ar9003_hw_bb_watchdog_config(ah);
  1557. ar9003_hw_disable_phy_restart(ah);
  1558. }
  1559. ath9k_hw_apply_gpio_override(ah);
  1560. return 0;
  1561. }
  1562. EXPORT_SYMBOL(ath9k_hw_reset);
  1563. /******************************/
  1564. /* Power Management (Chipset) */
  1565. /******************************/
  1566. /*
  1567. * Notify Power Mgt is disabled in self-generated frames.
  1568. * If requested, force chip to sleep.
  1569. */
  1570. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1571. {
  1572. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1573. if (setChip) {
  1574. if (AR_SREV_9462(ah)) {
  1575. REG_WRITE(ah, AR_TIMER_MODE,
  1576. REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
  1577. REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
  1578. AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
  1579. REG_WRITE(ah, AR_SLP32_INC,
  1580. REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
  1581. /* xxx Required for WLAN only case ? */
  1582. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1583. udelay(100);
  1584. }
  1585. /*
  1586. * Clear the RTC force wake bit to allow the
  1587. * mac to go to sleep.
  1588. */
  1589. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1590. if (AR_SREV_9462(ah))
  1591. udelay(100);
  1592. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1593. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1594. /* Shutdown chip. Active low */
  1595. if (!AR_SREV_5416(ah) &&
  1596. !AR_SREV_9271(ah) && !AR_SREV_9462_10(ah)) {
  1597. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1598. udelay(2);
  1599. }
  1600. }
  1601. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1602. if (AR_SREV_9300_20_OR_LATER(ah))
  1603. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1604. }
  1605. /*
  1606. * Notify Power Management is enabled in self-generating
  1607. * frames. If request, set power mode of chip to
  1608. * auto/normal. Duration in units of 128us (1/8 TU).
  1609. */
  1610. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1611. {
  1612. u32 val;
  1613. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1614. if (setChip) {
  1615. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1616. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1617. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1618. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1619. AR_RTC_FORCE_WAKE_ON_INT);
  1620. } else {
  1621. /* When chip goes into network sleep, it could be waken
  1622. * up by MCI_INT interrupt caused by BT's HW messages
  1623. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1624. * rate (~100us). This will cause chip to leave and
  1625. * re-enter network sleep mode frequently, which in
  1626. * consequence will have WLAN MCI HW to generate lots of
  1627. * SYS_WAKING and SYS_SLEEPING messages which will make
  1628. * BT CPU to busy to process.
  1629. */
  1630. if (AR_SREV_9462(ah)) {
  1631. val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
  1632. ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
  1633. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
  1634. }
  1635. /*
  1636. * Clear the RTC force wake bit to allow the
  1637. * mac to go to sleep.
  1638. */
  1639. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1640. AR_RTC_FORCE_WAKE_EN);
  1641. if (AR_SREV_9462(ah))
  1642. udelay(30);
  1643. }
  1644. }
  1645. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1646. if (AR_SREV_9300_20_OR_LATER(ah))
  1647. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1648. }
  1649. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1650. {
  1651. u32 val;
  1652. int i;
  1653. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1654. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1655. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1656. udelay(10);
  1657. }
  1658. if (setChip) {
  1659. if ((REG_READ(ah, AR_RTC_STATUS) &
  1660. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1661. if (ath9k_hw_set_reset_reg(ah,
  1662. ATH9K_RESET_POWER_ON) != true) {
  1663. return false;
  1664. }
  1665. if (!AR_SREV_9300_20_OR_LATER(ah))
  1666. ath9k_hw_init_pll(ah, NULL);
  1667. }
  1668. if (AR_SREV_9100(ah))
  1669. REG_SET_BIT(ah, AR_RTC_RESET,
  1670. AR_RTC_RESET_EN);
  1671. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1672. AR_RTC_FORCE_WAKE_EN);
  1673. udelay(50);
  1674. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1675. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1676. if (val == AR_RTC_STATUS_ON)
  1677. break;
  1678. udelay(50);
  1679. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1680. AR_RTC_FORCE_WAKE_EN);
  1681. }
  1682. if (i == 0) {
  1683. ath_err(ath9k_hw_common(ah),
  1684. "Failed to wakeup in %uus\n",
  1685. POWER_UP_TIME / 20);
  1686. return false;
  1687. }
  1688. }
  1689. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1690. return true;
  1691. }
  1692. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1693. {
  1694. struct ath_common *common = ath9k_hw_common(ah);
  1695. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  1696. int status = true, setChip = true;
  1697. static const char *modes[] = {
  1698. "AWAKE",
  1699. "FULL-SLEEP",
  1700. "NETWORK SLEEP",
  1701. "UNDEFINED"
  1702. };
  1703. if (ah->power_mode == mode)
  1704. return status;
  1705. ath_dbg(common, RESET, "%s -> %s\n",
  1706. modes[ah->power_mode], modes[mode]);
  1707. switch (mode) {
  1708. case ATH9K_PM_AWAKE:
  1709. status = ath9k_hw_set_power_awake(ah, setChip);
  1710. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1711. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1712. break;
  1713. case ATH9K_PM_FULL_SLEEP:
  1714. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) {
  1715. if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
  1716. (mci->bt_state != MCI_BT_SLEEP) &&
  1717. !mci->halted_bt_gpm) {
  1718. ath_dbg(common, MCI,
  1719. "MCI halt BT GPM (full_sleep)\n");
  1720. ar9003_mci_send_coex_halt_bt_gpm(ah,
  1721. true, true);
  1722. }
  1723. mci->ready = false;
  1724. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1725. }
  1726. ath9k_set_power_sleep(ah, setChip);
  1727. ah->chip_fullsleep = true;
  1728. break;
  1729. case ATH9K_PM_NETWORK_SLEEP:
  1730. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1731. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1732. ath9k_set_power_network_sleep(ah, setChip);
  1733. break;
  1734. default:
  1735. ath_err(common, "Unknown power mode %u\n", mode);
  1736. return false;
  1737. }
  1738. ah->power_mode = mode;
  1739. /*
  1740. * XXX: If this warning never comes up after a while then
  1741. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1742. * ath9k_hw_setpower() return type void.
  1743. */
  1744. if (!(ah->ah_flags & AH_UNPLUGGED))
  1745. ATH_DBG_WARN_ON_ONCE(!status);
  1746. return status;
  1747. }
  1748. EXPORT_SYMBOL(ath9k_hw_setpower);
  1749. /*******************/
  1750. /* Beacon Handling */
  1751. /*******************/
  1752. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1753. {
  1754. int flags = 0;
  1755. ENABLE_REGWRITE_BUFFER(ah);
  1756. switch (ah->opmode) {
  1757. case NL80211_IFTYPE_ADHOC:
  1758. case NL80211_IFTYPE_MESH_POINT:
  1759. REG_SET_BIT(ah, AR_TXCFG,
  1760. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1761. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1762. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1763. flags |= AR_NDP_TIMER_EN;
  1764. case NL80211_IFTYPE_AP:
  1765. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1766. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1767. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1768. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1769. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1770. flags |=
  1771. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1772. break;
  1773. default:
  1774. ath_dbg(ath9k_hw_common(ah), BEACON,
  1775. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1776. return;
  1777. break;
  1778. }
  1779. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1780. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1781. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1782. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1783. REGWRITE_BUFFER_FLUSH(ah);
  1784. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1785. }
  1786. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1787. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1788. const struct ath9k_beacon_state *bs)
  1789. {
  1790. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1791. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1792. struct ath_common *common = ath9k_hw_common(ah);
  1793. ENABLE_REGWRITE_BUFFER(ah);
  1794. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1795. REG_WRITE(ah, AR_BEACON_PERIOD,
  1796. TU_TO_USEC(bs->bs_intval));
  1797. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1798. TU_TO_USEC(bs->bs_intval));
  1799. REGWRITE_BUFFER_FLUSH(ah);
  1800. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1801. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1802. beaconintval = bs->bs_intval;
  1803. if (bs->bs_sleepduration > beaconintval)
  1804. beaconintval = bs->bs_sleepduration;
  1805. dtimperiod = bs->bs_dtimperiod;
  1806. if (bs->bs_sleepduration > dtimperiod)
  1807. dtimperiod = bs->bs_sleepduration;
  1808. if (beaconintval == dtimperiod)
  1809. nextTbtt = bs->bs_nextdtim;
  1810. else
  1811. nextTbtt = bs->bs_nexttbtt;
  1812. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1813. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1814. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1815. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1816. ENABLE_REGWRITE_BUFFER(ah);
  1817. REG_WRITE(ah, AR_NEXT_DTIM,
  1818. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1819. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1820. REG_WRITE(ah, AR_SLEEP1,
  1821. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1822. | AR_SLEEP1_ASSUME_DTIM);
  1823. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1824. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1825. else
  1826. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1827. REG_WRITE(ah, AR_SLEEP2,
  1828. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1829. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1830. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1831. REGWRITE_BUFFER_FLUSH(ah);
  1832. REG_SET_BIT(ah, AR_TIMER_MODE,
  1833. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1834. AR_DTIM_TIMER_EN);
  1835. /* TSF Out of Range Threshold */
  1836. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1837. }
  1838. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1839. /*******************/
  1840. /* HW Capabilities */
  1841. /*******************/
  1842. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1843. {
  1844. eeprom_chainmask &= chip_chainmask;
  1845. if (eeprom_chainmask)
  1846. return eeprom_chainmask;
  1847. else
  1848. return chip_chainmask;
  1849. }
  1850. /**
  1851. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1852. * @ah: the atheros hardware data structure
  1853. *
  1854. * We enable DFS support upstream on chipsets which have passed a series
  1855. * of tests. The testing requirements are going to be documented. Desired
  1856. * test requirements are documented at:
  1857. *
  1858. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1859. *
  1860. * Once a new chipset gets properly tested an individual commit can be used
  1861. * to document the testing for DFS for that chipset.
  1862. */
  1863. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1864. {
  1865. switch (ah->hw_version.macVersion) {
  1866. /* AR9580 will likely be our first target to get testing on */
  1867. case AR_SREV_VERSION_9580:
  1868. default:
  1869. return false;
  1870. }
  1871. }
  1872. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1873. {
  1874. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1875. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1876. struct ath_common *common = ath9k_hw_common(ah);
  1877. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1878. unsigned int chip_chainmask;
  1879. u16 eeval;
  1880. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1881. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1882. regulatory->current_rd = eeval;
  1883. if (ah->opmode != NL80211_IFTYPE_AP &&
  1884. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1885. if (regulatory->current_rd == 0x64 ||
  1886. regulatory->current_rd == 0x65)
  1887. regulatory->current_rd += 5;
  1888. else if (regulatory->current_rd == 0x41)
  1889. regulatory->current_rd = 0x43;
  1890. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1891. regulatory->current_rd);
  1892. }
  1893. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1894. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1895. ath_err(common,
  1896. "no band has been marked as supported in EEPROM\n");
  1897. return -EINVAL;
  1898. }
  1899. if (eeval & AR5416_OPFLAGS_11A)
  1900. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1901. if (eeval & AR5416_OPFLAGS_11G)
  1902. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1903. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1904. chip_chainmask = 1;
  1905. else if (AR_SREV_9462(ah))
  1906. chip_chainmask = 3;
  1907. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1908. chip_chainmask = 7;
  1909. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1910. chip_chainmask = 3;
  1911. else
  1912. chip_chainmask = 7;
  1913. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1914. /*
  1915. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1916. * the EEPROM.
  1917. */
  1918. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1919. !(eeval & AR5416_OPFLAGS_11A) &&
  1920. !(AR_SREV_9271(ah)))
  1921. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1922. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1923. else if (AR_SREV_9100(ah))
  1924. pCap->rx_chainmask = 0x7;
  1925. else
  1926. /* Use rx_chainmask from EEPROM. */
  1927. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1928. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1929. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1930. ah->txchainmask = pCap->tx_chainmask;
  1931. ah->rxchainmask = pCap->rx_chainmask;
  1932. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1933. /* enable key search for every frame in an aggregate */
  1934. if (AR_SREV_9300_20_OR_LATER(ah))
  1935. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1936. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1937. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1938. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1939. else
  1940. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1941. if (AR_SREV_9271(ah))
  1942. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1943. else if (AR_DEVID_7010(ah))
  1944. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1945. else if (AR_SREV_9300_20_OR_LATER(ah))
  1946. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  1947. else if (AR_SREV_9287_11_OR_LATER(ah))
  1948. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  1949. else if (AR_SREV_9285_12_OR_LATER(ah))
  1950. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1951. else if (AR_SREV_9280_20_OR_LATER(ah))
  1952. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1953. else
  1954. pCap->num_gpio_pins = AR_NUM_GPIO;
  1955. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  1956. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1957. else
  1958. pCap->rts_aggr_limit = (8 * 1024);
  1959. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1960. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1961. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1962. ah->rfkill_gpio =
  1963. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1964. ah->rfkill_polarity =
  1965. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1966. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1967. }
  1968. #endif
  1969. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1970. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1971. else
  1972. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1973. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1974. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1975. else
  1976. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1977. if (common->btcoex_enabled) {
  1978. if (AR_SREV_9462(ah))
  1979. btcoex_hw->scheme = ATH_BTCOEX_CFG_MCI;
  1980. else if (AR_SREV_9300_20_OR_LATER(ah)) {
  1981. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1982. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
  1983. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
  1984. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
  1985. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  1986. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
  1987. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
  1988. if (AR_SREV_9285(ah)) {
  1989. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1990. btcoex_hw->btpriority_gpio =
  1991. ATH_BTPRIORITY_GPIO_9285;
  1992. } else {
  1993. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1994. }
  1995. }
  1996. } else {
  1997. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1998. }
  1999. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2000. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2001. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  2002. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2003. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2004. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2005. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2006. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2007. pCap->txs_len = sizeof(struct ar9003_txs);
  2008. if (!ah->config.paprd_disable &&
  2009. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2010. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2011. } else {
  2012. pCap->tx_desc_len = sizeof(struct ath_desc);
  2013. if (AR_SREV_9280_20(ah))
  2014. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2015. }
  2016. if (AR_SREV_9300_20_OR_LATER(ah))
  2017. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2018. if (AR_SREV_9300_20_OR_LATER(ah))
  2019. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2020. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2021. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2022. if (AR_SREV_9285(ah))
  2023. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2024. ant_div_ctl1 =
  2025. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2026. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2027. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2028. }
  2029. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2030. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2031. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2032. }
  2033. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2034. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2035. /*
  2036. * enable the diversity-combining algorithm only when
  2037. * both enable_lna_div and enable_fast_div are set
  2038. * Table for Diversity
  2039. * ant_div_alt_lnaconf bit 0-1
  2040. * ant_div_main_lnaconf bit 2-3
  2041. * ant_div_alt_gaintb bit 4
  2042. * ant_div_main_gaintb bit 5
  2043. * enable_ant_div_lnadiv bit 6
  2044. * enable_ant_fast_div bit 7
  2045. */
  2046. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2047. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2048. }
  2049. if (AR_SREV_9485_10(ah)) {
  2050. pCap->pcie_lcr_extsync_en = true;
  2051. pCap->pcie_lcr_offset = 0x80;
  2052. }
  2053. if (ath9k_hw_dfs_tested(ah))
  2054. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2055. tx_chainmask = pCap->tx_chainmask;
  2056. rx_chainmask = pCap->rx_chainmask;
  2057. while (tx_chainmask || rx_chainmask) {
  2058. if (tx_chainmask & BIT(0))
  2059. pCap->max_txchains++;
  2060. if (rx_chainmask & BIT(0))
  2061. pCap->max_rxchains++;
  2062. tx_chainmask >>= 1;
  2063. rx_chainmask >>= 1;
  2064. }
  2065. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2066. ah->enabled_cals |= TX_IQ_CAL;
  2067. if (AR_SREV_9485_OR_LATER(ah))
  2068. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2069. }
  2070. if (AR_SREV_9462(ah))
  2071. pCap->hw_caps |= ATH9K_HW_CAP_RTT | ATH9K_HW_CAP_MCI;
  2072. return 0;
  2073. }
  2074. /****************************/
  2075. /* GPIO / RFKILL / Antennae */
  2076. /****************************/
  2077. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2078. u32 gpio, u32 type)
  2079. {
  2080. int addr;
  2081. u32 gpio_shift, tmp;
  2082. if (gpio > 11)
  2083. addr = AR_GPIO_OUTPUT_MUX3;
  2084. else if (gpio > 5)
  2085. addr = AR_GPIO_OUTPUT_MUX2;
  2086. else
  2087. addr = AR_GPIO_OUTPUT_MUX1;
  2088. gpio_shift = (gpio % 6) * 5;
  2089. if (AR_SREV_9280_20_OR_LATER(ah)
  2090. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2091. REG_RMW(ah, addr, (type << gpio_shift),
  2092. (0x1f << gpio_shift));
  2093. } else {
  2094. tmp = REG_READ(ah, addr);
  2095. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2096. tmp &= ~(0x1f << gpio_shift);
  2097. tmp |= (type << gpio_shift);
  2098. REG_WRITE(ah, addr, tmp);
  2099. }
  2100. }
  2101. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2102. {
  2103. u32 gpio_shift;
  2104. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2105. if (AR_DEVID_7010(ah)) {
  2106. gpio_shift = gpio;
  2107. REG_RMW(ah, AR7010_GPIO_OE,
  2108. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2109. (AR7010_GPIO_OE_MASK << gpio_shift));
  2110. return;
  2111. }
  2112. gpio_shift = gpio << 1;
  2113. REG_RMW(ah,
  2114. AR_GPIO_OE_OUT,
  2115. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2116. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2117. }
  2118. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2119. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2120. {
  2121. #define MS_REG_READ(x, y) \
  2122. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2123. if (gpio >= ah->caps.num_gpio_pins)
  2124. return 0xffffffff;
  2125. if (AR_DEVID_7010(ah)) {
  2126. u32 val;
  2127. val = REG_READ(ah, AR7010_GPIO_IN);
  2128. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2129. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2130. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2131. AR_GPIO_BIT(gpio)) != 0;
  2132. else if (AR_SREV_9271(ah))
  2133. return MS_REG_READ(AR9271, gpio) != 0;
  2134. else if (AR_SREV_9287_11_OR_LATER(ah))
  2135. return MS_REG_READ(AR9287, gpio) != 0;
  2136. else if (AR_SREV_9285_12_OR_LATER(ah))
  2137. return MS_REG_READ(AR9285, gpio) != 0;
  2138. else if (AR_SREV_9280_20_OR_LATER(ah))
  2139. return MS_REG_READ(AR928X, gpio) != 0;
  2140. else
  2141. return MS_REG_READ(AR, gpio) != 0;
  2142. }
  2143. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2144. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2145. u32 ah_signal_type)
  2146. {
  2147. u32 gpio_shift;
  2148. if (AR_DEVID_7010(ah)) {
  2149. gpio_shift = gpio;
  2150. REG_RMW(ah, AR7010_GPIO_OE,
  2151. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2152. (AR7010_GPIO_OE_MASK << gpio_shift));
  2153. return;
  2154. }
  2155. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2156. gpio_shift = 2 * gpio;
  2157. REG_RMW(ah,
  2158. AR_GPIO_OE_OUT,
  2159. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2160. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2161. }
  2162. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2163. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2164. {
  2165. if (AR_DEVID_7010(ah)) {
  2166. val = val ? 0 : 1;
  2167. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2168. AR_GPIO_BIT(gpio));
  2169. return;
  2170. }
  2171. if (AR_SREV_9271(ah))
  2172. val = ~val;
  2173. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2174. AR_GPIO_BIT(gpio));
  2175. }
  2176. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2177. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  2178. {
  2179. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  2180. }
  2181. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  2182. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2183. {
  2184. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2185. }
  2186. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2187. /*********************/
  2188. /* General Operation */
  2189. /*********************/
  2190. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2191. {
  2192. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2193. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2194. if (phybits & AR_PHY_ERR_RADAR)
  2195. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2196. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2197. bits |= ATH9K_RX_FILTER_PHYERR;
  2198. return bits;
  2199. }
  2200. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2201. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2202. {
  2203. u32 phybits;
  2204. ENABLE_REGWRITE_BUFFER(ah);
  2205. if (AR_SREV_9462(ah))
  2206. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2207. REG_WRITE(ah, AR_RX_FILTER, bits);
  2208. phybits = 0;
  2209. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2210. phybits |= AR_PHY_ERR_RADAR;
  2211. if (bits & ATH9K_RX_FILTER_PHYERR)
  2212. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2213. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2214. if (phybits)
  2215. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2216. else
  2217. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2218. REGWRITE_BUFFER_FLUSH(ah);
  2219. }
  2220. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2221. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2222. {
  2223. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2224. return false;
  2225. ath9k_hw_init_pll(ah, NULL);
  2226. return true;
  2227. }
  2228. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2229. bool ath9k_hw_disable(struct ath_hw *ah)
  2230. {
  2231. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2232. return false;
  2233. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2234. return false;
  2235. ath9k_hw_init_pll(ah, NULL);
  2236. return true;
  2237. }
  2238. EXPORT_SYMBOL(ath9k_hw_disable);
  2239. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2240. {
  2241. enum eeprom_param gain_param;
  2242. if (IS_CHAN_2GHZ(chan))
  2243. gain_param = EEP_ANTENNA_GAIN_2G;
  2244. else
  2245. gain_param = EEP_ANTENNA_GAIN_5G;
  2246. return ah->eep_ops->get_eeprom(ah, gain_param);
  2247. }
  2248. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
  2249. {
  2250. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2251. struct ieee80211_channel *channel;
  2252. int chan_pwr, new_pwr, max_gain;
  2253. int ant_gain, ant_reduction = 0;
  2254. if (!chan)
  2255. return;
  2256. channel = chan->chan;
  2257. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2258. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2259. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2260. ant_gain = get_antenna_gain(ah, chan);
  2261. if (ant_gain > max_gain)
  2262. ant_reduction = ant_gain - max_gain;
  2263. ah->eep_ops->set_txpower(ah, chan,
  2264. ath9k_regd_get_ctl(reg, chan),
  2265. ant_reduction, new_pwr, false);
  2266. }
  2267. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2268. {
  2269. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2270. struct ath9k_channel *chan = ah->curchan;
  2271. struct ieee80211_channel *channel = chan->chan;
  2272. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2273. if (test)
  2274. channel->max_power = MAX_RATE_POWER / 2;
  2275. ath9k_hw_apply_txpower(ah, chan);
  2276. if (test)
  2277. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2278. }
  2279. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2280. void ath9k_hw_setopmode(struct ath_hw *ah)
  2281. {
  2282. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2283. }
  2284. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2285. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2286. {
  2287. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2288. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2289. }
  2290. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2291. void ath9k_hw_write_associd(struct ath_hw *ah)
  2292. {
  2293. struct ath_common *common = ath9k_hw_common(ah);
  2294. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2295. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2296. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2297. }
  2298. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2299. #define ATH9K_MAX_TSF_READ 10
  2300. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2301. {
  2302. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2303. int i;
  2304. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2305. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2306. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2307. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2308. if (tsf_upper2 == tsf_upper1)
  2309. break;
  2310. tsf_upper1 = tsf_upper2;
  2311. }
  2312. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2313. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2314. }
  2315. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2316. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2317. {
  2318. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2319. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2320. }
  2321. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2322. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2323. {
  2324. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2325. AH_TSF_WRITE_TIMEOUT))
  2326. ath_dbg(ath9k_hw_common(ah), RESET,
  2327. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2328. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2329. }
  2330. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2331. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2332. {
  2333. if (setting)
  2334. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2335. else
  2336. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2337. }
  2338. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2339. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2340. {
  2341. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2342. u32 macmode;
  2343. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2344. macmode = AR_2040_JOINED_RX_CLEAR;
  2345. else
  2346. macmode = 0;
  2347. REG_WRITE(ah, AR_2040_MODE, macmode);
  2348. }
  2349. /* HW Generic timers configuration */
  2350. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2351. {
  2352. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2353. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2354. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2355. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2356. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2357. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2358. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2359. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2360. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2361. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2362. AR_NDP2_TIMER_MODE, 0x0002},
  2363. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2364. AR_NDP2_TIMER_MODE, 0x0004},
  2365. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2366. AR_NDP2_TIMER_MODE, 0x0008},
  2367. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2368. AR_NDP2_TIMER_MODE, 0x0010},
  2369. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2370. AR_NDP2_TIMER_MODE, 0x0020},
  2371. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2372. AR_NDP2_TIMER_MODE, 0x0040},
  2373. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2374. AR_NDP2_TIMER_MODE, 0x0080}
  2375. };
  2376. /* HW generic timer primitives */
  2377. /* compute and clear index of rightmost 1 */
  2378. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2379. {
  2380. u32 b;
  2381. b = *mask;
  2382. b &= (0-b);
  2383. *mask &= ~b;
  2384. b *= debruijn32;
  2385. b >>= 27;
  2386. return timer_table->gen_timer_index[b];
  2387. }
  2388. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2389. {
  2390. return REG_READ(ah, AR_TSF_L32);
  2391. }
  2392. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2393. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2394. void (*trigger)(void *),
  2395. void (*overflow)(void *),
  2396. void *arg,
  2397. u8 timer_index)
  2398. {
  2399. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2400. struct ath_gen_timer *timer;
  2401. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2402. if (timer == NULL) {
  2403. ath_err(ath9k_hw_common(ah),
  2404. "Failed to allocate memory for hw timer[%d]\n",
  2405. timer_index);
  2406. return NULL;
  2407. }
  2408. /* allocate a hardware generic timer slot */
  2409. timer_table->timers[timer_index] = timer;
  2410. timer->index = timer_index;
  2411. timer->trigger = trigger;
  2412. timer->overflow = overflow;
  2413. timer->arg = arg;
  2414. return timer;
  2415. }
  2416. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2417. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2418. struct ath_gen_timer *timer,
  2419. u32 trig_timeout,
  2420. u32 timer_period)
  2421. {
  2422. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2423. u32 tsf, timer_next;
  2424. BUG_ON(!timer_period);
  2425. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2426. tsf = ath9k_hw_gettsf32(ah);
  2427. timer_next = tsf + trig_timeout;
  2428. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2429. "current tsf %x period %x timer_next %x\n",
  2430. tsf, timer_period, timer_next);
  2431. /*
  2432. * Program generic timer registers
  2433. */
  2434. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2435. timer_next);
  2436. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2437. timer_period);
  2438. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2439. gen_tmr_configuration[timer->index].mode_mask);
  2440. if (AR_SREV_9462(ah)) {
  2441. /*
  2442. * Starting from AR9462, each generic timer can select which tsf
  2443. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2444. * 8 - 15 use tsf2.
  2445. */
  2446. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2447. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2448. (1 << timer->index));
  2449. else
  2450. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2451. (1 << timer->index));
  2452. }
  2453. /* Enable both trigger and thresh interrupt masks */
  2454. REG_SET_BIT(ah, AR_IMR_S5,
  2455. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2456. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2457. }
  2458. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2459. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2460. {
  2461. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2462. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2463. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2464. return;
  2465. }
  2466. /* Clear generic timer enable bits. */
  2467. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2468. gen_tmr_configuration[timer->index].mode_mask);
  2469. /* Disable both trigger and thresh interrupt masks */
  2470. REG_CLR_BIT(ah, AR_IMR_S5,
  2471. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2472. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2473. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2474. }
  2475. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2476. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2477. {
  2478. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2479. /* free the hardware generic timer slot */
  2480. timer_table->timers[timer->index] = NULL;
  2481. kfree(timer);
  2482. }
  2483. EXPORT_SYMBOL(ath_gen_timer_free);
  2484. /*
  2485. * Generic Timer Interrupts handling
  2486. */
  2487. void ath_gen_timer_isr(struct ath_hw *ah)
  2488. {
  2489. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2490. struct ath_gen_timer *timer;
  2491. struct ath_common *common = ath9k_hw_common(ah);
  2492. u32 trigger_mask, thresh_mask, index;
  2493. /* get hardware generic timer interrupt status */
  2494. trigger_mask = ah->intr_gen_timer_trigger;
  2495. thresh_mask = ah->intr_gen_timer_thresh;
  2496. trigger_mask &= timer_table->timer_mask.val;
  2497. thresh_mask &= timer_table->timer_mask.val;
  2498. trigger_mask &= ~thresh_mask;
  2499. while (thresh_mask) {
  2500. index = rightmost_index(timer_table, &thresh_mask);
  2501. timer = timer_table->timers[index];
  2502. BUG_ON(!timer);
  2503. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2504. index);
  2505. timer->overflow(timer->arg);
  2506. }
  2507. while (trigger_mask) {
  2508. index = rightmost_index(timer_table, &trigger_mask);
  2509. timer = timer_table->timers[index];
  2510. BUG_ON(!timer);
  2511. ath_dbg(common, HWTIMER,
  2512. "Gen timer[%d] trigger\n", index);
  2513. timer->trigger(timer->arg);
  2514. }
  2515. }
  2516. EXPORT_SYMBOL(ath_gen_timer_isr);
  2517. /********/
  2518. /* HTC */
  2519. /********/
  2520. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2521. {
  2522. ah->htc_reset_init = true;
  2523. }
  2524. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2525. static struct {
  2526. u32 version;
  2527. const char * name;
  2528. } ath_mac_bb_names[] = {
  2529. /* Devices with external radios */
  2530. { AR_SREV_VERSION_5416_PCI, "5416" },
  2531. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2532. { AR_SREV_VERSION_9100, "9100" },
  2533. { AR_SREV_VERSION_9160, "9160" },
  2534. /* Single-chip solutions */
  2535. { AR_SREV_VERSION_9280, "9280" },
  2536. { AR_SREV_VERSION_9285, "9285" },
  2537. { AR_SREV_VERSION_9287, "9287" },
  2538. { AR_SREV_VERSION_9271, "9271" },
  2539. { AR_SREV_VERSION_9300, "9300" },
  2540. { AR_SREV_VERSION_9330, "9330" },
  2541. { AR_SREV_VERSION_9340, "9340" },
  2542. { AR_SREV_VERSION_9485, "9485" },
  2543. { AR_SREV_VERSION_9462, "9462" },
  2544. };
  2545. /* For devices with external radios */
  2546. static struct {
  2547. u16 version;
  2548. const char * name;
  2549. } ath_rf_names[] = {
  2550. { 0, "5133" },
  2551. { AR_RAD5133_SREV_MAJOR, "5133" },
  2552. { AR_RAD5122_SREV_MAJOR, "5122" },
  2553. { AR_RAD2133_SREV_MAJOR, "2133" },
  2554. { AR_RAD2122_SREV_MAJOR, "2122" }
  2555. };
  2556. /*
  2557. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2558. */
  2559. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2560. {
  2561. int i;
  2562. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2563. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2564. return ath_mac_bb_names[i].name;
  2565. }
  2566. }
  2567. return "????";
  2568. }
  2569. /*
  2570. * Return the RF name. "????" is returned if the RF is unknown.
  2571. * Used for devices with external radios.
  2572. */
  2573. static const char *ath9k_hw_rf_name(u16 rf_version)
  2574. {
  2575. int i;
  2576. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2577. if (ath_rf_names[i].version == rf_version) {
  2578. return ath_rf_names[i].name;
  2579. }
  2580. }
  2581. return "????";
  2582. }
  2583. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2584. {
  2585. int used;
  2586. /* chipsets >= AR9280 are single-chip */
  2587. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2588. used = snprintf(hw_name, len,
  2589. "Atheros AR%s Rev:%x",
  2590. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2591. ah->hw_version.macRev);
  2592. }
  2593. else {
  2594. used = snprintf(hw_name, len,
  2595. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2596. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2597. ah->hw_version.macRev,
  2598. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2599. AR_RADIO_SREV_MAJOR)),
  2600. ah->hw_version.phyRev);
  2601. }
  2602. hw_name[used] = '\0';
  2603. }
  2604. EXPORT_SYMBOL(ath9k_hw_name);