efx.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include <linux/gfp.h>
  23. #include <linux/cpu_rmap.h>
  24. #include "net_driver.h"
  25. #include "efx.h"
  26. #include "nic.h"
  27. #include "mcdi.h"
  28. #include "workarounds.h"
  29. /**************************************************************************
  30. *
  31. * Type name strings
  32. *
  33. **************************************************************************
  34. */
  35. /* Loopback mode names (see LOOPBACK_MODE()) */
  36. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  37. const char *efx_loopback_mode_names[] = {
  38. [LOOPBACK_NONE] = "NONE",
  39. [LOOPBACK_DATA] = "DATAPATH",
  40. [LOOPBACK_GMAC] = "GMAC",
  41. [LOOPBACK_XGMII] = "XGMII",
  42. [LOOPBACK_XGXS] = "XGXS",
  43. [LOOPBACK_XAUI] = "XAUI",
  44. [LOOPBACK_GMII] = "GMII",
  45. [LOOPBACK_SGMII] = "SGMII",
  46. [LOOPBACK_XGBR] = "XGBR",
  47. [LOOPBACK_XFI] = "XFI",
  48. [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
  49. [LOOPBACK_GMII_FAR] = "GMII_FAR",
  50. [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
  51. [LOOPBACK_XFI_FAR] = "XFI_FAR",
  52. [LOOPBACK_GPHY] = "GPHY",
  53. [LOOPBACK_PHYXS] = "PHYXS",
  54. [LOOPBACK_PCS] = "PCS",
  55. [LOOPBACK_PMAPMD] = "PMA/PMD",
  56. [LOOPBACK_XPORT] = "XPORT",
  57. [LOOPBACK_XGMII_WS] = "XGMII_WS",
  58. [LOOPBACK_XAUI_WS] = "XAUI_WS",
  59. [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
  60. [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  61. [LOOPBACK_GMII_WS] = "GMII_WS",
  62. [LOOPBACK_XFI_WS] = "XFI_WS",
  63. [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
  64. [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
  65. };
  66. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  67. const char *efx_reset_type_names[] = {
  68. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  69. [RESET_TYPE_ALL] = "ALL",
  70. [RESET_TYPE_WORLD] = "WORLD",
  71. [RESET_TYPE_DISABLE] = "DISABLE",
  72. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  73. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  74. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  75. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  76. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  77. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  78. [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
  79. };
  80. #define EFX_MAX_MTU (9 * 1024)
  81. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  82. * queued onto this work queue. This is not a per-nic work queue, because
  83. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  84. */
  85. static struct workqueue_struct *reset_workqueue;
  86. /**************************************************************************
  87. *
  88. * Configurable values
  89. *
  90. *************************************************************************/
  91. /*
  92. * Use separate channels for TX and RX events
  93. *
  94. * Set this to 1 to use separate channels for TX and RX. It allows us
  95. * to control interrupt affinity separately for TX and RX.
  96. *
  97. * This is only used in MSI-X interrupt mode
  98. */
  99. static unsigned int separate_tx_channels;
  100. module_param(separate_tx_channels, uint, 0444);
  101. MODULE_PARM_DESC(separate_tx_channels,
  102. "Use separate channels for TX and RX");
  103. /* This is the weight assigned to each of the (per-channel) virtual
  104. * NAPI devices.
  105. */
  106. static int napi_weight = 64;
  107. /* This is the time (in jiffies) between invocations of the hardware
  108. * monitor. On Falcon-based NICs, this will:
  109. * - Check the on-board hardware monitor;
  110. * - Poll the link state and reconfigure the hardware as necessary.
  111. */
  112. static unsigned int efx_monitor_interval = 1 * HZ;
  113. /* This controls whether or not the driver will initialise devices
  114. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  115. * such devices will be initialised with a random locally-generated
  116. * MAC address. This allows for loading the sfc_mtd driver to
  117. * reprogram the flash, even if the flash contents (including the MAC
  118. * address) have previously been erased.
  119. */
  120. static unsigned int allow_bad_hwaddr;
  121. /* Initial interrupt moderation settings. They can be modified after
  122. * module load with ethtool.
  123. *
  124. * The default for RX should strike a balance between increasing the
  125. * round-trip latency and reducing overhead.
  126. */
  127. static unsigned int rx_irq_mod_usec = 60;
  128. /* Initial interrupt moderation settings. They can be modified after
  129. * module load with ethtool.
  130. *
  131. * This default is chosen to ensure that a 10G link does not go idle
  132. * while a TX queue is stopped after it has become full. A queue is
  133. * restarted when it drops below half full. The time this takes (assuming
  134. * worst case 3 descriptors per packet and 1024 descriptors) is
  135. * 512 / 3 * 1.2 = 205 usec.
  136. */
  137. static unsigned int tx_irq_mod_usec = 150;
  138. /* This is the first interrupt mode to try out of:
  139. * 0 => MSI-X
  140. * 1 => MSI
  141. * 2 => legacy
  142. */
  143. static unsigned int interrupt_mode;
  144. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  145. * i.e. the number of CPUs among which we may distribute simultaneous
  146. * interrupt handling.
  147. *
  148. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  149. * The default (0) means to assign an interrupt to each package (level II cache)
  150. */
  151. static unsigned int rss_cpus;
  152. module_param(rss_cpus, uint, 0444);
  153. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  154. static int phy_flash_cfg;
  155. module_param(phy_flash_cfg, int, 0644);
  156. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  157. static unsigned irq_adapt_low_thresh = 10000;
  158. module_param(irq_adapt_low_thresh, uint, 0644);
  159. MODULE_PARM_DESC(irq_adapt_low_thresh,
  160. "Threshold score for reducing IRQ moderation");
  161. static unsigned irq_adapt_high_thresh = 20000;
  162. module_param(irq_adapt_high_thresh, uint, 0644);
  163. MODULE_PARM_DESC(irq_adapt_high_thresh,
  164. "Threshold score for increasing IRQ moderation");
  165. static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  166. NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  167. NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  168. NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  169. module_param(debug, uint, 0);
  170. MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  171. /**************************************************************************
  172. *
  173. * Utility functions and prototypes
  174. *
  175. *************************************************************************/
  176. static void efx_remove_channels(struct efx_nic *efx);
  177. static void efx_remove_port(struct efx_nic *efx);
  178. static void efx_init_napi(struct efx_nic *efx);
  179. static void efx_fini_napi(struct efx_nic *efx);
  180. static void efx_fini_napi_channel(struct efx_channel *channel);
  181. static void efx_fini_struct(struct efx_nic *efx);
  182. static void efx_start_all(struct efx_nic *efx);
  183. static void efx_stop_all(struct efx_nic *efx);
  184. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  185. do { \
  186. if ((efx->state == STATE_RUNNING) || \
  187. (efx->state == STATE_DISABLED)) \
  188. ASSERT_RTNL(); \
  189. } while (0)
  190. /**************************************************************************
  191. *
  192. * Event queue processing
  193. *
  194. *************************************************************************/
  195. /* Process channel's event queue
  196. *
  197. * This function is responsible for processing the event queue of a
  198. * single channel. The caller must guarantee that this function will
  199. * never be concurrently called more than once on the same channel,
  200. * though different channels may be being processed concurrently.
  201. */
  202. static int efx_process_channel(struct efx_channel *channel, int budget)
  203. {
  204. struct efx_nic *efx = channel->efx;
  205. int spent;
  206. if (unlikely(efx->reset_pending || !channel->enabled))
  207. return 0;
  208. spent = efx_nic_process_eventq(channel, budget);
  209. if (spent == 0)
  210. return 0;
  211. /* Deliver last RX packet. */
  212. if (channel->rx_pkt) {
  213. __efx_rx_packet(channel, channel->rx_pkt,
  214. channel->rx_pkt_csummed);
  215. channel->rx_pkt = NULL;
  216. }
  217. efx_rx_strategy(channel);
  218. efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
  219. return spent;
  220. }
  221. /* Mark channel as finished processing
  222. *
  223. * Note that since we will not receive further interrupts for this
  224. * channel before we finish processing and call the eventq_read_ack()
  225. * method, there is no need to use the interrupt hold-off timers.
  226. */
  227. static inline void efx_channel_processed(struct efx_channel *channel)
  228. {
  229. /* The interrupt handler for this channel may set work_pending
  230. * as soon as we acknowledge the events we've seen. Make sure
  231. * it's cleared before then. */
  232. channel->work_pending = false;
  233. smp_wmb();
  234. efx_nic_eventq_read_ack(channel);
  235. }
  236. /* NAPI poll handler
  237. *
  238. * NAPI guarantees serialisation of polls of the same device, which
  239. * provides the guarantee required by efx_process_channel().
  240. */
  241. static int efx_poll(struct napi_struct *napi, int budget)
  242. {
  243. struct efx_channel *channel =
  244. container_of(napi, struct efx_channel, napi_str);
  245. struct efx_nic *efx = channel->efx;
  246. int spent;
  247. netif_vdbg(efx, intr, efx->net_dev,
  248. "channel %d NAPI poll executing on CPU %d\n",
  249. channel->channel, raw_smp_processor_id());
  250. spent = efx_process_channel(channel, budget);
  251. if (spent < budget) {
  252. if (channel->channel < efx->n_rx_channels &&
  253. efx->irq_rx_adaptive &&
  254. unlikely(++channel->irq_count == 1000)) {
  255. if (unlikely(channel->irq_mod_score <
  256. irq_adapt_low_thresh)) {
  257. if (channel->irq_moderation > 1) {
  258. channel->irq_moderation -= 1;
  259. efx->type->push_irq_moderation(channel);
  260. }
  261. } else if (unlikely(channel->irq_mod_score >
  262. irq_adapt_high_thresh)) {
  263. if (channel->irq_moderation <
  264. efx->irq_rx_moderation) {
  265. channel->irq_moderation += 1;
  266. efx->type->push_irq_moderation(channel);
  267. }
  268. }
  269. channel->irq_count = 0;
  270. channel->irq_mod_score = 0;
  271. }
  272. efx_filter_rfs_expire(channel);
  273. /* There is no race here; although napi_disable() will
  274. * only wait for napi_complete(), this isn't a problem
  275. * since efx_channel_processed() will have no effect if
  276. * interrupts have already been disabled.
  277. */
  278. napi_complete(napi);
  279. efx_channel_processed(channel);
  280. }
  281. return spent;
  282. }
  283. /* Process the eventq of the specified channel immediately on this CPU
  284. *
  285. * Disable hardware generated interrupts, wait for any existing
  286. * processing to finish, then directly poll (and ack ) the eventq.
  287. * Finally reenable NAPI and interrupts.
  288. *
  289. * This is for use only during a loopback self-test. It must not
  290. * deliver any packets up the stack as this can result in deadlock.
  291. */
  292. void efx_process_channel_now(struct efx_channel *channel)
  293. {
  294. struct efx_nic *efx = channel->efx;
  295. BUG_ON(channel->channel >= efx->n_channels);
  296. BUG_ON(!channel->enabled);
  297. BUG_ON(!efx->loopback_selftest);
  298. /* Disable interrupts and wait for ISRs to complete */
  299. efx_nic_disable_interrupts(efx);
  300. if (efx->legacy_irq) {
  301. synchronize_irq(efx->legacy_irq);
  302. efx->legacy_irq_enabled = false;
  303. }
  304. if (channel->irq)
  305. synchronize_irq(channel->irq);
  306. /* Wait for any NAPI processing to complete */
  307. napi_disable(&channel->napi_str);
  308. /* Poll the channel */
  309. efx_process_channel(channel, channel->eventq_mask + 1);
  310. /* Ack the eventq. This may cause an interrupt to be generated
  311. * when they are reenabled */
  312. efx_channel_processed(channel);
  313. napi_enable(&channel->napi_str);
  314. if (efx->legacy_irq)
  315. efx->legacy_irq_enabled = true;
  316. efx_nic_enable_interrupts(efx);
  317. }
  318. /* Create event queue
  319. * Event queue memory allocations are done only once. If the channel
  320. * is reset, the memory buffer will be reused; this guards against
  321. * errors during channel reset and also simplifies interrupt handling.
  322. */
  323. static int efx_probe_eventq(struct efx_channel *channel)
  324. {
  325. struct efx_nic *efx = channel->efx;
  326. unsigned long entries;
  327. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  328. "chan %d create event queue\n", channel->channel);
  329. /* Build an event queue with room for one event per tx and rx buffer,
  330. * plus some extra for link state events and MCDI completions. */
  331. entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
  332. EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
  333. channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
  334. return efx_nic_probe_eventq(channel);
  335. }
  336. /* Prepare channel's event queue */
  337. static void efx_init_eventq(struct efx_channel *channel)
  338. {
  339. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  340. "chan %d init event queue\n", channel->channel);
  341. channel->eventq_read_ptr = 0;
  342. efx_nic_init_eventq(channel);
  343. }
  344. static void efx_fini_eventq(struct efx_channel *channel)
  345. {
  346. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  347. "chan %d fini event queue\n", channel->channel);
  348. efx_nic_fini_eventq(channel);
  349. }
  350. static void efx_remove_eventq(struct efx_channel *channel)
  351. {
  352. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  353. "chan %d remove event queue\n", channel->channel);
  354. efx_nic_remove_eventq(channel);
  355. }
  356. /**************************************************************************
  357. *
  358. * Channel handling
  359. *
  360. *************************************************************************/
  361. /* Allocate and initialise a channel structure, optionally copying
  362. * parameters (but not resources) from an old channel structure. */
  363. static struct efx_channel *
  364. efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
  365. {
  366. struct efx_channel *channel;
  367. struct efx_rx_queue *rx_queue;
  368. struct efx_tx_queue *tx_queue;
  369. int j;
  370. if (old_channel) {
  371. channel = kmalloc(sizeof(*channel), GFP_KERNEL);
  372. if (!channel)
  373. return NULL;
  374. *channel = *old_channel;
  375. channel->napi_dev = NULL;
  376. memset(&channel->eventq, 0, sizeof(channel->eventq));
  377. rx_queue = &channel->rx_queue;
  378. rx_queue->buffer = NULL;
  379. memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
  380. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  381. tx_queue = &channel->tx_queue[j];
  382. if (tx_queue->channel)
  383. tx_queue->channel = channel;
  384. tx_queue->buffer = NULL;
  385. memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
  386. }
  387. } else {
  388. channel = kzalloc(sizeof(*channel), GFP_KERNEL);
  389. if (!channel)
  390. return NULL;
  391. channel->efx = efx;
  392. channel->channel = i;
  393. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  394. tx_queue = &channel->tx_queue[j];
  395. tx_queue->efx = efx;
  396. tx_queue->queue = i * EFX_TXQ_TYPES + j;
  397. tx_queue->channel = channel;
  398. }
  399. }
  400. rx_queue = &channel->rx_queue;
  401. rx_queue->efx = efx;
  402. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  403. (unsigned long)rx_queue);
  404. return channel;
  405. }
  406. static int efx_probe_channel(struct efx_channel *channel)
  407. {
  408. struct efx_tx_queue *tx_queue;
  409. struct efx_rx_queue *rx_queue;
  410. int rc;
  411. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  412. "creating channel %d\n", channel->channel);
  413. rc = efx_probe_eventq(channel);
  414. if (rc)
  415. goto fail1;
  416. efx_for_each_channel_tx_queue(tx_queue, channel) {
  417. rc = efx_probe_tx_queue(tx_queue);
  418. if (rc)
  419. goto fail2;
  420. }
  421. efx_for_each_channel_rx_queue(rx_queue, channel) {
  422. rc = efx_probe_rx_queue(rx_queue);
  423. if (rc)
  424. goto fail3;
  425. }
  426. channel->n_rx_frm_trunc = 0;
  427. return 0;
  428. fail3:
  429. efx_for_each_channel_rx_queue(rx_queue, channel)
  430. efx_remove_rx_queue(rx_queue);
  431. fail2:
  432. efx_for_each_channel_tx_queue(tx_queue, channel)
  433. efx_remove_tx_queue(tx_queue);
  434. fail1:
  435. return rc;
  436. }
  437. static void efx_set_channel_names(struct efx_nic *efx)
  438. {
  439. struct efx_channel *channel;
  440. const char *type = "";
  441. int number;
  442. efx_for_each_channel(channel, efx) {
  443. number = channel->channel;
  444. if (efx->n_channels > efx->n_rx_channels) {
  445. if (channel->channel < efx->n_rx_channels) {
  446. type = "-rx";
  447. } else {
  448. type = "-tx";
  449. number -= efx->n_rx_channels;
  450. }
  451. }
  452. snprintf(efx->channel_name[channel->channel],
  453. sizeof(efx->channel_name[0]),
  454. "%s%s-%d", efx->name, type, number);
  455. }
  456. }
  457. static int efx_probe_channels(struct efx_nic *efx)
  458. {
  459. struct efx_channel *channel;
  460. int rc;
  461. /* Restart special buffer allocation */
  462. efx->next_buffer_table = 0;
  463. efx_for_each_channel(channel, efx) {
  464. rc = efx_probe_channel(channel);
  465. if (rc) {
  466. netif_err(efx, probe, efx->net_dev,
  467. "failed to create channel %d\n",
  468. channel->channel);
  469. goto fail;
  470. }
  471. }
  472. efx_set_channel_names(efx);
  473. return 0;
  474. fail:
  475. efx_remove_channels(efx);
  476. return rc;
  477. }
  478. /* Channels are shutdown and reinitialised whilst the NIC is running
  479. * to propagate configuration changes (mtu, checksum offload), or
  480. * to clear hardware error conditions
  481. */
  482. static void efx_init_channels(struct efx_nic *efx)
  483. {
  484. struct efx_tx_queue *tx_queue;
  485. struct efx_rx_queue *rx_queue;
  486. struct efx_channel *channel;
  487. /* Calculate the rx buffer allocation parameters required to
  488. * support the current MTU, including padding for header
  489. * alignment and overruns.
  490. */
  491. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  492. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  493. efx->type->rx_buffer_hash_size +
  494. efx->type->rx_buffer_padding);
  495. efx->rx_buffer_order = get_order(efx->rx_buffer_len +
  496. sizeof(struct efx_rx_page_state));
  497. /* Initialise the channels */
  498. efx_for_each_channel(channel, efx) {
  499. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  500. "init chan %d\n", channel->channel);
  501. efx_init_eventq(channel);
  502. efx_for_each_channel_tx_queue(tx_queue, channel)
  503. efx_init_tx_queue(tx_queue);
  504. /* The rx buffer allocation strategy is MTU dependent */
  505. efx_rx_strategy(channel);
  506. efx_for_each_channel_rx_queue(rx_queue, channel)
  507. efx_init_rx_queue(rx_queue);
  508. WARN_ON(channel->rx_pkt != NULL);
  509. efx_rx_strategy(channel);
  510. }
  511. }
  512. /* This enables event queue processing and packet transmission.
  513. *
  514. * Note that this function is not allowed to fail, since that would
  515. * introduce too much complexity into the suspend/resume path.
  516. */
  517. static void efx_start_channel(struct efx_channel *channel)
  518. {
  519. struct efx_rx_queue *rx_queue;
  520. netif_dbg(channel->efx, ifup, channel->efx->net_dev,
  521. "starting chan %d\n", channel->channel);
  522. /* The interrupt handler for this channel may set work_pending
  523. * as soon as we enable it. Make sure it's cleared before
  524. * then. Similarly, make sure it sees the enabled flag set. */
  525. channel->work_pending = false;
  526. channel->enabled = true;
  527. smp_wmb();
  528. /* Fill the queues before enabling NAPI */
  529. efx_for_each_channel_rx_queue(rx_queue, channel)
  530. efx_fast_push_rx_descriptors(rx_queue);
  531. napi_enable(&channel->napi_str);
  532. }
  533. /* This disables event queue processing and packet transmission.
  534. * This function does not guarantee that all queue processing
  535. * (e.g. RX refill) is complete.
  536. */
  537. static void efx_stop_channel(struct efx_channel *channel)
  538. {
  539. if (!channel->enabled)
  540. return;
  541. netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
  542. "stop chan %d\n", channel->channel);
  543. channel->enabled = false;
  544. napi_disable(&channel->napi_str);
  545. }
  546. static void efx_fini_channels(struct efx_nic *efx)
  547. {
  548. struct efx_channel *channel;
  549. struct efx_tx_queue *tx_queue;
  550. struct efx_rx_queue *rx_queue;
  551. int rc;
  552. EFX_ASSERT_RESET_SERIALISED(efx);
  553. BUG_ON(efx->port_enabled);
  554. rc = efx_nic_flush_queues(efx);
  555. if (rc && EFX_WORKAROUND_7803(efx)) {
  556. /* Schedule a reset to recover from the flush failure. The
  557. * descriptor caches reference memory we're about to free,
  558. * but falcon_reconfigure_mac_wrapper() won't reconnect
  559. * the MACs because of the pending reset. */
  560. netif_err(efx, drv, efx->net_dev,
  561. "Resetting to recover from flush failure\n");
  562. efx_schedule_reset(efx, RESET_TYPE_ALL);
  563. } else if (rc) {
  564. netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
  565. } else {
  566. netif_dbg(efx, drv, efx->net_dev,
  567. "successfully flushed all queues\n");
  568. }
  569. efx_for_each_channel(channel, efx) {
  570. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  571. "shut down chan %d\n", channel->channel);
  572. efx_for_each_channel_rx_queue(rx_queue, channel)
  573. efx_fini_rx_queue(rx_queue);
  574. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  575. efx_fini_tx_queue(tx_queue);
  576. efx_fini_eventq(channel);
  577. }
  578. }
  579. static void efx_remove_channel(struct efx_channel *channel)
  580. {
  581. struct efx_tx_queue *tx_queue;
  582. struct efx_rx_queue *rx_queue;
  583. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  584. "destroy chan %d\n", channel->channel);
  585. efx_for_each_channel_rx_queue(rx_queue, channel)
  586. efx_remove_rx_queue(rx_queue);
  587. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  588. efx_remove_tx_queue(tx_queue);
  589. efx_remove_eventq(channel);
  590. }
  591. static void efx_remove_channels(struct efx_nic *efx)
  592. {
  593. struct efx_channel *channel;
  594. efx_for_each_channel(channel, efx)
  595. efx_remove_channel(channel);
  596. }
  597. int
  598. efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
  599. {
  600. struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
  601. u32 old_rxq_entries, old_txq_entries;
  602. unsigned i;
  603. int rc;
  604. efx_stop_all(efx);
  605. efx_fini_channels(efx);
  606. /* Clone channels */
  607. memset(other_channel, 0, sizeof(other_channel));
  608. for (i = 0; i < efx->n_channels; i++) {
  609. channel = efx_alloc_channel(efx, i, efx->channel[i]);
  610. if (!channel) {
  611. rc = -ENOMEM;
  612. goto out;
  613. }
  614. other_channel[i] = channel;
  615. }
  616. /* Swap entry counts and channel pointers */
  617. old_rxq_entries = efx->rxq_entries;
  618. old_txq_entries = efx->txq_entries;
  619. efx->rxq_entries = rxq_entries;
  620. efx->txq_entries = txq_entries;
  621. for (i = 0; i < efx->n_channels; i++) {
  622. channel = efx->channel[i];
  623. efx->channel[i] = other_channel[i];
  624. other_channel[i] = channel;
  625. }
  626. rc = efx_probe_channels(efx);
  627. if (rc)
  628. goto rollback;
  629. efx_init_napi(efx);
  630. /* Destroy old channels */
  631. for (i = 0; i < efx->n_channels; i++) {
  632. efx_fini_napi_channel(other_channel[i]);
  633. efx_remove_channel(other_channel[i]);
  634. }
  635. out:
  636. /* Free unused channel structures */
  637. for (i = 0; i < efx->n_channels; i++)
  638. kfree(other_channel[i]);
  639. efx_init_channels(efx);
  640. efx_start_all(efx);
  641. return rc;
  642. rollback:
  643. /* Swap back */
  644. efx->rxq_entries = old_rxq_entries;
  645. efx->txq_entries = old_txq_entries;
  646. for (i = 0; i < efx->n_channels; i++) {
  647. channel = efx->channel[i];
  648. efx->channel[i] = other_channel[i];
  649. other_channel[i] = channel;
  650. }
  651. goto out;
  652. }
  653. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
  654. {
  655. mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
  656. }
  657. /**************************************************************************
  658. *
  659. * Port handling
  660. *
  661. **************************************************************************/
  662. /* This ensures that the kernel is kept informed (via
  663. * netif_carrier_on/off) of the link status, and also maintains the
  664. * link status's stop on the port's TX queue.
  665. */
  666. void efx_link_status_changed(struct efx_nic *efx)
  667. {
  668. struct efx_link_state *link_state = &efx->link_state;
  669. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  670. * that no events are triggered between unregister_netdev() and the
  671. * driver unloading. A more general condition is that NETDEV_CHANGE
  672. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  673. if (!netif_running(efx->net_dev))
  674. return;
  675. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  676. efx->n_link_state_changes++;
  677. if (link_state->up)
  678. netif_carrier_on(efx->net_dev);
  679. else
  680. netif_carrier_off(efx->net_dev);
  681. }
  682. /* Status message for kernel log */
  683. if (link_state->up) {
  684. netif_info(efx, link, efx->net_dev,
  685. "link up at %uMbps %s-duplex (MTU %d)%s\n",
  686. link_state->speed, link_state->fd ? "full" : "half",
  687. efx->net_dev->mtu,
  688. (efx->promiscuous ? " [PROMISC]" : ""));
  689. } else {
  690. netif_info(efx, link, efx->net_dev, "link down\n");
  691. }
  692. }
  693. void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
  694. {
  695. efx->link_advertising = advertising;
  696. if (advertising) {
  697. if (advertising & ADVERTISED_Pause)
  698. efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
  699. else
  700. efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
  701. if (advertising & ADVERTISED_Asym_Pause)
  702. efx->wanted_fc ^= EFX_FC_TX;
  703. }
  704. }
  705. void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
  706. {
  707. efx->wanted_fc = wanted_fc;
  708. if (efx->link_advertising) {
  709. if (wanted_fc & EFX_FC_RX)
  710. efx->link_advertising |= (ADVERTISED_Pause |
  711. ADVERTISED_Asym_Pause);
  712. else
  713. efx->link_advertising &= ~(ADVERTISED_Pause |
  714. ADVERTISED_Asym_Pause);
  715. if (wanted_fc & EFX_FC_TX)
  716. efx->link_advertising ^= ADVERTISED_Asym_Pause;
  717. }
  718. }
  719. static void efx_fini_port(struct efx_nic *efx);
  720. /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
  721. * the MAC appropriately. All other PHY configuration changes are pushed
  722. * through phy_op->set_settings(), and pushed asynchronously to the MAC
  723. * through efx_monitor().
  724. *
  725. * Callers must hold the mac_lock
  726. */
  727. int __efx_reconfigure_port(struct efx_nic *efx)
  728. {
  729. enum efx_phy_mode phy_mode;
  730. int rc;
  731. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  732. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  733. if (efx_dev_registered(efx)) {
  734. netif_addr_lock_bh(efx->net_dev);
  735. netif_addr_unlock_bh(efx->net_dev);
  736. }
  737. /* Disable PHY transmit in mac level loopbacks */
  738. phy_mode = efx->phy_mode;
  739. if (LOOPBACK_INTERNAL(efx))
  740. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  741. else
  742. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  743. rc = efx->type->reconfigure_port(efx);
  744. if (rc)
  745. efx->phy_mode = phy_mode;
  746. return rc;
  747. }
  748. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  749. * disabled. */
  750. int efx_reconfigure_port(struct efx_nic *efx)
  751. {
  752. int rc;
  753. EFX_ASSERT_RESET_SERIALISED(efx);
  754. mutex_lock(&efx->mac_lock);
  755. rc = __efx_reconfigure_port(efx);
  756. mutex_unlock(&efx->mac_lock);
  757. return rc;
  758. }
  759. /* Asynchronous work item for changing MAC promiscuity and multicast
  760. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  761. * MAC directly. */
  762. static void efx_mac_work(struct work_struct *data)
  763. {
  764. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  765. mutex_lock(&efx->mac_lock);
  766. if (efx->port_enabled) {
  767. efx->type->push_multicast_hash(efx);
  768. efx->mac_op->reconfigure(efx);
  769. }
  770. mutex_unlock(&efx->mac_lock);
  771. }
  772. static int efx_probe_port(struct efx_nic *efx)
  773. {
  774. unsigned char *perm_addr;
  775. int rc;
  776. netif_dbg(efx, probe, efx->net_dev, "create port\n");
  777. if (phy_flash_cfg)
  778. efx->phy_mode = PHY_MODE_SPECIAL;
  779. /* Connect up MAC/PHY operations table */
  780. rc = efx->type->probe_port(efx);
  781. if (rc)
  782. return rc;
  783. /* Sanity check MAC address */
  784. perm_addr = efx->net_dev->perm_addr;
  785. if (is_valid_ether_addr(perm_addr)) {
  786. memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
  787. } else {
  788. netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
  789. perm_addr);
  790. if (!allow_bad_hwaddr) {
  791. rc = -EINVAL;
  792. goto err;
  793. }
  794. random_ether_addr(efx->net_dev->dev_addr);
  795. netif_info(efx, probe, efx->net_dev,
  796. "using locally-generated MAC %pM\n",
  797. efx->net_dev->dev_addr);
  798. }
  799. return 0;
  800. err:
  801. efx->type->remove_port(efx);
  802. return rc;
  803. }
  804. static int efx_init_port(struct efx_nic *efx)
  805. {
  806. int rc;
  807. netif_dbg(efx, drv, efx->net_dev, "init port\n");
  808. mutex_lock(&efx->mac_lock);
  809. rc = efx->phy_op->init(efx);
  810. if (rc)
  811. goto fail1;
  812. efx->port_initialized = true;
  813. /* Reconfigure the MAC before creating dma queues (required for
  814. * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
  815. efx->mac_op->reconfigure(efx);
  816. /* Ensure the PHY advertises the correct flow control settings */
  817. rc = efx->phy_op->reconfigure(efx);
  818. if (rc)
  819. goto fail2;
  820. mutex_unlock(&efx->mac_lock);
  821. return 0;
  822. fail2:
  823. efx->phy_op->fini(efx);
  824. fail1:
  825. mutex_unlock(&efx->mac_lock);
  826. return rc;
  827. }
  828. static void efx_start_port(struct efx_nic *efx)
  829. {
  830. netif_dbg(efx, ifup, efx->net_dev, "start port\n");
  831. BUG_ON(efx->port_enabled);
  832. mutex_lock(&efx->mac_lock);
  833. efx->port_enabled = true;
  834. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  835. * and then cancelled by efx_flush_all() */
  836. efx->type->push_multicast_hash(efx);
  837. efx->mac_op->reconfigure(efx);
  838. mutex_unlock(&efx->mac_lock);
  839. }
  840. /* Prevent efx_mac_work() and efx_monitor() from working */
  841. static void efx_stop_port(struct efx_nic *efx)
  842. {
  843. netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
  844. mutex_lock(&efx->mac_lock);
  845. efx->port_enabled = false;
  846. mutex_unlock(&efx->mac_lock);
  847. /* Serialise against efx_set_multicast_list() */
  848. if (efx_dev_registered(efx)) {
  849. netif_addr_lock_bh(efx->net_dev);
  850. netif_addr_unlock_bh(efx->net_dev);
  851. }
  852. }
  853. static void efx_fini_port(struct efx_nic *efx)
  854. {
  855. netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
  856. if (!efx->port_initialized)
  857. return;
  858. efx->phy_op->fini(efx);
  859. efx->port_initialized = false;
  860. efx->link_state.up = false;
  861. efx_link_status_changed(efx);
  862. }
  863. static void efx_remove_port(struct efx_nic *efx)
  864. {
  865. netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
  866. efx->type->remove_port(efx);
  867. }
  868. /**************************************************************************
  869. *
  870. * NIC handling
  871. *
  872. **************************************************************************/
  873. /* This configures the PCI device to enable I/O and DMA. */
  874. static int efx_init_io(struct efx_nic *efx)
  875. {
  876. struct pci_dev *pci_dev = efx->pci_dev;
  877. dma_addr_t dma_mask = efx->type->max_dma_mask;
  878. int rc;
  879. netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
  880. rc = pci_enable_device(pci_dev);
  881. if (rc) {
  882. netif_err(efx, probe, efx->net_dev,
  883. "failed to enable PCI device\n");
  884. goto fail1;
  885. }
  886. pci_set_master(pci_dev);
  887. /* Set the PCI DMA mask. Try all possibilities from our
  888. * genuine mask down to 32 bits, because some architectures
  889. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  890. * masks event though they reject 46 bit masks.
  891. */
  892. while (dma_mask > 0x7fffffffUL) {
  893. if (pci_dma_supported(pci_dev, dma_mask) &&
  894. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  895. break;
  896. dma_mask >>= 1;
  897. }
  898. if (rc) {
  899. netif_err(efx, probe, efx->net_dev,
  900. "could not find a suitable DMA mask\n");
  901. goto fail2;
  902. }
  903. netif_dbg(efx, probe, efx->net_dev,
  904. "using DMA mask %llx\n", (unsigned long long) dma_mask);
  905. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  906. if (rc) {
  907. /* pci_set_consistent_dma_mask() is not *allowed* to
  908. * fail with a mask that pci_set_dma_mask() accepted,
  909. * but just in case...
  910. */
  911. netif_err(efx, probe, efx->net_dev,
  912. "failed to set consistent DMA mask\n");
  913. goto fail2;
  914. }
  915. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  916. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  917. if (rc) {
  918. netif_err(efx, probe, efx->net_dev,
  919. "request for memory BAR failed\n");
  920. rc = -EIO;
  921. goto fail3;
  922. }
  923. efx->membase = ioremap_nocache(efx->membase_phys,
  924. efx->type->mem_map_size);
  925. if (!efx->membase) {
  926. netif_err(efx, probe, efx->net_dev,
  927. "could not map memory BAR at %llx+%x\n",
  928. (unsigned long long)efx->membase_phys,
  929. efx->type->mem_map_size);
  930. rc = -ENOMEM;
  931. goto fail4;
  932. }
  933. netif_dbg(efx, probe, efx->net_dev,
  934. "memory BAR at %llx+%x (virtual %p)\n",
  935. (unsigned long long)efx->membase_phys,
  936. efx->type->mem_map_size, efx->membase);
  937. return 0;
  938. fail4:
  939. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  940. fail3:
  941. efx->membase_phys = 0;
  942. fail2:
  943. pci_disable_device(efx->pci_dev);
  944. fail1:
  945. return rc;
  946. }
  947. static void efx_fini_io(struct efx_nic *efx)
  948. {
  949. netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
  950. if (efx->membase) {
  951. iounmap(efx->membase);
  952. efx->membase = NULL;
  953. }
  954. if (efx->membase_phys) {
  955. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  956. efx->membase_phys = 0;
  957. }
  958. pci_disable_device(efx->pci_dev);
  959. }
  960. /* Get number of channels wanted. Each channel will have its own IRQ,
  961. * 1 RX queue and/or 2 TX queues. */
  962. static int efx_wanted_channels(void)
  963. {
  964. cpumask_var_t core_mask;
  965. int count;
  966. int cpu;
  967. if (rss_cpus)
  968. return rss_cpus;
  969. if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
  970. printk(KERN_WARNING
  971. "sfc: RSS disabled due to allocation failure\n");
  972. return 1;
  973. }
  974. count = 0;
  975. for_each_online_cpu(cpu) {
  976. if (!cpumask_test_cpu(cpu, core_mask)) {
  977. ++count;
  978. cpumask_or(core_mask, core_mask,
  979. topology_core_cpumask(cpu));
  980. }
  981. }
  982. free_cpumask_var(core_mask);
  983. return count;
  984. }
  985. static int
  986. efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
  987. {
  988. #ifdef CONFIG_RFS_ACCEL
  989. int i, rc;
  990. efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
  991. if (!efx->net_dev->rx_cpu_rmap)
  992. return -ENOMEM;
  993. for (i = 0; i < efx->n_rx_channels; i++) {
  994. rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
  995. xentries[i].vector);
  996. if (rc) {
  997. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  998. efx->net_dev->rx_cpu_rmap = NULL;
  999. return rc;
  1000. }
  1001. }
  1002. #endif
  1003. return 0;
  1004. }
  1005. /* Probe the number and type of interrupts we are able to obtain, and
  1006. * the resulting numbers of channels and RX queues.
  1007. */
  1008. static int efx_probe_interrupts(struct efx_nic *efx)
  1009. {
  1010. int max_channels =
  1011. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  1012. int rc, i;
  1013. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  1014. struct msix_entry xentries[EFX_MAX_CHANNELS];
  1015. int n_channels;
  1016. n_channels = efx_wanted_channels();
  1017. if (separate_tx_channels)
  1018. n_channels *= 2;
  1019. n_channels = min(n_channels, max_channels);
  1020. for (i = 0; i < n_channels; i++)
  1021. xentries[i].entry = i;
  1022. rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
  1023. if (rc > 0) {
  1024. netif_err(efx, drv, efx->net_dev,
  1025. "WARNING: Insufficient MSI-X vectors"
  1026. " available (%d < %d).\n", rc, n_channels);
  1027. netif_err(efx, drv, efx->net_dev,
  1028. "WARNING: Performance may be reduced.\n");
  1029. EFX_BUG_ON_PARANOID(rc >= n_channels);
  1030. n_channels = rc;
  1031. rc = pci_enable_msix(efx->pci_dev, xentries,
  1032. n_channels);
  1033. }
  1034. if (rc == 0) {
  1035. efx->n_channels = n_channels;
  1036. if (separate_tx_channels) {
  1037. efx->n_tx_channels =
  1038. max(efx->n_channels / 2, 1U);
  1039. efx->n_rx_channels =
  1040. max(efx->n_channels -
  1041. efx->n_tx_channels, 1U);
  1042. } else {
  1043. efx->n_tx_channels = efx->n_channels;
  1044. efx->n_rx_channels = efx->n_channels;
  1045. }
  1046. rc = efx_init_rx_cpu_rmap(efx, xentries);
  1047. if (rc) {
  1048. pci_disable_msix(efx->pci_dev);
  1049. return rc;
  1050. }
  1051. for (i = 0; i < n_channels; i++)
  1052. efx_get_channel(efx, i)->irq =
  1053. xentries[i].vector;
  1054. } else {
  1055. /* Fall back to single channel MSI */
  1056. efx->interrupt_mode = EFX_INT_MODE_MSI;
  1057. netif_err(efx, drv, efx->net_dev,
  1058. "could not enable MSI-X\n");
  1059. }
  1060. }
  1061. /* Try single interrupt MSI */
  1062. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  1063. efx->n_channels = 1;
  1064. efx->n_rx_channels = 1;
  1065. efx->n_tx_channels = 1;
  1066. rc = pci_enable_msi(efx->pci_dev);
  1067. if (rc == 0) {
  1068. efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
  1069. } else {
  1070. netif_err(efx, drv, efx->net_dev,
  1071. "could not enable MSI\n");
  1072. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  1073. }
  1074. }
  1075. /* Assume legacy interrupts */
  1076. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  1077. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  1078. efx->n_rx_channels = 1;
  1079. efx->n_tx_channels = 1;
  1080. efx->legacy_irq = efx->pci_dev->irq;
  1081. }
  1082. return 0;
  1083. }
  1084. static void efx_remove_interrupts(struct efx_nic *efx)
  1085. {
  1086. struct efx_channel *channel;
  1087. /* Remove MSI/MSI-X interrupts */
  1088. efx_for_each_channel(channel, efx)
  1089. channel->irq = 0;
  1090. pci_disable_msi(efx->pci_dev);
  1091. pci_disable_msix(efx->pci_dev);
  1092. /* Remove legacy interrupt */
  1093. efx->legacy_irq = 0;
  1094. }
  1095. static void efx_set_channels(struct efx_nic *efx)
  1096. {
  1097. struct efx_channel *channel;
  1098. struct efx_tx_queue *tx_queue;
  1099. efx->tx_channel_offset =
  1100. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1101. /* We need to adjust the TX queue numbers if we have separate
  1102. * RX-only and TX-only channels.
  1103. */
  1104. efx_for_each_channel(channel, efx) {
  1105. efx_for_each_channel_tx_queue(tx_queue, channel)
  1106. tx_queue->queue -= (efx->tx_channel_offset *
  1107. EFX_TXQ_TYPES);
  1108. }
  1109. }
  1110. static int efx_probe_nic(struct efx_nic *efx)
  1111. {
  1112. size_t i;
  1113. int rc;
  1114. netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
  1115. /* Carry out hardware-type specific initialisation */
  1116. rc = efx->type->probe(efx);
  1117. if (rc)
  1118. return rc;
  1119. /* Determine the number of channels and queues by trying to hook
  1120. * in MSI-X interrupts. */
  1121. rc = efx_probe_interrupts(efx);
  1122. if (rc)
  1123. goto fail;
  1124. if (efx->n_channels > 1)
  1125. get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
  1126. for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
  1127. efx->rx_indir_table[i] =
  1128. ethtool_rxfh_indir_default(i, efx->n_rx_channels);
  1129. efx_set_channels(efx);
  1130. netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
  1131. netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
  1132. /* Initialise the interrupt moderation settings */
  1133. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
  1134. true);
  1135. return 0;
  1136. fail:
  1137. efx->type->remove(efx);
  1138. return rc;
  1139. }
  1140. static void efx_remove_nic(struct efx_nic *efx)
  1141. {
  1142. netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
  1143. efx_remove_interrupts(efx);
  1144. efx->type->remove(efx);
  1145. }
  1146. /**************************************************************************
  1147. *
  1148. * NIC startup/shutdown
  1149. *
  1150. *************************************************************************/
  1151. static int efx_probe_all(struct efx_nic *efx)
  1152. {
  1153. int rc;
  1154. rc = efx_probe_nic(efx);
  1155. if (rc) {
  1156. netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
  1157. goto fail1;
  1158. }
  1159. rc = efx_probe_port(efx);
  1160. if (rc) {
  1161. netif_err(efx, probe, efx->net_dev, "failed to create port\n");
  1162. goto fail2;
  1163. }
  1164. efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
  1165. rc = efx_probe_channels(efx);
  1166. if (rc)
  1167. goto fail3;
  1168. rc = efx_probe_filters(efx);
  1169. if (rc) {
  1170. netif_err(efx, probe, efx->net_dev,
  1171. "failed to create filter tables\n");
  1172. goto fail4;
  1173. }
  1174. return 0;
  1175. fail4:
  1176. efx_remove_channels(efx);
  1177. fail3:
  1178. efx_remove_port(efx);
  1179. fail2:
  1180. efx_remove_nic(efx);
  1181. fail1:
  1182. return rc;
  1183. }
  1184. /* Called after previous invocation(s) of efx_stop_all, restarts the
  1185. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  1186. * and ensures that the port is scheduled to be reconfigured.
  1187. * This function is safe to call multiple times when the NIC is in any
  1188. * state. */
  1189. static void efx_start_all(struct efx_nic *efx)
  1190. {
  1191. struct efx_channel *channel;
  1192. EFX_ASSERT_RESET_SERIALISED(efx);
  1193. /* Check that it is appropriate to restart the interface. All
  1194. * of these flags are safe to read under just the rtnl lock */
  1195. if (efx->port_enabled)
  1196. return;
  1197. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  1198. return;
  1199. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  1200. return;
  1201. /* Mark the port as enabled so port reconfigurations can start, then
  1202. * restart the transmit interface early so the watchdog timer stops */
  1203. efx_start_port(efx);
  1204. if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
  1205. netif_tx_wake_all_queues(efx->net_dev);
  1206. efx_for_each_channel(channel, efx)
  1207. efx_start_channel(channel);
  1208. if (efx->legacy_irq)
  1209. efx->legacy_irq_enabled = true;
  1210. efx_nic_enable_interrupts(efx);
  1211. /* Switch to event based MCDI completions after enabling interrupts.
  1212. * If a reset has been scheduled, then we need to stay in polled mode.
  1213. * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
  1214. * reset_pending [modified from an atomic context], we instead guarantee
  1215. * that efx_mcdi_mode_poll() isn't reverted erroneously */
  1216. efx_mcdi_mode_event(efx);
  1217. if (efx->reset_pending)
  1218. efx_mcdi_mode_poll(efx);
  1219. /* Start the hardware monitor if there is one. Otherwise (we're link
  1220. * event driven), we have to poll the PHY because after an event queue
  1221. * flush, we could have a missed a link state change */
  1222. if (efx->type->monitor != NULL) {
  1223. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1224. efx_monitor_interval);
  1225. } else {
  1226. mutex_lock(&efx->mac_lock);
  1227. if (efx->phy_op->poll(efx))
  1228. efx_link_status_changed(efx);
  1229. mutex_unlock(&efx->mac_lock);
  1230. }
  1231. efx->type->start_stats(efx);
  1232. }
  1233. /* Flush all delayed work. Should only be called when no more delayed work
  1234. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  1235. * since we're holding the rtnl_lock at this point. */
  1236. static void efx_flush_all(struct efx_nic *efx)
  1237. {
  1238. /* Make sure the hardware monitor is stopped */
  1239. cancel_delayed_work_sync(&efx->monitor_work);
  1240. /* Stop scheduled port reconfigurations */
  1241. cancel_work_sync(&efx->mac_work);
  1242. }
  1243. /* Quiesce hardware and software without bringing the link down.
  1244. * Safe to call multiple times, when the nic and interface is in any
  1245. * state. The caller is guaranteed to subsequently be in a position
  1246. * to modify any hardware and software state they see fit without
  1247. * taking locks. */
  1248. static void efx_stop_all(struct efx_nic *efx)
  1249. {
  1250. struct efx_channel *channel;
  1251. EFX_ASSERT_RESET_SERIALISED(efx);
  1252. /* port_enabled can be read safely under the rtnl lock */
  1253. if (!efx->port_enabled)
  1254. return;
  1255. efx->type->stop_stats(efx);
  1256. /* Switch to MCDI polling on Siena before disabling interrupts */
  1257. efx_mcdi_mode_poll(efx);
  1258. /* Disable interrupts and wait for ISR to complete */
  1259. efx_nic_disable_interrupts(efx);
  1260. if (efx->legacy_irq) {
  1261. synchronize_irq(efx->legacy_irq);
  1262. efx->legacy_irq_enabled = false;
  1263. }
  1264. efx_for_each_channel(channel, efx) {
  1265. if (channel->irq)
  1266. synchronize_irq(channel->irq);
  1267. }
  1268. /* Stop all NAPI processing and synchronous rx refills */
  1269. efx_for_each_channel(channel, efx)
  1270. efx_stop_channel(channel);
  1271. /* Stop all asynchronous port reconfigurations. Since all
  1272. * event processing has already been stopped, there is no
  1273. * window to loose phy events */
  1274. efx_stop_port(efx);
  1275. /* Flush efx_mac_work(), refill_workqueue, monitor_work */
  1276. efx_flush_all(efx);
  1277. /* Stop the kernel transmit interface late, so the watchdog
  1278. * timer isn't ticking over the flush */
  1279. if (efx_dev_registered(efx)) {
  1280. netif_tx_stop_all_queues(efx->net_dev);
  1281. netif_tx_lock_bh(efx->net_dev);
  1282. netif_tx_unlock_bh(efx->net_dev);
  1283. }
  1284. }
  1285. static void efx_remove_all(struct efx_nic *efx)
  1286. {
  1287. efx_remove_filters(efx);
  1288. efx_remove_channels(efx);
  1289. efx_remove_port(efx);
  1290. efx_remove_nic(efx);
  1291. }
  1292. /**************************************************************************
  1293. *
  1294. * Interrupt moderation
  1295. *
  1296. **************************************************************************/
  1297. static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution)
  1298. {
  1299. if (usecs == 0)
  1300. return 0;
  1301. if (usecs < resolution)
  1302. return 1; /* never round down to 0 */
  1303. return usecs / resolution;
  1304. }
  1305. /* Set interrupt moderation parameters */
  1306. int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
  1307. unsigned int rx_usecs, bool rx_adaptive,
  1308. bool rx_may_override_tx)
  1309. {
  1310. struct efx_channel *channel;
  1311. unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1312. unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1313. EFX_ASSERT_RESET_SERIALISED(efx);
  1314. if (tx_ticks > EFX_IRQ_MOD_MAX || rx_ticks > EFX_IRQ_MOD_MAX)
  1315. return -EINVAL;
  1316. if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
  1317. !rx_may_override_tx) {
  1318. netif_err(efx, drv, efx->net_dev, "Channels are shared. "
  1319. "RX and TX IRQ moderation must be equal\n");
  1320. return -EINVAL;
  1321. }
  1322. efx->irq_rx_adaptive = rx_adaptive;
  1323. efx->irq_rx_moderation = rx_ticks;
  1324. efx_for_each_channel(channel, efx) {
  1325. if (efx_channel_has_rx_queue(channel))
  1326. channel->irq_moderation = rx_ticks;
  1327. else if (efx_channel_has_tx_queues(channel))
  1328. channel->irq_moderation = tx_ticks;
  1329. }
  1330. return 0;
  1331. }
  1332. void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
  1333. unsigned int *rx_usecs, bool *rx_adaptive)
  1334. {
  1335. *rx_adaptive = efx->irq_rx_adaptive;
  1336. *rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION;
  1337. /* If channels are shared between RX and TX, so is IRQ
  1338. * moderation. Otherwise, IRQ moderation is the same for all
  1339. * TX channels and is not adaptive.
  1340. */
  1341. if (efx->tx_channel_offset == 0)
  1342. *tx_usecs = *rx_usecs;
  1343. else
  1344. *tx_usecs =
  1345. efx->channel[efx->tx_channel_offset]->irq_moderation *
  1346. EFX_IRQ_MOD_RESOLUTION;
  1347. }
  1348. /**************************************************************************
  1349. *
  1350. * Hardware monitor
  1351. *
  1352. **************************************************************************/
  1353. /* Run periodically off the general workqueue */
  1354. static void efx_monitor(struct work_struct *data)
  1355. {
  1356. struct efx_nic *efx = container_of(data, struct efx_nic,
  1357. monitor_work.work);
  1358. netif_vdbg(efx, timer, efx->net_dev,
  1359. "hardware monitor executing on CPU %d\n",
  1360. raw_smp_processor_id());
  1361. BUG_ON(efx->type->monitor == NULL);
  1362. /* If the mac_lock is already held then it is likely a port
  1363. * reconfiguration is already in place, which will likely do
  1364. * most of the work of monitor() anyway. */
  1365. if (mutex_trylock(&efx->mac_lock)) {
  1366. if (efx->port_enabled)
  1367. efx->type->monitor(efx);
  1368. mutex_unlock(&efx->mac_lock);
  1369. }
  1370. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1371. efx_monitor_interval);
  1372. }
  1373. /**************************************************************************
  1374. *
  1375. * ioctls
  1376. *
  1377. *************************************************************************/
  1378. /* Net device ioctl
  1379. * Context: process, rtnl_lock() held.
  1380. */
  1381. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1382. {
  1383. struct efx_nic *efx = netdev_priv(net_dev);
  1384. struct mii_ioctl_data *data = if_mii(ifr);
  1385. EFX_ASSERT_RESET_SERIALISED(efx);
  1386. /* Convert phy_id from older PRTAD/DEVAD format */
  1387. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1388. (data->phy_id & 0xfc00) == 0x0400)
  1389. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1390. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1391. }
  1392. /**************************************************************************
  1393. *
  1394. * NAPI interface
  1395. *
  1396. **************************************************************************/
  1397. static void efx_init_napi(struct efx_nic *efx)
  1398. {
  1399. struct efx_channel *channel;
  1400. efx_for_each_channel(channel, efx) {
  1401. channel->napi_dev = efx->net_dev;
  1402. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1403. efx_poll, napi_weight);
  1404. }
  1405. }
  1406. static void efx_fini_napi_channel(struct efx_channel *channel)
  1407. {
  1408. if (channel->napi_dev)
  1409. netif_napi_del(&channel->napi_str);
  1410. channel->napi_dev = NULL;
  1411. }
  1412. static void efx_fini_napi(struct efx_nic *efx)
  1413. {
  1414. struct efx_channel *channel;
  1415. efx_for_each_channel(channel, efx)
  1416. efx_fini_napi_channel(channel);
  1417. }
  1418. /**************************************************************************
  1419. *
  1420. * Kernel netpoll interface
  1421. *
  1422. *************************************************************************/
  1423. #ifdef CONFIG_NET_POLL_CONTROLLER
  1424. /* Although in the common case interrupts will be disabled, this is not
  1425. * guaranteed. However, all our work happens inside the NAPI callback,
  1426. * so no locking is required.
  1427. */
  1428. static void efx_netpoll(struct net_device *net_dev)
  1429. {
  1430. struct efx_nic *efx = netdev_priv(net_dev);
  1431. struct efx_channel *channel;
  1432. efx_for_each_channel(channel, efx)
  1433. efx_schedule_channel(channel);
  1434. }
  1435. #endif
  1436. /**************************************************************************
  1437. *
  1438. * Kernel net device interface
  1439. *
  1440. *************************************************************************/
  1441. /* Context: process, rtnl_lock() held. */
  1442. static int efx_net_open(struct net_device *net_dev)
  1443. {
  1444. struct efx_nic *efx = netdev_priv(net_dev);
  1445. EFX_ASSERT_RESET_SERIALISED(efx);
  1446. netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
  1447. raw_smp_processor_id());
  1448. if (efx->state == STATE_DISABLED)
  1449. return -EIO;
  1450. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1451. return -EBUSY;
  1452. if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
  1453. return -EIO;
  1454. /* Notify the kernel of the link state polled during driver load,
  1455. * before the monitor starts running */
  1456. efx_link_status_changed(efx);
  1457. efx_start_all(efx);
  1458. return 0;
  1459. }
  1460. /* Context: process, rtnl_lock() held.
  1461. * Note that the kernel will ignore our return code; this method
  1462. * should really be a void.
  1463. */
  1464. static int efx_net_stop(struct net_device *net_dev)
  1465. {
  1466. struct efx_nic *efx = netdev_priv(net_dev);
  1467. netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
  1468. raw_smp_processor_id());
  1469. if (efx->state != STATE_DISABLED) {
  1470. /* Stop the device and flush all the channels */
  1471. efx_stop_all(efx);
  1472. efx_fini_channels(efx);
  1473. efx_init_channels(efx);
  1474. }
  1475. return 0;
  1476. }
  1477. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1478. static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
  1479. {
  1480. struct efx_nic *efx = netdev_priv(net_dev);
  1481. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1482. spin_lock_bh(&efx->stats_lock);
  1483. efx->type->update_stats(efx);
  1484. spin_unlock_bh(&efx->stats_lock);
  1485. stats->rx_packets = mac_stats->rx_packets;
  1486. stats->tx_packets = mac_stats->tx_packets;
  1487. stats->rx_bytes = mac_stats->rx_bytes;
  1488. stats->tx_bytes = mac_stats->tx_bytes;
  1489. stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
  1490. stats->multicast = mac_stats->rx_multicast;
  1491. stats->collisions = mac_stats->tx_collision;
  1492. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1493. mac_stats->rx_length_error);
  1494. stats->rx_crc_errors = mac_stats->rx_bad;
  1495. stats->rx_frame_errors = mac_stats->rx_align_error;
  1496. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1497. stats->rx_missed_errors = mac_stats->rx_missed;
  1498. stats->tx_window_errors = mac_stats->tx_late_collision;
  1499. stats->rx_errors = (stats->rx_length_errors +
  1500. stats->rx_crc_errors +
  1501. stats->rx_frame_errors +
  1502. mac_stats->rx_symbol_error);
  1503. stats->tx_errors = (stats->tx_window_errors +
  1504. mac_stats->tx_bad);
  1505. return stats;
  1506. }
  1507. /* Context: netif_tx_lock held, BHs disabled. */
  1508. static void efx_watchdog(struct net_device *net_dev)
  1509. {
  1510. struct efx_nic *efx = netdev_priv(net_dev);
  1511. netif_err(efx, tx_err, efx->net_dev,
  1512. "TX stuck with port_enabled=%d: resetting channels\n",
  1513. efx->port_enabled);
  1514. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1515. }
  1516. /* Context: process, rtnl_lock() held. */
  1517. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1518. {
  1519. struct efx_nic *efx = netdev_priv(net_dev);
  1520. int rc = 0;
  1521. EFX_ASSERT_RESET_SERIALISED(efx);
  1522. if (new_mtu > EFX_MAX_MTU)
  1523. return -EINVAL;
  1524. efx_stop_all(efx);
  1525. netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
  1526. efx_fini_channels(efx);
  1527. mutex_lock(&efx->mac_lock);
  1528. /* Reconfigure the MAC before enabling the dma queues so that
  1529. * the RX buffers don't overflow */
  1530. net_dev->mtu = new_mtu;
  1531. efx->mac_op->reconfigure(efx);
  1532. mutex_unlock(&efx->mac_lock);
  1533. efx_init_channels(efx);
  1534. efx_start_all(efx);
  1535. return rc;
  1536. }
  1537. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1538. {
  1539. struct efx_nic *efx = netdev_priv(net_dev);
  1540. struct sockaddr *addr = data;
  1541. char *new_addr = addr->sa_data;
  1542. EFX_ASSERT_RESET_SERIALISED(efx);
  1543. if (!is_valid_ether_addr(new_addr)) {
  1544. netif_err(efx, drv, efx->net_dev,
  1545. "invalid ethernet MAC address requested: %pM\n",
  1546. new_addr);
  1547. return -EINVAL;
  1548. }
  1549. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1550. /* Reconfigure the MAC */
  1551. mutex_lock(&efx->mac_lock);
  1552. efx->mac_op->reconfigure(efx);
  1553. mutex_unlock(&efx->mac_lock);
  1554. return 0;
  1555. }
  1556. /* Context: netif_addr_lock held, BHs disabled. */
  1557. static void efx_set_multicast_list(struct net_device *net_dev)
  1558. {
  1559. struct efx_nic *efx = netdev_priv(net_dev);
  1560. struct netdev_hw_addr *ha;
  1561. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1562. u32 crc;
  1563. int bit;
  1564. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1565. /* Build multicast hash table */
  1566. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1567. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1568. } else {
  1569. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1570. netdev_for_each_mc_addr(ha, net_dev) {
  1571. crc = ether_crc_le(ETH_ALEN, ha->addr);
  1572. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1573. set_bit_le(bit, mc_hash->byte);
  1574. }
  1575. /* Broadcast packets go through the multicast hash filter.
  1576. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1577. * so we always add bit 0xff to the mask.
  1578. */
  1579. set_bit_le(0xff, mc_hash->byte);
  1580. }
  1581. if (efx->port_enabled)
  1582. queue_work(efx->workqueue, &efx->mac_work);
  1583. /* Otherwise efx_start_port() will do this */
  1584. }
  1585. static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
  1586. {
  1587. struct efx_nic *efx = netdev_priv(net_dev);
  1588. /* If disabling RX n-tuple filtering, clear existing filters */
  1589. if (net_dev->features & ~data & NETIF_F_NTUPLE)
  1590. efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
  1591. return 0;
  1592. }
  1593. static const struct net_device_ops efx_netdev_ops = {
  1594. .ndo_open = efx_net_open,
  1595. .ndo_stop = efx_net_stop,
  1596. .ndo_get_stats64 = efx_net_stats,
  1597. .ndo_tx_timeout = efx_watchdog,
  1598. .ndo_start_xmit = efx_hard_start_xmit,
  1599. .ndo_validate_addr = eth_validate_addr,
  1600. .ndo_do_ioctl = efx_ioctl,
  1601. .ndo_change_mtu = efx_change_mtu,
  1602. .ndo_set_mac_address = efx_set_mac_address,
  1603. .ndo_set_rx_mode = efx_set_multicast_list,
  1604. .ndo_set_features = efx_set_features,
  1605. #ifdef CONFIG_NET_POLL_CONTROLLER
  1606. .ndo_poll_controller = efx_netpoll,
  1607. #endif
  1608. .ndo_setup_tc = efx_setup_tc,
  1609. #ifdef CONFIG_RFS_ACCEL
  1610. .ndo_rx_flow_steer = efx_filter_rfs,
  1611. #endif
  1612. };
  1613. static void efx_update_name(struct efx_nic *efx)
  1614. {
  1615. strcpy(efx->name, efx->net_dev->name);
  1616. efx_mtd_rename(efx);
  1617. efx_set_channel_names(efx);
  1618. }
  1619. static int efx_netdev_event(struct notifier_block *this,
  1620. unsigned long event, void *ptr)
  1621. {
  1622. struct net_device *net_dev = ptr;
  1623. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1624. event == NETDEV_CHANGENAME)
  1625. efx_update_name(netdev_priv(net_dev));
  1626. return NOTIFY_DONE;
  1627. }
  1628. static struct notifier_block efx_netdev_notifier = {
  1629. .notifier_call = efx_netdev_event,
  1630. };
  1631. static ssize_t
  1632. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1633. {
  1634. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1635. return sprintf(buf, "%d\n", efx->phy_type);
  1636. }
  1637. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1638. static int efx_register_netdev(struct efx_nic *efx)
  1639. {
  1640. struct net_device *net_dev = efx->net_dev;
  1641. struct efx_channel *channel;
  1642. int rc;
  1643. net_dev->watchdog_timeo = 5 * HZ;
  1644. net_dev->irq = efx->pci_dev->irq;
  1645. net_dev->netdev_ops = &efx_netdev_ops;
  1646. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1647. /* Clear MAC statistics */
  1648. efx->mac_op->update_stats(efx);
  1649. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1650. rtnl_lock();
  1651. rc = dev_alloc_name(net_dev, net_dev->name);
  1652. if (rc < 0)
  1653. goto fail_locked;
  1654. efx_update_name(efx);
  1655. rc = register_netdevice(net_dev);
  1656. if (rc)
  1657. goto fail_locked;
  1658. efx_for_each_channel(channel, efx) {
  1659. struct efx_tx_queue *tx_queue;
  1660. efx_for_each_channel_tx_queue(tx_queue, channel)
  1661. efx_init_tx_queue_core_txq(tx_queue);
  1662. }
  1663. /* Always start with carrier off; PHY events will detect the link */
  1664. netif_carrier_off(efx->net_dev);
  1665. rtnl_unlock();
  1666. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1667. if (rc) {
  1668. netif_err(efx, drv, efx->net_dev,
  1669. "failed to init net dev attributes\n");
  1670. goto fail_registered;
  1671. }
  1672. return 0;
  1673. fail_locked:
  1674. rtnl_unlock();
  1675. netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
  1676. return rc;
  1677. fail_registered:
  1678. unregister_netdev(net_dev);
  1679. return rc;
  1680. }
  1681. static void efx_unregister_netdev(struct efx_nic *efx)
  1682. {
  1683. struct efx_channel *channel;
  1684. struct efx_tx_queue *tx_queue;
  1685. if (!efx->net_dev)
  1686. return;
  1687. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1688. /* Free up any skbs still remaining. This has to happen before
  1689. * we try to unregister the netdev as running their destructors
  1690. * may be needed to get the device ref. count to 0. */
  1691. efx_for_each_channel(channel, efx) {
  1692. efx_for_each_channel_tx_queue(tx_queue, channel)
  1693. efx_release_tx_buffers(tx_queue);
  1694. }
  1695. if (efx_dev_registered(efx)) {
  1696. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1697. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1698. unregister_netdev(efx->net_dev);
  1699. }
  1700. }
  1701. /**************************************************************************
  1702. *
  1703. * Device reset and suspend
  1704. *
  1705. **************************************************************************/
  1706. /* Tears down the entire software state and most of the hardware state
  1707. * before reset. */
  1708. void efx_reset_down(struct efx_nic *efx, enum reset_type method)
  1709. {
  1710. EFX_ASSERT_RESET_SERIALISED(efx);
  1711. efx_stop_all(efx);
  1712. mutex_lock(&efx->mac_lock);
  1713. efx_fini_channels(efx);
  1714. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1715. efx->phy_op->fini(efx);
  1716. efx->type->fini(efx);
  1717. }
  1718. /* This function will always ensure that the locks acquired in
  1719. * efx_reset_down() are released. A failure return code indicates
  1720. * that we were unable to reinitialise the hardware, and the
  1721. * driver should be disabled. If ok is false, then the rx and tx
  1722. * engines are not restarted, pending a RESET_DISABLE. */
  1723. int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
  1724. {
  1725. int rc;
  1726. EFX_ASSERT_RESET_SERIALISED(efx);
  1727. rc = efx->type->init(efx);
  1728. if (rc) {
  1729. netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
  1730. goto fail;
  1731. }
  1732. if (!ok)
  1733. goto fail;
  1734. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1735. rc = efx->phy_op->init(efx);
  1736. if (rc)
  1737. goto fail;
  1738. if (efx->phy_op->reconfigure(efx))
  1739. netif_err(efx, drv, efx->net_dev,
  1740. "could not restore PHY settings\n");
  1741. }
  1742. efx->mac_op->reconfigure(efx);
  1743. efx_init_channels(efx);
  1744. efx_restore_filters(efx);
  1745. mutex_unlock(&efx->mac_lock);
  1746. efx_start_all(efx);
  1747. return 0;
  1748. fail:
  1749. efx->port_initialized = false;
  1750. mutex_unlock(&efx->mac_lock);
  1751. return rc;
  1752. }
  1753. /* Reset the NIC using the specified method. Note that the reset may
  1754. * fail, in which case the card will be left in an unusable state.
  1755. *
  1756. * Caller must hold the rtnl_lock.
  1757. */
  1758. int efx_reset(struct efx_nic *efx, enum reset_type method)
  1759. {
  1760. int rc, rc2;
  1761. bool disabled;
  1762. netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
  1763. RESET_TYPE(method));
  1764. netif_device_detach(efx->net_dev);
  1765. efx_reset_down(efx, method);
  1766. rc = efx->type->reset(efx, method);
  1767. if (rc) {
  1768. netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
  1769. goto out;
  1770. }
  1771. /* Clear flags for the scopes we covered. We assume the NIC and
  1772. * driver are now quiescent so that there is no race here.
  1773. */
  1774. efx->reset_pending &= -(1 << (method + 1));
  1775. /* Reinitialise bus-mastering, which may have been turned off before
  1776. * the reset was scheduled. This is still appropriate, even in the
  1777. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1778. * can respond to requests. */
  1779. pci_set_master(efx->pci_dev);
  1780. out:
  1781. /* Leave device stopped if necessary */
  1782. disabled = rc || method == RESET_TYPE_DISABLE;
  1783. rc2 = efx_reset_up(efx, method, !disabled);
  1784. if (rc2) {
  1785. disabled = true;
  1786. if (!rc)
  1787. rc = rc2;
  1788. }
  1789. if (disabled) {
  1790. dev_close(efx->net_dev);
  1791. netif_err(efx, drv, efx->net_dev, "has been disabled\n");
  1792. efx->state = STATE_DISABLED;
  1793. } else {
  1794. netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
  1795. netif_device_attach(efx->net_dev);
  1796. }
  1797. return rc;
  1798. }
  1799. /* The worker thread exists so that code that cannot sleep can
  1800. * schedule a reset for later.
  1801. */
  1802. static void efx_reset_work(struct work_struct *data)
  1803. {
  1804. struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
  1805. unsigned long pending = ACCESS_ONCE(efx->reset_pending);
  1806. if (!pending)
  1807. return;
  1808. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1809. * flags set so that efx_pci_probe_main will be retried */
  1810. if (efx->state != STATE_RUNNING) {
  1811. netif_info(efx, drv, efx->net_dev,
  1812. "scheduled reset quenched. NIC not RUNNING\n");
  1813. return;
  1814. }
  1815. rtnl_lock();
  1816. (void)efx_reset(efx, fls(pending) - 1);
  1817. rtnl_unlock();
  1818. }
  1819. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1820. {
  1821. enum reset_type method;
  1822. switch (type) {
  1823. case RESET_TYPE_INVISIBLE:
  1824. case RESET_TYPE_ALL:
  1825. case RESET_TYPE_WORLD:
  1826. case RESET_TYPE_DISABLE:
  1827. method = type;
  1828. netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
  1829. RESET_TYPE(method));
  1830. break;
  1831. default:
  1832. method = efx->type->map_reset_reason(type);
  1833. netif_dbg(efx, drv, efx->net_dev,
  1834. "scheduling %s reset for %s\n",
  1835. RESET_TYPE(method), RESET_TYPE(type));
  1836. break;
  1837. }
  1838. set_bit(method, &efx->reset_pending);
  1839. /* efx_process_channel() will no longer read events once a
  1840. * reset is scheduled. So switch back to poll'd MCDI completions. */
  1841. efx_mcdi_mode_poll(efx);
  1842. queue_work(reset_workqueue, &efx->reset_work);
  1843. }
  1844. /**************************************************************************
  1845. *
  1846. * List of NICs we support
  1847. *
  1848. **************************************************************************/
  1849. /* PCI device ID table */
  1850. static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
  1851. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
  1852. PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
  1853. .driver_data = (unsigned long) &falcon_a1_nic_type},
  1854. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
  1855. PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
  1856. .driver_data = (unsigned long) &falcon_b0_nic_type},
  1857. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
  1858. .driver_data = (unsigned long) &siena_a0_nic_type},
  1859. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
  1860. .driver_data = (unsigned long) &siena_a0_nic_type},
  1861. {0} /* end of list */
  1862. };
  1863. /**************************************************************************
  1864. *
  1865. * Dummy PHY/MAC operations
  1866. *
  1867. * Can be used for some unimplemented operations
  1868. * Needed so all function pointers are valid and do not have to be tested
  1869. * before use
  1870. *
  1871. **************************************************************************/
  1872. int efx_port_dummy_op_int(struct efx_nic *efx)
  1873. {
  1874. return 0;
  1875. }
  1876. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1877. static bool efx_port_dummy_op_poll(struct efx_nic *efx)
  1878. {
  1879. return false;
  1880. }
  1881. static const struct efx_phy_operations efx_dummy_phy_operations = {
  1882. .init = efx_port_dummy_op_int,
  1883. .reconfigure = efx_port_dummy_op_int,
  1884. .poll = efx_port_dummy_op_poll,
  1885. .fini = efx_port_dummy_op_void,
  1886. };
  1887. /**************************************************************************
  1888. *
  1889. * Data housekeeping
  1890. *
  1891. **************************************************************************/
  1892. /* This zeroes out and then fills in the invariants in a struct
  1893. * efx_nic (including all sub-structures).
  1894. */
  1895. static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
  1896. struct pci_dev *pci_dev, struct net_device *net_dev)
  1897. {
  1898. int i;
  1899. /* Initialise common structures */
  1900. memset(efx, 0, sizeof(*efx));
  1901. spin_lock_init(&efx->biu_lock);
  1902. #ifdef CONFIG_SFC_MTD
  1903. INIT_LIST_HEAD(&efx->mtd_list);
  1904. #endif
  1905. INIT_WORK(&efx->reset_work, efx_reset_work);
  1906. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1907. efx->pci_dev = pci_dev;
  1908. efx->msg_enable = debug;
  1909. efx->state = STATE_INIT;
  1910. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1911. efx->net_dev = net_dev;
  1912. spin_lock_init(&efx->stats_lock);
  1913. mutex_init(&efx->mac_lock);
  1914. efx->mac_op = type->default_mac_ops;
  1915. efx->phy_op = &efx_dummy_phy_operations;
  1916. efx->mdio.dev = net_dev;
  1917. INIT_WORK(&efx->mac_work, efx_mac_work);
  1918. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1919. efx->channel[i] = efx_alloc_channel(efx, i, NULL);
  1920. if (!efx->channel[i])
  1921. goto fail;
  1922. }
  1923. efx->type = type;
  1924. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1925. /* Higher numbered interrupt modes are less capable! */
  1926. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1927. interrupt_mode);
  1928. /* Would be good to use the net_dev name, but we're too early */
  1929. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1930. pci_name(pci_dev));
  1931. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1932. if (!efx->workqueue)
  1933. goto fail;
  1934. return 0;
  1935. fail:
  1936. efx_fini_struct(efx);
  1937. return -ENOMEM;
  1938. }
  1939. static void efx_fini_struct(struct efx_nic *efx)
  1940. {
  1941. int i;
  1942. for (i = 0; i < EFX_MAX_CHANNELS; i++)
  1943. kfree(efx->channel[i]);
  1944. if (efx->workqueue) {
  1945. destroy_workqueue(efx->workqueue);
  1946. efx->workqueue = NULL;
  1947. }
  1948. }
  1949. /**************************************************************************
  1950. *
  1951. * PCI interface
  1952. *
  1953. **************************************************************************/
  1954. /* Main body of final NIC shutdown code
  1955. * This is called only at module unload (or hotplug removal).
  1956. */
  1957. static void efx_pci_remove_main(struct efx_nic *efx)
  1958. {
  1959. #ifdef CONFIG_RFS_ACCEL
  1960. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  1961. efx->net_dev->rx_cpu_rmap = NULL;
  1962. #endif
  1963. efx_nic_fini_interrupt(efx);
  1964. efx_fini_channels(efx);
  1965. efx_fini_port(efx);
  1966. efx->type->fini(efx);
  1967. efx_fini_napi(efx);
  1968. efx_remove_all(efx);
  1969. }
  1970. /* Final NIC shutdown
  1971. * This is called only at module unload (or hotplug removal).
  1972. */
  1973. static void efx_pci_remove(struct pci_dev *pci_dev)
  1974. {
  1975. struct efx_nic *efx;
  1976. efx = pci_get_drvdata(pci_dev);
  1977. if (!efx)
  1978. return;
  1979. /* Mark the NIC as fini, then stop the interface */
  1980. rtnl_lock();
  1981. efx->state = STATE_FINI;
  1982. dev_close(efx->net_dev);
  1983. /* Allow any queued efx_resets() to complete */
  1984. rtnl_unlock();
  1985. efx_unregister_netdev(efx);
  1986. efx_mtd_remove(efx);
  1987. /* Wait for any scheduled resets to complete. No more will be
  1988. * scheduled from this point because efx_stop_all() has been
  1989. * called, we are no longer registered with driverlink, and
  1990. * the net_device's have been removed. */
  1991. cancel_work_sync(&efx->reset_work);
  1992. efx_pci_remove_main(efx);
  1993. efx_fini_io(efx);
  1994. netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
  1995. pci_set_drvdata(pci_dev, NULL);
  1996. efx_fini_struct(efx);
  1997. free_netdev(efx->net_dev);
  1998. };
  1999. /* Main body of NIC initialisation
  2000. * This is called at module load (or hotplug insertion, theoretically).
  2001. */
  2002. static int efx_pci_probe_main(struct efx_nic *efx)
  2003. {
  2004. int rc;
  2005. /* Do start-of-day initialisation */
  2006. rc = efx_probe_all(efx);
  2007. if (rc)
  2008. goto fail1;
  2009. efx_init_napi(efx);
  2010. rc = efx->type->init(efx);
  2011. if (rc) {
  2012. netif_err(efx, probe, efx->net_dev,
  2013. "failed to initialise NIC\n");
  2014. goto fail3;
  2015. }
  2016. rc = efx_init_port(efx);
  2017. if (rc) {
  2018. netif_err(efx, probe, efx->net_dev,
  2019. "failed to initialise port\n");
  2020. goto fail4;
  2021. }
  2022. efx_init_channels(efx);
  2023. rc = efx_nic_init_interrupt(efx);
  2024. if (rc)
  2025. goto fail5;
  2026. return 0;
  2027. fail5:
  2028. efx_fini_channels(efx);
  2029. efx_fini_port(efx);
  2030. fail4:
  2031. efx->type->fini(efx);
  2032. fail3:
  2033. efx_fini_napi(efx);
  2034. efx_remove_all(efx);
  2035. fail1:
  2036. return rc;
  2037. }
  2038. /* NIC initialisation
  2039. *
  2040. * This is called at module load (or hotplug insertion,
  2041. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  2042. * sets up and registers the network devices with the kernel and hooks
  2043. * the interrupt service routine. It does not prepare the device for
  2044. * transmission; this is left to the first time one of the network
  2045. * interfaces is brought up (i.e. efx_net_open).
  2046. */
  2047. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  2048. const struct pci_device_id *entry)
  2049. {
  2050. const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
  2051. struct net_device *net_dev;
  2052. struct efx_nic *efx;
  2053. int i, rc;
  2054. /* Allocate and initialise a struct net_device and struct efx_nic */
  2055. net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
  2056. EFX_MAX_RX_QUEUES);
  2057. if (!net_dev)
  2058. return -ENOMEM;
  2059. net_dev->features |= (type->offload_features | NETIF_F_SG |
  2060. NETIF_F_HIGHDMA | NETIF_F_TSO |
  2061. NETIF_F_RXCSUM);
  2062. if (type->offload_features & NETIF_F_V6_CSUM)
  2063. net_dev->features |= NETIF_F_TSO6;
  2064. /* Mask for features that also apply to VLAN devices */
  2065. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  2066. NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
  2067. NETIF_F_RXCSUM);
  2068. /* All offloads can be toggled */
  2069. net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
  2070. efx = netdev_priv(net_dev);
  2071. pci_set_drvdata(pci_dev, efx);
  2072. SET_NETDEV_DEV(net_dev, &pci_dev->dev);
  2073. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  2074. if (rc)
  2075. goto fail1;
  2076. netif_info(efx, probe, efx->net_dev,
  2077. "Solarflare NIC detected\n");
  2078. /* Set up basic I/O (BAR mappings etc) */
  2079. rc = efx_init_io(efx);
  2080. if (rc)
  2081. goto fail2;
  2082. /* No serialisation is required with the reset path because
  2083. * we're in STATE_INIT. */
  2084. for (i = 0; i < 5; i++) {
  2085. rc = efx_pci_probe_main(efx);
  2086. /* Serialise against efx_reset(). No more resets will be
  2087. * scheduled since efx_stop_all() has been called, and we
  2088. * have not and never have been registered with either
  2089. * the rtnetlink or driverlink layers. */
  2090. cancel_work_sync(&efx->reset_work);
  2091. if (rc == 0) {
  2092. if (efx->reset_pending) {
  2093. /* If there was a scheduled reset during
  2094. * probe, the NIC is probably hosed anyway */
  2095. efx_pci_remove_main(efx);
  2096. rc = -EIO;
  2097. } else {
  2098. break;
  2099. }
  2100. }
  2101. /* Retry if a recoverably reset event has been scheduled */
  2102. if (efx->reset_pending &
  2103. ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
  2104. !efx->reset_pending)
  2105. goto fail3;
  2106. efx->reset_pending = 0;
  2107. }
  2108. if (rc) {
  2109. netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
  2110. goto fail4;
  2111. }
  2112. /* Switch to the running state before we expose the device to the OS,
  2113. * so that dev_open()|efx_start_all() will actually start the device */
  2114. efx->state = STATE_RUNNING;
  2115. rc = efx_register_netdev(efx);
  2116. if (rc)
  2117. goto fail5;
  2118. netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
  2119. rtnl_lock();
  2120. efx_mtd_probe(efx); /* allowed to fail */
  2121. rtnl_unlock();
  2122. return 0;
  2123. fail5:
  2124. efx_pci_remove_main(efx);
  2125. fail4:
  2126. fail3:
  2127. efx_fini_io(efx);
  2128. fail2:
  2129. efx_fini_struct(efx);
  2130. fail1:
  2131. WARN_ON(rc > 0);
  2132. netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
  2133. free_netdev(net_dev);
  2134. return rc;
  2135. }
  2136. static int efx_pm_freeze(struct device *dev)
  2137. {
  2138. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2139. efx->state = STATE_FINI;
  2140. netif_device_detach(efx->net_dev);
  2141. efx_stop_all(efx);
  2142. efx_fini_channels(efx);
  2143. return 0;
  2144. }
  2145. static int efx_pm_thaw(struct device *dev)
  2146. {
  2147. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2148. efx->state = STATE_INIT;
  2149. efx_init_channels(efx);
  2150. mutex_lock(&efx->mac_lock);
  2151. efx->phy_op->reconfigure(efx);
  2152. mutex_unlock(&efx->mac_lock);
  2153. efx_start_all(efx);
  2154. netif_device_attach(efx->net_dev);
  2155. efx->state = STATE_RUNNING;
  2156. efx->type->resume_wol(efx);
  2157. /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
  2158. queue_work(reset_workqueue, &efx->reset_work);
  2159. return 0;
  2160. }
  2161. static int efx_pm_poweroff(struct device *dev)
  2162. {
  2163. struct pci_dev *pci_dev = to_pci_dev(dev);
  2164. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2165. efx->type->fini(efx);
  2166. efx->reset_pending = 0;
  2167. pci_save_state(pci_dev);
  2168. return pci_set_power_state(pci_dev, PCI_D3hot);
  2169. }
  2170. /* Used for both resume and restore */
  2171. static int efx_pm_resume(struct device *dev)
  2172. {
  2173. struct pci_dev *pci_dev = to_pci_dev(dev);
  2174. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2175. int rc;
  2176. rc = pci_set_power_state(pci_dev, PCI_D0);
  2177. if (rc)
  2178. return rc;
  2179. pci_restore_state(pci_dev);
  2180. rc = pci_enable_device(pci_dev);
  2181. if (rc)
  2182. return rc;
  2183. pci_set_master(efx->pci_dev);
  2184. rc = efx->type->reset(efx, RESET_TYPE_ALL);
  2185. if (rc)
  2186. return rc;
  2187. rc = efx->type->init(efx);
  2188. if (rc)
  2189. return rc;
  2190. efx_pm_thaw(dev);
  2191. return 0;
  2192. }
  2193. static int efx_pm_suspend(struct device *dev)
  2194. {
  2195. int rc;
  2196. efx_pm_freeze(dev);
  2197. rc = efx_pm_poweroff(dev);
  2198. if (rc)
  2199. efx_pm_resume(dev);
  2200. return rc;
  2201. }
  2202. static struct dev_pm_ops efx_pm_ops = {
  2203. .suspend = efx_pm_suspend,
  2204. .resume = efx_pm_resume,
  2205. .freeze = efx_pm_freeze,
  2206. .thaw = efx_pm_thaw,
  2207. .poweroff = efx_pm_poweroff,
  2208. .restore = efx_pm_resume,
  2209. };
  2210. static struct pci_driver efx_pci_driver = {
  2211. .name = KBUILD_MODNAME,
  2212. .id_table = efx_pci_table,
  2213. .probe = efx_pci_probe,
  2214. .remove = efx_pci_remove,
  2215. .driver.pm = &efx_pm_ops,
  2216. };
  2217. /**************************************************************************
  2218. *
  2219. * Kernel module interface
  2220. *
  2221. *************************************************************************/
  2222. module_param(interrupt_mode, uint, 0444);
  2223. MODULE_PARM_DESC(interrupt_mode,
  2224. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  2225. static int __init efx_init_module(void)
  2226. {
  2227. int rc;
  2228. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  2229. rc = register_netdevice_notifier(&efx_netdev_notifier);
  2230. if (rc)
  2231. goto err_notifier;
  2232. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  2233. if (!reset_workqueue) {
  2234. rc = -ENOMEM;
  2235. goto err_reset;
  2236. }
  2237. rc = pci_register_driver(&efx_pci_driver);
  2238. if (rc < 0)
  2239. goto err_pci;
  2240. return 0;
  2241. err_pci:
  2242. destroy_workqueue(reset_workqueue);
  2243. err_reset:
  2244. unregister_netdevice_notifier(&efx_netdev_notifier);
  2245. err_notifier:
  2246. return rc;
  2247. }
  2248. static void __exit efx_exit_module(void)
  2249. {
  2250. printk(KERN_INFO "Solarflare NET driver unloading\n");
  2251. pci_unregister_driver(&efx_pci_driver);
  2252. destroy_workqueue(reset_workqueue);
  2253. unregister_netdevice_notifier(&efx_netdev_notifier);
  2254. }
  2255. module_init(efx_init_module);
  2256. module_exit(efx_exit_module);
  2257. MODULE_AUTHOR("Solarflare Communications and "
  2258. "Michael Brown <mbrown@fensystems.co.uk>");
  2259. MODULE_DESCRIPTION("Solarflare Communications network driver");
  2260. MODULE_LICENSE("GPL");
  2261. MODULE_DEVICE_TABLE(pci, efx_pci_table);