korina.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/io.h>
  60. #include <asm/dma.h>
  61. #include <asm/mach-rc32434/rb.h>
  62. #include <asm/mach-rc32434/rc32434.h>
  63. #include <asm/mach-rc32434/eth.h>
  64. #include <asm/mach-rc32434/dma_v.h>
  65. #define DRV_NAME "korina"
  66. #define DRV_VERSION "0.10"
  67. #define DRV_RELDATE "04Mar2008"
  68. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  69. ((dev)->dev_addr[1]))
  70. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  71. ((dev)->dev_addr[3] << 16) | \
  72. ((dev)->dev_addr[4] << 8) | \
  73. ((dev)->dev_addr[5]))
  74. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  75. /* the following must be powers of two */
  76. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  77. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  78. /* KORINA_RBSIZE is the hardware's default maximum receive
  79. * frame size in bytes. Having this hardcoded means that there
  80. * is no support for MTU sizes greater than 1500. */
  81. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  82. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  83. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  84. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  85. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  86. #define TX_TIMEOUT (6000 * HZ / 1000)
  87. enum chain_status { desc_filled, desc_empty };
  88. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  89. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  90. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  91. /* Information that need to be kept for each board. */
  92. struct korina_private {
  93. struct eth_regs *eth_regs;
  94. struct dma_reg *rx_dma_regs;
  95. struct dma_reg *tx_dma_regs;
  96. struct dma_desc *td_ring; /* transmit descriptor ring */
  97. struct dma_desc *rd_ring; /* receive descriptor ring */
  98. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  99. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  100. int rx_next_done;
  101. int rx_chain_head;
  102. int rx_chain_tail;
  103. enum chain_status rx_chain_status;
  104. int tx_next_done;
  105. int tx_chain_head;
  106. int tx_chain_tail;
  107. enum chain_status tx_chain_status;
  108. int tx_count;
  109. int tx_full;
  110. int rx_irq;
  111. int tx_irq;
  112. int ovr_irq;
  113. int und_irq;
  114. spinlock_t lock; /* NIC xmit lock */
  115. int dma_halt_cnt;
  116. int dma_run_cnt;
  117. struct napi_struct napi;
  118. struct timer_list media_check_timer;
  119. struct mii_if_info mii_if;
  120. struct work_struct restart_task;
  121. struct net_device *dev;
  122. int phy_addr;
  123. };
  124. extern unsigned int idt_cpu_freq;
  125. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  126. {
  127. writel(0, &ch->dmandptr);
  128. writel(dma_addr, &ch->dmadptr);
  129. }
  130. static inline void korina_abort_dma(struct net_device *dev,
  131. struct dma_reg *ch)
  132. {
  133. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  134. writel(0x10, &ch->dmac);
  135. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  136. dev->trans_start = jiffies;
  137. writel(0, &ch->dmas);
  138. }
  139. writel(0, &ch->dmadptr);
  140. writel(0, &ch->dmandptr);
  141. }
  142. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  143. {
  144. writel(dma_addr, &ch->dmandptr);
  145. }
  146. static void korina_abort_tx(struct net_device *dev)
  147. {
  148. struct korina_private *lp = netdev_priv(dev);
  149. korina_abort_dma(dev, lp->tx_dma_regs);
  150. }
  151. static void korina_abort_rx(struct net_device *dev)
  152. {
  153. struct korina_private *lp = netdev_priv(dev);
  154. korina_abort_dma(dev, lp->rx_dma_regs);
  155. }
  156. static void korina_start_rx(struct korina_private *lp,
  157. struct dma_desc *rd)
  158. {
  159. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  160. }
  161. static void korina_chain_rx(struct korina_private *lp,
  162. struct dma_desc *rd)
  163. {
  164. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  165. }
  166. /* transmit packet */
  167. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  168. {
  169. struct korina_private *lp = netdev_priv(dev);
  170. unsigned long flags;
  171. u32 length;
  172. u32 chain_prev, chain_next;
  173. struct dma_desc *td;
  174. spin_lock_irqsave(&lp->lock, flags);
  175. td = &lp->td_ring[lp->tx_chain_tail];
  176. /* stop queue when full, drop pkts if queue already full */
  177. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  178. lp->tx_full = 1;
  179. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  180. netif_stop_queue(dev);
  181. else {
  182. dev->stats.tx_dropped++;
  183. dev_kfree_skb_any(skb);
  184. spin_unlock_irqrestore(&lp->lock, flags);
  185. return NETDEV_TX_BUSY;
  186. }
  187. }
  188. lp->tx_count++;
  189. lp->tx_skb[lp->tx_chain_tail] = skb;
  190. length = skb->len;
  191. dma_cache_wback((u32)skb->data, skb->len);
  192. /* Setup the transmit descriptor. */
  193. dma_cache_inv((u32) td, sizeof(*td));
  194. td->ca = CPHYSADDR(skb->data);
  195. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  196. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  197. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  198. if (lp->tx_chain_status == desc_empty) {
  199. /* Update tail */
  200. td->control = DMA_COUNT(length) |
  201. DMA_DESC_COF | DMA_DESC_IOF;
  202. /* Move tail */
  203. lp->tx_chain_tail = chain_next;
  204. /* Write to NDPTR */
  205. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  206. &lp->tx_dma_regs->dmandptr);
  207. /* Move head to tail */
  208. lp->tx_chain_head = lp->tx_chain_tail;
  209. } else {
  210. /* Update tail */
  211. td->control = DMA_COUNT(length) |
  212. DMA_DESC_COF | DMA_DESC_IOF;
  213. /* Link to prev */
  214. lp->td_ring[chain_prev].control &=
  215. ~DMA_DESC_COF;
  216. /* Link to prev */
  217. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  218. /* Move tail */
  219. lp->tx_chain_tail = chain_next;
  220. /* Write to NDPTR */
  221. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  222. &(lp->tx_dma_regs->dmandptr));
  223. /* Move head to tail */
  224. lp->tx_chain_head = lp->tx_chain_tail;
  225. lp->tx_chain_status = desc_empty;
  226. }
  227. } else {
  228. if (lp->tx_chain_status == desc_empty) {
  229. /* Update tail */
  230. td->control = DMA_COUNT(length) |
  231. DMA_DESC_COF | DMA_DESC_IOF;
  232. /* Move tail */
  233. lp->tx_chain_tail = chain_next;
  234. lp->tx_chain_status = desc_filled;
  235. } else {
  236. /* Update tail */
  237. td->control = DMA_COUNT(length) |
  238. DMA_DESC_COF | DMA_DESC_IOF;
  239. lp->td_ring[chain_prev].control &=
  240. ~DMA_DESC_COF;
  241. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  242. lp->tx_chain_tail = chain_next;
  243. }
  244. }
  245. dma_cache_wback((u32) td, sizeof(*td));
  246. dev->trans_start = jiffies;
  247. spin_unlock_irqrestore(&lp->lock, flags);
  248. return NETDEV_TX_OK;
  249. }
  250. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  251. {
  252. struct korina_private *lp = netdev_priv(dev);
  253. int ret;
  254. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  255. writel(0, &lp->eth_regs->miimcfg);
  256. writel(0, &lp->eth_regs->miimcmd);
  257. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  258. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  259. ret = (int)(readl(&lp->eth_regs->miimrdd));
  260. return ret;
  261. }
  262. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  263. {
  264. struct korina_private *lp = netdev_priv(dev);
  265. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  266. writel(0, &lp->eth_regs->miimcfg);
  267. writel(1, &lp->eth_regs->miimcmd);
  268. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  269. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  270. writel(val, &lp->eth_regs->miimwtd);
  271. }
  272. /* Ethernet Rx DMA interrupt */
  273. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  274. {
  275. struct net_device *dev = dev_id;
  276. struct korina_private *lp = netdev_priv(dev);
  277. u32 dmas, dmasm;
  278. irqreturn_t retval;
  279. dmas = readl(&lp->rx_dma_regs->dmas);
  280. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  281. dmasm = readl(&lp->rx_dma_regs->dmasm);
  282. writel(dmasm | (DMA_STAT_DONE |
  283. DMA_STAT_HALT | DMA_STAT_ERR),
  284. &lp->rx_dma_regs->dmasm);
  285. napi_schedule(&lp->napi);
  286. if (dmas & DMA_STAT_ERR)
  287. printk(KERN_ERR "%s: DMA error\n", dev->name);
  288. retval = IRQ_HANDLED;
  289. } else
  290. retval = IRQ_NONE;
  291. return retval;
  292. }
  293. static int korina_rx(struct net_device *dev, int limit)
  294. {
  295. struct korina_private *lp = netdev_priv(dev);
  296. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  297. struct sk_buff *skb, *skb_new;
  298. u8 *pkt_buf;
  299. u32 devcs, pkt_len, dmas;
  300. int count;
  301. dma_cache_inv((u32)rd, sizeof(*rd));
  302. for (count = 0; count < limit; count++) {
  303. skb = lp->rx_skb[lp->rx_next_done];
  304. skb_new = NULL;
  305. devcs = rd->devcs;
  306. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  307. break;
  308. /* Update statistics counters */
  309. if (devcs & ETH_RX_CRC)
  310. dev->stats.rx_crc_errors++;
  311. if (devcs & ETH_RX_LOR)
  312. dev->stats.rx_length_errors++;
  313. if (devcs & ETH_RX_LE)
  314. dev->stats.rx_length_errors++;
  315. if (devcs & ETH_RX_OVR)
  316. dev->stats.rx_fifo_errors++;
  317. if (devcs & ETH_RX_CV)
  318. dev->stats.rx_frame_errors++;
  319. if (devcs & ETH_RX_CES)
  320. dev->stats.rx_length_errors++;
  321. if (devcs & ETH_RX_MP)
  322. dev->stats.multicast++;
  323. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  324. /* check that this is a whole packet
  325. * WARNING: DMA_FD bit incorrectly set
  326. * in Rc32434 (errata ref #077) */
  327. dev->stats.rx_errors++;
  328. dev->stats.rx_dropped++;
  329. } else if ((devcs & ETH_RX_ROK)) {
  330. pkt_len = RCVPKT_LENGTH(devcs);
  331. /* must be the (first and) last
  332. * descriptor then */
  333. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  334. /* invalidate the cache */
  335. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  336. /* Malloc up new buffer. */
  337. skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  338. if (!skb_new)
  339. break;
  340. /* Do not count the CRC */
  341. skb_put(skb, pkt_len - 4);
  342. skb->protocol = eth_type_trans(skb, dev);
  343. /* Pass the packet to upper layers */
  344. netif_receive_skb(skb);
  345. dev->stats.rx_packets++;
  346. dev->stats.rx_bytes += pkt_len;
  347. /* Update the mcast stats */
  348. if (devcs & ETH_RX_MP)
  349. dev->stats.multicast++;
  350. lp->rx_skb[lp->rx_next_done] = skb_new;
  351. }
  352. rd->devcs = 0;
  353. /* Restore descriptor's curr_addr */
  354. if (skb_new)
  355. rd->ca = CPHYSADDR(skb_new->data);
  356. else
  357. rd->ca = CPHYSADDR(skb->data);
  358. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  359. DMA_DESC_COD | DMA_DESC_IOD;
  360. lp->rd_ring[(lp->rx_next_done - 1) &
  361. KORINA_RDS_MASK].control &=
  362. ~DMA_DESC_COD;
  363. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  364. dma_cache_wback((u32)rd, sizeof(*rd));
  365. rd = &lp->rd_ring[lp->rx_next_done];
  366. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  367. }
  368. dmas = readl(&lp->rx_dma_regs->dmas);
  369. if (dmas & DMA_STAT_HALT) {
  370. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  371. &lp->rx_dma_regs->dmas);
  372. lp->dma_halt_cnt++;
  373. rd->devcs = 0;
  374. skb = lp->rx_skb[lp->rx_next_done];
  375. rd->ca = CPHYSADDR(skb->data);
  376. dma_cache_wback((u32)rd, sizeof(*rd));
  377. korina_chain_rx(lp, rd);
  378. }
  379. return count;
  380. }
  381. static int korina_poll(struct napi_struct *napi, int budget)
  382. {
  383. struct korina_private *lp =
  384. container_of(napi, struct korina_private, napi);
  385. struct net_device *dev = lp->dev;
  386. int work_done;
  387. work_done = korina_rx(dev, budget);
  388. if (work_done < budget) {
  389. napi_complete(napi);
  390. writel(readl(&lp->rx_dma_regs->dmasm) &
  391. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  392. &lp->rx_dma_regs->dmasm);
  393. }
  394. return work_done;
  395. }
  396. /*
  397. * Set or clear the multicast filter for this adaptor.
  398. */
  399. static void korina_multicast_list(struct net_device *dev)
  400. {
  401. struct korina_private *lp = netdev_priv(dev);
  402. unsigned long flags;
  403. struct netdev_hw_addr *ha;
  404. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  405. int i;
  406. /* Set promiscuous mode */
  407. if (dev->flags & IFF_PROMISC)
  408. recognise |= ETH_ARC_PRO;
  409. else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
  410. /* All multicast and broadcast */
  411. recognise |= ETH_ARC_AM;
  412. /* Build the hash table */
  413. if (netdev_mc_count(dev) > 4) {
  414. u16 hash_table[4];
  415. u32 crc;
  416. for (i = 0; i < 4; i++)
  417. hash_table[i] = 0;
  418. netdev_for_each_mc_addr(ha, dev) {
  419. crc = ether_crc_le(6, ha->addr);
  420. crc >>= 26;
  421. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  422. }
  423. /* Accept filtered multicast */
  424. recognise |= ETH_ARC_AFM;
  425. /* Fill the MAC hash tables with their values */
  426. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  427. &lp->eth_regs->ethhash0);
  428. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  429. &lp->eth_regs->ethhash1);
  430. }
  431. spin_lock_irqsave(&lp->lock, flags);
  432. writel(recognise, &lp->eth_regs->etharc);
  433. spin_unlock_irqrestore(&lp->lock, flags);
  434. }
  435. static void korina_tx(struct net_device *dev)
  436. {
  437. struct korina_private *lp = netdev_priv(dev);
  438. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  439. u32 devcs;
  440. u32 dmas;
  441. spin_lock(&lp->lock);
  442. /* Process all desc that are done */
  443. while (IS_DMA_FINISHED(td->control)) {
  444. if (lp->tx_full == 1) {
  445. netif_wake_queue(dev);
  446. lp->tx_full = 0;
  447. }
  448. devcs = lp->td_ring[lp->tx_next_done].devcs;
  449. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  450. (ETH_TX_FD | ETH_TX_LD)) {
  451. dev->stats.tx_errors++;
  452. dev->stats.tx_dropped++;
  453. /* Should never happen */
  454. printk(KERN_ERR "%s: split tx ignored\n",
  455. dev->name);
  456. } else if (devcs & ETH_TX_TOK) {
  457. dev->stats.tx_packets++;
  458. dev->stats.tx_bytes +=
  459. lp->tx_skb[lp->tx_next_done]->len;
  460. } else {
  461. dev->stats.tx_errors++;
  462. dev->stats.tx_dropped++;
  463. /* Underflow */
  464. if (devcs & ETH_TX_UND)
  465. dev->stats.tx_fifo_errors++;
  466. /* Oversized frame */
  467. if (devcs & ETH_TX_OF)
  468. dev->stats.tx_aborted_errors++;
  469. /* Excessive deferrals */
  470. if (devcs & ETH_TX_ED)
  471. dev->stats.tx_carrier_errors++;
  472. /* Collisions: medium busy */
  473. if (devcs & ETH_TX_EC)
  474. dev->stats.collisions++;
  475. /* Late collision */
  476. if (devcs & ETH_TX_LC)
  477. dev->stats.tx_window_errors++;
  478. }
  479. /* We must always free the original skb */
  480. if (lp->tx_skb[lp->tx_next_done]) {
  481. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  482. lp->tx_skb[lp->tx_next_done] = NULL;
  483. }
  484. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  485. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  486. lp->td_ring[lp->tx_next_done].link = 0;
  487. lp->td_ring[lp->tx_next_done].ca = 0;
  488. lp->tx_count--;
  489. /* Go on to next transmission */
  490. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  491. td = &lp->td_ring[lp->tx_next_done];
  492. }
  493. /* Clear the DMA status register */
  494. dmas = readl(&lp->tx_dma_regs->dmas);
  495. writel(~dmas, &lp->tx_dma_regs->dmas);
  496. writel(readl(&lp->tx_dma_regs->dmasm) &
  497. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  498. &lp->tx_dma_regs->dmasm);
  499. spin_unlock(&lp->lock);
  500. }
  501. static irqreturn_t
  502. korina_tx_dma_interrupt(int irq, void *dev_id)
  503. {
  504. struct net_device *dev = dev_id;
  505. struct korina_private *lp = netdev_priv(dev);
  506. u32 dmas, dmasm;
  507. irqreturn_t retval;
  508. dmas = readl(&lp->tx_dma_regs->dmas);
  509. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  510. dmasm = readl(&lp->tx_dma_regs->dmasm);
  511. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  512. &lp->tx_dma_regs->dmasm);
  513. korina_tx(dev);
  514. if (lp->tx_chain_status == desc_filled &&
  515. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  516. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  517. &(lp->tx_dma_regs->dmandptr));
  518. lp->tx_chain_status = desc_empty;
  519. lp->tx_chain_head = lp->tx_chain_tail;
  520. dev->trans_start = jiffies;
  521. }
  522. if (dmas & DMA_STAT_ERR)
  523. printk(KERN_ERR "%s: DMA error\n", dev->name);
  524. retval = IRQ_HANDLED;
  525. } else
  526. retval = IRQ_NONE;
  527. return retval;
  528. }
  529. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  530. {
  531. struct korina_private *lp = netdev_priv(dev);
  532. mii_check_media(&lp->mii_if, 0, init_media);
  533. if (lp->mii_if.full_duplex)
  534. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  535. &lp->eth_regs->ethmac2);
  536. else
  537. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  538. &lp->eth_regs->ethmac2);
  539. }
  540. static void korina_poll_media(unsigned long data)
  541. {
  542. struct net_device *dev = (struct net_device *) data;
  543. struct korina_private *lp = netdev_priv(dev);
  544. korina_check_media(dev, 0);
  545. mod_timer(&lp->media_check_timer, jiffies + HZ);
  546. }
  547. static void korina_set_carrier(struct mii_if_info *mii)
  548. {
  549. if (mii->force_media) {
  550. /* autoneg is off: Link is always assumed to be up */
  551. if (!netif_carrier_ok(mii->dev))
  552. netif_carrier_on(mii->dev);
  553. } else /* Let MMI library update carrier status */
  554. korina_check_media(mii->dev, 0);
  555. }
  556. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  557. {
  558. struct korina_private *lp = netdev_priv(dev);
  559. struct mii_ioctl_data *data = if_mii(rq);
  560. int rc;
  561. if (!netif_running(dev))
  562. return -EINVAL;
  563. spin_lock_irq(&lp->lock);
  564. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  565. spin_unlock_irq(&lp->lock);
  566. korina_set_carrier(&lp->mii_if);
  567. return rc;
  568. }
  569. /* ethtool helpers */
  570. static void netdev_get_drvinfo(struct net_device *dev,
  571. struct ethtool_drvinfo *info)
  572. {
  573. struct korina_private *lp = netdev_priv(dev);
  574. strcpy(info->driver, DRV_NAME);
  575. strcpy(info->version, DRV_VERSION);
  576. strcpy(info->bus_info, lp->dev->name);
  577. }
  578. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  579. {
  580. struct korina_private *lp = netdev_priv(dev);
  581. int rc;
  582. spin_lock_irq(&lp->lock);
  583. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  584. spin_unlock_irq(&lp->lock);
  585. return rc;
  586. }
  587. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  588. {
  589. struct korina_private *lp = netdev_priv(dev);
  590. int rc;
  591. spin_lock_irq(&lp->lock);
  592. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  593. spin_unlock_irq(&lp->lock);
  594. korina_set_carrier(&lp->mii_if);
  595. return rc;
  596. }
  597. static u32 netdev_get_link(struct net_device *dev)
  598. {
  599. struct korina_private *lp = netdev_priv(dev);
  600. return mii_link_ok(&lp->mii_if);
  601. }
  602. static const struct ethtool_ops netdev_ethtool_ops = {
  603. .get_drvinfo = netdev_get_drvinfo,
  604. .get_settings = netdev_get_settings,
  605. .set_settings = netdev_set_settings,
  606. .get_link = netdev_get_link,
  607. };
  608. static int korina_alloc_ring(struct net_device *dev)
  609. {
  610. struct korina_private *lp = netdev_priv(dev);
  611. struct sk_buff *skb;
  612. int i;
  613. /* Initialize the transmit descriptors */
  614. for (i = 0; i < KORINA_NUM_TDS; i++) {
  615. lp->td_ring[i].control = DMA_DESC_IOF;
  616. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  617. lp->td_ring[i].ca = 0;
  618. lp->td_ring[i].link = 0;
  619. }
  620. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  621. lp->tx_full = lp->tx_count = 0;
  622. lp->tx_chain_status = desc_empty;
  623. /* Initialize the receive descriptors */
  624. for (i = 0; i < KORINA_NUM_RDS; i++) {
  625. skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  626. if (!skb)
  627. return -ENOMEM;
  628. lp->rx_skb[i] = skb;
  629. lp->rd_ring[i].control = DMA_DESC_IOD |
  630. DMA_COUNT(KORINA_RBSIZE);
  631. lp->rd_ring[i].devcs = 0;
  632. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  633. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  634. }
  635. /* loop back receive descriptors, so the last
  636. * descriptor points to the first one */
  637. lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
  638. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  639. lp->rx_next_done = 0;
  640. lp->rx_chain_head = 0;
  641. lp->rx_chain_tail = 0;
  642. lp->rx_chain_status = desc_empty;
  643. return 0;
  644. }
  645. static void korina_free_ring(struct net_device *dev)
  646. {
  647. struct korina_private *lp = netdev_priv(dev);
  648. int i;
  649. for (i = 0; i < KORINA_NUM_RDS; i++) {
  650. lp->rd_ring[i].control = 0;
  651. if (lp->rx_skb[i])
  652. dev_kfree_skb_any(lp->rx_skb[i]);
  653. lp->rx_skb[i] = NULL;
  654. }
  655. for (i = 0; i < KORINA_NUM_TDS; i++) {
  656. lp->td_ring[i].control = 0;
  657. if (lp->tx_skb[i])
  658. dev_kfree_skb_any(lp->tx_skb[i]);
  659. lp->tx_skb[i] = NULL;
  660. }
  661. }
  662. /*
  663. * Initialize the RC32434 ethernet controller.
  664. */
  665. static int korina_init(struct net_device *dev)
  666. {
  667. struct korina_private *lp = netdev_priv(dev);
  668. /* Disable DMA */
  669. korina_abort_tx(dev);
  670. korina_abort_rx(dev);
  671. /* reset ethernet logic */
  672. writel(0, &lp->eth_regs->ethintfc);
  673. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  674. dev->trans_start = jiffies;
  675. /* Enable Ethernet Interface */
  676. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  677. /* Allocate rings */
  678. if (korina_alloc_ring(dev)) {
  679. printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
  680. korina_free_ring(dev);
  681. return -ENOMEM;
  682. }
  683. writel(0, &lp->rx_dma_regs->dmas);
  684. /* Start Rx DMA */
  685. korina_start_rx(lp, &lp->rd_ring[0]);
  686. writel(readl(&lp->tx_dma_regs->dmasm) &
  687. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  688. &lp->tx_dma_regs->dmasm);
  689. writel(readl(&lp->rx_dma_regs->dmasm) &
  690. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  691. &lp->rx_dma_regs->dmasm);
  692. /* Accept only packets destined for this Ethernet device address */
  693. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  694. /* Set all Ether station address registers to their initial values */
  695. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  696. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  697. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  698. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  699. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  700. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  701. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  702. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  703. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  704. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  705. &lp->eth_regs->ethmac2);
  706. /* Back to back inter-packet-gap */
  707. writel(0x15, &lp->eth_regs->ethipgt);
  708. /* Non - Back to back inter-packet-gap */
  709. writel(0x12, &lp->eth_regs->ethipgr);
  710. /* Management Clock Prescaler Divisor
  711. * Clock independent setting */
  712. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  713. &lp->eth_regs->ethmcp);
  714. /* don't transmit until fifo contains 48b */
  715. writel(48, &lp->eth_regs->ethfifott);
  716. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  717. napi_enable(&lp->napi);
  718. netif_start_queue(dev);
  719. return 0;
  720. }
  721. /*
  722. * Restart the RC32434 ethernet controller.
  723. */
  724. static void korina_restart_task(struct work_struct *work)
  725. {
  726. struct korina_private *lp = container_of(work,
  727. struct korina_private, restart_task);
  728. struct net_device *dev = lp->dev;
  729. /*
  730. * Disable interrupts
  731. */
  732. disable_irq(lp->rx_irq);
  733. disable_irq(lp->tx_irq);
  734. disable_irq(lp->ovr_irq);
  735. disable_irq(lp->und_irq);
  736. writel(readl(&lp->tx_dma_regs->dmasm) |
  737. DMA_STAT_FINI | DMA_STAT_ERR,
  738. &lp->tx_dma_regs->dmasm);
  739. writel(readl(&lp->rx_dma_regs->dmasm) |
  740. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  741. &lp->rx_dma_regs->dmasm);
  742. korina_free_ring(dev);
  743. napi_disable(&lp->napi);
  744. if (korina_init(dev) < 0) {
  745. printk(KERN_ERR "%s: cannot restart device\n", dev->name);
  746. return;
  747. }
  748. korina_multicast_list(dev);
  749. enable_irq(lp->und_irq);
  750. enable_irq(lp->ovr_irq);
  751. enable_irq(lp->tx_irq);
  752. enable_irq(lp->rx_irq);
  753. }
  754. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  755. {
  756. struct korina_private *lp = netdev_priv(dev);
  757. netif_stop_queue(dev);
  758. writel(value, &lp->eth_regs->ethintfc);
  759. schedule_work(&lp->restart_task);
  760. }
  761. /* Ethernet Tx Underflow interrupt */
  762. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  763. {
  764. struct net_device *dev = dev_id;
  765. struct korina_private *lp = netdev_priv(dev);
  766. unsigned int und;
  767. spin_lock(&lp->lock);
  768. und = readl(&lp->eth_regs->ethintfc);
  769. if (und & ETH_INT_FC_UND)
  770. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  771. spin_unlock(&lp->lock);
  772. return IRQ_HANDLED;
  773. }
  774. static void korina_tx_timeout(struct net_device *dev)
  775. {
  776. struct korina_private *lp = netdev_priv(dev);
  777. schedule_work(&lp->restart_task);
  778. }
  779. /* Ethernet Rx Overflow interrupt */
  780. static irqreturn_t
  781. korina_ovr_interrupt(int irq, void *dev_id)
  782. {
  783. struct net_device *dev = dev_id;
  784. struct korina_private *lp = netdev_priv(dev);
  785. unsigned int ovr;
  786. spin_lock(&lp->lock);
  787. ovr = readl(&lp->eth_regs->ethintfc);
  788. if (ovr & ETH_INT_FC_OVR)
  789. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  790. spin_unlock(&lp->lock);
  791. return IRQ_HANDLED;
  792. }
  793. #ifdef CONFIG_NET_POLL_CONTROLLER
  794. static void korina_poll_controller(struct net_device *dev)
  795. {
  796. disable_irq(dev->irq);
  797. korina_tx_dma_interrupt(dev->irq, dev);
  798. enable_irq(dev->irq);
  799. }
  800. #endif
  801. static int korina_open(struct net_device *dev)
  802. {
  803. struct korina_private *lp = netdev_priv(dev);
  804. int ret;
  805. /* Initialize */
  806. ret = korina_init(dev);
  807. if (ret < 0) {
  808. printk(KERN_ERR "%s: cannot open device\n", dev->name);
  809. goto out;
  810. }
  811. /* Install the interrupt handler
  812. * that handles the Done Finished
  813. * Ovr and Und Events */
  814. ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
  815. IRQF_DISABLED, "Korina ethernet Rx", dev);
  816. if (ret < 0) {
  817. printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
  818. dev->name, lp->rx_irq);
  819. goto err_release;
  820. }
  821. ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
  822. IRQF_DISABLED, "Korina ethernet Tx", dev);
  823. if (ret < 0) {
  824. printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
  825. dev->name, lp->tx_irq);
  826. goto err_free_rx_irq;
  827. }
  828. /* Install handler for overrun error. */
  829. ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
  830. IRQF_DISABLED, "Ethernet Overflow", dev);
  831. if (ret < 0) {
  832. printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
  833. dev->name, lp->ovr_irq);
  834. goto err_free_tx_irq;
  835. }
  836. /* Install handler for underflow error. */
  837. ret = request_irq(lp->und_irq, korina_und_interrupt,
  838. IRQF_DISABLED, "Ethernet Underflow", dev);
  839. if (ret < 0) {
  840. printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
  841. dev->name, lp->und_irq);
  842. goto err_free_ovr_irq;
  843. }
  844. mod_timer(&lp->media_check_timer, jiffies + 1);
  845. out:
  846. return ret;
  847. err_free_ovr_irq:
  848. free_irq(lp->ovr_irq, dev);
  849. err_free_tx_irq:
  850. free_irq(lp->tx_irq, dev);
  851. err_free_rx_irq:
  852. free_irq(lp->rx_irq, dev);
  853. err_release:
  854. korina_free_ring(dev);
  855. goto out;
  856. }
  857. static int korina_close(struct net_device *dev)
  858. {
  859. struct korina_private *lp = netdev_priv(dev);
  860. u32 tmp;
  861. del_timer(&lp->media_check_timer);
  862. /* Disable interrupts */
  863. disable_irq(lp->rx_irq);
  864. disable_irq(lp->tx_irq);
  865. disable_irq(lp->ovr_irq);
  866. disable_irq(lp->und_irq);
  867. korina_abort_tx(dev);
  868. tmp = readl(&lp->tx_dma_regs->dmasm);
  869. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  870. writel(tmp, &lp->tx_dma_regs->dmasm);
  871. korina_abort_rx(dev);
  872. tmp = readl(&lp->rx_dma_regs->dmasm);
  873. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  874. writel(tmp, &lp->rx_dma_regs->dmasm);
  875. korina_free_ring(dev);
  876. napi_disable(&lp->napi);
  877. cancel_work_sync(&lp->restart_task);
  878. free_irq(lp->rx_irq, dev);
  879. free_irq(lp->tx_irq, dev);
  880. free_irq(lp->ovr_irq, dev);
  881. free_irq(lp->und_irq, dev);
  882. return 0;
  883. }
  884. static const struct net_device_ops korina_netdev_ops = {
  885. .ndo_open = korina_open,
  886. .ndo_stop = korina_close,
  887. .ndo_start_xmit = korina_send_packet,
  888. .ndo_set_rx_mode = korina_multicast_list,
  889. .ndo_tx_timeout = korina_tx_timeout,
  890. .ndo_do_ioctl = korina_ioctl,
  891. .ndo_change_mtu = eth_change_mtu,
  892. .ndo_validate_addr = eth_validate_addr,
  893. .ndo_set_mac_address = eth_mac_addr,
  894. #ifdef CONFIG_NET_POLL_CONTROLLER
  895. .ndo_poll_controller = korina_poll_controller,
  896. #endif
  897. };
  898. static int korina_probe(struct platform_device *pdev)
  899. {
  900. struct korina_device *bif = platform_get_drvdata(pdev);
  901. struct korina_private *lp;
  902. struct net_device *dev;
  903. struct resource *r;
  904. int rc;
  905. dev = alloc_etherdev(sizeof(struct korina_private));
  906. if (!dev) {
  907. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  908. return -ENOMEM;
  909. }
  910. SET_NETDEV_DEV(dev, &pdev->dev);
  911. lp = netdev_priv(dev);
  912. bif->dev = dev;
  913. memcpy(dev->dev_addr, bif->mac, 6);
  914. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  915. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  916. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  917. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  918. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  919. dev->base_addr = r->start;
  920. lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
  921. if (!lp->eth_regs) {
  922. printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
  923. rc = -ENXIO;
  924. goto probe_err_out;
  925. }
  926. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  927. lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
  928. if (!lp->rx_dma_regs) {
  929. printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
  930. rc = -ENXIO;
  931. goto probe_err_dma_rx;
  932. }
  933. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  934. lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
  935. if (!lp->tx_dma_regs) {
  936. printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
  937. rc = -ENXIO;
  938. goto probe_err_dma_tx;
  939. }
  940. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  941. if (!lp->td_ring) {
  942. printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
  943. rc = -ENXIO;
  944. goto probe_err_td_ring;
  945. }
  946. dma_cache_inv((unsigned long)(lp->td_ring),
  947. TD_RING_SIZE + RD_RING_SIZE);
  948. /* now convert TD_RING pointer to KSEG1 */
  949. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  950. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  951. spin_lock_init(&lp->lock);
  952. /* just use the rx dma irq */
  953. dev->irq = lp->rx_irq;
  954. lp->dev = dev;
  955. dev->netdev_ops = &korina_netdev_ops;
  956. dev->ethtool_ops = &netdev_ethtool_ops;
  957. dev->watchdog_timeo = TX_TIMEOUT;
  958. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  959. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  960. lp->mii_if.dev = dev;
  961. lp->mii_if.mdio_read = mdio_read;
  962. lp->mii_if.mdio_write = mdio_write;
  963. lp->mii_if.phy_id = lp->phy_addr;
  964. lp->mii_if.phy_id_mask = 0x1f;
  965. lp->mii_if.reg_num_mask = 0x1f;
  966. rc = register_netdev(dev);
  967. if (rc < 0) {
  968. printk(KERN_ERR DRV_NAME
  969. ": cannot register net device: %d\n", rc);
  970. goto probe_err_register;
  971. }
  972. setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
  973. INIT_WORK(&lp->restart_task, korina_restart_task);
  974. printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
  975. dev->name);
  976. out:
  977. return rc;
  978. probe_err_register:
  979. kfree(lp->td_ring);
  980. probe_err_td_ring:
  981. iounmap(lp->tx_dma_regs);
  982. probe_err_dma_tx:
  983. iounmap(lp->rx_dma_regs);
  984. probe_err_dma_rx:
  985. iounmap(lp->eth_regs);
  986. probe_err_out:
  987. free_netdev(dev);
  988. goto out;
  989. }
  990. static int korina_remove(struct platform_device *pdev)
  991. {
  992. struct korina_device *bif = platform_get_drvdata(pdev);
  993. struct korina_private *lp = netdev_priv(bif->dev);
  994. iounmap(lp->eth_regs);
  995. iounmap(lp->rx_dma_regs);
  996. iounmap(lp->tx_dma_regs);
  997. platform_set_drvdata(pdev, NULL);
  998. unregister_netdev(bif->dev);
  999. free_netdev(bif->dev);
  1000. return 0;
  1001. }
  1002. static struct platform_driver korina_driver = {
  1003. .driver.name = "korina",
  1004. .probe = korina_probe,
  1005. .remove = korina_remove,
  1006. };
  1007. module_platform_driver(korina_driver);
  1008. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1009. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1010. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1011. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1012. MODULE_LICENSE("GPL");