bnx2.c 209 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2011 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if.h>
  37. #include <linux/if_vlan.h>
  38. #include <net/ip.h>
  39. #include <net/tcp.h>
  40. #include <net/checksum.h>
  41. #include <linux/workqueue.h>
  42. #include <linux/crc32.h>
  43. #include <linux/prefetch.h>
  44. #include <linux/cache.h>
  45. #include <linux/firmware.h>
  46. #include <linux/log2.h>
  47. #include <linux/aer.h>
  48. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  49. #define BCM_CNIC 1
  50. #include "cnic_if.h"
  51. #endif
  52. #include "bnx2.h"
  53. #include "bnx2_fw.h"
  54. #define DRV_MODULE_NAME "bnx2"
  55. #define DRV_MODULE_VERSION "2.2.1"
  56. #define DRV_MODULE_RELDATE "Dec 18, 2011"
  57. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  58. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  59. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  60. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  61. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  62. #define RUN_AT(x) (jiffies + (x))
  63. /* Time in jiffies before concluding the transmitter is hung. */
  64. #define TX_TIMEOUT (5*HZ)
  65. static char version[] __devinitdata =
  66. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  67. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  68. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  69. MODULE_LICENSE("GPL");
  70. MODULE_VERSION(DRV_MODULE_VERSION);
  71. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  72. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  76. static int disable_msi = 0;
  77. module_param(disable_msi, int, 0);
  78. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  79. typedef enum {
  80. BCM5706 = 0,
  81. NC370T,
  82. NC370I,
  83. BCM5706S,
  84. NC370F,
  85. BCM5708,
  86. BCM5708S,
  87. BCM5709,
  88. BCM5709S,
  89. BCM5716,
  90. BCM5716S,
  91. } board_t;
  92. /* indexed by board_t, above */
  93. static struct {
  94. char *name;
  95. } board_info[] __devinitdata = {
  96. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  97. { "HP NC370T Multifunction Gigabit Server Adapter" },
  98. { "HP NC370i Multifunction Gigabit Server Adapter" },
  99. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  100. { "HP NC370F Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  107. };
  108. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  118. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  127. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  131. { 0, }
  132. };
  133. static const struct flash_spec flash_table[] =
  134. {
  135. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  136. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  137. /* Slow EEPROM */
  138. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  139. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  140. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  141. "EEPROM - slow"},
  142. /* Expansion entry 0001 */
  143. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  144. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  145. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 0001"},
  147. /* Saifun SA25F010 (non-buffered flash) */
  148. /* strap, cfg1, & write1 need updates */
  149. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  150. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  151. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  152. "Non-buffered flash (128kB)"},
  153. /* Saifun SA25F020 (non-buffered flash) */
  154. /* strap, cfg1, & write1 need updates */
  155. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  156. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  157. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  158. "Non-buffered flash (256kB)"},
  159. /* Expansion entry 0100 */
  160. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  161. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  162. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  163. "Entry 0100"},
  164. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  165. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  166. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  167. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  168. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  169. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  170. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  171. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  172. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  173. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  174. /* Saifun SA25F005 (non-buffered flash) */
  175. /* strap, cfg1, & write1 need updates */
  176. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  177. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  178. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  179. "Non-buffered flash (64kB)"},
  180. /* Fast EEPROM */
  181. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  182. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  183. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  184. "EEPROM - fast"},
  185. /* Expansion entry 1001 */
  186. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1001"},
  190. /* Expansion entry 1010 */
  191. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  192. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  193. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1010"},
  195. /* ATMEL AT45DB011B (buffered flash) */
  196. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  199. "Buffered flash (128kB)"},
  200. /* Expansion entry 1100 */
  201. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  202. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  203. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  204. "Entry 1100"},
  205. /* Expansion entry 1101 */
  206. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  207. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  208. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  209. "Entry 1101"},
  210. /* Ateml Expansion entry 1110 */
  211. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  212. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  213. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  214. "Entry 1110 (Atmel)"},
  215. /* ATMEL AT45DB021B (buffered flash) */
  216. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  217. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  218. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  219. "Buffered flash (256kB)"},
  220. };
  221. static const struct flash_spec flash_5709 = {
  222. .flags = BNX2_NV_BUFFERED,
  223. .page_bits = BCM5709_FLASH_PAGE_BITS,
  224. .page_size = BCM5709_FLASH_PAGE_SIZE,
  225. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  226. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  227. .name = "5709 Buffered flash (256kB)",
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  230. static void bnx2_init_napi(struct bnx2 *bp);
  231. static void bnx2_del_napi(struct bnx2 *bp);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  236. barrier();
  237. /* The ring uses 256 indices for 255 entries, one of them
  238. * needs to be skipped.
  239. */
  240. diff = txr->tx_prod - txr->tx_cons;
  241. if (unlikely(diff >= TX_DESC_CNT)) {
  242. diff &= 0xffff;
  243. if (diff == TX_DESC_CNT)
  244. diff = MAX_TX_DESC_CNT;
  245. }
  246. return bp->tx_ring_size - diff;
  247. }
  248. static u32
  249. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  250. {
  251. u32 val;
  252. spin_lock_bh(&bp->indirect_lock);
  253. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  254. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  255. spin_unlock_bh(&bp->indirect_lock);
  256. return val;
  257. }
  258. static void
  259. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  260. {
  261. spin_lock_bh(&bp->indirect_lock);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  263. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  264. spin_unlock_bh(&bp->indirect_lock);
  265. }
  266. static void
  267. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  268. {
  269. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  270. }
  271. static u32
  272. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  273. {
  274. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  275. }
  276. static void
  277. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  278. {
  279. offset += cid_addr;
  280. spin_lock_bh(&bp->indirect_lock);
  281. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  282. int i;
  283. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  284. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  285. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  286. for (i = 0; i < 5; i++) {
  287. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  288. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  289. break;
  290. udelay(5);
  291. }
  292. } else {
  293. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  294. REG_WR(bp, BNX2_CTX_DATA, val);
  295. }
  296. spin_unlock_bh(&bp->indirect_lock);
  297. }
  298. #ifdef BCM_CNIC
  299. static int
  300. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  301. {
  302. struct bnx2 *bp = netdev_priv(dev);
  303. struct drv_ctl_io *io = &info->data.io;
  304. switch (info->cmd) {
  305. case DRV_CTL_IO_WR_CMD:
  306. bnx2_reg_wr_ind(bp, io->offset, io->data);
  307. break;
  308. case DRV_CTL_IO_RD_CMD:
  309. io->data = bnx2_reg_rd_ind(bp, io->offset);
  310. break;
  311. case DRV_CTL_CTX_WR_CMD:
  312. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  313. break;
  314. default:
  315. return -EINVAL;
  316. }
  317. return 0;
  318. }
  319. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  320. {
  321. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  322. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  323. int sb_id;
  324. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  325. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  326. bnapi->cnic_present = 0;
  327. sb_id = bp->irq_nvecs;
  328. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  329. } else {
  330. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  331. bnapi->cnic_tag = bnapi->last_status_idx;
  332. bnapi->cnic_present = 1;
  333. sb_id = 0;
  334. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  335. }
  336. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  337. cp->irq_arr[0].status_blk = (void *)
  338. ((unsigned long) bnapi->status_blk.msi +
  339. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  340. cp->irq_arr[0].status_blk_num = sb_id;
  341. cp->num_irq = 1;
  342. }
  343. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  344. void *data)
  345. {
  346. struct bnx2 *bp = netdev_priv(dev);
  347. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  348. if (ops == NULL)
  349. return -EINVAL;
  350. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  351. return -EBUSY;
  352. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  353. return -ENODEV;
  354. bp->cnic_data = data;
  355. rcu_assign_pointer(bp->cnic_ops, ops);
  356. cp->num_irq = 0;
  357. cp->drv_state = CNIC_DRV_STATE_REGD;
  358. bnx2_setup_cnic_irq_info(bp);
  359. return 0;
  360. }
  361. static int bnx2_unregister_cnic(struct net_device *dev)
  362. {
  363. struct bnx2 *bp = netdev_priv(dev);
  364. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  365. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  366. mutex_lock(&bp->cnic_lock);
  367. cp->drv_state = 0;
  368. bnapi->cnic_present = 0;
  369. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  370. mutex_unlock(&bp->cnic_lock);
  371. synchronize_rcu();
  372. return 0;
  373. }
  374. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  375. {
  376. struct bnx2 *bp = netdev_priv(dev);
  377. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  378. if (!cp->max_iscsi_conn)
  379. return NULL;
  380. cp->drv_owner = THIS_MODULE;
  381. cp->chip_id = bp->chip_id;
  382. cp->pdev = bp->pdev;
  383. cp->io_base = bp->regview;
  384. cp->drv_ctl = bnx2_drv_ctl;
  385. cp->drv_register_cnic = bnx2_register_cnic;
  386. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  387. return cp;
  388. }
  389. EXPORT_SYMBOL(bnx2_cnic_probe);
  390. static void
  391. bnx2_cnic_stop(struct bnx2 *bp)
  392. {
  393. struct cnic_ops *c_ops;
  394. struct cnic_ctl_info info;
  395. mutex_lock(&bp->cnic_lock);
  396. c_ops = rcu_dereference_protected(bp->cnic_ops,
  397. lockdep_is_held(&bp->cnic_lock));
  398. if (c_ops) {
  399. info.cmd = CNIC_CTL_STOP_CMD;
  400. c_ops->cnic_ctl(bp->cnic_data, &info);
  401. }
  402. mutex_unlock(&bp->cnic_lock);
  403. }
  404. static void
  405. bnx2_cnic_start(struct bnx2 *bp)
  406. {
  407. struct cnic_ops *c_ops;
  408. struct cnic_ctl_info info;
  409. mutex_lock(&bp->cnic_lock);
  410. c_ops = rcu_dereference_protected(bp->cnic_ops,
  411. lockdep_is_held(&bp->cnic_lock));
  412. if (c_ops) {
  413. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  414. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  415. bnapi->cnic_tag = bnapi->last_status_idx;
  416. }
  417. info.cmd = CNIC_CTL_START_CMD;
  418. c_ops->cnic_ctl(bp->cnic_data, &info);
  419. }
  420. mutex_unlock(&bp->cnic_lock);
  421. }
  422. #else
  423. static void
  424. bnx2_cnic_stop(struct bnx2 *bp)
  425. {
  426. }
  427. static void
  428. bnx2_cnic_start(struct bnx2 *bp)
  429. {
  430. }
  431. #endif
  432. static int
  433. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  434. {
  435. u32 val1;
  436. int i, ret;
  437. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  438. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  439. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  440. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  441. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  442. udelay(40);
  443. }
  444. val1 = (bp->phy_addr << 21) | (reg << 16) |
  445. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  446. BNX2_EMAC_MDIO_COMM_START_BUSY;
  447. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  448. for (i = 0; i < 50; i++) {
  449. udelay(10);
  450. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  451. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  452. udelay(5);
  453. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  454. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  455. break;
  456. }
  457. }
  458. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  459. *val = 0x0;
  460. ret = -EBUSY;
  461. }
  462. else {
  463. *val = val1;
  464. ret = 0;
  465. }
  466. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  467. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  468. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  469. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  470. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  471. udelay(40);
  472. }
  473. return ret;
  474. }
  475. static int
  476. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  477. {
  478. u32 val1;
  479. int i, ret;
  480. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  481. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  482. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  483. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  484. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  485. udelay(40);
  486. }
  487. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  488. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  489. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  490. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  491. for (i = 0; i < 50; i++) {
  492. udelay(10);
  493. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  494. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  495. udelay(5);
  496. break;
  497. }
  498. }
  499. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  500. ret = -EBUSY;
  501. else
  502. ret = 0;
  503. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  504. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  505. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  506. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  507. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  508. udelay(40);
  509. }
  510. return ret;
  511. }
  512. static void
  513. bnx2_disable_int(struct bnx2 *bp)
  514. {
  515. int i;
  516. struct bnx2_napi *bnapi;
  517. for (i = 0; i < bp->irq_nvecs; i++) {
  518. bnapi = &bp->bnx2_napi[i];
  519. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  520. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  521. }
  522. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  523. }
  524. static void
  525. bnx2_enable_int(struct bnx2 *bp)
  526. {
  527. int i;
  528. struct bnx2_napi *bnapi;
  529. for (i = 0; i < bp->irq_nvecs; i++) {
  530. bnapi = &bp->bnx2_napi[i];
  531. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  532. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  533. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  534. bnapi->last_status_idx);
  535. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  536. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  537. bnapi->last_status_idx);
  538. }
  539. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  540. }
  541. static void
  542. bnx2_disable_int_sync(struct bnx2 *bp)
  543. {
  544. int i;
  545. atomic_inc(&bp->intr_sem);
  546. if (!netif_running(bp->dev))
  547. return;
  548. bnx2_disable_int(bp);
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. synchronize_irq(bp->irq_tbl[i].vector);
  551. }
  552. static void
  553. bnx2_napi_disable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_disable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_napi_enable(struct bnx2 *bp)
  561. {
  562. int i;
  563. for (i = 0; i < bp->irq_nvecs; i++)
  564. napi_enable(&bp->bnx2_napi[i].napi);
  565. }
  566. static void
  567. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  568. {
  569. if (stop_cnic)
  570. bnx2_cnic_stop(bp);
  571. if (netif_running(bp->dev)) {
  572. bnx2_napi_disable(bp);
  573. netif_tx_disable(bp->dev);
  574. }
  575. bnx2_disable_int_sync(bp);
  576. netif_carrier_off(bp->dev); /* prevent tx timeout */
  577. }
  578. static void
  579. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  580. {
  581. if (atomic_dec_and_test(&bp->intr_sem)) {
  582. if (netif_running(bp->dev)) {
  583. netif_tx_wake_all_queues(bp->dev);
  584. spin_lock_bh(&bp->phy_lock);
  585. if (bp->link_up)
  586. netif_carrier_on(bp->dev);
  587. spin_unlock_bh(&bp->phy_lock);
  588. bnx2_napi_enable(bp);
  589. bnx2_enable_int(bp);
  590. if (start_cnic)
  591. bnx2_cnic_start(bp);
  592. }
  593. }
  594. }
  595. static void
  596. bnx2_free_tx_mem(struct bnx2 *bp)
  597. {
  598. int i;
  599. for (i = 0; i < bp->num_tx_rings; i++) {
  600. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  601. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  602. if (txr->tx_desc_ring) {
  603. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  604. txr->tx_desc_ring,
  605. txr->tx_desc_mapping);
  606. txr->tx_desc_ring = NULL;
  607. }
  608. kfree(txr->tx_buf_ring);
  609. txr->tx_buf_ring = NULL;
  610. }
  611. }
  612. static void
  613. bnx2_free_rx_mem(struct bnx2 *bp)
  614. {
  615. int i;
  616. for (i = 0; i < bp->num_rx_rings; i++) {
  617. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  618. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  619. int j;
  620. for (j = 0; j < bp->rx_max_ring; j++) {
  621. if (rxr->rx_desc_ring[j])
  622. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  623. rxr->rx_desc_ring[j],
  624. rxr->rx_desc_mapping[j]);
  625. rxr->rx_desc_ring[j] = NULL;
  626. }
  627. vfree(rxr->rx_buf_ring);
  628. rxr->rx_buf_ring = NULL;
  629. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  630. if (rxr->rx_pg_desc_ring[j])
  631. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  632. rxr->rx_pg_desc_ring[j],
  633. rxr->rx_pg_desc_mapping[j]);
  634. rxr->rx_pg_desc_ring[j] = NULL;
  635. }
  636. vfree(rxr->rx_pg_ring);
  637. rxr->rx_pg_ring = NULL;
  638. }
  639. }
  640. static int
  641. bnx2_alloc_tx_mem(struct bnx2 *bp)
  642. {
  643. int i;
  644. for (i = 0; i < bp->num_tx_rings; i++) {
  645. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  646. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  647. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  648. if (txr->tx_buf_ring == NULL)
  649. return -ENOMEM;
  650. txr->tx_desc_ring =
  651. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  652. &txr->tx_desc_mapping, GFP_KERNEL);
  653. if (txr->tx_desc_ring == NULL)
  654. return -ENOMEM;
  655. }
  656. return 0;
  657. }
  658. static int
  659. bnx2_alloc_rx_mem(struct bnx2 *bp)
  660. {
  661. int i;
  662. for (i = 0; i < bp->num_rx_rings; i++) {
  663. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  664. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  665. int j;
  666. rxr->rx_buf_ring =
  667. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  668. if (rxr->rx_buf_ring == NULL)
  669. return -ENOMEM;
  670. for (j = 0; j < bp->rx_max_ring; j++) {
  671. rxr->rx_desc_ring[j] =
  672. dma_alloc_coherent(&bp->pdev->dev,
  673. RXBD_RING_SIZE,
  674. &rxr->rx_desc_mapping[j],
  675. GFP_KERNEL);
  676. if (rxr->rx_desc_ring[j] == NULL)
  677. return -ENOMEM;
  678. }
  679. if (bp->rx_pg_ring_size) {
  680. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  681. bp->rx_max_pg_ring);
  682. if (rxr->rx_pg_ring == NULL)
  683. return -ENOMEM;
  684. }
  685. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  686. rxr->rx_pg_desc_ring[j] =
  687. dma_alloc_coherent(&bp->pdev->dev,
  688. RXBD_RING_SIZE,
  689. &rxr->rx_pg_desc_mapping[j],
  690. GFP_KERNEL);
  691. if (rxr->rx_pg_desc_ring[j] == NULL)
  692. return -ENOMEM;
  693. }
  694. }
  695. return 0;
  696. }
  697. static void
  698. bnx2_free_mem(struct bnx2 *bp)
  699. {
  700. int i;
  701. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  702. bnx2_free_tx_mem(bp);
  703. bnx2_free_rx_mem(bp);
  704. for (i = 0; i < bp->ctx_pages; i++) {
  705. if (bp->ctx_blk[i]) {
  706. dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
  707. bp->ctx_blk[i],
  708. bp->ctx_blk_mapping[i]);
  709. bp->ctx_blk[i] = NULL;
  710. }
  711. }
  712. if (bnapi->status_blk.msi) {
  713. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  714. bnapi->status_blk.msi,
  715. bp->status_blk_mapping);
  716. bnapi->status_blk.msi = NULL;
  717. bp->stats_blk = NULL;
  718. }
  719. }
  720. static int
  721. bnx2_alloc_mem(struct bnx2 *bp)
  722. {
  723. int i, status_blk_size, err;
  724. struct bnx2_napi *bnapi;
  725. void *status_blk;
  726. /* Combine status and statistics blocks into one allocation. */
  727. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  728. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  729. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  730. BNX2_SBLK_MSIX_ALIGN_SIZE);
  731. bp->status_stats_size = status_blk_size +
  732. sizeof(struct statistics_block);
  733. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  734. &bp->status_blk_mapping, GFP_KERNEL);
  735. if (status_blk == NULL)
  736. goto alloc_mem_err;
  737. memset(status_blk, 0, bp->status_stats_size);
  738. bnapi = &bp->bnx2_napi[0];
  739. bnapi->status_blk.msi = status_blk;
  740. bnapi->hw_tx_cons_ptr =
  741. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  742. bnapi->hw_rx_cons_ptr =
  743. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  744. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  745. for (i = 1; i < bp->irq_nvecs; i++) {
  746. struct status_block_msix *sblk;
  747. bnapi = &bp->bnx2_napi[i];
  748. sblk = (void *) (status_blk +
  749. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  750. bnapi->status_blk.msix = sblk;
  751. bnapi->hw_tx_cons_ptr =
  752. &sblk->status_tx_quick_consumer_index;
  753. bnapi->hw_rx_cons_ptr =
  754. &sblk->status_rx_quick_consumer_index;
  755. bnapi->int_num = i << 24;
  756. }
  757. }
  758. bp->stats_blk = status_blk + status_blk_size;
  759. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  760. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  761. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  762. if (bp->ctx_pages == 0)
  763. bp->ctx_pages = 1;
  764. for (i = 0; i < bp->ctx_pages; i++) {
  765. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  766. BCM_PAGE_SIZE,
  767. &bp->ctx_blk_mapping[i],
  768. GFP_KERNEL);
  769. if (bp->ctx_blk[i] == NULL)
  770. goto alloc_mem_err;
  771. }
  772. }
  773. err = bnx2_alloc_rx_mem(bp);
  774. if (err)
  775. goto alloc_mem_err;
  776. err = bnx2_alloc_tx_mem(bp);
  777. if (err)
  778. goto alloc_mem_err;
  779. return 0;
  780. alloc_mem_err:
  781. bnx2_free_mem(bp);
  782. return -ENOMEM;
  783. }
  784. static void
  785. bnx2_report_fw_link(struct bnx2 *bp)
  786. {
  787. u32 fw_link_status = 0;
  788. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  789. return;
  790. if (bp->link_up) {
  791. u32 bmsr;
  792. switch (bp->line_speed) {
  793. case SPEED_10:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_10HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_10FULL;
  798. break;
  799. case SPEED_100:
  800. if (bp->duplex == DUPLEX_HALF)
  801. fw_link_status = BNX2_LINK_STATUS_100HALF;
  802. else
  803. fw_link_status = BNX2_LINK_STATUS_100FULL;
  804. break;
  805. case SPEED_1000:
  806. if (bp->duplex == DUPLEX_HALF)
  807. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  808. else
  809. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  810. break;
  811. case SPEED_2500:
  812. if (bp->duplex == DUPLEX_HALF)
  813. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  814. else
  815. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  816. break;
  817. }
  818. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  819. if (bp->autoneg) {
  820. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  821. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  822. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  823. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  824. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  825. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  826. else
  827. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  828. }
  829. }
  830. else
  831. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  832. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  833. }
  834. static char *
  835. bnx2_xceiver_str(struct bnx2 *bp)
  836. {
  837. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  838. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  839. "Copper");
  840. }
  841. static void
  842. bnx2_report_link(struct bnx2 *bp)
  843. {
  844. if (bp->link_up) {
  845. netif_carrier_on(bp->dev);
  846. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  847. bnx2_xceiver_str(bp),
  848. bp->line_speed,
  849. bp->duplex == DUPLEX_FULL ? "full" : "half");
  850. if (bp->flow_ctrl) {
  851. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  852. pr_cont(", receive ");
  853. if (bp->flow_ctrl & FLOW_CTRL_TX)
  854. pr_cont("& transmit ");
  855. }
  856. else {
  857. pr_cont(", transmit ");
  858. }
  859. pr_cont("flow control ON");
  860. }
  861. pr_cont("\n");
  862. } else {
  863. netif_carrier_off(bp->dev);
  864. netdev_err(bp->dev, "NIC %s Link is Down\n",
  865. bnx2_xceiver_str(bp));
  866. }
  867. bnx2_report_fw_link(bp);
  868. }
  869. static void
  870. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  871. {
  872. u32 local_adv, remote_adv;
  873. bp->flow_ctrl = 0;
  874. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  875. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  876. if (bp->duplex == DUPLEX_FULL) {
  877. bp->flow_ctrl = bp->req_flow_ctrl;
  878. }
  879. return;
  880. }
  881. if (bp->duplex != DUPLEX_FULL) {
  882. return;
  883. }
  884. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  885. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  886. u32 val;
  887. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  888. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  889. bp->flow_ctrl |= FLOW_CTRL_TX;
  890. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  891. bp->flow_ctrl |= FLOW_CTRL_RX;
  892. return;
  893. }
  894. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  895. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  896. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  897. u32 new_local_adv = 0;
  898. u32 new_remote_adv = 0;
  899. if (local_adv & ADVERTISE_1000XPAUSE)
  900. new_local_adv |= ADVERTISE_PAUSE_CAP;
  901. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  902. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  903. if (remote_adv & ADVERTISE_1000XPAUSE)
  904. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  905. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  906. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  907. local_adv = new_local_adv;
  908. remote_adv = new_remote_adv;
  909. }
  910. /* See Table 28B-3 of 802.3ab-1999 spec. */
  911. if (local_adv & ADVERTISE_PAUSE_CAP) {
  912. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  913. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  914. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  915. }
  916. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  917. bp->flow_ctrl = FLOW_CTRL_RX;
  918. }
  919. }
  920. else {
  921. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  922. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  923. }
  924. }
  925. }
  926. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  927. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  928. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  929. bp->flow_ctrl = FLOW_CTRL_TX;
  930. }
  931. }
  932. }
  933. static int
  934. bnx2_5709s_linkup(struct bnx2 *bp)
  935. {
  936. u32 val, speed;
  937. bp->link_up = 1;
  938. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  939. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  940. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  941. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  942. bp->line_speed = bp->req_line_speed;
  943. bp->duplex = bp->req_duplex;
  944. return 0;
  945. }
  946. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  947. switch (speed) {
  948. case MII_BNX2_GP_TOP_AN_SPEED_10:
  949. bp->line_speed = SPEED_10;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_100:
  952. bp->line_speed = SPEED_100;
  953. break;
  954. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  955. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  956. bp->line_speed = SPEED_1000;
  957. break;
  958. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  959. bp->line_speed = SPEED_2500;
  960. break;
  961. }
  962. if (val & MII_BNX2_GP_TOP_AN_FD)
  963. bp->duplex = DUPLEX_FULL;
  964. else
  965. bp->duplex = DUPLEX_HALF;
  966. return 0;
  967. }
  968. static int
  969. bnx2_5708s_linkup(struct bnx2 *bp)
  970. {
  971. u32 val;
  972. bp->link_up = 1;
  973. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  974. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  975. case BCM5708S_1000X_STAT1_SPEED_10:
  976. bp->line_speed = SPEED_10;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_100:
  979. bp->line_speed = SPEED_100;
  980. break;
  981. case BCM5708S_1000X_STAT1_SPEED_1G:
  982. bp->line_speed = SPEED_1000;
  983. break;
  984. case BCM5708S_1000X_STAT1_SPEED_2G5:
  985. bp->line_speed = SPEED_2500;
  986. break;
  987. }
  988. if (val & BCM5708S_1000X_STAT1_FD)
  989. bp->duplex = DUPLEX_FULL;
  990. else
  991. bp->duplex = DUPLEX_HALF;
  992. return 0;
  993. }
  994. static int
  995. bnx2_5706s_linkup(struct bnx2 *bp)
  996. {
  997. u32 bmcr, local_adv, remote_adv, common;
  998. bp->link_up = 1;
  999. bp->line_speed = SPEED_1000;
  1000. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1001. if (bmcr & BMCR_FULLDPLX) {
  1002. bp->duplex = DUPLEX_FULL;
  1003. }
  1004. else {
  1005. bp->duplex = DUPLEX_HALF;
  1006. }
  1007. if (!(bmcr & BMCR_ANENABLE)) {
  1008. return 0;
  1009. }
  1010. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1011. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1012. common = local_adv & remote_adv;
  1013. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1014. if (common & ADVERTISE_1000XFULL) {
  1015. bp->duplex = DUPLEX_FULL;
  1016. }
  1017. else {
  1018. bp->duplex = DUPLEX_HALF;
  1019. }
  1020. }
  1021. return 0;
  1022. }
  1023. static int
  1024. bnx2_copper_linkup(struct bnx2 *bp)
  1025. {
  1026. u32 bmcr;
  1027. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1028. if (bmcr & BMCR_ANENABLE) {
  1029. u32 local_adv, remote_adv, common;
  1030. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1031. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1032. common = local_adv & (remote_adv >> 2);
  1033. if (common & ADVERTISE_1000FULL) {
  1034. bp->line_speed = SPEED_1000;
  1035. bp->duplex = DUPLEX_FULL;
  1036. }
  1037. else if (common & ADVERTISE_1000HALF) {
  1038. bp->line_speed = SPEED_1000;
  1039. bp->duplex = DUPLEX_HALF;
  1040. }
  1041. else {
  1042. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1043. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1044. common = local_adv & remote_adv;
  1045. if (common & ADVERTISE_100FULL) {
  1046. bp->line_speed = SPEED_100;
  1047. bp->duplex = DUPLEX_FULL;
  1048. }
  1049. else if (common & ADVERTISE_100HALF) {
  1050. bp->line_speed = SPEED_100;
  1051. bp->duplex = DUPLEX_HALF;
  1052. }
  1053. else if (common & ADVERTISE_10FULL) {
  1054. bp->line_speed = SPEED_10;
  1055. bp->duplex = DUPLEX_FULL;
  1056. }
  1057. else if (common & ADVERTISE_10HALF) {
  1058. bp->line_speed = SPEED_10;
  1059. bp->duplex = DUPLEX_HALF;
  1060. }
  1061. else {
  1062. bp->line_speed = 0;
  1063. bp->link_up = 0;
  1064. }
  1065. }
  1066. }
  1067. else {
  1068. if (bmcr & BMCR_SPEED100) {
  1069. bp->line_speed = SPEED_100;
  1070. }
  1071. else {
  1072. bp->line_speed = SPEED_10;
  1073. }
  1074. if (bmcr & BMCR_FULLDPLX) {
  1075. bp->duplex = DUPLEX_FULL;
  1076. }
  1077. else {
  1078. bp->duplex = DUPLEX_HALF;
  1079. }
  1080. }
  1081. return 0;
  1082. }
  1083. static void
  1084. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1085. {
  1086. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1087. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1088. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1089. val |= 0x02 << 8;
  1090. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1091. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1092. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1093. }
  1094. static void
  1095. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1096. {
  1097. int i;
  1098. u32 cid;
  1099. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1100. if (i == 1)
  1101. cid = RX_RSS_CID;
  1102. bnx2_init_rx_context(bp, cid);
  1103. }
  1104. }
  1105. static void
  1106. bnx2_set_mac_link(struct bnx2 *bp)
  1107. {
  1108. u32 val;
  1109. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1110. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1111. (bp->duplex == DUPLEX_HALF)) {
  1112. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1113. }
  1114. /* Configure the EMAC mode register. */
  1115. val = REG_RD(bp, BNX2_EMAC_MODE);
  1116. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1117. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1118. BNX2_EMAC_MODE_25G_MODE);
  1119. if (bp->link_up) {
  1120. switch (bp->line_speed) {
  1121. case SPEED_10:
  1122. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1123. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1124. break;
  1125. }
  1126. /* fall through */
  1127. case SPEED_100:
  1128. val |= BNX2_EMAC_MODE_PORT_MII;
  1129. break;
  1130. case SPEED_2500:
  1131. val |= BNX2_EMAC_MODE_25G_MODE;
  1132. /* fall through */
  1133. case SPEED_1000:
  1134. val |= BNX2_EMAC_MODE_PORT_GMII;
  1135. break;
  1136. }
  1137. }
  1138. else {
  1139. val |= BNX2_EMAC_MODE_PORT_GMII;
  1140. }
  1141. /* Set the MAC to operate in the appropriate duplex mode. */
  1142. if (bp->duplex == DUPLEX_HALF)
  1143. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1144. REG_WR(bp, BNX2_EMAC_MODE, val);
  1145. /* Enable/disable rx PAUSE. */
  1146. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1147. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1148. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1149. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1150. /* Enable/disable tx PAUSE. */
  1151. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1152. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1153. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1154. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1155. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1156. /* Acknowledge the interrupt. */
  1157. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1158. bnx2_init_all_rx_contexts(bp);
  1159. }
  1160. static void
  1161. bnx2_enable_bmsr1(struct bnx2 *bp)
  1162. {
  1163. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1164. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1165. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1166. MII_BNX2_BLK_ADDR_GP_STATUS);
  1167. }
  1168. static void
  1169. bnx2_disable_bmsr1(struct bnx2 *bp)
  1170. {
  1171. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1172. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1173. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1174. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1175. }
  1176. static int
  1177. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1178. {
  1179. u32 up1;
  1180. int ret = 1;
  1181. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1182. return 0;
  1183. if (bp->autoneg & AUTONEG_SPEED)
  1184. bp->advertising |= ADVERTISED_2500baseX_Full;
  1185. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1186. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1187. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1188. if (!(up1 & BCM5708S_UP1_2G5)) {
  1189. up1 |= BCM5708S_UP1_2G5;
  1190. bnx2_write_phy(bp, bp->mii_up1, up1);
  1191. ret = 0;
  1192. }
  1193. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1194. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1195. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1196. return ret;
  1197. }
  1198. static int
  1199. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1200. {
  1201. u32 up1;
  1202. int ret = 0;
  1203. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1204. return 0;
  1205. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1206. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1207. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1208. if (up1 & BCM5708S_UP1_2G5) {
  1209. up1 &= ~BCM5708S_UP1_2G5;
  1210. bnx2_write_phy(bp, bp->mii_up1, up1);
  1211. ret = 1;
  1212. }
  1213. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1214. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1215. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1216. return ret;
  1217. }
  1218. static void
  1219. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1220. {
  1221. u32 uninitialized_var(bmcr);
  1222. int err;
  1223. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1224. return;
  1225. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1226. u32 val;
  1227. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1228. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1229. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1230. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1231. val |= MII_BNX2_SD_MISC1_FORCE |
  1232. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1233. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1234. }
  1235. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1236. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1237. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1238. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1239. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1240. if (!err)
  1241. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1242. } else {
  1243. return;
  1244. }
  1245. if (err)
  1246. return;
  1247. if (bp->autoneg & AUTONEG_SPEED) {
  1248. bmcr &= ~BMCR_ANENABLE;
  1249. if (bp->req_duplex == DUPLEX_FULL)
  1250. bmcr |= BMCR_FULLDPLX;
  1251. }
  1252. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1253. }
  1254. static void
  1255. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1256. {
  1257. u32 uninitialized_var(bmcr);
  1258. int err;
  1259. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1260. return;
  1261. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1262. u32 val;
  1263. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1264. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1265. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1266. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1267. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1268. }
  1269. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1270. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1271. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1272. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1273. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1274. if (!err)
  1275. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1276. } else {
  1277. return;
  1278. }
  1279. if (err)
  1280. return;
  1281. if (bp->autoneg & AUTONEG_SPEED)
  1282. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1283. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1284. }
  1285. static void
  1286. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1287. {
  1288. u32 val;
  1289. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1290. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1291. if (start)
  1292. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1293. else
  1294. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1295. }
  1296. static int
  1297. bnx2_set_link(struct bnx2 *bp)
  1298. {
  1299. u32 bmsr;
  1300. u8 link_up;
  1301. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1302. bp->link_up = 1;
  1303. return 0;
  1304. }
  1305. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1306. return 0;
  1307. link_up = bp->link_up;
  1308. bnx2_enable_bmsr1(bp);
  1309. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1310. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1311. bnx2_disable_bmsr1(bp);
  1312. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1313. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1314. u32 val, an_dbg;
  1315. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1316. bnx2_5706s_force_link_dn(bp, 0);
  1317. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1318. }
  1319. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1320. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1321. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1322. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1323. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1324. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1325. bmsr |= BMSR_LSTATUS;
  1326. else
  1327. bmsr &= ~BMSR_LSTATUS;
  1328. }
  1329. if (bmsr & BMSR_LSTATUS) {
  1330. bp->link_up = 1;
  1331. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1332. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1333. bnx2_5706s_linkup(bp);
  1334. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1335. bnx2_5708s_linkup(bp);
  1336. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1337. bnx2_5709s_linkup(bp);
  1338. }
  1339. else {
  1340. bnx2_copper_linkup(bp);
  1341. }
  1342. bnx2_resolve_flow_ctrl(bp);
  1343. }
  1344. else {
  1345. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1346. (bp->autoneg & AUTONEG_SPEED))
  1347. bnx2_disable_forced_2g5(bp);
  1348. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1349. u32 bmcr;
  1350. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1351. bmcr |= BMCR_ANENABLE;
  1352. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1353. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1354. }
  1355. bp->link_up = 0;
  1356. }
  1357. if (bp->link_up != link_up) {
  1358. bnx2_report_link(bp);
  1359. }
  1360. bnx2_set_mac_link(bp);
  1361. return 0;
  1362. }
  1363. static int
  1364. bnx2_reset_phy(struct bnx2 *bp)
  1365. {
  1366. int i;
  1367. u32 reg;
  1368. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1369. #define PHY_RESET_MAX_WAIT 100
  1370. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1371. udelay(10);
  1372. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1373. if (!(reg & BMCR_RESET)) {
  1374. udelay(20);
  1375. break;
  1376. }
  1377. }
  1378. if (i == PHY_RESET_MAX_WAIT) {
  1379. return -EBUSY;
  1380. }
  1381. return 0;
  1382. }
  1383. static u32
  1384. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1385. {
  1386. u32 adv = 0;
  1387. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1388. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1389. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1390. adv = ADVERTISE_1000XPAUSE;
  1391. }
  1392. else {
  1393. adv = ADVERTISE_PAUSE_CAP;
  1394. }
  1395. }
  1396. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1397. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1398. adv = ADVERTISE_1000XPSE_ASYM;
  1399. }
  1400. else {
  1401. adv = ADVERTISE_PAUSE_ASYM;
  1402. }
  1403. }
  1404. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1405. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1406. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1407. }
  1408. else {
  1409. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1410. }
  1411. }
  1412. return adv;
  1413. }
  1414. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1415. static int
  1416. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1417. __releases(&bp->phy_lock)
  1418. __acquires(&bp->phy_lock)
  1419. {
  1420. u32 speed_arg = 0, pause_adv;
  1421. pause_adv = bnx2_phy_get_pause_adv(bp);
  1422. if (bp->autoneg & AUTONEG_SPEED) {
  1423. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1424. if (bp->advertising & ADVERTISED_10baseT_Half)
  1425. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1426. if (bp->advertising & ADVERTISED_10baseT_Full)
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1428. if (bp->advertising & ADVERTISED_100baseT_Half)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1430. if (bp->advertising & ADVERTISED_100baseT_Full)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1432. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1434. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1435. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1436. } else {
  1437. if (bp->req_line_speed == SPEED_2500)
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1439. else if (bp->req_line_speed == SPEED_1000)
  1440. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1441. else if (bp->req_line_speed == SPEED_100) {
  1442. if (bp->req_duplex == DUPLEX_FULL)
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1444. else
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1446. } else if (bp->req_line_speed == SPEED_10) {
  1447. if (bp->req_duplex == DUPLEX_FULL)
  1448. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1449. else
  1450. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1451. }
  1452. }
  1453. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1454. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1455. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1456. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1457. if (port == PORT_TP)
  1458. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1459. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1460. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1461. spin_unlock_bh(&bp->phy_lock);
  1462. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1463. spin_lock_bh(&bp->phy_lock);
  1464. return 0;
  1465. }
  1466. static int
  1467. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1468. __releases(&bp->phy_lock)
  1469. __acquires(&bp->phy_lock)
  1470. {
  1471. u32 adv, bmcr;
  1472. u32 new_adv = 0;
  1473. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1474. return bnx2_setup_remote_phy(bp, port);
  1475. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1476. u32 new_bmcr;
  1477. int force_link_down = 0;
  1478. if (bp->req_line_speed == SPEED_2500) {
  1479. if (!bnx2_test_and_enable_2g5(bp))
  1480. force_link_down = 1;
  1481. } else if (bp->req_line_speed == SPEED_1000) {
  1482. if (bnx2_test_and_disable_2g5(bp))
  1483. force_link_down = 1;
  1484. }
  1485. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1486. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1487. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1488. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1489. new_bmcr |= BMCR_SPEED1000;
  1490. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1491. if (bp->req_line_speed == SPEED_2500)
  1492. bnx2_enable_forced_2g5(bp);
  1493. else if (bp->req_line_speed == SPEED_1000) {
  1494. bnx2_disable_forced_2g5(bp);
  1495. new_bmcr &= ~0x2000;
  1496. }
  1497. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1498. if (bp->req_line_speed == SPEED_2500)
  1499. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1500. else
  1501. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1502. }
  1503. if (bp->req_duplex == DUPLEX_FULL) {
  1504. adv |= ADVERTISE_1000XFULL;
  1505. new_bmcr |= BMCR_FULLDPLX;
  1506. }
  1507. else {
  1508. adv |= ADVERTISE_1000XHALF;
  1509. new_bmcr &= ~BMCR_FULLDPLX;
  1510. }
  1511. if ((new_bmcr != bmcr) || (force_link_down)) {
  1512. /* Force a link down visible on the other side */
  1513. if (bp->link_up) {
  1514. bnx2_write_phy(bp, bp->mii_adv, adv &
  1515. ~(ADVERTISE_1000XFULL |
  1516. ADVERTISE_1000XHALF));
  1517. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1518. BMCR_ANRESTART | BMCR_ANENABLE);
  1519. bp->link_up = 0;
  1520. netif_carrier_off(bp->dev);
  1521. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1522. bnx2_report_link(bp);
  1523. }
  1524. bnx2_write_phy(bp, bp->mii_adv, adv);
  1525. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1526. } else {
  1527. bnx2_resolve_flow_ctrl(bp);
  1528. bnx2_set_mac_link(bp);
  1529. }
  1530. return 0;
  1531. }
  1532. bnx2_test_and_enable_2g5(bp);
  1533. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1534. new_adv |= ADVERTISE_1000XFULL;
  1535. new_adv |= bnx2_phy_get_pause_adv(bp);
  1536. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1537. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1538. bp->serdes_an_pending = 0;
  1539. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1540. /* Force a link down visible on the other side */
  1541. if (bp->link_up) {
  1542. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1543. spin_unlock_bh(&bp->phy_lock);
  1544. msleep(20);
  1545. spin_lock_bh(&bp->phy_lock);
  1546. }
  1547. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1548. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1549. BMCR_ANENABLE);
  1550. /* Speed up link-up time when the link partner
  1551. * does not autonegotiate which is very common
  1552. * in blade servers. Some blade servers use
  1553. * IPMI for kerboard input and it's important
  1554. * to minimize link disruptions. Autoneg. involves
  1555. * exchanging base pages plus 3 next pages and
  1556. * normally completes in about 120 msec.
  1557. */
  1558. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1559. bp->serdes_an_pending = 1;
  1560. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1561. } else {
  1562. bnx2_resolve_flow_ctrl(bp);
  1563. bnx2_set_mac_link(bp);
  1564. }
  1565. return 0;
  1566. }
  1567. #define ETHTOOL_ALL_FIBRE_SPEED \
  1568. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1569. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1570. (ADVERTISED_1000baseT_Full)
  1571. #define ETHTOOL_ALL_COPPER_SPEED \
  1572. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1573. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1574. ADVERTISED_1000baseT_Full)
  1575. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1576. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1577. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1578. static void
  1579. bnx2_set_default_remote_link(struct bnx2 *bp)
  1580. {
  1581. u32 link;
  1582. if (bp->phy_port == PORT_TP)
  1583. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1584. else
  1585. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1586. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1587. bp->req_line_speed = 0;
  1588. bp->autoneg |= AUTONEG_SPEED;
  1589. bp->advertising = ADVERTISED_Autoneg;
  1590. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1591. bp->advertising |= ADVERTISED_10baseT_Half;
  1592. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1593. bp->advertising |= ADVERTISED_10baseT_Full;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1595. bp->advertising |= ADVERTISED_100baseT_Half;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1597. bp->advertising |= ADVERTISED_100baseT_Full;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1599. bp->advertising |= ADVERTISED_1000baseT_Full;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1601. bp->advertising |= ADVERTISED_2500baseX_Full;
  1602. } else {
  1603. bp->autoneg = 0;
  1604. bp->advertising = 0;
  1605. bp->req_duplex = DUPLEX_FULL;
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1607. bp->req_line_speed = SPEED_10;
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1609. bp->req_duplex = DUPLEX_HALF;
  1610. }
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1612. bp->req_line_speed = SPEED_100;
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1614. bp->req_duplex = DUPLEX_HALF;
  1615. }
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1617. bp->req_line_speed = SPEED_1000;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1619. bp->req_line_speed = SPEED_2500;
  1620. }
  1621. }
  1622. static void
  1623. bnx2_set_default_link(struct bnx2 *bp)
  1624. {
  1625. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1626. bnx2_set_default_remote_link(bp);
  1627. return;
  1628. }
  1629. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1630. bp->req_line_speed = 0;
  1631. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1632. u32 reg;
  1633. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1634. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1635. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1636. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1637. bp->autoneg = 0;
  1638. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1639. bp->req_duplex = DUPLEX_FULL;
  1640. }
  1641. } else
  1642. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1643. }
  1644. static void
  1645. bnx2_send_heart_beat(struct bnx2 *bp)
  1646. {
  1647. u32 msg;
  1648. u32 addr;
  1649. spin_lock(&bp->indirect_lock);
  1650. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1651. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1652. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1653. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1654. spin_unlock(&bp->indirect_lock);
  1655. }
  1656. static void
  1657. bnx2_remote_phy_event(struct bnx2 *bp)
  1658. {
  1659. u32 msg;
  1660. u8 link_up = bp->link_up;
  1661. u8 old_port;
  1662. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1663. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1664. bnx2_send_heart_beat(bp);
  1665. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1666. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1667. bp->link_up = 0;
  1668. else {
  1669. u32 speed;
  1670. bp->link_up = 1;
  1671. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1672. bp->duplex = DUPLEX_FULL;
  1673. switch (speed) {
  1674. case BNX2_LINK_STATUS_10HALF:
  1675. bp->duplex = DUPLEX_HALF;
  1676. case BNX2_LINK_STATUS_10FULL:
  1677. bp->line_speed = SPEED_10;
  1678. break;
  1679. case BNX2_LINK_STATUS_100HALF:
  1680. bp->duplex = DUPLEX_HALF;
  1681. case BNX2_LINK_STATUS_100BASE_T4:
  1682. case BNX2_LINK_STATUS_100FULL:
  1683. bp->line_speed = SPEED_100;
  1684. break;
  1685. case BNX2_LINK_STATUS_1000HALF:
  1686. bp->duplex = DUPLEX_HALF;
  1687. case BNX2_LINK_STATUS_1000FULL:
  1688. bp->line_speed = SPEED_1000;
  1689. break;
  1690. case BNX2_LINK_STATUS_2500HALF:
  1691. bp->duplex = DUPLEX_HALF;
  1692. case BNX2_LINK_STATUS_2500FULL:
  1693. bp->line_speed = SPEED_2500;
  1694. break;
  1695. default:
  1696. bp->line_speed = 0;
  1697. break;
  1698. }
  1699. bp->flow_ctrl = 0;
  1700. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1701. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1702. if (bp->duplex == DUPLEX_FULL)
  1703. bp->flow_ctrl = bp->req_flow_ctrl;
  1704. } else {
  1705. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1706. bp->flow_ctrl |= FLOW_CTRL_TX;
  1707. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1708. bp->flow_ctrl |= FLOW_CTRL_RX;
  1709. }
  1710. old_port = bp->phy_port;
  1711. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1712. bp->phy_port = PORT_FIBRE;
  1713. else
  1714. bp->phy_port = PORT_TP;
  1715. if (old_port != bp->phy_port)
  1716. bnx2_set_default_link(bp);
  1717. }
  1718. if (bp->link_up != link_up)
  1719. bnx2_report_link(bp);
  1720. bnx2_set_mac_link(bp);
  1721. }
  1722. static int
  1723. bnx2_set_remote_link(struct bnx2 *bp)
  1724. {
  1725. u32 evt_code;
  1726. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1727. switch (evt_code) {
  1728. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1729. bnx2_remote_phy_event(bp);
  1730. break;
  1731. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1732. default:
  1733. bnx2_send_heart_beat(bp);
  1734. break;
  1735. }
  1736. return 0;
  1737. }
  1738. static int
  1739. bnx2_setup_copper_phy(struct bnx2 *bp)
  1740. __releases(&bp->phy_lock)
  1741. __acquires(&bp->phy_lock)
  1742. {
  1743. u32 bmcr;
  1744. u32 new_bmcr;
  1745. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1746. if (bp->autoneg & AUTONEG_SPEED) {
  1747. u32 adv_reg, adv1000_reg;
  1748. u32 new_adv = 0;
  1749. u32 new_adv1000 = 0;
  1750. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1751. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1752. ADVERTISE_PAUSE_ASYM);
  1753. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1754. adv1000_reg &= PHY_ALL_1000_SPEED;
  1755. new_adv = ethtool_adv_to_mii_adv_t(bp->advertising);
  1756. new_adv |= ADVERTISE_CSMA;
  1757. new_adv |= bnx2_phy_get_pause_adv(bp);
  1758. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1759. if ((adv1000_reg != new_adv1000) ||
  1760. (adv_reg != new_adv) ||
  1761. ((bmcr & BMCR_ANENABLE) == 0)) {
  1762. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1763. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1764. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1765. BMCR_ANENABLE);
  1766. }
  1767. else if (bp->link_up) {
  1768. /* Flow ctrl may have changed from auto to forced */
  1769. /* or vice-versa. */
  1770. bnx2_resolve_flow_ctrl(bp);
  1771. bnx2_set_mac_link(bp);
  1772. }
  1773. return 0;
  1774. }
  1775. new_bmcr = 0;
  1776. if (bp->req_line_speed == SPEED_100) {
  1777. new_bmcr |= BMCR_SPEED100;
  1778. }
  1779. if (bp->req_duplex == DUPLEX_FULL) {
  1780. new_bmcr |= BMCR_FULLDPLX;
  1781. }
  1782. if (new_bmcr != bmcr) {
  1783. u32 bmsr;
  1784. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1785. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1786. if (bmsr & BMSR_LSTATUS) {
  1787. /* Force link down */
  1788. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1789. spin_unlock_bh(&bp->phy_lock);
  1790. msleep(50);
  1791. spin_lock_bh(&bp->phy_lock);
  1792. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. }
  1795. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1796. /* Normally, the new speed is setup after the link has
  1797. * gone down and up again. In some cases, link will not go
  1798. * down so we need to set up the new speed here.
  1799. */
  1800. if (bmsr & BMSR_LSTATUS) {
  1801. bp->line_speed = bp->req_line_speed;
  1802. bp->duplex = bp->req_duplex;
  1803. bnx2_resolve_flow_ctrl(bp);
  1804. bnx2_set_mac_link(bp);
  1805. }
  1806. } else {
  1807. bnx2_resolve_flow_ctrl(bp);
  1808. bnx2_set_mac_link(bp);
  1809. }
  1810. return 0;
  1811. }
  1812. static int
  1813. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1814. __releases(&bp->phy_lock)
  1815. __acquires(&bp->phy_lock)
  1816. {
  1817. if (bp->loopback == MAC_LOOPBACK)
  1818. return 0;
  1819. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1820. return bnx2_setup_serdes_phy(bp, port);
  1821. }
  1822. else {
  1823. return bnx2_setup_copper_phy(bp);
  1824. }
  1825. }
  1826. static int
  1827. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1828. {
  1829. u32 val;
  1830. bp->mii_bmcr = MII_BMCR + 0x10;
  1831. bp->mii_bmsr = MII_BMSR + 0x10;
  1832. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1833. bp->mii_adv = MII_ADVERTISE + 0x10;
  1834. bp->mii_lpa = MII_LPA + 0x10;
  1835. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1836. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1837. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1838. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1839. if (reset_phy)
  1840. bnx2_reset_phy(bp);
  1841. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1842. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1843. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1844. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1845. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1846. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1847. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1848. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1849. val |= BCM5708S_UP1_2G5;
  1850. else
  1851. val &= ~BCM5708S_UP1_2G5;
  1852. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1853. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1854. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1855. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1856. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1857. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1858. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1859. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1860. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1861. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1862. return 0;
  1863. }
  1864. static int
  1865. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1866. {
  1867. u32 val;
  1868. if (reset_phy)
  1869. bnx2_reset_phy(bp);
  1870. bp->mii_up1 = BCM5708S_UP1;
  1871. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1872. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1873. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1874. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1875. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1876. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1877. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1878. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1879. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1880. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1881. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1882. val |= BCM5708S_UP1_2G5;
  1883. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1884. }
  1885. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1886. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1887. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1888. /* increase tx signal amplitude */
  1889. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1890. BCM5708S_BLK_ADDR_TX_MISC);
  1891. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1892. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1893. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1894. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1895. }
  1896. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1897. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1898. if (val) {
  1899. u32 is_backplane;
  1900. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1901. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1902. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1903. BCM5708S_BLK_ADDR_TX_MISC);
  1904. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1905. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1906. BCM5708S_BLK_ADDR_DIG);
  1907. }
  1908. }
  1909. return 0;
  1910. }
  1911. static int
  1912. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1913. {
  1914. if (reset_phy)
  1915. bnx2_reset_phy(bp);
  1916. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1917. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1918. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1919. if (bp->dev->mtu > 1500) {
  1920. u32 val;
  1921. /* Set extended packet length bit */
  1922. bnx2_write_phy(bp, 0x18, 0x7);
  1923. bnx2_read_phy(bp, 0x18, &val);
  1924. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1925. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1926. bnx2_read_phy(bp, 0x1c, &val);
  1927. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1928. }
  1929. else {
  1930. u32 val;
  1931. bnx2_write_phy(bp, 0x18, 0x7);
  1932. bnx2_read_phy(bp, 0x18, &val);
  1933. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1934. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1935. bnx2_read_phy(bp, 0x1c, &val);
  1936. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1937. }
  1938. return 0;
  1939. }
  1940. static int
  1941. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1942. {
  1943. u32 val;
  1944. if (reset_phy)
  1945. bnx2_reset_phy(bp);
  1946. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1947. bnx2_write_phy(bp, 0x18, 0x0c00);
  1948. bnx2_write_phy(bp, 0x17, 0x000a);
  1949. bnx2_write_phy(bp, 0x15, 0x310b);
  1950. bnx2_write_phy(bp, 0x17, 0x201f);
  1951. bnx2_write_phy(bp, 0x15, 0x9506);
  1952. bnx2_write_phy(bp, 0x17, 0x401f);
  1953. bnx2_write_phy(bp, 0x15, 0x14e2);
  1954. bnx2_write_phy(bp, 0x18, 0x0400);
  1955. }
  1956. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1957. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1958. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1959. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1960. val &= ~(1 << 8);
  1961. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1962. }
  1963. if (bp->dev->mtu > 1500) {
  1964. /* Set extended packet length bit */
  1965. bnx2_write_phy(bp, 0x18, 0x7);
  1966. bnx2_read_phy(bp, 0x18, &val);
  1967. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1968. bnx2_read_phy(bp, 0x10, &val);
  1969. bnx2_write_phy(bp, 0x10, val | 0x1);
  1970. }
  1971. else {
  1972. bnx2_write_phy(bp, 0x18, 0x7);
  1973. bnx2_read_phy(bp, 0x18, &val);
  1974. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1975. bnx2_read_phy(bp, 0x10, &val);
  1976. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1977. }
  1978. /* ethernet@wirespeed */
  1979. bnx2_write_phy(bp, 0x18, 0x7007);
  1980. bnx2_read_phy(bp, 0x18, &val);
  1981. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1982. return 0;
  1983. }
  1984. static int
  1985. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1986. __releases(&bp->phy_lock)
  1987. __acquires(&bp->phy_lock)
  1988. {
  1989. u32 val;
  1990. int rc = 0;
  1991. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1992. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1993. bp->mii_bmcr = MII_BMCR;
  1994. bp->mii_bmsr = MII_BMSR;
  1995. bp->mii_bmsr1 = MII_BMSR;
  1996. bp->mii_adv = MII_ADVERTISE;
  1997. bp->mii_lpa = MII_LPA;
  1998. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1999. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2000. goto setup_phy;
  2001. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2002. bp->phy_id = val << 16;
  2003. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2004. bp->phy_id |= val & 0xffff;
  2005. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2006. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2007. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2008. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2009. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2010. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2011. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2012. }
  2013. else {
  2014. rc = bnx2_init_copper_phy(bp, reset_phy);
  2015. }
  2016. setup_phy:
  2017. if (!rc)
  2018. rc = bnx2_setup_phy(bp, bp->phy_port);
  2019. return rc;
  2020. }
  2021. static int
  2022. bnx2_set_mac_loopback(struct bnx2 *bp)
  2023. {
  2024. u32 mac_mode;
  2025. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2026. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2027. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2028. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2029. bp->link_up = 1;
  2030. return 0;
  2031. }
  2032. static int bnx2_test_link(struct bnx2 *);
  2033. static int
  2034. bnx2_set_phy_loopback(struct bnx2 *bp)
  2035. {
  2036. u32 mac_mode;
  2037. int rc, i;
  2038. spin_lock_bh(&bp->phy_lock);
  2039. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2040. BMCR_SPEED1000);
  2041. spin_unlock_bh(&bp->phy_lock);
  2042. if (rc)
  2043. return rc;
  2044. for (i = 0; i < 10; i++) {
  2045. if (bnx2_test_link(bp) == 0)
  2046. break;
  2047. msleep(100);
  2048. }
  2049. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2050. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2051. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2052. BNX2_EMAC_MODE_25G_MODE);
  2053. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2054. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2055. bp->link_up = 1;
  2056. return 0;
  2057. }
  2058. static void
  2059. bnx2_dump_mcp_state(struct bnx2 *bp)
  2060. {
  2061. struct net_device *dev = bp->dev;
  2062. u32 mcp_p0, mcp_p1;
  2063. netdev_err(dev, "<--- start MCP states dump --->\n");
  2064. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2065. mcp_p0 = BNX2_MCP_STATE_P0;
  2066. mcp_p1 = BNX2_MCP_STATE_P1;
  2067. } else {
  2068. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2069. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2070. }
  2071. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2072. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2073. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2074. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2075. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2076. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2077. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2078. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2079. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2080. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2081. netdev_err(dev, "DEBUG: shmem states:\n");
  2082. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2083. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2084. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2085. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2086. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2087. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2088. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2089. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2090. pr_cont(" condition[%08x]\n",
  2091. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2092. DP_SHMEM_LINE(bp, 0x3cc);
  2093. DP_SHMEM_LINE(bp, 0x3dc);
  2094. DP_SHMEM_LINE(bp, 0x3ec);
  2095. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2096. netdev_err(dev, "<--- end MCP states dump --->\n");
  2097. }
  2098. static int
  2099. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2100. {
  2101. int i;
  2102. u32 val;
  2103. bp->fw_wr_seq++;
  2104. msg_data |= bp->fw_wr_seq;
  2105. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2106. if (!ack)
  2107. return 0;
  2108. /* wait for an acknowledgement. */
  2109. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2110. msleep(10);
  2111. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2112. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2113. break;
  2114. }
  2115. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2116. return 0;
  2117. /* If we timed out, inform the firmware that this is the case. */
  2118. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2119. msg_data &= ~BNX2_DRV_MSG_CODE;
  2120. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2121. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2122. if (!silent) {
  2123. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2124. bnx2_dump_mcp_state(bp);
  2125. }
  2126. return -EBUSY;
  2127. }
  2128. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2129. return -EIO;
  2130. return 0;
  2131. }
  2132. static int
  2133. bnx2_init_5709_context(struct bnx2 *bp)
  2134. {
  2135. int i, ret = 0;
  2136. u32 val;
  2137. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2138. val |= (BCM_PAGE_BITS - 8) << 16;
  2139. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2140. for (i = 0; i < 10; i++) {
  2141. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2142. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2143. break;
  2144. udelay(2);
  2145. }
  2146. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2147. return -EBUSY;
  2148. for (i = 0; i < bp->ctx_pages; i++) {
  2149. int j;
  2150. if (bp->ctx_blk[i])
  2151. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2152. else
  2153. return -ENOMEM;
  2154. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2155. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2156. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2157. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2158. (u64) bp->ctx_blk_mapping[i] >> 32);
  2159. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2160. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2161. for (j = 0; j < 10; j++) {
  2162. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2163. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2164. break;
  2165. udelay(5);
  2166. }
  2167. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2168. ret = -EBUSY;
  2169. break;
  2170. }
  2171. }
  2172. return ret;
  2173. }
  2174. static void
  2175. bnx2_init_context(struct bnx2 *bp)
  2176. {
  2177. u32 vcid;
  2178. vcid = 96;
  2179. while (vcid) {
  2180. u32 vcid_addr, pcid_addr, offset;
  2181. int i;
  2182. vcid--;
  2183. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2184. u32 new_vcid;
  2185. vcid_addr = GET_PCID_ADDR(vcid);
  2186. if (vcid & 0x8) {
  2187. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2188. }
  2189. else {
  2190. new_vcid = vcid;
  2191. }
  2192. pcid_addr = GET_PCID_ADDR(new_vcid);
  2193. }
  2194. else {
  2195. vcid_addr = GET_CID_ADDR(vcid);
  2196. pcid_addr = vcid_addr;
  2197. }
  2198. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2199. vcid_addr += (i << PHY_CTX_SHIFT);
  2200. pcid_addr += (i << PHY_CTX_SHIFT);
  2201. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2202. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2203. /* Zero out the context. */
  2204. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2205. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2206. }
  2207. }
  2208. }
  2209. static int
  2210. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2211. {
  2212. u16 *good_mbuf;
  2213. u32 good_mbuf_cnt;
  2214. u32 val;
  2215. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2216. if (good_mbuf == NULL) {
  2217. pr_err("Failed to allocate memory in %s\n", __func__);
  2218. return -ENOMEM;
  2219. }
  2220. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2221. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2222. good_mbuf_cnt = 0;
  2223. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2224. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2225. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2226. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2227. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2228. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2229. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2230. /* The addresses with Bit 9 set are bad memory blocks. */
  2231. if (!(val & (1 << 9))) {
  2232. good_mbuf[good_mbuf_cnt] = (u16) val;
  2233. good_mbuf_cnt++;
  2234. }
  2235. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2236. }
  2237. /* Free the good ones back to the mbuf pool thus discarding
  2238. * all the bad ones. */
  2239. while (good_mbuf_cnt) {
  2240. good_mbuf_cnt--;
  2241. val = good_mbuf[good_mbuf_cnt];
  2242. val = (val << 9) | val | 1;
  2243. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2244. }
  2245. kfree(good_mbuf);
  2246. return 0;
  2247. }
  2248. static void
  2249. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2250. {
  2251. u32 val;
  2252. val = (mac_addr[0] << 8) | mac_addr[1];
  2253. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2254. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2255. (mac_addr[4] << 8) | mac_addr[5];
  2256. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2257. }
  2258. static inline int
  2259. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2260. {
  2261. dma_addr_t mapping;
  2262. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2263. struct rx_bd *rxbd =
  2264. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2265. struct page *page = alloc_page(gfp);
  2266. if (!page)
  2267. return -ENOMEM;
  2268. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2269. PCI_DMA_FROMDEVICE);
  2270. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2271. __free_page(page);
  2272. return -EIO;
  2273. }
  2274. rx_pg->page = page;
  2275. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2276. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2277. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2278. return 0;
  2279. }
  2280. static void
  2281. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2282. {
  2283. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2284. struct page *page = rx_pg->page;
  2285. if (!page)
  2286. return;
  2287. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2288. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2289. __free_page(page);
  2290. rx_pg->page = NULL;
  2291. }
  2292. static inline int
  2293. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2294. {
  2295. u8 *data;
  2296. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2297. dma_addr_t mapping;
  2298. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2299. data = kmalloc(bp->rx_buf_size, gfp);
  2300. if (!data)
  2301. return -ENOMEM;
  2302. mapping = dma_map_single(&bp->pdev->dev,
  2303. get_l2_fhdr(data),
  2304. bp->rx_buf_use_size,
  2305. PCI_DMA_FROMDEVICE);
  2306. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2307. kfree(data);
  2308. return -EIO;
  2309. }
  2310. rx_buf->data = data;
  2311. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2312. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2313. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2314. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2315. return 0;
  2316. }
  2317. static int
  2318. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2319. {
  2320. struct status_block *sblk = bnapi->status_blk.msi;
  2321. u32 new_link_state, old_link_state;
  2322. int is_set = 1;
  2323. new_link_state = sblk->status_attn_bits & event;
  2324. old_link_state = sblk->status_attn_bits_ack & event;
  2325. if (new_link_state != old_link_state) {
  2326. if (new_link_state)
  2327. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2328. else
  2329. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2330. } else
  2331. is_set = 0;
  2332. return is_set;
  2333. }
  2334. static void
  2335. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2336. {
  2337. spin_lock(&bp->phy_lock);
  2338. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2339. bnx2_set_link(bp);
  2340. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2341. bnx2_set_remote_link(bp);
  2342. spin_unlock(&bp->phy_lock);
  2343. }
  2344. static inline u16
  2345. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2346. {
  2347. u16 cons;
  2348. /* Tell compiler that status block fields can change. */
  2349. barrier();
  2350. cons = *bnapi->hw_tx_cons_ptr;
  2351. barrier();
  2352. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2353. cons++;
  2354. return cons;
  2355. }
  2356. static int
  2357. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2358. {
  2359. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2360. u16 hw_cons, sw_cons, sw_ring_cons;
  2361. int tx_pkt = 0, index;
  2362. unsigned int tx_bytes = 0;
  2363. struct netdev_queue *txq;
  2364. index = (bnapi - bp->bnx2_napi);
  2365. txq = netdev_get_tx_queue(bp->dev, index);
  2366. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2367. sw_cons = txr->tx_cons;
  2368. while (sw_cons != hw_cons) {
  2369. struct sw_tx_bd *tx_buf;
  2370. struct sk_buff *skb;
  2371. int i, last;
  2372. sw_ring_cons = TX_RING_IDX(sw_cons);
  2373. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2374. skb = tx_buf->skb;
  2375. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2376. prefetch(&skb->end);
  2377. /* partial BD completions possible with TSO packets */
  2378. if (tx_buf->is_gso) {
  2379. u16 last_idx, last_ring_idx;
  2380. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2381. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2382. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2383. last_idx++;
  2384. }
  2385. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2386. break;
  2387. }
  2388. }
  2389. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2390. skb_headlen(skb), PCI_DMA_TODEVICE);
  2391. tx_buf->skb = NULL;
  2392. last = tx_buf->nr_frags;
  2393. for (i = 0; i < last; i++) {
  2394. sw_cons = NEXT_TX_BD(sw_cons);
  2395. dma_unmap_page(&bp->pdev->dev,
  2396. dma_unmap_addr(
  2397. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2398. mapping),
  2399. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2400. PCI_DMA_TODEVICE);
  2401. }
  2402. sw_cons = NEXT_TX_BD(sw_cons);
  2403. tx_bytes += skb->len;
  2404. dev_kfree_skb(skb);
  2405. tx_pkt++;
  2406. if (tx_pkt == budget)
  2407. break;
  2408. if (hw_cons == sw_cons)
  2409. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2410. }
  2411. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2412. txr->hw_tx_cons = hw_cons;
  2413. txr->tx_cons = sw_cons;
  2414. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2415. * before checking for netif_tx_queue_stopped(). Without the
  2416. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2417. * will miss it and cause the queue to be stopped forever.
  2418. */
  2419. smp_mb();
  2420. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2421. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2422. __netif_tx_lock(txq, smp_processor_id());
  2423. if ((netif_tx_queue_stopped(txq)) &&
  2424. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2425. netif_tx_wake_queue(txq);
  2426. __netif_tx_unlock(txq);
  2427. }
  2428. return tx_pkt;
  2429. }
  2430. static void
  2431. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2432. struct sk_buff *skb, int count)
  2433. {
  2434. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2435. struct rx_bd *cons_bd, *prod_bd;
  2436. int i;
  2437. u16 hw_prod, prod;
  2438. u16 cons = rxr->rx_pg_cons;
  2439. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2440. /* The caller was unable to allocate a new page to replace the
  2441. * last one in the frags array, so we need to recycle that page
  2442. * and then free the skb.
  2443. */
  2444. if (skb) {
  2445. struct page *page;
  2446. struct skb_shared_info *shinfo;
  2447. shinfo = skb_shinfo(skb);
  2448. shinfo->nr_frags--;
  2449. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2450. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2451. cons_rx_pg->page = page;
  2452. dev_kfree_skb(skb);
  2453. }
  2454. hw_prod = rxr->rx_pg_prod;
  2455. for (i = 0; i < count; i++) {
  2456. prod = RX_PG_RING_IDX(hw_prod);
  2457. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2458. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2459. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2460. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2461. if (prod != cons) {
  2462. prod_rx_pg->page = cons_rx_pg->page;
  2463. cons_rx_pg->page = NULL;
  2464. dma_unmap_addr_set(prod_rx_pg, mapping,
  2465. dma_unmap_addr(cons_rx_pg, mapping));
  2466. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2467. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2468. }
  2469. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2470. hw_prod = NEXT_RX_BD(hw_prod);
  2471. }
  2472. rxr->rx_pg_prod = hw_prod;
  2473. rxr->rx_pg_cons = cons;
  2474. }
  2475. static inline void
  2476. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2477. u8 *data, u16 cons, u16 prod)
  2478. {
  2479. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2480. struct rx_bd *cons_bd, *prod_bd;
  2481. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2482. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2483. dma_sync_single_for_device(&bp->pdev->dev,
  2484. dma_unmap_addr(cons_rx_buf, mapping),
  2485. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2486. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2487. prod_rx_buf->data = data;
  2488. if (cons == prod)
  2489. return;
  2490. dma_unmap_addr_set(prod_rx_buf, mapping,
  2491. dma_unmap_addr(cons_rx_buf, mapping));
  2492. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2493. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2494. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2495. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2496. }
  2497. static struct sk_buff *
  2498. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2499. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2500. u32 ring_idx)
  2501. {
  2502. int err;
  2503. u16 prod = ring_idx & 0xffff;
  2504. struct sk_buff *skb;
  2505. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2506. if (unlikely(err)) {
  2507. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2508. error:
  2509. if (hdr_len) {
  2510. unsigned int raw_len = len + 4;
  2511. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2512. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2513. }
  2514. return NULL;
  2515. }
  2516. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2517. PCI_DMA_FROMDEVICE);
  2518. skb = build_skb(data);
  2519. if (!skb) {
  2520. kfree(data);
  2521. goto error;
  2522. }
  2523. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2524. if (hdr_len == 0) {
  2525. skb_put(skb, len);
  2526. return skb;
  2527. } else {
  2528. unsigned int i, frag_len, frag_size, pages;
  2529. struct sw_pg *rx_pg;
  2530. u16 pg_cons = rxr->rx_pg_cons;
  2531. u16 pg_prod = rxr->rx_pg_prod;
  2532. frag_size = len + 4 - hdr_len;
  2533. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2534. skb_put(skb, hdr_len);
  2535. for (i = 0; i < pages; i++) {
  2536. dma_addr_t mapping_old;
  2537. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2538. if (unlikely(frag_len <= 4)) {
  2539. unsigned int tail = 4 - frag_len;
  2540. rxr->rx_pg_cons = pg_cons;
  2541. rxr->rx_pg_prod = pg_prod;
  2542. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2543. pages - i);
  2544. skb->len -= tail;
  2545. if (i == 0) {
  2546. skb->tail -= tail;
  2547. } else {
  2548. skb_frag_t *frag =
  2549. &skb_shinfo(skb)->frags[i - 1];
  2550. skb_frag_size_sub(frag, tail);
  2551. skb->data_len -= tail;
  2552. }
  2553. return skb;
  2554. }
  2555. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2556. /* Don't unmap yet. If we're unable to allocate a new
  2557. * page, we need to recycle the page and the DMA addr.
  2558. */
  2559. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2560. if (i == pages - 1)
  2561. frag_len -= 4;
  2562. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2563. rx_pg->page = NULL;
  2564. err = bnx2_alloc_rx_page(bp, rxr,
  2565. RX_PG_RING_IDX(pg_prod),
  2566. GFP_ATOMIC);
  2567. if (unlikely(err)) {
  2568. rxr->rx_pg_cons = pg_cons;
  2569. rxr->rx_pg_prod = pg_prod;
  2570. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2571. pages - i);
  2572. return NULL;
  2573. }
  2574. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2575. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2576. frag_size -= frag_len;
  2577. skb->data_len += frag_len;
  2578. skb->truesize += PAGE_SIZE;
  2579. skb->len += frag_len;
  2580. pg_prod = NEXT_RX_BD(pg_prod);
  2581. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2582. }
  2583. rxr->rx_pg_prod = pg_prod;
  2584. rxr->rx_pg_cons = pg_cons;
  2585. }
  2586. return skb;
  2587. }
  2588. static inline u16
  2589. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2590. {
  2591. u16 cons;
  2592. /* Tell compiler that status block fields can change. */
  2593. barrier();
  2594. cons = *bnapi->hw_rx_cons_ptr;
  2595. barrier();
  2596. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2597. cons++;
  2598. return cons;
  2599. }
  2600. static int
  2601. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2602. {
  2603. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2604. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2605. struct l2_fhdr *rx_hdr;
  2606. int rx_pkt = 0, pg_ring_used = 0;
  2607. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2608. sw_cons = rxr->rx_cons;
  2609. sw_prod = rxr->rx_prod;
  2610. /* Memory barrier necessary as speculative reads of the rx
  2611. * buffer can be ahead of the index in the status block
  2612. */
  2613. rmb();
  2614. while (sw_cons != hw_cons) {
  2615. unsigned int len, hdr_len;
  2616. u32 status;
  2617. struct sw_bd *rx_buf, *next_rx_buf;
  2618. struct sk_buff *skb;
  2619. dma_addr_t dma_addr;
  2620. u8 *data;
  2621. sw_ring_cons = RX_RING_IDX(sw_cons);
  2622. sw_ring_prod = RX_RING_IDX(sw_prod);
  2623. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2624. data = rx_buf->data;
  2625. rx_buf->data = NULL;
  2626. rx_hdr = get_l2_fhdr(data);
  2627. prefetch(rx_hdr);
  2628. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2629. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2630. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2631. PCI_DMA_FROMDEVICE);
  2632. next_rx_buf =
  2633. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2634. prefetch(get_l2_fhdr(next_rx_buf->data));
  2635. len = rx_hdr->l2_fhdr_pkt_len;
  2636. status = rx_hdr->l2_fhdr_status;
  2637. hdr_len = 0;
  2638. if (status & L2_FHDR_STATUS_SPLIT) {
  2639. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2640. pg_ring_used = 1;
  2641. } else if (len > bp->rx_jumbo_thresh) {
  2642. hdr_len = bp->rx_jumbo_thresh;
  2643. pg_ring_used = 1;
  2644. }
  2645. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2646. L2_FHDR_ERRORS_PHY_DECODE |
  2647. L2_FHDR_ERRORS_ALIGNMENT |
  2648. L2_FHDR_ERRORS_TOO_SHORT |
  2649. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2650. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2651. sw_ring_prod);
  2652. if (pg_ring_used) {
  2653. int pages;
  2654. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2655. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2656. }
  2657. goto next_rx;
  2658. }
  2659. len -= 4;
  2660. if (len <= bp->rx_copy_thresh) {
  2661. skb = netdev_alloc_skb(bp->dev, len + 6);
  2662. if (skb == NULL) {
  2663. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2664. sw_ring_prod);
  2665. goto next_rx;
  2666. }
  2667. /* aligned copy */
  2668. memcpy(skb->data,
  2669. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2670. len + 6);
  2671. skb_reserve(skb, 6);
  2672. skb_put(skb, len);
  2673. bnx2_reuse_rx_data(bp, rxr, data,
  2674. sw_ring_cons, sw_ring_prod);
  2675. } else {
  2676. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2677. (sw_ring_cons << 16) | sw_ring_prod);
  2678. if (!skb)
  2679. goto next_rx;
  2680. }
  2681. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2682. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2683. __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
  2684. skb->protocol = eth_type_trans(skb, bp->dev);
  2685. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2686. (ntohs(skb->protocol) != 0x8100)) {
  2687. dev_kfree_skb(skb);
  2688. goto next_rx;
  2689. }
  2690. skb_checksum_none_assert(skb);
  2691. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2692. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2693. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2694. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2695. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2696. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2697. }
  2698. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2699. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2700. L2_FHDR_STATUS_USE_RXHASH))
  2701. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2702. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2703. napi_gro_receive(&bnapi->napi, skb);
  2704. rx_pkt++;
  2705. next_rx:
  2706. sw_cons = NEXT_RX_BD(sw_cons);
  2707. sw_prod = NEXT_RX_BD(sw_prod);
  2708. if ((rx_pkt == budget))
  2709. break;
  2710. /* Refresh hw_cons to see if there is new work */
  2711. if (sw_cons == hw_cons) {
  2712. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2713. rmb();
  2714. }
  2715. }
  2716. rxr->rx_cons = sw_cons;
  2717. rxr->rx_prod = sw_prod;
  2718. if (pg_ring_used)
  2719. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2720. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2721. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2722. mmiowb();
  2723. return rx_pkt;
  2724. }
  2725. /* MSI ISR - The only difference between this and the INTx ISR
  2726. * is that the MSI interrupt is always serviced.
  2727. */
  2728. static irqreturn_t
  2729. bnx2_msi(int irq, void *dev_instance)
  2730. {
  2731. struct bnx2_napi *bnapi = dev_instance;
  2732. struct bnx2 *bp = bnapi->bp;
  2733. prefetch(bnapi->status_blk.msi);
  2734. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2735. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2736. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2737. /* Return here if interrupt is disabled. */
  2738. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2739. return IRQ_HANDLED;
  2740. napi_schedule(&bnapi->napi);
  2741. return IRQ_HANDLED;
  2742. }
  2743. static irqreturn_t
  2744. bnx2_msi_1shot(int irq, void *dev_instance)
  2745. {
  2746. struct bnx2_napi *bnapi = dev_instance;
  2747. struct bnx2 *bp = bnapi->bp;
  2748. prefetch(bnapi->status_blk.msi);
  2749. /* Return here if interrupt is disabled. */
  2750. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2751. return IRQ_HANDLED;
  2752. napi_schedule(&bnapi->napi);
  2753. return IRQ_HANDLED;
  2754. }
  2755. static irqreturn_t
  2756. bnx2_interrupt(int irq, void *dev_instance)
  2757. {
  2758. struct bnx2_napi *bnapi = dev_instance;
  2759. struct bnx2 *bp = bnapi->bp;
  2760. struct status_block *sblk = bnapi->status_blk.msi;
  2761. /* When using INTx, it is possible for the interrupt to arrive
  2762. * at the CPU before the status block posted prior to the
  2763. * interrupt. Reading a register will flush the status block.
  2764. * When using MSI, the MSI message will always complete after
  2765. * the status block write.
  2766. */
  2767. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2768. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2769. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2770. return IRQ_NONE;
  2771. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2772. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2773. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2774. /* Read back to deassert IRQ immediately to avoid too many
  2775. * spurious interrupts.
  2776. */
  2777. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2778. /* Return here if interrupt is shared and is disabled. */
  2779. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2780. return IRQ_HANDLED;
  2781. if (napi_schedule_prep(&bnapi->napi)) {
  2782. bnapi->last_status_idx = sblk->status_idx;
  2783. __napi_schedule(&bnapi->napi);
  2784. }
  2785. return IRQ_HANDLED;
  2786. }
  2787. static inline int
  2788. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2789. {
  2790. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2791. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2792. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2793. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2794. return 1;
  2795. return 0;
  2796. }
  2797. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2798. STATUS_ATTN_BITS_TIMER_ABORT)
  2799. static inline int
  2800. bnx2_has_work(struct bnx2_napi *bnapi)
  2801. {
  2802. struct status_block *sblk = bnapi->status_blk.msi;
  2803. if (bnx2_has_fast_work(bnapi))
  2804. return 1;
  2805. #ifdef BCM_CNIC
  2806. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2807. return 1;
  2808. #endif
  2809. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2810. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2811. return 1;
  2812. return 0;
  2813. }
  2814. static void
  2815. bnx2_chk_missed_msi(struct bnx2 *bp)
  2816. {
  2817. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2818. u32 msi_ctrl;
  2819. if (bnx2_has_work(bnapi)) {
  2820. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2821. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2822. return;
  2823. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2824. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2825. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2826. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2827. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2828. }
  2829. }
  2830. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2831. }
  2832. #ifdef BCM_CNIC
  2833. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2834. {
  2835. struct cnic_ops *c_ops;
  2836. if (!bnapi->cnic_present)
  2837. return;
  2838. rcu_read_lock();
  2839. c_ops = rcu_dereference(bp->cnic_ops);
  2840. if (c_ops)
  2841. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2842. bnapi->status_blk.msi);
  2843. rcu_read_unlock();
  2844. }
  2845. #endif
  2846. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2847. {
  2848. struct status_block *sblk = bnapi->status_blk.msi;
  2849. u32 status_attn_bits = sblk->status_attn_bits;
  2850. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2851. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2852. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2853. bnx2_phy_int(bp, bnapi);
  2854. /* This is needed to take care of transient status
  2855. * during link changes.
  2856. */
  2857. REG_WR(bp, BNX2_HC_COMMAND,
  2858. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2859. REG_RD(bp, BNX2_HC_COMMAND);
  2860. }
  2861. }
  2862. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2863. int work_done, int budget)
  2864. {
  2865. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2866. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2867. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2868. bnx2_tx_int(bp, bnapi, 0);
  2869. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2870. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2871. return work_done;
  2872. }
  2873. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2874. {
  2875. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2876. struct bnx2 *bp = bnapi->bp;
  2877. int work_done = 0;
  2878. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2879. while (1) {
  2880. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2881. if (unlikely(work_done >= budget))
  2882. break;
  2883. bnapi->last_status_idx = sblk->status_idx;
  2884. /* status idx must be read before checking for more work. */
  2885. rmb();
  2886. if (likely(!bnx2_has_fast_work(bnapi))) {
  2887. napi_complete(napi);
  2888. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2889. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2890. bnapi->last_status_idx);
  2891. break;
  2892. }
  2893. }
  2894. return work_done;
  2895. }
  2896. static int bnx2_poll(struct napi_struct *napi, int budget)
  2897. {
  2898. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2899. struct bnx2 *bp = bnapi->bp;
  2900. int work_done = 0;
  2901. struct status_block *sblk = bnapi->status_blk.msi;
  2902. while (1) {
  2903. bnx2_poll_link(bp, bnapi);
  2904. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2905. #ifdef BCM_CNIC
  2906. bnx2_poll_cnic(bp, bnapi);
  2907. #endif
  2908. /* bnapi->last_status_idx is used below to tell the hw how
  2909. * much work has been processed, so we must read it before
  2910. * checking for more work.
  2911. */
  2912. bnapi->last_status_idx = sblk->status_idx;
  2913. if (unlikely(work_done >= budget))
  2914. break;
  2915. rmb();
  2916. if (likely(!bnx2_has_work(bnapi))) {
  2917. napi_complete(napi);
  2918. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2919. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2920. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2921. bnapi->last_status_idx);
  2922. break;
  2923. }
  2924. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2925. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2926. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2927. bnapi->last_status_idx);
  2928. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2929. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2930. bnapi->last_status_idx);
  2931. break;
  2932. }
  2933. }
  2934. return work_done;
  2935. }
  2936. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2937. * from set_multicast.
  2938. */
  2939. static void
  2940. bnx2_set_rx_mode(struct net_device *dev)
  2941. {
  2942. struct bnx2 *bp = netdev_priv(dev);
  2943. u32 rx_mode, sort_mode;
  2944. struct netdev_hw_addr *ha;
  2945. int i;
  2946. if (!netif_running(dev))
  2947. return;
  2948. spin_lock_bh(&bp->phy_lock);
  2949. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2950. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2951. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2952. if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
  2953. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2954. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2955. if (dev->flags & IFF_PROMISC) {
  2956. /* Promiscuous mode. */
  2957. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2958. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2959. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2960. }
  2961. else if (dev->flags & IFF_ALLMULTI) {
  2962. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2963. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2964. 0xffffffff);
  2965. }
  2966. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2967. }
  2968. else {
  2969. /* Accept one or more multicast(s). */
  2970. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2971. u32 regidx;
  2972. u32 bit;
  2973. u32 crc;
  2974. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2975. netdev_for_each_mc_addr(ha, dev) {
  2976. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2977. bit = crc & 0xff;
  2978. regidx = (bit & 0xe0) >> 5;
  2979. bit &= 0x1f;
  2980. mc_filter[regidx] |= (1 << bit);
  2981. }
  2982. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2983. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2984. mc_filter[i]);
  2985. }
  2986. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2987. }
  2988. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2989. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2990. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2991. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2992. } else if (!(dev->flags & IFF_PROMISC)) {
  2993. /* Add all entries into to the match filter list */
  2994. i = 0;
  2995. netdev_for_each_uc_addr(ha, dev) {
  2996. bnx2_set_mac_addr(bp, ha->addr,
  2997. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2998. sort_mode |= (1 <<
  2999. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3000. i++;
  3001. }
  3002. }
  3003. if (rx_mode != bp->rx_mode) {
  3004. bp->rx_mode = rx_mode;
  3005. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3006. }
  3007. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3008. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3009. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3010. spin_unlock_bh(&bp->phy_lock);
  3011. }
  3012. static int
  3013. check_fw_section(const struct firmware *fw,
  3014. const struct bnx2_fw_file_section *section,
  3015. u32 alignment, bool non_empty)
  3016. {
  3017. u32 offset = be32_to_cpu(section->offset);
  3018. u32 len = be32_to_cpu(section->len);
  3019. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3020. return -EINVAL;
  3021. if ((non_empty && len == 0) || len > fw->size - offset ||
  3022. len & (alignment - 1))
  3023. return -EINVAL;
  3024. return 0;
  3025. }
  3026. static int
  3027. check_mips_fw_entry(const struct firmware *fw,
  3028. const struct bnx2_mips_fw_file_entry *entry)
  3029. {
  3030. if (check_fw_section(fw, &entry->text, 4, true) ||
  3031. check_fw_section(fw, &entry->data, 4, false) ||
  3032. check_fw_section(fw, &entry->rodata, 4, false))
  3033. return -EINVAL;
  3034. return 0;
  3035. }
  3036. static void bnx2_release_firmware(struct bnx2 *bp)
  3037. {
  3038. if (bp->rv2p_firmware) {
  3039. release_firmware(bp->mips_firmware);
  3040. release_firmware(bp->rv2p_firmware);
  3041. bp->rv2p_firmware = NULL;
  3042. }
  3043. }
  3044. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3045. {
  3046. const char *mips_fw_file, *rv2p_fw_file;
  3047. const struct bnx2_mips_fw_file *mips_fw;
  3048. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3049. int rc;
  3050. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3051. mips_fw_file = FW_MIPS_FILE_09;
  3052. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3053. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3054. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3055. else
  3056. rv2p_fw_file = FW_RV2P_FILE_09;
  3057. } else {
  3058. mips_fw_file = FW_MIPS_FILE_06;
  3059. rv2p_fw_file = FW_RV2P_FILE_06;
  3060. }
  3061. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3062. if (rc) {
  3063. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3064. goto out;
  3065. }
  3066. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3067. if (rc) {
  3068. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3069. goto err_release_mips_firmware;
  3070. }
  3071. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3072. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3073. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3074. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3075. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3076. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3077. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3078. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3079. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3080. rc = -EINVAL;
  3081. goto err_release_firmware;
  3082. }
  3083. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3084. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3085. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3086. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3087. rc = -EINVAL;
  3088. goto err_release_firmware;
  3089. }
  3090. out:
  3091. return rc;
  3092. err_release_firmware:
  3093. release_firmware(bp->rv2p_firmware);
  3094. bp->rv2p_firmware = NULL;
  3095. err_release_mips_firmware:
  3096. release_firmware(bp->mips_firmware);
  3097. goto out;
  3098. }
  3099. static int bnx2_request_firmware(struct bnx2 *bp)
  3100. {
  3101. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3102. }
  3103. static u32
  3104. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3105. {
  3106. switch (idx) {
  3107. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3108. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3109. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3110. break;
  3111. }
  3112. return rv2p_code;
  3113. }
  3114. static int
  3115. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3116. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3117. {
  3118. u32 rv2p_code_len, file_offset;
  3119. __be32 *rv2p_code;
  3120. int i;
  3121. u32 val, cmd, addr;
  3122. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3123. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3124. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3125. if (rv2p_proc == RV2P_PROC1) {
  3126. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3127. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3128. } else {
  3129. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3130. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3131. }
  3132. for (i = 0; i < rv2p_code_len; i += 8) {
  3133. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3134. rv2p_code++;
  3135. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3136. rv2p_code++;
  3137. val = (i / 8) | cmd;
  3138. REG_WR(bp, addr, val);
  3139. }
  3140. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3141. for (i = 0; i < 8; i++) {
  3142. u32 loc, code;
  3143. loc = be32_to_cpu(fw_entry->fixup[i]);
  3144. if (loc && ((loc * 4) < rv2p_code_len)) {
  3145. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3146. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3147. code = be32_to_cpu(*(rv2p_code + loc));
  3148. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3149. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3150. val = (loc / 2) | cmd;
  3151. REG_WR(bp, addr, val);
  3152. }
  3153. }
  3154. /* Reset the processor, un-stall is done later. */
  3155. if (rv2p_proc == RV2P_PROC1) {
  3156. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3157. }
  3158. else {
  3159. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3160. }
  3161. return 0;
  3162. }
  3163. static int
  3164. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3165. const struct bnx2_mips_fw_file_entry *fw_entry)
  3166. {
  3167. u32 addr, len, file_offset;
  3168. __be32 *data;
  3169. u32 offset;
  3170. u32 val;
  3171. /* Halt the CPU. */
  3172. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3173. val |= cpu_reg->mode_value_halt;
  3174. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3175. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3176. /* Load the Text area. */
  3177. addr = be32_to_cpu(fw_entry->text.addr);
  3178. len = be32_to_cpu(fw_entry->text.len);
  3179. file_offset = be32_to_cpu(fw_entry->text.offset);
  3180. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3181. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3182. if (len) {
  3183. int j;
  3184. for (j = 0; j < (len / 4); j++, offset += 4)
  3185. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3186. }
  3187. /* Load the Data area. */
  3188. addr = be32_to_cpu(fw_entry->data.addr);
  3189. len = be32_to_cpu(fw_entry->data.len);
  3190. file_offset = be32_to_cpu(fw_entry->data.offset);
  3191. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3192. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3193. if (len) {
  3194. int j;
  3195. for (j = 0; j < (len / 4); j++, offset += 4)
  3196. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3197. }
  3198. /* Load the Read-Only area. */
  3199. addr = be32_to_cpu(fw_entry->rodata.addr);
  3200. len = be32_to_cpu(fw_entry->rodata.len);
  3201. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3202. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3203. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3204. if (len) {
  3205. int j;
  3206. for (j = 0; j < (len / 4); j++, offset += 4)
  3207. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3208. }
  3209. /* Clear the pre-fetch instruction. */
  3210. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3211. val = be32_to_cpu(fw_entry->start_addr);
  3212. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3213. /* Start the CPU. */
  3214. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3215. val &= ~cpu_reg->mode_value_halt;
  3216. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3217. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3218. return 0;
  3219. }
  3220. static int
  3221. bnx2_init_cpus(struct bnx2 *bp)
  3222. {
  3223. const struct bnx2_mips_fw_file *mips_fw =
  3224. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3225. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3226. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3227. int rc;
  3228. /* Initialize the RV2P processor. */
  3229. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3230. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3231. /* Initialize the RX Processor. */
  3232. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3233. if (rc)
  3234. goto init_cpu_err;
  3235. /* Initialize the TX Processor. */
  3236. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3237. if (rc)
  3238. goto init_cpu_err;
  3239. /* Initialize the TX Patch-up Processor. */
  3240. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3241. if (rc)
  3242. goto init_cpu_err;
  3243. /* Initialize the Completion Processor. */
  3244. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3245. if (rc)
  3246. goto init_cpu_err;
  3247. /* Initialize the Command Processor. */
  3248. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3249. init_cpu_err:
  3250. return rc;
  3251. }
  3252. static int
  3253. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3254. {
  3255. u16 pmcsr;
  3256. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3257. switch (state) {
  3258. case PCI_D0: {
  3259. u32 val;
  3260. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3261. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3262. PCI_PM_CTRL_PME_STATUS);
  3263. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3264. /* delay required during transition out of D3hot */
  3265. msleep(20);
  3266. val = REG_RD(bp, BNX2_EMAC_MODE);
  3267. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3268. val &= ~BNX2_EMAC_MODE_MPKT;
  3269. REG_WR(bp, BNX2_EMAC_MODE, val);
  3270. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3271. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3272. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3273. break;
  3274. }
  3275. case PCI_D3hot: {
  3276. int i;
  3277. u32 val, wol_msg;
  3278. if (bp->wol) {
  3279. u32 advertising;
  3280. u8 autoneg;
  3281. autoneg = bp->autoneg;
  3282. advertising = bp->advertising;
  3283. if (bp->phy_port == PORT_TP) {
  3284. bp->autoneg = AUTONEG_SPEED;
  3285. bp->advertising = ADVERTISED_10baseT_Half |
  3286. ADVERTISED_10baseT_Full |
  3287. ADVERTISED_100baseT_Half |
  3288. ADVERTISED_100baseT_Full |
  3289. ADVERTISED_Autoneg;
  3290. }
  3291. spin_lock_bh(&bp->phy_lock);
  3292. bnx2_setup_phy(bp, bp->phy_port);
  3293. spin_unlock_bh(&bp->phy_lock);
  3294. bp->autoneg = autoneg;
  3295. bp->advertising = advertising;
  3296. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3297. val = REG_RD(bp, BNX2_EMAC_MODE);
  3298. /* Enable port mode. */
  3299. val &= ~BNX2_EMAC_MODE_PORT;
  3300. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3301. BNX2_EMAC_MODE_ACPI_RCVD |
  3302. BNX2_EMAC_MODE_MPKT;
  3303. if (bp->phy_port == PORT_TP)
  3304. val |= BNX2_EMAC_MODE_PORT_MII;
  3305. else {
  3306. val |= BNX2_EMAC_MODE_PORT_GMII;
  3307. if (bp->line_speed == SPEED_2500)
  3308. val |= BNX2_EMAC_MODE_25G_MODE;
  3309. }
  3310. REG_WR(bp, BNX2_EMAC_MODE, val);
  3311. /* receive all multicast */
  3312. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3313. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3314. 0xffffffff);
  3315. }
  3316. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3317. BNX2_EMAC_RX_MODE_SORT_MODE);
  3318. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3319. BNX2_RPM_SORT_USER0_MC_EN;
  3320. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3321. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3322. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3323. BNX2_RPM_SORT_USER0_ENA);
  3324. /* Need to enable EMAC and RPM for WOL. */
  3325. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3326. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3327. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3328. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3329. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3330. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3331. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3332. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3333. }
  3334. else {
  3335. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3336. }
  3337. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3338. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3339. 1, 0);
  3340. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3341. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3342. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3343. if (bp->wol)
  3344. pmcsr |= 3;
  3345. }
  3346. else {
  3347. pmcsr |= 3;
  3348. }
  3349. if (bp->wol) {
  3350. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3351. }
  3352. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3353. pmcsr);
  3354. /* No more memory access after this point until
  3355. * device is brought back to D0.
  3356. */
  3357. udelay(50);
  3358. break;
  3359. }
  3360. default:
  3361. return -EINVAL;
  3362. }
  3363. return 0;
  3364. }
  3365. static int
  3366. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3367. {
  3368. u32 val;
  3369. int j;
  3370. /* Request access to the flash interface. */
  3371. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3372. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3373. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3374. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3375. break;
  3376. udelay(5);
  3377. }
  3378. if (j >= NVRAM_TIMEOUT_COUNT)
  3379. return -EBUSY;
  3380. return 0;
  3381. }
  3382. static int
  3383. bnx2_release_nvram_lock(struct bnx2 *bp)
  3384. {
  3385. int j;
  3386. u32 val;
  3387. /* Relinquish nvram interface. */
  3388. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3389. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3390. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3391. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3392. break;
  3393. udelay(5);
  3394. }
  3395. if (j >= NVRAM_TIMEOUT_COUNT)
  3396. return -EBUSY;
  3397. return 0;
  3398. }
  3399. static int
  3400. bnx2_enable_nvram_write(struct bnx2 *bp)
  3401. {
  3402. u32 val;
  3403. val = REG_RD(bp, BNX2_MISC_CFG);
  3404. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3405. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3406. int j;
  3407. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3408. REG_WR(bp, BNX2_NVM_COMMAND,
  3409. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3410. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3411. udelay(5);
  3412. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3413. if (val & BNX2_NVM_COMMAND_DONE)
  3414. break;
  3415. }
  3416. if (j >= NVRAM_TIMEOUT_COUNT)
  3417. return -EBUSY;
  3418. }
  3419. return 0;
  3420. }
  3421. static void
  3422. bnx2_disable_nvram_write(struct bnx2 *bp)
  3423. {
  3424. u32 val;
  3425. val = REG_RD(bp, BNX2_MISC_CFG);
  3426. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3427. }
  3428. static void
  3429. bnx2_enable_nvram_access(struct bnx2 *bp)
  3430. {
  3431. u32 val;
  3432. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3433. /* Enable both bits, even on read. */
  3434. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3435. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3436. }
  3437. static void
  3438. bnx2_disable_nvram_access(struct bnx2 *bp)
  3439. {
  3440. u32 val;
  3441. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3442. /* Disable both bits, even after read. */
  3443. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3444. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3445. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3446. }
  3447. static int
  3448. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3449. {
  3450. u32 cmd;
  3451. int j;
  3452. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3453. /* Buffered flash, no erase needed */
  3454. return 0;
  3455. /* Build an erase command */
  3456. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3457. BNX2_NVM_COMMAND_DOIT;
  3458. /* Need to clear DONE bit separately. */
  3459. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3460. /* Address of the NVRAM to read from. */
  3461. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3462. /* Issue an erase command. */
  3463. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3464. /* Wait for completion. */
  3465. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3466. u32 val;
  3467. udelay(5);
  3468. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3469. if (val & BNX2_NVM_COMMAND_DONE)
  3470. break;
  3471. }
  3472. if (j >= NVRAM_TIMEOUT_COUNT)
  3473. return -EBUSY;
  3474. return 0;
  3475. }
  3476. static int
  3477. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3478. {
  3479. u32 cmd;
  3480. int j;
  3481. /* Build the command word. */
  3482. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3483. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3484. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3485. offset = ((offset / bp->flash_info->page_size) <<
  3486. bp->flash_info->page_bits) +
  3487. (offset % bp->flash_info->page_size);
  3488. }
  3489. /* Need to clear DONE bit separately. */
  3490. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3491. /* Address of the NVRAM to read from. */
  3492. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3493. /* Issue a read command. */
  3494. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3495. /* Wait for completion. */
  3496. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3497. u32 val;
  3498. udelay(5);
  3499. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3500. if (val & BNX2_NVM_COMMAND_DONE) {
  3501. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3502. memcpy(ret_val, &v, 4);
  3503. break;
  3504. }
  3505. }
  3506. if (j >= NVRAM_TIMEOUT_COUNT)
  3507. return -EBUSY;
  3508. return 0;
  3509. }
  3510. static int
  3511. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3512. {
  3513. u32 cmd;
  3514. __be32 val32;
  3515. int j;
  3516. /* Build the command word. */
  3517. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3518. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3519. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3520. offset = ((offset / bp->flash_info->page_size) <<
  3521. bp->flash_info->page_bits) +
  3522. (offset % bp->flash_info->page_size);
  3523. }
  3524. /* Need to clear DONE bit separately. */
  3525. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3526. memcpy(&val32, val, 4);
  3527. /* Write the data. */
  3528. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3529. /* Address of the NVRAM to write to. */
  3530. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3531. /* Issue the write command. */
  3532. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3533. /* Wait for completion. */
  3534. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3535. udelay(5);
  3536. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3537. break;
  3538. }
  3539. if (j >= NVRAM_TIMEOUT_COUNT)
  3540. return -EBUSY;
  3541. return 0;
  3542. }
  3543. static int
  3544. bnx2_init_nvram(struct bnx2 *bp)
  3545. {
  3546. u32 val;
  3547. int j, entry_count, rc = 0;
  3548. const struct flash_spec *flash;
  3549. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3550. bp->flash_info = &flash_5709;
  3551. goto get_flash_size;
  3552. }
  3553. /* Determine the selected interface. */
  3554. val = REG_RD(bp, BNX2_NVM_CFG1);
  3555. entry_count = ARRAY_SIZE(flash_table);
  3556. if (val & 0x40000000) {
  3557. /* Flash interface has been reconfigured */
  3558. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3559. j++, flash++) {
  3560. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3561. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3562. bp->flash_info = flash;
  3563. break;
  3564. }
  3565. }
  3566. }
  3567. else {
  3568. u32 mask;
  3569. /* Not yet been reconfigured */
  3570. if (val & (1 << 23))
  3571. mask = FLASH_BACKUP_STRAP_MASK;
  3572. else
  3573. mask = FLASH_STRAP_MASK;
  3574. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3575. j++, flash++) {
  3576. if ((val & mask) == (flash->strapping & mask)) {
  3577. bp->flash_info = flash;
  3578. /* Request access to the flash interface. */
  3579. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3580. return rc;
  3581. /* Enable access to flash interface */
  3582. bnx2_enable_nvram_access(bp);
  3583. /* Reconfigure the flash interface */
  3584. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3585. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3586. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3587. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3588. /* Disable access to flash interface */
  3589. bnx2_disable_nvram_access(bp);
  3590. bnx2_release_nvram_lock(bp);
  3591. break;
  3592. }
  3593. }
  3594. } /* if (val & 0x40000000) */
  3595. if (j == entry_count) {
  3596. bp->flash_info = NULL;
  3597. pr_alert("Unknown flash/EEPROM type\n");
  3598. return -ENODEV;
  3599. }
  3600. get_flash_size:
  3601. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3602. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3603. if (val)
  3604. bp->flash_size = val;
  3605. else
  3606. bp->flash_size = bp->flash_info->total_size;
  3607. return rc;
  3608. }
  3609. static int
  3610. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3611. int buf_size)
  3612. {
  3613. int rc = 0;
  3614. u32 cmd_flags, offset32, len32, extra;
  3615. if (buf_size == 0)
  3616. return 0;
  3617. /* Request access to the flash interface. */
  3618. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3619. return rc;
  3620. /* Enable access to flash interface */
  3621. bnx2_enable_nvram_access(bp);
  3622. len32 = buf_size;
  3623. offset32 = offset;
  3624. extra = 0;
  3625. cmd_flags = 0;
  3626. if (offset32 & 3) {
  3627. u8 buf[4];
  3628. u32 pre_len;
  3629. offset32 &= ~3;
  3630. pre_len = 4 - (offset & 3);
  3631. if (pre_len >= len32) {
  3632. pre_len = len32;
  3633. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3634. BNX2_NVM_COMMAND_LAST;
  3635. }
  3636. else {
  3637. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3638. }
  3639. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3640. if (rc)
  3641. return rc;
  3642. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3643. offset32 += 4;
  3644. ret_buf += pre_len;
  3645. len32 -= pre_len;
  3646. }
  3647. if (len32 & 3) {
  3648. extra = 4 - (len32 & 3);
  3649. len32 = (len32 + 4) & ~3;
  3650. }
  3651. if (len32 == 4) {
  3652. u8 buf[4];
  3653. if (cmd_flags)
  3654. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3655. else
  3656. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3657. BNX2_NVM_COMMAND_LAST;
  3658. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3659. memcpy(ret_buf, buf, 4 - extra);
  3660. }
  3661. else if (len32 > 0) {
  3662. u8 buf[4];
  3663. /* Read the first word. */
  3664. if (cmd_flags)
  3665. cmd_flags = 0;
  3666. else
  3667. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3668. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3669. /* Advance to the next dword. */
  3670. offset32 += 4;
  3671. ret_buf += 4;
  3672. len32 -= 4;
  3673. while (len32 > 4 && rc == 0) {
  3674. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3675. /* Advance to the next dword. */
  3676. offset32 += 4;
  3677. ret_buf += 4;
  3678. len32 -= 4;
  3679. }
  3680. if (rc)
  3681. return rc;
  3682. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3683. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3684. memcpy(ret_buf, buf, 4 - extra);
  3685. }
  3686. /* Disable access to flash interface */
  3687. bnx2_disable_nvram_access(bp);
  3688. bnx2_release_nvram_lock(bp);
  3689. return rc;
  3690. }
  3691. static int
  3692. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3693. int buf_size)
  3694. {
  3695. u32 written, offset32, len32;
  3696. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3697. int rc = 0;
  3698. int align_start, align_end;
  3699. buf = data_buf;
  3700. offset32 = offset;
  3701. len32 = buf_size;
  3702. align_start = align_end = 0;
  3703. if ((align_start = (offset32 & 3))) {
  3704. offset32 &= ~3;
  3705. len32 += align_start;
  3706. if (len32 < 4)
  3707. len32 = 4;
  3708. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3709. return rc;
  3710. }
  3711. if (len32 & 3) {
  3712. align_end = 4 - (len32 & 3);
  3713. len32 += align_end;
  3714. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3715. return rc;
  3716. }
  3717. if (align_start || align_end) {
  3718. align_buf = kmalloc(len32, GFP_KERNEL);
  3719. if (align_buf == NULL)
  3720. return -ENOMEM;
  3721. if (align_start) {
  3722. memcpy(align_buf, start, 4);
  3723. }
  3724. if (align_end) {
  3725. memcpy(align_buf + len32 - 4, end, 4);
  3726. }
  3727. memcpy(align_buf + align_start, data_buf, buf_size);
  3728. buf = align_buf;
  3729. }
  3730. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3731. flash_buffer = kmalloc(264, GFP_KERNEL);
  3732. if (flash_buffer == NULL) {
  3733. rc = -ENOMEM;
  3734. goto nvram_write_end;
  3735. }
  3736. }
  3737. written = 0;
  3738. while ((written < len32) && (rc == 0)) {
  3739. u32 page_start, page_end, data_start, data_end;
  3740. u32 addr, cmd_flags;
  3741. int i;
  3742. /* Find the page_start addr */
  3743. page_start = offset32 + written;
  3744. page_start -= (page_start % bp->flash_info->page_size);
  3745. /* Find the page_end addr */
  3746. page_end = page_start + bp->flash_info->page_size;
  3747. /* Find the data_start addr */
  3748. data_start = (written == 0) ? offset32 : page_start;
  3749. /* Find the data_end addr */
  3750. data_end = (page_end > offset32 + len32) ?
  3751. (offset32 + len32) : page_end;
  3752. /* Request access to the flash interface. */
  3753. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3754. goto nvram_write_end;
  3755. /* Enable access to flash interface */
  3756. bnx2_enable_nvram_access(bp);
  3757. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3758. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3759. int j;
  3760. /* Read the whole page into the buffer
  3761. * (non-buffer flash only) */
  3762. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3763. if (j == (bp->flash_info->page_size - 4)) {
  3764. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3765. }
  3766. rc = bnx2_nvram_read_dword(bp,
  3767. page_start + j,
  3768. &flash_buffer[j],
  3769. cmd_flags);
  3770. if (rc)
  3771. goto nvram_write_end;
  3772. cmd_flags = 0;
  3773. }
  3774. }
  3775. /* Enable writes to flash interface (unlock write-protect) */
  3776. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3777. goto nvram_write_end;
  3778. /* Loop to write back the buffer data from page_start to
  3779. * data_start */
  3780. i = 0;
  3781. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3782. /* Erase the page */
  3783. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3784. goto nvram_write_end;
  3785. /* Re-enable the write again for the actual write */
  3786. bnx2_enable_nvram_write(bp);
  3787. for (addr = page_start; addr < data_start;
  3788. addr += 4, i += 4) {
  3789. rc = bnx2_nvram_write_dword(bp, addr,
  3790. &flash_buffer[i], cmd_flags);
  3791. if (rc != 0)
  3792. goto nvram_write_end;
  3793. cmd_flags = 0;
  3794. }
  3795. }
  3796. /* Loop to write the new data from data_start to data_end */
  3797. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3798. if ((addr == page_end - 4) ||
  3799. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3800. (addr == data_end - 4))) {
  3801. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3802. }
  3803. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3804. cmd_flags);
  3805. if (rc != 0)
  3806. goto nvram_write_end;
  3807. cmd_flags = 0;
  3808. buf += 4;
  3809. }
  3810. /* Loop to write back the buffer data from data_end
  3811. * to page_end */
  3812. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3813. for (addr = data_end; addr < page_end;
  3814. addr += 4, i += 4) {
  3815. if (addr == page_end-4) {
  3816. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3817. }
  3818. rc = bnx2_nvram_write_dword(bp, addr,
  3819. &flash_buffer[i], cmd_flags);
  3820. if (rc != 0)
  3821. goto nvram_write_end;
  3822. cmd_flags = 0;
  3823. }
  3824. }
  3825. /* Disable writes to flash interface (lock write-protect) */
  3826. bnx2_disable_nvram_write(bp);
  3827. /* Disable access to flash interface */
  3828. bnx2_disable_nvram_access(bp);
  3829. bnx2_release_nvram_lock(bp);
  3830. /* Increment written */
  3831. written += data_end - data_start;
  3832. }
  3833. nvram_write_end:
  3834. kfree(flash_buffer);
  3835. kfree(align_buf);
  3836. return rc;
  3837. }
  3838. static void
  3839. bnx2_init_fw_cap(struct bnx2 *bp)
  3840. {
  3841. u32 val, sig = 0;
  3842. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3843. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3844. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3845. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3846. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3847. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3848. return;
  3849. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3850. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3851. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3852. }
  3853. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3854. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3855. u32 link;
  3856. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3857. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3858. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3859. bp->phy_port = PORT_FIBRE;
  3860. else
  3861. bp->phy_port = PORT_TP;
  3862. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3863. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3864. }
  3865. if (netif_running(bp->dev) && sig)
  3866. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3867. }
  3868. static void
  3869. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3870. {
  3871. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3872. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3873. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3874. }
  3875. static int
  3876. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3877. {
  3878. u32 val;
  3879. int i, rc = 0;
  3880. u8 old_port;
  3881. /* Wait for the current PCI transaction to complete before
  3882. * issuing a reset. */
  3883. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3884. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  3885. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3886. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3887. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3888. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3889. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3890. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3891. udelay(5);
  3892. } else { /* 5709 */
  3893. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3894. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3895. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3896. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3897. for (i = 0; i < 100; i++) {
  3898. msleep(1);
  3899. val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3900. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3901. break;
  3902. }
  3903. }
  3904. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3905. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3906. /* Deposit a driver reset signature so the firmware knows that
  3907. * this is a soft reset. */
  3908. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3909. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3910. /* Do a dummy read to force the chip to complete all current transaction
  3911. * before we issue a reset. */
  3912. val = REG_RD(bp, BNX2_MISC_ID);
  3913. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3914. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3915. REG_RD(bp, BNX2_MISC_COMMAND);
  3916. udelay(5);
  3917. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3918. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3919. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3920. } else {
  3921. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3922. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3923. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3924. /* Chip reset. */
  3925. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3926. /* Reading back any register after chip reset will hang the
  3927. * bus on 5706 A0 and A1. The msleep below provides plenty
  3928. * of margin for write posting.
  3929. */
  3930. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3931. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3932. msleep(20);
  3933. /* Reset takes approximate 30 usec */
  3934. for (i = 0; i < 10; i++) {
  3935. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3936. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3937. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3938. break;
  3939. udelay(10);
  3940. }
  3941. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3942. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3943. pr_err("Chip reset did not complete\n");
  3944. return -EBUSY;
  3945. }
  3946. }
  3947. /* Make sure byte swapping is properly configured. */
  3948. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3949. if (val != 0x01020304) {
  3950. pr_err("Chip not in correct endian mode\n");
  3951. return -ENODEV;
  3952. }
  3953. /* Wait for the firmware to finish its initialization. */
  3954. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3955. if (rc)
  3956. return rc;
  3957. spin_lock_bh(&bp->phy_lock);
  3958. old_port = bp->phy_port;
  3959. bnx2_init_fw_cap(bp);
  3960. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3961. old_port != bp->phy_port)
  3962. bnx2_set_default_remote_link(bp);
  3963. spin_unlock_bh(&bp->phy_lock);
  3964. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3965. /* Adjust the voltage regular to two steps lower. The default
  3966. * of this register is 0x0000000e. */
  3967. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3968. /* Remove bad rbuf memory from the free pool. */
  3969. rc = bnx2_alloc_bad_rbuf(bp);
  3970. }
  3971. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3972. bnx2_setup_msix_tbl(bp);
  3973. /* Prevent MSIX table reads and write from timing out */
  3974. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3975. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3976. }
  3977. return rc;
  3978. }
  3979. static int
  3980. bnx2_init_chip(struct bnx2 *bp)
  3981. {
  3982. u32 val, mtu;
  3983. int rc, i;
  3984. /* Make sure the interrupt is not active. */
  3985. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3986. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3987. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3988. #ifdef __BIG_ENDIAN
  3989. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3990. #endif
  3991. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3992. DMA_READ_CHANS << 12 |
  3993. DMA_WRITE_CHANS << 16;
  3994. val |= (0x2 << 20) | (1 << 11);
  3995. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3996. val |= (1 << 23);
  3997. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3998. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3999. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4000. REG_WR(bp, BNX2_DMA_CONFIG, val);
  4001. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4002. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  4003. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4004. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  4005. }
  4006. if (bp->flags & BNX2_FLAG_PCIX) {
  4007. u16 val16;
  4008. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4009. &val16);
  4010. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4011. val16 & ~PCI_X_CMD_ERO);
  4012. }
  4013. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4014. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4015. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4016. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4017. /* Initialize context mapping and zero out the quick contexts. The
  4018. * context block must have already been enabled. */
  4019. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4020. rc = bnx2_init_5709_context(bp);
  4021. if (rc)
  4022. return rc;
  4023. } else
  4024. bnx2_init_context(bp);
  4025. if ((rc = bnx2_init_cpus(bp)) != 0)
  4026. return rc;
  4027. bnx2_init_nvram(bp);
  4028. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4029. val = REG_RD(bp, BNX2_MQ_CONFIG);
  4030. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4031. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4032. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4033. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4034. if (CHIP_REV(bp) == CHIP_REV_Ax)
  4035. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4036. }
  4037. REG_WR(bp, BNX2_MQ_CONFIG, val);
  4038. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4039. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4040. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4041. val = (BCM_PAGE_BITS - 8) << 24;
  4042. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  4043. /* Configure page size. */
  4044. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  4045. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4046. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  4047. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  4048. val = bp->mac_addr[0] +
  4049. (bp->mac_addr[1] << 8) +
  4050. (bp->mac_addr[2] << 16) +
  4051. bp->mac_addr[3] +
  4052. (bp->mac_addr[4] << 8) +
  4053. (bp->mac_addr[5] << 16);
  4054. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4055. /* Program the MTU. Also include 4 bytes for CRC32. */
  4056. mtu = bp->dev->mtu;
  4057. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4058. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4059. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4060. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4061. if (mtu < 1500)
  4062. mtu = 1500;
  4063. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4064. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4065. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4066. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4067. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4068. bp->bnx2_napi[i].last_status_idx = 0;
  4069. bp->idle_chk_status_idx = 0xffff;
  4070. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4071. /* Set up how to generate a link change interrupt. */
  4072. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4073. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4074. (u64) bp->status_blk_mapping & 0xffffffff);
  4075. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4076. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4077. (u64) bp->stats_blk_mapping & 0xffffffff);
  4078. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4079. (u64) bp->stats_blk_mapping >> 32);
  4080. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4081. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4082. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4083. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4084. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4085. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4086. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4087. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4088. REG_WR(bp, BNX2_HC_COM_TICKS,
  4089. (bp->com_ticks_int << 16) | bp->com_ticks);
  4090. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4091. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4092. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4093. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4094. else
  4095. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4096. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4097. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4098. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4099. else {
  4100. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4101. BNX2_HC_CONFIG_COLLECT_STATS;
  4102. }
  4103. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4104. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4105. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4106. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4107. }
  4108. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4109. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4110. REG_WR(bp, BNX2_HC_CONFIG, val);
  4111. if (bp->rx_ticks < 25)
  4112. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4113. else
  4114. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4115. for (i = 1; i < bp->irq_nvecs; i++) {
  4116. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4117. BNX2_HC_SB_CONFIG_1;
  4118. REG_WR(bp, base,
  4119. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4120. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4121. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4122. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4123. (bp->tx_quick_cons_trip_int << 16) |
  4124. bp->tx_quick_cons_trip);
  4125. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4126. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4127. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4128. (bp->rx_quick_cons_trip_int << 16) |
  4129. bp->rx_quick_cons_trip);
  4130. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4131. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4132. }
  4133. /* Clear internal stats counters. */
  4134. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4135. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4136. /* Initialize the receive filter. */
  4137. bnx2_set_rx_mode(bp->dev);
  4138. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4139. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4140. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4141. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4142. }
  4143. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4144. 1, 0);
  4145. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4146. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4147. udelay(20);
  4148. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4149. return rc;
  4150. }
  4151. static void
  4152. bnx2_clear_ring_states(struct bnx2 *bp)
  4153. {
  4154. struct bnx2_napi *bnapi;
  4155. struct bnx2_tx_ring_info *txr;
  4156. struct bnx2_rx_ring_info *rxr;
  4157. int i;
  4158. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4159. bnapi = &bp->bnx2_napi[i];
  4160. txr = &bnapi->tx_ring;
  4161. rxr = &bnapi->rx_ring;
  4162. txr->tx_cons = 0;
  4163. txr->hw_tx_cons = 0;
  4164. rxr->rx_prod_bseq = 0;
  4165. rxr->rx_prod = 0;
  4166. rxr->rx_cons = 0;
  4167. rxr->rx_pg_prod = 0;
  4168. rxr->rx_pg_cons = 0;
  4169. }
  4170. }
  4171. static void
  4172. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4173. {
  4174. u32 val, offset0, offset1, offset2, offset3;
  4175. u32 cid_addr = GET_CID_ADDR(cid);
  4176. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4177. offset0 = BNX2_L2CTX_TYPE_XI;
  4178. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4179. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4180. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4181. } else {
  4182. offset0 = BNX2_L2CTX_TYPE;
  4183. offset1 = BNX2_L2CTX_CMD_TYPE;
  4184. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4185. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4186. }
  4187. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4188. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4189. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4190. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4191. val = (u64) txr->tx_desc_mapping >> 32;
  4192. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4193. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4194. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4195. }
  4196. static void
  4197. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4198. {
  4199. struct tx_bd *txbd;
  4200. u32 cid = TX_CID;
  4201. struct bnx2_napi *bnapi;
  4202. struct bnx2_tx_ring_info *txr;
  4203. bnapi = &bp->bnx2_napi[ring_num];
  4204. txr = &bnapi->tx_ring;
  4205. if (ring_num == 0)
  4206. cid = TX_CID;
  4207. else
  4208. cid = TX_TSS_CID + ring_num - 1;
  4209. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4210. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4211. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4212. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4213. txr->tx_prod = 0;
  4214. txr->tx_prod_bseq = 0;
  4215. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4216. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4217. bnx2_init_tx_context(bp, cid, txr);
  4218. }
  4219. static void
  4220. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4221. int num_rings)
  4222. {
  4223. int i;
  4224. struct rx_bd *rxbd;
  4225. for (i = 0; i < num_rings; i++) {
  4226. int j;
  4227. rxbd = &rx_ring[i][0];
  4228. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4229. rxbd->rx_bd_len = buf_size;
  4230. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4231. }
  4232. if (i == (num_rings - 1))
  4233. j = 0;
  4234. else
  4235. j = i + 1;
  4236. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4237. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4238. }
  4239. }
  4240. static void
  4241. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4242. {
  4243. int i;
  4244. u16 prod, ring_prod;
  4245. u32 cid, rx_cid_addr, val;
  4246. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4247. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4248. if (ring_num == 0)
  4249. cid = RX_CID;
  4250. else
  4251. cid = RX_RSS_CID + ring_num - 1;
  4252. rx_cid_addr = GET_CID_ADDR(cid);
  4253. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4254. bp->rx_buf_use_size, bp->rx_max_ring);
  4255. bnx2_init_rx_context(bp, cid);
  4256. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4257. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4258. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4259. }
  4260. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4261. if (bp->rx_pg_ring_size) {
  4262. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4263. rxr->rx_pg_desc_mapping,
  4264. PAGE_SIZE, bp->rx_max_pg_ring);
  4265. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4266. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4267. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4268. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4269. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4270. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4271. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4272. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4273. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4274. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4275. }
  4276. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4277. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4278. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4279. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4280. ring_prod = prod = rxr->rx_pg_prod;
  4281. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4282. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4283. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4284. ring_num, i, bp->rx_pg_ring_size);
  4285. break;
  4286. }
  4287. prod = NEXT_RX_BD(prod);
  4288. ring_prod = RX_PG_RING_IDX(prod);
  4289. }
  4290. rxr->rx_pg_prod = prod;
  4291. ring_prod = prod = rxr->rx_prod;
  4292. for (i = 0; i < bp->rx_ring_size; i++) {
  4293. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4294. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4295. ring_num, i, bp->rx_ring_size);
  4296. break;
  4297. }
  4298. prod = NEXT_RX_BD(prod);
  4299. ring_prod = RX_RING_IDX(prod);
  4300. }
  4301. rxr->rx_prod = prod;
  4302. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4303. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4304. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4305. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4306. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4307. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4308. }
  4309. static void
  4310. bnx2_init_all_rings(struct bnx2 *bp)
  4311. {
  4312. int i;
  4313. u32 val;
  4314. bnx2_clear_ring_states(bp);
  4315. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4316. for (i = 0; i < bp->num_tx_rings; i++)
  4317. bnx2_init_tx_ring(bp, i);
  4318. if (bp->num_tx_rings > 1)
  4319. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4320. (TX_TSS_CID << 7));
  4321. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4322. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4323. for (i = 0; i < bp->num_rx_rings; i++)
  4324. bnx2_init_rx_ring(bp, i);
  4325. if (bp->num_rx_rings > 1) {
  4326. u32 tbl_32 = 0;
  4327. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4328. int shift = (i % 8) << 2;
  4329. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4330. if ((i % 8) == 7) {
  4331. REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4332. REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4333. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4334. BNX2_RLUP_RSS_COMMAND_WRITE |
  4335. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4336. tbl_32 = 0;
  4337. }
  4338. }
  4339. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4340. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4341. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4342. }
  4343. }
  4344. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4345. {
  4346. u32 max, num_rings = 1;
  4347. while (ring_size > MAX_RX_DESC_CNT) {
  4348. ring_size -= MAX_RX_DESC_CNT;
  4349. num_rings++;
  4350. }
  4351. /* round to next power of 2 */
  4352. max = max_size;
  4353. while ((max & num_rings) == 0)
  4354. max >>= 1;
  4355. if (num_rings != max)
  4356. max <<= 1;
  4357. return max;
  4358. }
  4359. static void
  4360. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4361. {
  4362. u32 rx_size, rx_space, jumbo_size;
  4363. /* 8 for CRC and VLAN */
  4364. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4365. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4366. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4367. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4368. bp->rx_pg_ring_size = 0;
  4369. bp->rx_max_pg_ring = 0;
  4370. bp->rx_max_pg_ring_idx = 0;
  4371. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4372. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4373. jumbo_size = size * pages;
  4374. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4375. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4376. bp->rx_pg_ring_size = jumbo_size;
  4377. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4378. MAX_RX_PG_RINGS);
  4379. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4380. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4381. bp->rx_copy_thresh = 0;
  4382. }
  4383. bp->rx_buf_use_size = rx_size;
  4384. /* hw alignment + build_skb() overhead*/
  4385. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4386. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4387. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4388. bp->rx_ring_size = size;
  4389. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4390. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4391. }
  4392. static void
  4393. bnx2_free_tx_skbs(struct bnx2 *bp)
  4394. {
  4395. int i;
  4396. for (i = 0; i < bp->num_tx_rings; i++) {
  4397. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4398. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4399. int j;
  4400. if (txr->tx_buf_ring == NULL)
  4401. continue;
  4402. for (j = 0; j < TX_DESC_CNT; ) {
  4403. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4404. struct sk_buff *skb = tx_buf->skb;
  4405. int k, last;
  4406. if (skb == NULL) {
  4407. j++;
  4408. continue;
  4409. }
  4410. dma_unmap_single(&bp->pdev->dev,
  4411. dma_unmap_addr(tx_buf, mapping),
  4412. skb_headlen(skb),
  4413. PCI_DMA_TODEVICE);
  4414. tx_buf->skb = NULL;
  4415. last = tx_buf->nr_frags;
  4416. j++;
  4417. for (k = 0; k < last; k++, j++) {
  4418. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4419. dma_unmap_page(&bp->pdev->dev,
  4420. dma_unmap_addr(tx_buf, mapping),
  4421. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4422. PCI_DMA_TODEVICE);
  4423. }
  4424. dev_kfree_skb(skb);
  4425. }
  4426. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4427. }
  4428. }
  4429. static void
  4430. bnx2_free_rx_skbs(struct bnx2 *bp)
  4431. {
  4432. int i;
  4433. for (i = 0; i < bp->num_rx_rings; i++) {
  4434. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4435. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4436. int j;
  4437. if (rxr->rx_buf_ring == NULL)
  4438. return;
  4439. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4440. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4441. u8 *data = rx_buf->data;
  4442. if (data == NULL)
  4443. continue;
  4444. dma_unmap_single(&bp->pdev->dev,
  4445. dma_unmap_addr(rx_buf, mapping),
  4446. bp->rx_buf_use_size,
  4447. PCI_DMA_FROMDEVICE);
  4448. rx_buf->data = NULL;
  4449. kfree(data);
  4450. }
  4451. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4452. bnx2_free_rx_page(bp, rxr, j);
  4453. }
  4454. }
  4455. static void
  4456. bnx2_free_skbs(struct bnx2 *bp)
  4457. {
  4458. bnx2_free_tx_skbs(bp);
  4459. bnx2_free_rx_skbs(bp);
  4460. }
  4461. static int
  4462. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4463. {
  4464. int rc;
  4465. rc = bnx2_reset_chip(bp, reset_code);
  4466. bnx2_free_skbs(bp);
  4467. if (rc)
  4468. return rc;
  4469. if ((rc = bnx2_init_chip(bp)) != 0)
  4470. return rc;
  4471. bnx2_init_all_rings(bp);
  4472. return 0;
  4473. }
  4474. static int
  4475. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4476. {
  4477. int rc;
  4478. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4479. return rc;
  4480. spin_lock_bh(&bp->phy_lock);
  4481. bnx2_init_phy(bp, reset_phy);
  4482. bnx2_set_link(bp);
  4483. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4484. bnx2_remote_phy_event(bp);
  4485. spin_unlock_bh(&bp->phy_lock);
  4486. return 0;
  4487. }
  4488. static int
  4489. bnx2_shutdown_chip(struct bnx2 *bp)
  4490. {
  4491. u32 reset_code;
  4492. if (bp->flags & BNX2_FLAG_NO_WOL)
  4493. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4494. else if (bp->wol)
  4495. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4496. else
  4497. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4498. return bnx2_reset_chip(bp, reset_code);
  4499. }
  4500. static int
  4501. bnx2_test_registers(struct bnx2 *bp)
  4502. {
  4503. int ret;
  4504. int i, is_5709;
  4505. static const struct {
  4506. u16 offset;
  4507. u16 flags;
  4508. #define BNX2_FL_NOT_5709 1
  4509. u32 rw_mask;
  4510. u32 ro_mask;
  4511. } reg_tbl[] = {
  4512. { 0x006c, 0, 0x00000000, 0x0000003f },
  4513. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4514. { 0x0094, 0, 0x00000000, 0x00000000 },
  4515. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4516. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4517. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4518. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4519. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4520. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4521. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4522. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4523. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4524. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4525. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4526. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4527. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4528. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4529. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4530. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4531. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4532. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4533. { 0x1000, 0, 0x00000000, 0x00000001 },
  4534. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4535. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4536. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4537. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4538. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4539. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4540. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4541. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4542. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4543. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4544. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4545. { 0x1800, 0, 0x00000000, 0x00000001 },
  4546. { 0x1804, 0, 0x00000000, 0x00000003 },
  4547. { 0x2800, 0, 0x00000000, 0x00000001 },
  4548. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4549. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4550. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4551. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4552. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4553. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4554. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4555. { 0x2840, 0, 0x00000000, 0xffffffff },
  4556. { 0x2844, 0, 0x00000000, 0xffffffff },
  4557. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4558. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4559. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4560. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4561. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4562. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4563. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4564. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4565. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4566. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4567. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4568. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4569. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4570. { 0x5004, 0, 0x00000000, 0x0000007f },
  4571. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4572. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4573. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4574. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4575. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4576. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4577. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4578. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4579. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4580. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4581. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4582. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4583. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4584. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4585. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4586. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4587. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4588. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4589. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4590. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4591. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4592. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4593. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4594. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4595. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4596. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4597. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4598. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4599. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4600. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4601. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4602. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4603. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4604. { 0xffff, 0, 0x00000000, 0x00000000 },
  4605. };
  4606. ret = 0;
  4607. is_5709 = 0;
  4608. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4609. is_5709 = 1;
  4610. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4611. u32 offset, rw_mask, ro_mask, save_val, val;
  4612. u16 flags = reg_tbl[i].flags;
  4613. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4614. continue;
  4615. offset = (u32) reg_tbl[i].offset;
  4616. rw_mask = reg_tbl[i].rw_mask;
  4617. ro_mask = reg_tbl[i].ro_mask;
  4618. save_val = readl(bp->regview + offset);
  4619. writel(0, bp->regview + offset);
  4620. val = readl(bp->regview + offset);
  4621. if ((val & rw_mask) != 0) {
  4622. goto reg_test_err;
  4623. }
  4624. if ((val & ro_mask) != (save_val & ro_mask)) {
  4625. goto reg_test_err;
  4626. }
  4627. writel(0xffffffff, bp->regview + offset);
  4628. val = readl(bp->regview + offset);
  4629. if ((val & rw_mask) != rw_mask) {
  4630. goto reg_test_err;
  4631. }
  4632. if ((val & ro_mask) != (save_val & ro_mask)) {
  4633. goto reg_test_err;
  4634. }
  4635. writel(save_val, bp->regview + offset);
  4636. continue;
  4637. reg_test_err:
  4638. writel(save_val, bp->regview + offset);
  4639. ret = -ENODEV;
  4640. break;
  4641. }
  4642. return ret;
  4643. }
  4644. static int
  4645. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4646. {
  4647. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4648. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4649. int i;
  4650. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4651. u32 offset;
  4652. for (offset = 0; offset < size; offset += 4) {
  4653. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4654. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4655. test_pattern[i]) {
  4656. return -ENODEV;
  4657. }
  4658. }
  4659. }
  4660. return 0;
  4661. }
  4662. static int
  4663. bnx2_test_memory(struct bnx2 *bp)
  4664. {
  4665. int ret = 0;
  4666. int i;
  4667. static struct mem_entry {
  4668. u32 offset;
  4669. u32 len;
  4670. } mem_tbl_5706[] = {
  4671. { 0x60000, 0x4000 },
  4672. { 0xa0000, 0x3000 },
  4673. { 0xe0000, 0x4000 },
  4674. { 0x120000, 0x4000 },
  4675. { 0x1a0000, 0x4000 },
  4676. { 0x160000, 0x4000 },
  4677. { 0xffffffff, 0 },
  4678. },
  4679. mem_tbl_5709[] = {
  4680. { 0x60000, 0x4000 },
  4681. { 0xa0000, 0x3000 },
  4682. { 0xe0000, 0x4000 },
  4683. { 0x120000, 0x4000 },
  4684. { 0x1a0000, 0x4000 },
  4685. { 0xffffffff, 0 },
  4686. };
  4687. struct mem_entry *mem_tbl;
  4688. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4689. mem_tbl = mem_tbl_5709;
  4690. else
  4691. mem_tbl = mem_tbl_5706;
  4692. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4693. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4694. mem_tbl[i].len)) != 0) {
  4695. return ret;
  4696. }
  4697. }
  4698. return ret;
  4699. }
  4700. #define BNX2_MAC_LOOPBACK 0
  4701. #define BNX2_PHY_LOOPBACK 1
  4702. static int
  4703. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4704. {
  4705. unsigned int pkt_size, num_pkts, i;
  4706. struct sk_buff *skb;
  4707. u8 *data;
  4708. unsigned char *packet;
  4709. u16 rx_start_idx, rx_idx;
  4710. dma_addr_t map;
  4711. struct tx_bd *txbd;
  4712. struct sw_bd *rx_buf;
  4713. struct l2_fhdr *rx_hdr;
  4714. int ret = -ENODEV;
  4715. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4716. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4717. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4718. tx_napi = bnapi;
  4719. txr = &tx_napi->tx_ring;
  4720. rxr = &bnapi->rx_ring;
  4721. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4722. bp->loopback = MAC_LOOPBACK;
  4723. bnx2_set_mac_loopback(bp);
  4724. }
  4725. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4726. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4727. return 0;
  4728. bp->loopback = PHY_LOOPBACK;
  4729. bnx2_set_phy_loopback(bp);
  4730. }
  4731. else
  4732. return -EINVAL;
  4733. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4734. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4735. if (!skb)
  4736. return -ENOMEM;
  4737. packet = skb_put(skb, pkt_size);
  4738. memcpy(packet, bp->dev->dev_addr, 6);
  4739. memset(packet + 6, 0x0, 8);
  4740. for (i = 14; i < pkt_size; i++)
  4741. packet[i] = (unsigned char) (i & 0xff);
  4742. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4743. PCI_DMA_TODEVICE);
  4744. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4745. dev_kfree_skb(skb);
  4746. return -EIO;
  4747. }
  4748. REG_WR(bp, BNX2_HC_COMMAND,
  4749. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4750. REG_RD(bp, BNX2_HC_COMMAND);
  4751. udelay(5);
  4752. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4753. num_pkts = 0;
  4754. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4755. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4756. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4757. txbd->tx_bd_mss_nbytes = pkt_size;
  4758. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4759. num_pkts++;
  4760. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4761. txr->tx_prod_bseq += pkt_size;
  4762. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4763. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4764. udelay(100);
  4765. REG_WR(bp, BNX2_HC_COMMAND,
  4766. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4767. REG_RD(bp, BNX2_HC_COMMAND);
  4768. udelay(5);
  4769. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4770. dev_kfree_skb(skb);
  4771. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4772. goto loopback_test_done;
  4773. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4774. if (rx_idx != rx_start_idx + num_pkts) {
  4775. goto loopback_test_done;
  4776. }
  4777. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4778. data = rx_buf->data;
  4779. rx_hdr = get_l2_fhdr(data);
  4780. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4781. dma_sync_single_for_cpu(&bp->pdev->dev,
  4782. dma_unmap_addr(rx_buf, mapping),
  4783. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4784. if (rx_hdr->l2_fhdr_status &
  4785. (L2_FHDR_ERRORS_BAD_CRC |
  4786. L2_FHDR_ERRORS_PHY_DECODE |
  4787. L2_FHDR_ERRORS_ALIGNMENT |
  4788. L2_FHDR_ERRORS_TOO_SHORT |
  4789. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4790. goto loopback_test_done;
  4791. }
  4792. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4793. goto loopback_test_done;
  4794. }
  4795. for (i = 14; i < pkt_size; i++) {
  4796. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4797. goto loopback_test_done;
  4798. }
  4799. }
  4800. ret = 0;
  4801. loopback_test_done:
  4802. bp->loopback = 0;
  4803. return ret;
  4804. }
  4805. #define BNX2_MAC_LOOPBACK_FAILED 1
  4806. #define BNX2_PHY_LOOPBACK_FAILED 2
  4807. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4808. BNX2_PHY_LOOPBACK_FAILED)
  4809. static int
  4810. bnx2_test_loopback(struct bnx2 *bp)
  4811. {
  4812. int rc = 0;
  4813. if (!netif_running(bp->dev))
  4814. return BNX2_LOOPBACK_FAILED;
  4815. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4816. spin_lock_bh(&bp->phy_lock);
  4817. bnx2_init_phy(bp, 1);
  4818. spin_unlock_bh(&bp->phy_lock);
  4819. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4820. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4821. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4822. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4823. return rc;
  4824. }
  4825. #define NVRAM_SIZE 0x200
  4826. #define CRC32_RESIDUAL 0xdebb20e3
  4827. static int
  4828. bnx2_test_nvram(struct bnx2 *bp)
  4829. {
  4830. __be32 buf[NVRAM_SIZE / 4];
  4831. u8 *data = (u8 *) buf;
  4832. int rc = 0;
  4833. u32 magic, csum;
  4834. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4835. goto test_nvram_done;
  4836. magic = be32_to_cpu(buf[0]);
  4837. if (magic != 0x669955aa) {
  4838. rc = -ENODEV;
  4839. goto test_nvram_done;
  4840. }
  4841. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4842. goto test_nvram_done;
  4843. csum = ether_crc_le(0x100, data);
  4844. if (csum != CRC32_RESIDUAL) {
  4845. rc = -ENODEV;
  4846. goto test_nvram_done;
  4847. }
  4848. csum = ether_crc_le(0x100, data + 0x100);
  4849. if (csum != CRC32_RESIDUAL) {
  4850. rc = -ENODEV;
  4851. }
  4852. test_nvram_done:
  4853. return rc;
  4854. }
  4855. static int
  4856. bnx2_test_link(struct bnx2 *bp)
  4857. {
  4858. u32 bmsr;
  4859. if (!netif_running(bp->dev))
  4860. return -ENODEV;
  4861. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4862. if (bp->link_up)
  4863. return 0;
  4864. return -ENODEV;
  4865. }
  4866. spin_lock_bh(&bp->phy_lock);
  4867. bnx2_enable_bmsr1(bp);
  4868. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4869. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4870. bnx2_disable_bmsr1(bp);
  4871. spin_unlock_bh(&bp->phy_lock);
  4872. if (bmsr & BMSR_LSTATUS) {
  4873. return 0;
  4874. }
  4875. return -ENODEV;
  4876. }
  4877. static int
  4878. bnx2_test_intr(struct bnx2 *bp)
  4879. {
  4880. int i;
  4881. u16 status_idx;
  4882. if (!netif_running(bp->dev))
  4883. return -ENODEV;
  4884. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4885. /* This register is not touched during run-time. */
  4886. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4887. REG_RD(bp, BNX2_HC_COMMAND);
  4888. for (i = 0; i < 10; i++) {
  4889. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4890. status_idx) {
  4891. break;
  4892. }
  4893. msleep_interruptible(10);
  4894. }
  4895. if (i < 10)
  4896. return 0;
  4897. return -ENODEV;
  4898. }
  4899. /* Determining link for parallel detection. */
  4900. static int
  4901. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4902. {
  4903. u32 mode_ctl, an_dbg, exp;
  4904. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4905. return 0;
  4906. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4907. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4908. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4909. return 0;
  4910. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4911. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4912. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4913. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4914. return 0;
  4915. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4916. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4917. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4918. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4919. return 0;
  4920. return 1;
  4921. }
  4922. static void
  4923. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4924. {
  4925. int check_link = 1;
  4926. spin_lock(&bp->phy_lock);
  4927. if (bp->serdes_an_pending) {
  4928. bp->serdes_an_pending--;
  4929. check_link = 0;
  4930. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4931. u32 bmcr;
  4932. bp->current_interval = BNX2_TIMER_INTERVAL;
  4933. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4934. if (bmcr & BMCR_ANENABLE) {
  4935. if (bnx2_5706_serdes_has_link(bp)) {
  4936. bmcr &= ~BMCR_ANENABLE;
  4937. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4938. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4939. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4940. }
  4941. }
  4942. }
  4943. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4944. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4945. u32 phy2;
  4946. bnx2_write_phy(bp, 0x17, 0x0f01);
  4947. bnx2_read_phy(bp, 0x15, &phy2);
  4948. if (phy2 & 0x20) {
  4949. u32 bmcr;
  4950. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4951. bmcr |= BMCR_ANENABLE;
  4952. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4953. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4954. }
  4955. } else
  4956. bp->current_interval = BNX2_TIMER_INTERVAL;
  4957. if (check_link) {
  4958. u32 val;
  4959. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4960. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4961. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4962. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4963. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4964. bnx2_5706s_force_link_dn(bp, 1);
  4965. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4966. } else
  4967. bnx2_set_link(bp);
  4968. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4969. bnx2_set_link(bp);
  4970. }
  4971. spin_unlock(&bp->phy_lock);
  4972. }
  4973. static void
  4974. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4975. {
  4976. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4977. return;
  4978. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4979. bp->serdes_an_pending = 0;
  4980. return;
  4981. }
  4982. spin_lock(&bp->phy_lock);
  4983. if (bp->serdes_an_pending)
  4984. bp->serdes_an_pending--;
  4985. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4986. u32 bmcr;
  4987. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4988. if (bmcr & BMCR_ANENABLE) {
  4989. bnx2_enable_forced_2g5(bp);
  4990. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4991. } else {
  4992. bnx2_disable_forced_2g5(bp);
  4993. bp->serdes_an_pending = 2;
  4994. bp->current_interval = BNX2_TIMER_INTERVAL;
  4995. }
  4996. } else
  4997. bp->current_interval = BNX2_TIMER_INTERVAL;
  4998. spin_unlock(&bp->phy_lock);
  4999. }
  5000. static void
  5001. bnx2_timer(unsigned long data)
  5002. {
  5003. struct bnx2 *bp = (struct bnx2 *) data;
  5004. if (!netif_running(bp->dev))
  5005. return;
  5006. if (atomic_read(&bp->intr_sem) != 0)
  5007. goto bnx2_restart_timer;
  5008. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5009. BNX2_FLAG_USING_MSI)
  5010. bnx2_chk_missed_msi(bp);
  5011. bnx2_send_heart_beat(bp);
  5012. bp->stats_blk->stat_FwRxDrop =
  5013. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5014. /* workaround occasional corrupted counters */
  5015. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5016. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5017. BNX2_HC_COMMAND_STATS_NOW);
  5018. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5019. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  5020. bnx2_5706_serdes_timer(bp);
  5021. else
  5022. bnx2_5708_serdes_timer(bp);
  5023. }
  5024. bnx2_restart_timer:
  5025. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5026. }
  5027. static int
  5028. bnx2_request_irq(struct bnx2 *bp)
  5029. {
  5030. unsigned long flags;
  5031. struct bnx2_irq *irq;
  5032. int rc = 0, i;
  5033. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5034. flags = 0;
  5035. else
  5036. flags = IRQF_SHARED;
  5037. for (i = 0; i < bp->irq_nvecs; i++) {
  5038. irq = &bp->irq_tbl[i];
  5039. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5040. &bp->bnx2_napi[i]);
  5041. if (rc)
  5042. break;
  5043. irq->requested = 1;
  5044. }
  5045. return rc;
  5046. }
  5047. static void
  5048. __bnx2_free_irq(struct bnx2 *bp)
  5049. {
  5050. struct bnx2_irq *irq;
  5051. int i;
  5052. for (i = 0; i < bp->irq_nvecs; i++) {
  5053. irq = &bp->irq_tbl[i];
  5054. if (irq->requested)
  5055. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5056. irq->requested = 0;
  5057. }
  5058. }
  5059. static void
  5060. bnx2_free_irq(struct bnx2 *bp)
  5061. {
  5062. __bnx2_free_irq(bp);
  5063. if (bp->flags & BNX2_FLAG_USING_MSI)
  5064. pci_disable_msi(bp->pdev);
  5065. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5066. pci_disable_msix(bp->pdev);
  5067. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5068. }
  5069. static void
  5070. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5071. {
  5072. int i, total_vecs, rc;
  5073. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5074. struct net_device *dev = bp->dev;
  5075. const int len = sizeof(bp->irq_tbl[0].name);
  5076. bnx2_setup_msix_tbl(bp);
  5077. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5078. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5079. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5080. /* Need to flush the previous three writes to ensure MSI-X
  5081. * is setup properly */
  5082. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5083. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5084. msix_ent[i].entry = i;
  5085. msix_ent[i].vector = 0;
  5086. }
  5087. total_vecs = msix_vecs;
  5088. #ifdef BCM_CNIC
  5089. total_vecs++;
  5090. #endif
  5091. rc = -ENOSPC;
  5092. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5093. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5094. if (rc <= 0)
  5095. break;
  5096. if (rc > 0)
  5097. total_vecs = rc;
  5098. }
  5099. if (rc != 0)
  5100. return;
  5101. msix_vecs = total_vecs;
  5102. #ifdef BCM_CNIC
  5103. msix_vecs--;
  5104. #endif
  5105. bp->irq_nvecs = msix_vecs;
  5106. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5107. for (i = 0; i < total_vecs; i++) {
  5108. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5109. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5110. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5111. }
  5112. }
  5113. static int
  5114. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5115. {
  5116. int cpus = num_online_cpus();
  5117. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5118. bp->irq_tbl[0].handler = bnx2_interrupt;
  5119. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5120. bp->irq_nvecs = 1;
  5121. bp->irq_tbl[0].vector = bp->pdev->irq;
  5122. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5123. bnx2_enable_msix(bp, msix_vecs);
  5124. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5125. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5126. if (pci_enable_msi(bp->pdev) == 0) {
  5127. bp->flags |= BNX2_FLAG_USING_MSI;
  5128. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5129. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5130. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5131. } else
  5132. bp->irq_tbl[0].handler = bnx2_msi;
  5133. bp->irq_tbl[0].vector = bp->pdev->irq;
  5134. }
  5135. }
  5136. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5137. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5138. bp->num_rx_rings = bp->irq_nvecs;
  5139. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5140. }
  5141. /* Called with rtnl_lock */
  5142. static int
  5143. bnx2_open(struct net_device *dev)
  5144. {
  5145. struct bnx2 *bp = netdev_priv(dev);
  5146. int rc;
  5147. rc = bnx2_request_firmware(bp);
  5148. if (rc < 0)
  5149. goto out;
  5150. netif_carrier_off(dev);
  5151. bnx2_set_power_state(bp, PCI_D0);
  5152. bnx2_disable_int(bp);
  5153. rc = bnx2_setup_int_mode(bp, disable_msi);
  5154. if (rc)
  5155. goto open_err;
  5156. bnx2_init_napi(bp);
  5157. bnx2_napi_enable(bp);
  5158. rc = bnx2_alloc_mem(bp);
  5159. if (rc)
  5160. goto open_err;
  5161. rc = bnx2_request_irq(bp);
  5162. if (rc)
  5163. goto open_err;
  5164. rc = bnx2_init_nic(bp, 1);
  5165. if (rc)
  5166. goto open_err;
  5167. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5168. atomic_set(&bp->intr_sem, 0);
  5169. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5170. bnx2_enable_int(bp);
  5171. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5172. /* Test MSI to make sure it is working
  5173. * If MSI test fails, go back to INTx mode
  5174. */
  5175. if (bnx2_test_intr(bp) != 0) {
  5176. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5177. bnx2_disable_int(bp);
  5178. bnx2_free_irq(bp);
  5179. bnx2_setup_int_mode(bp, 1);
  5180. rc = bnx2_init_nic(bp, 0);
  5181. if (!rc)
  5182. rc = bnx2_request_irq(bp);
  5183. if (rc) {
  5184. del_timer_sync(&bp->timer);
  5185. goto open_err;
  5186. }
  5187. bnx2_enable_int(bp);
  5188. }
  5189. }
  5190. if (bp->flags & BNX2_FLAG_USING_MSI)
  5191. netdev_info(dev, "using MSI\n");
  5192. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5193. netdev_info(dev, "using MSIX\n");
  5194. netif_tx_start_all_queues(dev);
  5195. out:
  5196. return rc;
  5197. open_err:
  5198. bnx2_napi_disable(bp);
  5199. bnx2_free_skbs(bp);
  5200. bnx2_free_irq(bp);
  5201. bnx2_free_mem(bp);
  5202. bnx2_del_napi(bp);
  5203. bnx2_release_firmware(bp);
  5204. goto out;
  5205. }
  5206. static void
  5207. bnx2_reset_task(struct work_struct *work)
  5208. {
  5209. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5210. int rc;
  5211. rtnl_lock();
  5212. if (!netif_running(bp->dev)) {
  5213. rtnl_unlock();
  5214. return;
  5215. }
  5216. bnx2_netif_stop(bp, true);
  5217. rc = bnx2_init_nic(bp, 1);
  5218. if (rc) {
  5219. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5220. bnx2_napi_enable(bp);
  5221. dev_close(bp->dev);
  5222. rtnl_unlock();
  5223. return;
  5224. }
  5225. atomic_set(&bp->intr_sem, 1);
  5226. bnx2_netif_start(bp, true);
  5227. rtnl_unlock();
  5228. }
  5229. static void
  5230. bnx2_dump_state(struct bnx2 *bp)
  5231. {
  5232. struct net_device *dev = bp->dev;
  5233. u32 val1, val2;
  5234. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5235. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5236. atomic_read(&bp->intr_sem), val1);
  5237. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5238. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5239. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5240. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5241. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5242. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5243. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5244. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5245. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5246. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5247. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5248. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5249. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5250. }
  5251. static void
  5252. bnx2_tx_timeout(struct net_device *dev)
  5253. {
  5254. struct bnx2 *bp = netdev_priv(dev);
  5255. bnx2_dump_state(bp);
  5256. bnx2_dump_mcp_state(bp);
  5257. /* This allows the netif to be shutdown gracefully before resetting */
  5258. schedule_work(&bp->reset_task);
  5259. }
  5260. /* Called with netif_tx_lock.
  5261. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5262. * netif_wake_queue().
  5263. */
  5264. static netdev_tx_t
  5265. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5266. {
  5267. struct bnx2 *bp = netdev_priv(dev);
  5268. dma_addr_t mapping;
  5269. struct tx_bd *txbd;
  5270. struct sw_tx_bd *tx_buf;
  5271. u32 len, vlan_tag_flags, last_frag, mss;
  5272. u16 prod, ring_prod;
  5273. int i;
  5274. struct bnx2_napi *bnapi;
  5275. struct bnx2_tx_ring_info *txr;
  5276. struct netdev_queue *txq;
  5277. /* Determine which tx ring we will be placed on */
  5278. i = skb_get_queue_mapping(skb);
  5279. bnapi = &bp->bnx2_napi[i];
  5280. txr = &bnapi->tx_ring;
  5281. txq = netdev_get_tx_queue(dev, i);
  5282. if (unlikely(bnx2_tx_avail(bp, txr) <
  5283. (skb_shinfo(skb)->nr_frags + 1))) {
  5284. netif_tx_stop_queue(txq);
  5285. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5286. return NETDEV_TX_BUSY;
  5287. }
  5288. len = skb_headlen(skb);
  5289. prod = txr->tx_prod;
  5290. ring_prod = TX_RING_IDX(prod);
  5291. vlan_tag_flags = 0;
  5292. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5293. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5294. }
  5295. if (vlan_tx_tag_present(skb)) {
  5296. vlan_tag_flags |=
  5297. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5298. }
  5299. if ((mss = skb_shinfo(skb)->gso_size)) {
  5300. u32 tcp_opt_len;
  5301. struct iphdr *iph;
  5302. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5303. tcp_opt_len = tcp_optlen(skb);
  5304. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5305. u32 tcp_off = skb_transport_offset(skb) -
  5306. sizeof(struct ipv6hdr) - ETH_HLEN;
  5307. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5308. TX_BD_FLAGS_SW_FLAGS;
  5309. if (likely(tcp_off == 0))
  5310. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5311. else {
  5312. tcp_off >>= 3;
  5313. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5314. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5315. ((tcp_off & 0x10) <<
  5316. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5317. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5318. }
  5319. } else {
  5320. iph = ip_hdr(skb);
  5321. if (tcp_opt_len || (iph->ihl > 5)) {
  5322. vlan_tag_flags |= ((iph->ihl - 5) +
  5323. (tcp_opt_len >> 2)) << 8;
  5324. }
  5325. }
  5326. } else
  5327. mss = 0;
  5328. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5329. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5330. dev_kfree_skb(skb);
  5331. return NETDEV_TX_OK;
  5332. }
  5333. tx_buf = &txr->tx_buf_ring[ring_prod];
  5334. tx_buf->skb = skb;
  5335. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5336. txbd = &txr->tx_desc_ring[ring_prod];
  5337. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5338. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5339. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5340. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5341. last_frag = skb_shinfo(skb)->nr_frags;
  5342. tx_buf->nr_frags = last_frag;
  5343. tx_buf->is_gso = skb_is_gso(skb);
  5344. for (i = 0; i < last_frag; i++) {
  5345. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5346. prod = NEXT_TX_BD(prod);
  5347. ring_prod = TX_RING_IDX(prod);
  5348. txbd = &txr->tx_desc_ring[ring_prod];
  5349. len = skb_frag_size(frag);
  5350. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5351. DMA_TO_DEVICE);
  5352. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5353. goto dma_error;
  5354. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5355. mapping);
  5356. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5357. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5358. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5359. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5360. }
  5361. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5362. netdev_tx_sent_queue(txq, skb->len);
  5363. prod = NEXT_TX_BD(prod);
  5364. txr->tx_prod_bseq += skb->len;
  5365. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5366. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5367. mmiowb();
  5368. txr->tx_prod = prod;
  5369. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5370. netif_tx_stop_queue(txq);
  5371. /* netif_tx_stop_queue() must be done before checking
  5372. * tx index in bnx2_tx_avail() below, because in
  5373. * bnx2_tx_int(), we update tx index before checking for
  5374. * netif_tx_queue_stopped().
  5375. */
  5376. smp_mb();
  5377. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5378. netif_tx_wake_queue(txq);
  5379. }
  5380. return NETDEV_TX_OK;
  5381. dma_error:
  5382. /* save value of frag that failed */
  5383. last_frag = i;
  5384. /* start back at beginning and unmap skb */
  5385. prod = txr->tx_prod;
  5386. ring_prod = TX_RING_IDX(prod);
  5387. tx_buf = &txr->tx_buf_ring[ring_prod];
  5388. tx_buf->skb = NULL;
  5389. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5390. skb_headlen(skb), PCI_DMA_TODEVICE);
  5391. /* unmap remaining mapped pages */
  5392. for (i = 0; i < last_frag; i++) {
  5393. prod = NEXT_TX_BD(prod);
  5394. ring_prod = TX_RING_IDX(prod);
  5395. tx_buf = &txr->tx_buf_ring[ring_prod];
  5396. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5397. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5398. PCI_DMA_TODEVICE);
  5399. }
  5400. dev_kfree_skb(skb);
  5401. return NETDEV_TX_OK;
  5402. }
  5403. /* Called with rtnl_lock */
  5404. static int
  5405. bnx2_close(struct net_device *dev)
  5406. {
  5407. struct bnx2 *bp = netdev_priv(dev);
  5408. bnx2_disable_int_sync(bp);
  5409. bnx2_napi_disable(bp);
  5410. del_timer_sync(&bp->timer);
  5411. bnx2_shutdown_chip(bp);
  5412. bnx2_free_irq(bp);
  5413. bnx2_free_skbs(bp);
  5414. bnx2_free_mem(bp);
  5415. bnx2_del_napi(bp);
  5416. bp->link_up = 0;
  5417. netif_carrier_off(bp->dev);
  5418. bnx2_set_power_state(bp, PCI_D3hot);
  5419. return 0;
  5420. }
  5421. static void
  5422. bnx2_save_stats(struct bnx2 *bp)
  5423. {
  5424. u32 *hw_stats = (u32 *) bp->stats_blk;
  5425. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5426. int i;
  5427. /* The 1st 10 counters are 64-bit counters */
  5428. for (i = 0; i < 20; i += 2) {
  5429. u32 hi;
  5430. u64 lo;
  5431. hi = temp_stats[i] + hw_stats[i];
  5432. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5433. if (lo > 0xffffffff)
  5434. hi++;
  5435. temp_stats[i] = hi;
  5436. temp_stats[i + 1] = lo & 0xffffffff;
  5437. }
  5438. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5439. temp_stats[i] += hw_stats[i];
  5440. }
  5441. #define GET_64BIT_NET_STATS64(ctr) \
  5442. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5443. #define GET_64BIT_NET_STATS(ctr) \
  5444. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5445. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5446. #define GET_32BIT_NET_STATS(ctr) \
  5447. (unsigned long) (bp->stats_blk->ctr + \
  5448. bp->temp_stats_blk->ctr)
  5449. static struct rtnl_link_stats64 *
  5450. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5451. {
  5452. struct bnx2 *bp = netdev_priv(dev);
  5453. if (bp->stats_blk == NULL)
  5454. return net_stats;
  5455. net_stats->rx_packets =
  5456. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5457. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5458. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5459. net_stats->tx_packets =
  5460. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5461. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5462. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5463. net_stats->rx_bytes =
  5464. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5465. net_stats->tx_bytes =
  5466. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5467. net_stats->multicast =
  5468. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5469. net_stats->collisions =
  5470. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5471. net_stats->rx_length_errors =
  5472. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5473. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5474. net_stats->rx_over_errors =
  5475. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5476. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5477. net_stats->rx_frame_errors =
  5478. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5479. net_stats->rx_crc_errors =
  5480. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5481. net_stats->rx_errors = net_stats->rx_length_errors +
  5482. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5483. net_stats->rx_crc_errors;
  5484. net_stats->tx_aborted_errors =
  5485. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5486. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5487. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5488. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5489. net_stats->tx_carrier_errors = 0;
  5490. else {
  5491. net_stats->tx_carrier_errors =
  5492. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5493. }
  5494. net_stats->tx_errors =
  5495. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5496. net_stats->tx_aborted_errors +
  5497. net_stats->tx_carrier_errors;
  5498. net_stats->rx_missed_errors =
  5499. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5500. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5501. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5502. return net_stats;
  5503. }
  5504. /* All ethtool functions called with rtnl_lock */
  5505. static int
  5506. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5507. {
  5508. struct bnx2 *bp = netdev_priv(dev);
  5509. int support_serdes = 0, support_copper = 0;
  5510. cmd->supported = SUPPORTED_Autoneg;
  5511. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5512. support_serdes = 1;
  5513. support_copper = 1;
  5514. } else if (bp->phy_port == PORT_FIBRE)
  5515. support_serdes = 1;
  5516. else
  5517. support_copper = 1;
  5518. if (support_serdes) {
  5519. cmd->supported |= SUPPORTED_1000baseT_Full |
  5520. SUPPORTED_FIBRE;
  5521. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5522. cmd->supported |= SUPPORTED_2500baseX_Full;
  5523. }
  5524. if (support_copper) {
  5525. cmd->supported |= SUPPORTED_10baseT_Half |
  5526. SUPPORTED_10baseT_Full |
  5527. SUPPORTED_100baseT_Half |
  5528. SUPPORTED_100baseT_Full |
  5529. SUPPORTED_1000baseT_Full |
  5530. SUPPORTED_TP;
  5531. }
  5532. spin_lock_bh(&bp->phy_lock);
  5533. cmd->port = bp->phy_port;
  5534. cmd->advertising = bp->advertising;
  5535. if (bp->autoneg & AUTONEG_SPEED) {
  5536. cmd->autoneg = AUTONEG_ENABLE;
  5537. } else {
  5538. cmd->autoneg = AUTONEG_DISABLE;
  5539. }
  5540. if (netif_carrier_ok(dev)) {
  5541. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5542. cmd->duplex = bp->duplex;
  5543. }
  5544. else {
  5545. ethtool_cmd_speed_set(cmd, -1);
  5546. cmd->duplex = -1;
  5547. }
  5548. spin_unlock_bh(&bp->phy_lock);
  5549. cmd->transceiver = XCVR_INTERNAL;
  5550. cmd->phy_address = bp->phy_addr;
  5551. return 0;
  5552. }
  5553. static int
  5554. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5555. {
  5556. struct bnx2 *bp = netdev_priv(dev);
  5557. u8 autoneg = bp->autoneg;
  5558. u8 req_duplex = bp->req_duplex;
  5559. u16 req_line_speed = bp->req_line_speed;
  5560. u32 advertising = bp->advertising;
  5561. int err = -EINVAL;
  5562. spin_lock_bh(&bp->phy_lock);
  5563. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5564. goto err_out_unlock;
  5565. if (cmd->port != bp->phy_port &&
  5566. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5567. goto err_out_unlock;
  5568. /* If device is down, we can store the settings only if the user
  5569. * is setting the currently active port.
  5570. */
  5571. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5572. goto err_out_unlock;
  5573. if (cmd->autoneg == AUTONEG_ENABLE) {
  5574. autoneg |= AUTONEG_SPEED;
  5575. advertising = cmd->advertising;
  5576. if (cmd->port == PORT_TP) {
  5577. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5578. if (!advertising)
  5579. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5580. } else {
  5581. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5582. if (!advertising)
  5583. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5584. }
  5585. advertising |= ADVERTISED_Autoneg;
  5586. }
  5587. else {
  5588. u32 speed = ethtool_cmd_speed(cmd);
  5589. if (cmd->port == PORT_FIBRE) {
  5590. if ((speed != SPEED_1000 &&
  5591. speed != SPEED_2500) ||
  5592. (cmd->duplex != DUPLEX_FULL))
  5593. goto err_out_unlock;
  5594. if (speed == SPEED_2500 &&
  5595. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5596. goto err_out_unlock;
  5597. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5598. goto err_out_unlock;
  5599. autoneg &= ~AUTONEG_SPEED;
  5600. req_line_speed = speed;
  5601. req_duplex = cmd->duplex;
  5602. advertising = 0;
  5603. }
  5604. bp->autoneg = autoneg;
  5605. bp->advertising = advertising;
  5606. bp->req_line_speed = req_line_speed;
  5607. bp->req_duplex = req_duplex;
  5608. err = 0;
  5609. /* If device is down, the new settings will be picked up when it is
  5610. * brought up.
  5611. */
  5612. if (netif_running(dev))
  5613. err = bnx2_setup_phy(bp, cmd->port);
  5614. err_out_unlock:
  5615. spin_unlock_bh(&bp->phy_lock);
  5616. return err;
  5617. }
  5618. static void
  5619. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5620. {
  5621. struct bnx2 *bp = netdev_priv(dev);
  5622. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5623. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5624. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5625. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5626. }
  5627. #define BNX2_REGDUMP_LEN (32 * 1024)
  5628. static int
  5629. bnx2_get_regs_len(struct net_device *dev)
  5630. {
  5631. return BNX2_REGDUMP_LEN;
  5632. }
  5633. static void
  5634. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5635. {
  5636. u32 *p = _p, i, offset;
  5637. u8 *orig_p = _p;
  5638. struct bnx2 *bp = netdev_priv(dev);
  5639. static const u32 reg_boundaries[] = {
  5640. 0x0000, 0x0098, 0x0400, 0x045c,
  5641. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5642. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5643. 0x1040, 0x1048, 0x1080, 0x10a4,
  5644. 0x1400, 0x1490, 0x1498, 0x14f0,
  5645. 0x1500, 0x155c, 0x1580, 0x15dc,
  5646. 0x1600, 0x1658, 0x1680, 0x16d8,
  5647. 0x1800, 0x1820, 0x1840, 0x1854,
  5648. 0x1880, 0x1894, 0x1900, 0x1984,
  5649. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5650. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5651. 0x2000, 0x2030, 0x23c0, 0x2400,
  5652. 0x2800, 0x2820, 0x2830, 0x2850,
  5653. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5654. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5655. 0x4080, 0x4090, 0x43c0, 0x4458,
  5656. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5657. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5658. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5659. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5660. 0x6800, 0x6848, 0x684c, 0x6860,
  5661. 0x6888, 0x6910, 0x8000
  5662. };
  5663. regs->version = 0;
  5664. memset(p, 0, BNX2_REGDUMP_LEN);
  5665. if (!netif_running(bp->dev))
  5666. return;
  5667. i = 0;
  5668. offset = reg_boundaries[0];
  5669. p += offset;
  5670. while (offset < BNX2_REGDUMP_LEN) {
  5671. *p++ = REG_RD(bp, offset);
  5672. offset += 4;
  5673. if (offset == reg_boundaries[i + 1]) {
  5674. offset = reg_boundaries[i + 2];
  5675. p = (u32 *) (orig_p + offset);
  5676. i += 2;
  5677. }
  5678. }
  5679. }
  5680. static void
  5681. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5682. {
  5683. struct bnx2 *bp = netdev_priv(dev);
  5684. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5685. wol->supported = 0;
  5686. wol->wolopts = 0;
  5687. }
  5688. else {
  5689. wol->supported = WAKE_MAGIC;
  5690. if (bp->wol)
  5691. wol->wolopts = WAKE_MAGIC;
  5692. else
  5693. wol->wolopts = 0;
  5694. }
  5695. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5696. }
  5697. static int
  5698. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5699. {
  5700. struct bnx2 *bp = netdev_priv(dev);
  5701. if (wol->wolopts & ~WAKE_MAGIC)
  5702. return -EINVAL;
  5703. if (wol->wolopts & WAKE_MAGIC) {
  5704. if (bp->flags & BNX2_FLAG_NO_WOL)
  5705. return -EINVAL;
  5706. bp->wol = 1;
  5707. }
  5708. else {
  5709. bp->wol = 0;
  5710. }
  5711. return 0;
  5712. }
  5713. static int
  5714. bnx2_nway_reset(struct net_device *dev)
  5715. {
  5716. struct bnx2 *bp = netdev_priv(dev);
  5717. u32 bmcr;
  5718. if (!netif_running(dev))
  5719. return -EAGAIN;
  5720. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5721. return -EINVAL;
  5722. }
  5723. spin_lock_bh(&bp->phy_lock);
  5724. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5725. int rc;
  5726. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5727. spin_unlock_bh(&bp->phy_lock);
  5728. return rc;
  5729. }
  5730. /* Force a link down visible on the other side */
  5731. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5732. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5733. spin_unlock_bh(&bp->phy_lock);
  5734. msleep(20);
  5735. spin_lock_bh(&bp->phy_lock);
  5736. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5737. bp->serdes_an_pending = 1;
  5738. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5739. }
  5740. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5741. bmcr &= ~BMCR_LOOPBACK;
  5742. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5743. spin_unlock_bh(&bp->phy_lock);
  5744. return 0;
  5745. }
  5746. static u32
  5747. bnx2_get_link(struct net_device *dev)
  5748. {
  5749. struct bnx2 *bp = netdev_priv(dev);
  5750. return bp->link_up;
  5751. }
  5752. static int
  5753. bnx2_get_eeprom_len(struct net_device *dev)
  5754. {
  5755. struct bnx2 *bp = netdev_priv(dev);
  5756. if (bp->flash_info == NULL)
  5757. return 0;
  5758. return (int) bp->flash_size;
  5759. }
  5760. static int
  5761. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5762. u8 *eebuf)
  5763. {
  5764. struct bnx2 *bp = netdev_priv(dev);
  5765. int rc;
  5766. if (!netif_running(dev))
  5767. return -EAGAIN;
  5768. /* parameters already validated in ethtool_get_eeprom */
  5769. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5770. return rc;
  5771. }
  5772. static int
  5773. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5774. u8 *eebuf)
  5775. {
  5776. struct bnx2 *bp = netdev_priv(dev);
  5777. int rc;
  5778. if (!netif_running(dev))
  5779. return -EAGAIN;
  5780. /* parameters already validated in ethtool_set_eeprom */
  5781. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5782. return rc;
  5783. }
  5784. static int
  5785. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5786. {
  5787. struct bnx2 *bp = netdev_priv(dev);
  5788. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5789. coal->rx_coalesce_usecs = bp->rx_ticks;
  5790. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5791. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5792. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5793. coal->tx_coalesce_usecs = bp->tx_ticks;
  5794. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5795. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5796. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5797. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5798. return 0;
  5799. }
  5800. static int
  5801. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5802. {
  5803. struct bnx2 *bp = netdev_priv(dev);
  5804. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5805. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5806. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5807. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5808. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5809. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5810. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5811. if (bp->rx_quick_cons_trip_int > 0xff)
  5812. bp->rx_quick_cons_trip_int = 0xff;
  5813. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5814. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5815. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5816. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5817. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5818. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5819. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5820. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5821. 0xff;
  5822. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5823. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5824. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5825. bp->stats_ticks = USEC_PER_SEC;
  5826. }
  5827. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5828. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5829. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5830. if (netif_running(bp->dev)) {
  5831. bnx2_netif_stop(bp, true);
  5832. bnx2_init_nic(bp, 0);
  5833. bnx2_netif_start(bp, true);
  5834. }
  5835. return 0;
  5836. }
  5837. static void
  5838. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5839. {
  5840. struct bnx2 *bp = netdev_priv(dev);
  5841. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5842. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5843. ering->rx_pending = bp->rx_ring_size;
  5844. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5845. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5846. ering->tx_pending = bp->tx_ring_size;
  5847. }
  5848. static int
  5849. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5850. {
  5851. if (netif_running(bp->dev)) {
  5852. /* Reset will erase chipset stats; save them */
  5853. bnx2_save_stats(bp);
  5854. bnx2_netif_stop(bp, true);
  5855. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5856. __bnx2_free_irq(bp);
  5857. bnx2_free_skbs(bp);
  5858. bnx2_free_mem(bp);
  5859. }
  5860. bnx2_set_rx_ring_size(bp, rx);
  5861. bp->tx_ring_size = tx;
  5862. if (netif_running(bp->dev)) {
  5863. int rc;
  5864. rc = bnx2_alloc_mem(bp);
  5865. if (!rc)
  5866. rc = bnx2_request_irq(bp);
  5867. if (!rc)
  5868. rc = bnx2_init_nic(bp, 0);
  5869. if (rc) {
  5870. bnx2_napi_enable(bp);
  5871. dev_close(bp->dev);
  5872. return rc;
  5873. }
  5874. #ifdef BCM_CNIC
  5875. mutex_lock(&bp->cnic_lock);
  5876. /* Let cnic know about the new status block. */
  5877. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5878. bnx2_setup_cnic_irq_info(bp);
  5879. mutex_unlock(&bp->cnic_lock);
  5880. #endif
  5881. bnx2_netif_start(bp, true);
  5882. }
  5883. return 0;
  5884. }
  5885. static int
  5886. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5887. {
  5888. struct bnx2 *bp = netdev_priv(dev);
  5889. int rc;
  5890. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5891. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5892. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5893. return -EINVAL;
  5894. }
  5895. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5896. return rc;
  5897. }
  5898. static void
  5899. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5900. {
  5901. struct bnx2 *bp = netdev_priv(dev);
  5902. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5903. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5904. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5905. }
  5906. static int
  5907. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5908. {
  5909. struct bnx2 *bp = netdev_priv(dev);
  5910. bp->req_flow_ctrl = 0;
  5911. if (epause->rx_pause)
  5912. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5913. if (epause->tx_pause)
  5914. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5915. if (epause->autoneg) {
  5916. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5917. }
  5918. else {
  5919. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5920. }
  5921. if (netif_running(dev)) {
  5922. spin_lock_bh(&bp->phy_lock);
  5923. bnx2_setup_phy(bp, bp->phy_port);
  5924. spin_unlock_bh(&bp->phy_lock);
  5925. }
  5926. return 0;
  5927. }
  5928. static struct {
  5929. char string[ETH_GSTRING_LEN];
  5930. } bnx2_stats_str_arr[] = {
  5931. { "rx_bytes" },
  5932. { "rx_error_bytes" },
  5933. { "tx_bytes" },
  5934. { "tx_error_bytes" },
  5935. { "rx_ucast_packets" },
  5936. { "rx_mcast_packets" },
  5937. { "rx_bcast_packets" },
  5938. { "tx_ucast_packets" },
  5939. { "tx_mcast_packets" },
  5940. { "tx_bcast_packets" },
  5941. { "tx_mac_errors" },
  5942. { "tx_carrier_errors" },
  5943. { "rx_crc_errors" },
  5944. { "rx_align_errors" },
  5945. { "tx_single_collisions" },
  5946. { "tx_multi_collisions" },
  5947. { "tx_deferred" },
  5948. { "tx_excess_collisions" },
  5949. { "tx_late_collisions" },
  5950. { "tx_total_collisions" },
  5951. { "rx_fragments" },
  5952. { "rx_jabbers" },
  5953. { "rx_undersize_packets" },
  5954. { "rx_oversize_packets" },
  5955. { "rx_64_byte_packets" },
  5956. { "rx_65_to_127_byte_packets" },
  5957. { "rx_128_to_255_byte_packets" },
  5958. { "rx_256_to_511_byte_packets" },
  5959. { "rx_512_to_1023_byte_packets" },
  5960. { "rx_1024_to_1522_byte_packets" },
  5961. { "rx_1523_to_9022_byte_packets" },
  5962. { "tx_64_byte_packets" },
  5963. { "tx_65_to_127_byte_packets" },
  5964. { "tx_128_to_255_byte_packets" },
  5965. { "tx_256_to_511_byte_packets" },
  5966. { "tx_512_to_1023_byte_packets" },
  5967. { "tx_1024_to_1522_byte_packets" },
  5968. { "tx_1523_to_9022_byte_packets" },
  5969. { "rx_xon_frames" },
  5970. { "rx_xoff_frames" },
  5971. { "tx_xon_frames" },
  5972. { "tx_xoff_frames" },
  5973. { "rx_mac_ctrl_frames" },
  5974. { "rx_filtered_packets" },
  5975. { "rx_ftq_discards" },
  5976. { "rx_discards" },
  5977. { "rx_fw_discards" },
  5978. };
  5979. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5980. sizeof(bnx2_stats_str_arr[0]))
  5981. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5982. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5983. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5984. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5985. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5986. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5987. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5988. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5989. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5990. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5991. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5992. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5993. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5994. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5995. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5996. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5997. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5998. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5999. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6000. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6001. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6002. STATS_OFFSET32(stat_EtherStatsCollisions),
  6003. STATS_OFFSET32(stat_EtherStatsFragments),
  6004. STATS_OFFSET32(stat_EtherStatsJabbers),
  6005. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6006. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6007. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6008. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6009. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6010. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6011. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6012. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6013. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6014. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6015. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6016. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6017. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6018. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6019. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6020. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6021. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6022. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6023. STATS_OFFSET32(stat_OutXonSent),
  6024. STATS_OFFSET32(stat_OutXoffSent),
  6025. STATS_OFFSET32(stat_MacControlFramesReceived),
  6026. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6027. STATS_OFFSET32(stat_IfInFTQDiscards),
  6028. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6029. STATS_OFFSET32(stat_FwRxDrop),
  6030. };
  6031. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6032. * skipped because of errata.
  6033. */
  6034. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6035. 8,0,8,8,8,8,8,8,8,8,
  6036. 4,0,4,4,4,4,4,4,4,4,
  6037. 4,4,4,4,4,4,4,4,4,4,
  6038. 4,4,4,4,4,4,4,4,4,4,
  6039. 4,4,4,4,4,4,4,
  6040. };
  6041. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6042. 8,0,8,8,8,8,8,8,8,8,
  6043. 4,4,4,4,4,4,4,4,4,4,
  6044. 4,4,4,4,4,4,4,4,4,4,
  6045. 4,4,4,4,4,4,4,4,4,4,
  6046. 4,4,4,4,4,4,4,
  6047. };
  6048. #define BNX2_NUM_TESTS 6
  6049. static struct {
  6050. char string[ETH_GSTRING_LEN];
  6051. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6052. { "register_test (offline)" },
  6053. { "memory_test (offline)" },
  6054. { "loopback_test (offline)" },
  6055. { "nvram_test (online)" },
  6056. { "interrupt_test (online)" },
  6057. { "link_test (online)" },
  6058. };
  6059. static int
  6060. bnx2_get_sset_count(struct net_device *dev, int sset)
  6061. {
  6062. switch (sset) {
  6063. case ETH_SS_TEST:
  6064. return BNX2_NUM_TESTS;
  6065. case ETH_SS_STATS:
  6066. return BNX2_NUM_STATS;
  6067. default:
  6068. return -EOPNOTSUPP;
  6069. }
  6070. }
  6071. static void
  6072. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6073. {
  6074. struct bnx2 *bp = netdev_priv(dev);
  6075. bnx2_set_power_state(bp, PCI_D0);
  6076. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6077. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6078. int i;
  6079. bnx2_netif_stop(bp, true);
  6080. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6081. bnx2_free_skbs(bp);
  6082. if (bnx2_test_registers(bp) != 0) {
  6083. buf[0] = 1;
  6084. etest->flags |= ETH_TEST_FL_FAILED;
  6085. }
  6086. if (bnx2_test_memory(bp) != 0) {
  6087. buf[1] = 1;
  6088. etest->flags |= ETH_TEST_FL_FAILED;
  6089. }
  6090. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6091. etest->flags |= ETH_TEST_FL_FAILED;
  6092. if (!netif_running(bp->dev))
  6093. bnx2_shutdown_chip(bp);
  6094. else {
  6095. bnx2_init_nic(bp, 1);
  6096. bnx2_netif_start(bp, true);
  6097. }
  6098. /* wait for link up */
  6099. for (i = 0; i < 7; i++) {
  6100. if (bp->link_up)
  6101. break;
  6102. msleep_interruptible(1000);
  6103. }
  6104. }
  6105. if (bnx2_test_nvram(bp) != 0) {
  6106. buf[3] = 1;
  6107. etest->flags |= ETH_TEST_FL_FAILED;
  6108. }
  6109. if (bnx2_test_intr(bp) != 0) {
  6110. buf[4] = 1;
  6111. etest->flags |= ETH_TEST_FL_FAILED;
  6112. }
  6113. if (bnx2_test_link(bp) != 0) {
  6114. buf[5] = 1;
  6115. etest->flags |= ETH_TEST_FL_FAILED;
  6116. }
  6117. if (!netif_running(bp->dev))
  6118. bnx2_set_power_state(bp, PCI_D3hot);
  6119. }
  6120. static void
  6121. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6122. {
  6123. switch (stringset) {
  6124. case ETH_SS_STATS:
  6125. memcpy(buf, bnx2_stats_str_arr,
  6126. sizeof(bnx2_stats_str_arr));
  6127. break;
  6128. case ETH_SS_TEST:
  6129. memcpy(buf, bnx2_tests_str_arr,
  6130. sizeof(bnx2_tests_str_arr));
  6131. break;
  6132. }
  6133. }
  6134. static void
  6135. bnx2_get_ethtool_stats(struct net_device *dev,
  6136. struct ethtool_stats *stats, u64 *buf)
  6137. {
  6138. struct bnx2 *bp = netdev_priv(dev);
  6139. int i;
  6140. u32 *hw_stats = (u32 *) bp->stats_blk;
  6141. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6142. u8 *stats_len_arr = NULL;
  6143. if (hw_stats == NULL) {
  6144. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6145. return;
  6146. }
  6147. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6148. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6149. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6150. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6151. stats_len_arr = bnx2_5706_stats_len_arr;
  6152. else
  6153. stats_len_arr = bnx2_5708_stats_len_arr;
  6154. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6155. unsigned long offset;
  6156. if (stats_len_arr[i] == 0) {
  6157. /* skip this counter */
  6158. buf[i] = 0;
  6159. continue;
  6160. }
  6161. offset = bnx2_stats_offset_arr[i];
  6162. if (stats_len_arr[i] == 4) {
  6163. /* 4-byte counter */
  6164. buf[i] = (u64) *(hw_stats + offset) +
  6165. *(temp_stats + offset);
  6166. continue;
  6167. }
  6168. /* 8-byte counter */
  6169. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6170. *(hw_stats + offset + 1) +
  6171. (((u64) *(temp_stats + offset)) << 32) +
  6172. *(temp_stats + offset + 1);
  6173. }
  6174. }
  6175. static int
  6176. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6177. {
  6178. struct bnx2 *bp = netdev_priv(dev);
  6179. switch (state) {
  6180. case ETHTOOL_ID_ACTIVE:
  6181. bnx2_set_power_state(bp, PCI_D0);
  6182. bp->leds_save = REG_RD(bp, BNX2_MISC_CFG);
  6183. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6184. return 1; /* cycle on/off once per second */
  6185. case ETHTOOL_ID_ON:
  6186. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6187. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6188. BNX2_EMAC_LED_100MB_OVERRIDE |
  6189. BNX2_EMAC_LED_10MB_OVERRIDE |
  6190. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6191. BNX2_EMAC_LED_TRAFFIC);
  6192. break;
  6193. case ETHTOOL_ID_OFF:
  6194. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6195. break;
  6196. case ETHTOOL_ID_INACTIVE:
  6197. REG_WR(bp, BNX2_EMAC_LED, 0);
  6198. REG_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6199. if (!netif_running(dev))
  6200. bnx2_set_power_state(bp, PCI_D3hot);
  6201. break;
  6202. }
  6203. return 0;
  6204. }
  6205. static netdev_features_t
  6206. bnx2_fix_features(struct net_device *dev, netdev_features_t features)
  6207. {
  6208. struct bnx2 *bp = netdev_priv(dev);
  6209. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  6210. features |= NETIF_F_HW_VLAN_RX;
  6211. return features;
  6212. }
  6213. static int
  6214. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6215. {
  6216. struct bnx2 *bp = netdev_priv(dev);
  6217. /* TSO with VLAN tag won't work with current firmware */
  6218. if (features & NETIF_F_HW_VLAN_TX)
  6219. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6220. else
  6221. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6222. if ((!!(features & NETIF_F_HW_VLAN_RX) !=
  6223. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6224. netif_running(dev)) {
  6225. bnx2_netif_stop(bp, false);
  6226. dev->features = features;
  6227. bnx2_set_rx_mode(dev);
  6228. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6229. bnx2_netif_start(bp, false);
  6230. return 1;
  6231. }
  6232. return 0;
  6233. }
  6234. static const struct ethtool_ops bnx2_ethtool_ops = {
  6235. .get_settings = bnx2_get_settings,
  6236. .set_settings = bnx2_set_settings,
  6237. .get_drvinfo = bnx2_get_drvinfo,
  6238. .get_regs_len = bnx2_get_regs_len,
  6239. .get_regs = bnx2_get_regs,
  6240. .get_wol = bnx2_get_wol,
  6241. .set_wol = bnx2_set_wol,
  6242. .nway_reset = bnx2_nway_reset,
  6243. .get_link = bnx2_get_link,
  6244. .get_eeprom_len = bnx2_get_eeprom_len,
  6245. .get_eeprom = bnx2_get_eeprom,
  6246. .set_eeprom = bnx2_set_eeprom,
  6247. .get_coalesce = bnx2_get_coalesce,
  6248. .set_coalesce = bnx2_set_coalesce,
  6249. .get_ringparam = bnx2_get_ringparam,
  6250. .set_ringparam = bnx2_set_ringparam,
  6251. .get_pauseparam = bnx2_get_pauseparam,
  6252. .set_pauseparam = bnx2_set_pauseparam,
  6253. .self_test = bnx2_self_test,
  6254. .get_strings = bnx2_get_strings,
  6255. .set_phys_id = bnx2_set_phys_id,
  6256. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6257. .get_sset_count = bnx2_get_sset_count,
  6258. };
  6259. /* Called with rtnl_lock */
  6260. static int
  6261. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6262. {
  6263. struct mii_ioctl_data *data = if_mii(ifr);
  6264. struct bnx2 *bp = netdev_priv(dev);
  6265. int err;
  6266. switch(cmd) {
  6267. case SIOCGMIIPHY:
  6268. data->phy_id = bp->phy_addr;
  6269. /* fallthru */
  6270. case SIOCGMIIREG: {
  6271. u32 mii_regval;
  6272. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6273. return -EOPNOTSUPP;
  6274. if (!netif_running(dev))
  6275. return -EAGAIN;
  6276. spin_lock_bh(&bp->phy_lock);
  6277. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6278. spin_unlock_bh(&bp->phy_lock);
  6279. data->val_out = mii_regval;
  6280. return err;
  6281. }
  6282. case SIOCSMIIREG:
  6283. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6284. return -EOPNOTSUPP;
  6285. if (!netif_running(dev))
  6286. return -EAGAIN;
  6287. spin_lock_bh(&bp->phy_lock);
  6288. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6289. spin_unlock_bh(&bp->phy_lock);
  6290. return err;
  6291. default:
  6292. /* do nothing */
  6293. break;
  6294. }
  6295. return -EOPNOTSUPP;
  6296. }
  6297. /* Called with rtnl_lock */
  6298. static int
  6299. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6300. {
  6301. struct sockaddr *addr = p;
  6302. struct bnx2 *bp = netdev_priv(dev);
  6303. if (!is_valid_ether_addr(addr->sa_data))
  6304. return -EINVAL;
  6305. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6306. if (netif_running(dev))
  6307. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6308. return 0;
  6309. }
  6310. /* Called with rtnl_lock */
  6311. static int
  6312. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6313. {
  6314. struct bnx2 *bp = netdev_priv(dev);
  6315. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6316. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6317. return -EINVAL;
  6318. dev->mtu = new_mtu;
  6319. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
  6320. }
  6321. #ifdef CONFIG_NET_POLL_CONTROLLER
  6322. static void
  6323. poll_bnx2(struct net_device *dev)
  6324. {
  6325. struct bnx2 *bp = netdev_priv(dev);
  6326. int i;
  6327. for (i = 0; i < bp->irq_nvecs; i++) {
  6328. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6329. disable_irq(irq->vector);
  6330. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6331. enable_irq(irq->vector);
  6332. }
  6333. }
  6334. #endif
  6335. static void __devinit
  6336. bnx2_get_5709_media(struct bnx2 *bp)
  6337. {
  6338. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6339. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6340. u32 strap;
  6341. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6342. return;
  6343. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6344. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6345. return;
  6346. }
  6347. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6348. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6349. else
  6350. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6351. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6352. switch (strap) {
  6353. case 0x4:
  6354. case 0x5:
  6355. case 0x6:
  6356. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6357. return;
  6358. }
  6359. } else {
  6360. switch (strap) {
  6361. case 0x1:
  6362. case 0x2:
  6363. case 0x4:
  6364. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6365. return;
  6366. }
  6367. }
  6368. }
  6369. static void __devinit
  6370. bnx2_get_pci_speed(struct bnx2 *bp)
  6371. {
  6372. u32 reg;
  6373. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6374. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6375. u32 clkreg;
  6376. bp->flags |= BNX2_FLAG_PCIX;
  6377. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6378. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6379. switch (clkreg) {
  6380. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6381. bp->bus_speed_mhz = 133;
  6382. break;
  6383. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6384. bp->bus_speed_mhz = 100;
  6385. break;
  6386. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6387. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6388. bp->bus_speed_mhz = 66;
  6389. break;
  6390. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6391. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6392. bp->bus_speed_mhz = 50;
  6393. break;
  6394. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6395. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6396. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6397. bp->bus_speed_mhz = 33;
  6398. break;
  6399. }
  6400. }
  6401. else {
  6402. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6403. bp->bus_speed_mhz = 66;
  6404. else
  6405. bp->bus_speed_mhz = 33;
  6406. }
  6407. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6408. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6409. }
  6410. static void __devinit
  6411. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6412. {
  6413. int rc, i, j;
  6414. u8 *data;
  6415. unsigned int block_end, rosize, len;
  6416. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6417. #define BNX2_VPD_LEN 128
  6418. #define BNX2_MAX_VER_SLEN 30
  6419. data = kmalloc(256, GFP_KERNEL);
  6420. if (!data)
  6421. return;
  6422. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6423. BNX2_VPD_LEN);
  6424. if (rc)
  6425. goto vpd_done;
  6426. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6427. data[i] = data[i + BNX2_VPD_LEN + 3];
  6428. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6429. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6430. data[i + 3] = data[i + BNX2_VPD_LEN];
  6431. }
  6432. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6433. if (i < 0)
  6434. goto vpd_done;
  6435. rosize = pci_vpd_lrdt_size(&data[i]);
  6436. i += PCI_VPD_LRDT_TAG_SIZE;
  6437. block_end = i + rosize;
  6438. if (block_end > BNX2_VPD_LEN)
  6439. goto vpd_done;
  6440. j = pci_vpd_find_info_keyword(data, i, rosize,
  6441. PCI_VPD_RO_KEYWORD_MFR_ID);
  6442. if (j < 0)
  6443. goto vpd_done;
  6444. len = pci_vpd_info_field_size(&data[j]);
  6445. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6446. if (j + len > block_end || len != 4 ||
  6447. memcmp(&data[j], "1028", 4))
  6448. goto vpd_done;
  6449. j = pci_vpd_find_info_keyword(data, i, rosize,
  6450. PCI_VPD_RO_KEYWORD_VENDOR0);
  6451. if (j < 0)
  6452. goto vpd_done;
  6453. len = pci_vpd_info_field_size(&data[j]);
  6454. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6455. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6456. goto vpd_done;
  6457. memcpy(bp->fw_version, &data[j], len);
  6458. bp->fw_version[len] = ' ';
  6459. vpd_done:
  6460. kfree(data);
  6461. }
  6462. static int __devinit
  6463. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6464. {
  6465. struct bnx2 *bp;
  6466. unsigned long mem_len;
  6467. int rc, i, j;
  6468. u32 reg;
  6469. u64 dma_mask, persist_dma_mask;
  6470. int err;
  6471. SET_NETDEV_DEV(dev, &pdev->dev);
  6472. bp = netdev_priv(dev);
  6473. bp->flags = 0;
  6474. bp->phy_flags = 0;
  6475. bp->temp_stats_blk =
  6476. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6477. if (bp->temp_stats_blk == NULL) {
  6478. rc = -ENOMEM;
  6479. goto err_out;
  6480. }
  6481. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6482. rc = pci_enable_device(pdev);
  6483. if (rc) {
  6484. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6485. goto err_out;
  6486. }
  6487. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6488. dev_err(&pdev->dev,
  6489. "Cannot find PCI device base address, aborting\n");
  6490. rc = -ENODEV;
  6491. goto err_out_disable;
  6492. }
  6493. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6494. if (rc) {
  6495. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6496. goto err_out_disable;
  6497. }
  6498. pci_set_master(pdev);
  6499. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6500. if (bp->pm_cap == 0) {
  6501. dev_err(&pdev->dev,
  6502. "Cannot find power management capability, aborting\n");
  6503. rc = -EIO;
  6504. goto err_out_release;
  6505. }
  6506. bp->dev = dev;
  6507. bp->pdev = pdev;
  6508. spin_lock_init(&bp->phy_lock);
  6509. spin_lock_init(&bp->indirect_lock);
  6510. #ifdef BCM_CNIC
  6511. mutex_init(&bp->cnic_lock);
  6512. #endif
  6513. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6514. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6515. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6516. dev->mem_end = dev->mem_start + mem_len;
  6517. dev->irq = pdev->irq;
  6518. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6519. if (!bp->regview) {
  6520. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6521. rc = -ENOMEM;
  6522. goto err_out_release;
  6523. }
  6524. bnx2_set_power_state(bp, PCI_D0);
  6525. /* Configure byte swap and enable write to the reg_window registers.
  6526. * Rely on CPU to do target byte swapping on big endian systems
  6527. * The chip's target access swapping will not swap all accesses
  6528. */
  6529. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6530. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6531. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6532. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6533. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6534. if (!pci_is_pcie(pdev)) {
  6535. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6536. rc = -EIO;
  6537. goto err_out_unmap;
  6538. }
  6539. bp->flags |= BNX2_FLAG_PCIE;
  6540. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6541. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6542. /* AER (Advanced Error Reporting) hooks */
  6543. err = pci_enable_pcie_error_reporting(pdev);
  6544. if (!err)
  6545. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6546. } else {
  6547. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6548. if (bp->pcix_cap == 0) {
  6549. dev_err(&pdev->dev,
  6550. "Cannot find PCIX capability, aborting\n");
  6551. rc = -EIO;
  6552. goto err_out_unmap;
  6553. }
  6554. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6555. }
  6556. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6557. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6558. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6559. }
  6560. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6561. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6562. bp->flags |= BNX2_FLAG_MSI_CAP;
  6563. }
  6564. /* 5708 cannot support DMA addresses > 40-bit. */
  6565. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6566. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6567. else
  6568. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6569. /* Configure DMA attributes. */
  6570. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6571. dev->features |= NETIF_F_HIGHDMA;
  6572. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6573. if (rc) {
  6574. dev_err(&pdev->dev,
  6575. "pci_set_consistent_dma_mask failed, aborting\n");
  6576. goto err_out_unmap;
  6577. }
  6578. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6579. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6580. goto err_out_unmap;
  6581. }
  6582. if (!(bp->flags & BNX2_FLAG_PCIE))
  6583. bnx2_get_pci_speed(bp);
  6584. /* 5706A0 may falsely detect SERR and PERR. */
  6585. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6586. reg = REG_RD(bp, PCI_COMMAND);
  6587. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6588. REG_WR(bp, PCI_COMMAND, reg);
  6589. }
  6590. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6591. !(bp->flags & BNX2_FLAG_PCIX)) {
  6592. dev_err(&pdev->dev,
  6593. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6594. goto err_out_unmap;
  6595. }
  6596. bnx2_init_nvram(bp);
  6597. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6598. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6599. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6600. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6601. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6602. } else
  6603. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6604. /* Get the permanent MAC address. First we need to make sure the
  6605. * firmware is actually running.
  6606. */
  6607. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6608. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6609. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6610. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6611. rc = -ENODEV;
  6612. goto err_out_unmap;
  6613. }
  6614. bnx2_read_vpd_fw_ver(bp);
  6615. j = strlen(bp->fw_version);
  6616. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6617. for (i = 0; i < 3 && j < 24; i++) {
  6618. u8 num, k, skip0;
  6619. if (i == 0) {
  6620. bp->fw_version[j++] = 'b';
  6621. bp->fw_version[j++] = 'c';
  6622. bp->fw_version[j++] = ' ';
  6623. }
  6624. num = (u8) (reg >> (24 - (i * 8)));
  6625. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6626. if (num >= k || !skip0 || k == 1) {
  6627. bp->fw_version[j++] = (num / k) + '0';
  6628. skip0 = 0;
  6629. }
  6630. }
  6631. if (i != 2)
  6632. bp->fw_version[j++] = '.';
  6633. }
  6634. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6635. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6636. bp->wol = 1;
  6637. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6638. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6639. for (i = 0; i < 30; i++) {
  6640. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6641. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6642. break;
  6643. msleep(10);
  6644. }
  6645. }
  6646. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6647. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6648. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6649. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6650. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6651. if (j < 32)
  6652. bp->fw_version[j++] = ' ';
  6653. for (i = 0; i < 3 && j < 28; i++) {
  6654. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6655. reg = be32_to_cpu(reg);
  6656. memcpy(&bp->fw_version[j], &reg, 4);
  6657. j += 4;
  6658. }
  6659. }
  6660. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6661. bp->mac_addr[0] = (u8) (reg >> 8);
  6662. bp->mac_addr[1] = (u8) reg;
  6663. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6664. bp->mac_addr[2] = (u8) (reg >> 24);
  6665. bp->mac_addr[3] = (u8) (reg >> 16);
  6666. bp->mac_addr[4] = (u8) (reg >> 8);
  6667. bp->mac_addr[5] = (u8) reg;
  6668. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6669. bnx2_set_rx_ring_size(bp, 255);
  6670. bp->tx_quick_cons_trip_int = 2;
  6671. bp->tx_quick_cons_trip = 20;
  6672. bp->tx_ticks_int = 18;
  6673. bp->tx_ticks = 80;
  6674. bp->rx_quick_cons_trip_int = 2;
  6675. bp->rx_quick_cons_trip = 12;
  6676. bp->rx_ticks_int = 18;
  6677. bp->rx_ticks = 18;
  6678. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6679. bp->current_interval = BNX2_TIMER_INTERVAL;
  6680. bp->phy_addr = 1;
  6681. /* Disable WOL support if we are running on a SERDES chip. */
  6682. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6683. bnx2_get_5709_media(bp);
  6684. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6685. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6686. bp->phy_port = PORT_TP;
  6687. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6688. bp->phy_port = PORT_FIBRE;
  6689. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6690. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6691. bp->flags |= BNX2_FLAG_NO_WOL;
  6692. bp->wol = 0;
  6693. }
  6694. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6695. /* Don't do parallel detect on this board because of
  6696. * some board problems. The link will not go down
  6697. * if we do parallel detect.
  6698. */
  6699. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6700. pdev->subsystem_device == 0x310c)
  6701. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6702. } else {
  6703. bp->phy_addr = 2;
  6704. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6705. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6706. }
  6707. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6708. CHIP_NUM(bp) == CHIP_NUM_5708)
  6709. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6710. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6711. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6712. CHIP_REV(bp) == CHIP_REV_Bx))
  6713. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6714. bnx2_init_fw_cap(bp);
  6715. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6716. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6717. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6718. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6719. bp->flags |= BNX2_FLAG_NO_WOL;
  6720. bp->wol = 0;
  6721. }
  6722. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6723. bp->tx_quick_cons_trip_int =
  6724. bp->tx_quick_cons_trip;
  6725. bp->tx_ticks_int = bp->tx_ticks;
  6726. bp->rx_quick_cons_trip_int =
  6727. bp->rx_quick_cons_trip;
  6728. bp->rx_ticks_int = bp->rx_ticks;
  6729. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6730. bp->com_ticks_int = bp->com_ticks;
  6731. bp->cmd_ticks_int = bp->cmd_ticks;
  6732. }
  6733. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6734. *
  6735. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6736. * with byte enables disabled on the unused 32-bit word. This is legal
  6737. * but causes problems on the AMD 8132 which will eventually stop
  6738. * responding after a while.
  6739. *
  6740. * AMD believes this incompatibility is unique to the 5706, and
  6741. * prefers to locally disable MSI rather than globally disabling it.
  6742. */
  6743. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6744. struct pci_dev *amd_8132 = NULL;
  6745. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6746. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6747. amd_8132))) {
  6748. if (amd_8132->revision >= 0x10 &&
  6749. amd_8132->revision <= 0x13) {
  6750. disable_msi = 1;
  6751. pci_dev_put(amd_8132);
  6752. break;
  6753. }
  6754. }
  6755. }
  6756. bnx2_set_default_link(bp);
  6757. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6758. init_timer(&bp->timer);
  6759. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6760. bp->timer.data = (unsigned long) bp;
  6761. bp->timer.function = bnx2_timer;
  6762. #ifdef BCM_CNIC
  6763. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6764. bp->cnic_eth_dev.max_iscsi_conn =
  6765. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6766. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6767. #endif
  6768. pci_save_state(pdev);
  6769. return 0;
  6770. err_out_unmap:
  6771. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6772. pci_disable_pcie_error_reporting(pdev);
  6773. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6774. }
  6775. if (bp->regview) {
  6776. iounmap(bp->regview);
  6777. bp->regview = NULL;
  6778. }
  6779. err_out_release:
  6780. pci_release_regions(pdev);
  6781. err_out_disable:
  6782. pci_disable_device(pdev);
  6783. pci_set_drvdata(pdev, NULL);
  6784. err_out:
  6785. return rc;
  6786. }
  6787. static char * __devinit
  6788. bnx2_bus_string(struct bnx2 *bp, char *str)
  6789. {
  6790. char *s = str;
  6791. if (bp->flags & BNX2_FLAG_PCIE) {
  6792. s += sprintf(s, "PCI Express");
  6793. } else {
  6794. s += sprintf(s, "PCI");
  6795. if (bp->flags & BNX2_FLAG_PCIX)
  6796. s += sprintf(s, "-X");
  6797. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6798. s += sprintf(s, " 32-bit");
  6799. else
  6800. s += sprintf(s, " 64-bit");
  6801. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6802. }
  6803. return str;
  6804. }
  6805. static void
  6806. bnx2_del_napi(struct bnx2 *bp)
  6807. {
  6808. int i;
  6809. for (i = 0; i < bp->irq_nvecs; i++)
  6810. netif_napi_del(&bp->bnx2_napi[i].napi);
  6811. }
  6812. static void
  6813. bnx2_init_napi(struct bnx2 *bp)
  6814. {
  6815. int i;
  6816. for (i = 0; i < bp->irq_nvecs; i++) {
  6817. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6818. int (*poll)(struct napi_struct *, int);
  6819. if (i == 0)
  6820. poll = bnx2_poll;
  6821. else
  6822. poll = bnx2_poll_msix;
  6823. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6824. bnapi->bp = bp;
  6825. }
  6826. }
  6827. static const struct net_device_ops bnx2_netdev_ops = {
  6828. .ndo_open = bnx2_open,
  6829. .ndo_start_xmit = bnx2_start_xmit,
  6830. .ndo_stop = bnx2_close,
  6831. .ndo_get_stats64 = bnx2_get_stats64,
  6832. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6833. .ndo_do_ioctl = bnx2_ioctl,
  6834. .ndo_validate_addr = eth_validate_addr,
  6835. .ndo_set_mac_address = bnx2_change_mac_addr,
  6836. .ndo_change_mtu = bnx2_change_mtu,
  6837. .ndo_fix_features = bnx2_fix_features,
  6838. .ndo_set_features = bnx2_set_features,
  6839. .ndo_tx_timeout = bnx2_tx_timeout,
  6840. #ifdef CONFIG_NET_POLL_CONTROLLER
  6841. .ndo_poll_controller = poll_bnx2,
  6842. #endif
  6843. };
  6844. static int __devinit
  6845. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6846. {
  6847. static int version_printed = 0;
  6848. struct net_device *dev = NULL;
  6849. struct bnx2 *bp;
  6850. int rc;
  6851. char str[40];
  6852. if (version_printed++ == 0)
  6853. pr_info("%s", version);
  6854. /* dev zeroed in init_etherdev */
  6855. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6856. if (!dev)
  6857. return -ENOMEM;
  6858. rc = bnx2_init_board(pdev, dev);
  6859. if (rc < 0) {
  6860. free_netdev(dev);
  6861. return rc;
  6862. }
  6863. dev->netdev_ops = &bnx2_netdev_ops;
  6864. dev->watchdog_timeo = TX_TIMEOUT;
  6865. dev->ethtool_ops = &bnx2_ethtool_ops;
  6866. bp = netdev_priv(dev);
  6867. pci_set_drvdata(pdev, dev);
  6868. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6869. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6870. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  6871. NETIF_F_TSO | NETIF_F_TSO_ECN |
  6872. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  6873. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6874. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  6875. dev->vlan_features = dev->hw_features;
  6876. dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6877. dev->features |= dev->hw_features;
  6878. dev->priv_flags |= IFF_UNICAST_FLT;
  6879. if ((rc = register_netdev(dev))) {
  6880. dev_err(&pdev->dev, "Cannot register net device\n");
  6881. goto error;
  6882. }
  6883. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6884. board_info[ent->driver_data].name,
  6885. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6886. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6887. bnx2_bus_string(bp, str),
  6888. dev->base_addr,
  6889. bp->pdev->irq, dev->dev_addr);
  6890. return 0;
  6891. error:
  6892. if (bp->regview)
  6893. iounmap(bp->regview);
  6894. pci_release_regions(pdev);
  6895. pci_disable_device(pdev);
  6896. pci_set_drvdata(pdev, NULL);
  6897. free_netdev(dev);
  6898. return rc;
  6899. }
  6900. static void __devexit
  6901. bnx2_remove_one(struct pci_dev *pdev)
  6902. {
  6903. struct net_device *dev = pci_get_drvdata(pdev);
  6904. struct bnx2 *bp = netdev_priv(dev);
  6905. unregister_netdev(dev);
  6906. del_timer_sync(&bp->timer);
  6907. cancel_work_sync(&bp->reset_task);
  6908. if (bp->regview)
  6909. iounmap(bp->regview);
  6910. kfree(bp->temp_stats_blk);
  6911. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6912. pci_disable_pcie_error_reporting(pdev);
  6913. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6914. }
  6915. bnx2_release_firmware(bp);
  6916. free_netdev(dev);
  6917. pci_release_regions(pdev);
  6918. pci_disable_device(pdev);
  6919. pci_set_drvdata(pdev, NULL);
  6920. }
  6921. static int
  6922. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6923. {
  6924. struct net_device *dev = pci_get_drvdata(pdev);
  6925. struct bnx2 *bp = netdev_priv(dev);
  6926. /* PCI register 4 needs to be saved whether netif_running() or not.
  6927. * MSI address and data need to be saved if using MSI and
  6928. * netif_running().
  6929. */
  6930. pci_save_state(pdev);
  6931. if (!netif_running(dev))
  6932. return 0;
  6933. cancel_work_sync(&bp->reset_task);
  6934. bnx2_netif_stop(bp, true);
  6935. netif_device_detach(dev);
  6936. del_timer_sync(&bp->timer);
  6937. bnx2_shutdown_chip(bp);
  6938. bnx2_free_skbs(bp);
  6939. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6940. return 0;
  6941. }
  6942. static int
  6943. bnx2_resume(struct pci_dev *pdev)
  6944. {
  6945. struct net_device *dev = pci_get_drvdata(pdev);
  6946. struct bnx2 *bp = netdev_priv(dev);
  6947. pci_restore_state(pdev);
  6948. if (!netif_running(dev))
  6949. return 0;
  6950. bnx2_set_power_state(bp, PCI_D0);
  6951. netif_device_attach(dev);
  6952. bnx2_init_nic(bp, 1);
  6953. bnx2_netif_start(bp, true);
  6954. return 0;
  6955. }
  6956. /**
  6957. * bnx2_io_error_detected - called when PCI error is detected
  6958. * @pdev: Pointer to PCI device
  6959. * @state: The current pci connection state
  6960. *
  6961. * This function is called after a PCI bus error affecting
  6962. * this device has been detected.
  6963. */
  6964. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6965. pci_channel_state_t state)
  6966. {
  6967. struct net_device *dev = pci_get_drvdata(pdev);
  6968. struct bnx2 *bp = netdev_priv(dev);
  6969. rtnl_lock();
  6970. netif_device_detach(dev);
  6971. if (state == pci_channel_io_perm_failure) {
  6972. rtnl_unlock();
  6973. return PCI_ERS_RESULT_DISCONNECT;
  6974. }
  6975. if (netif_running(dev)) {
  6976. bnx2_netif_stop(bp, true);
  6977. del_timer_sync(&bp->timer);
  6978. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6979. }
  6980. pci_disable_device(pdev);
  6981. rtnl_unlock();
  6982. /* Request a slot slot reset. */
  6983. return PCI_ERS_RESULT_NEED_RESET;
  6984. }
  6985. /**
  6986. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6987. * @pdev: Pointer to PCI device
  6988. *
  6989. * Restart the card from scratch, as if from a cold-boot.
  6990. */
  6991. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6992. {
  6993. struct net_device *dev = pci_get_drvdata(pdev);
  6994. struct bnx2 *bp = netdev_priv(dev);
  6995. pci_ers_result_t result;
  6996. int err;
  6997. rtnl_lock();
  6998. if (pci_enable_device(pdev)) {
  6999. dev_err(&pdev->dev,
  7000. "Cannot re-enable PCI device after reset\n");
  7001. result = PCI_ERS_RESULT_DISCONNECT;
  7002. } else {
  7003. pci_set_master(pdev);
  7004. pci_restore_state(pdev);
  7005. pci_save_state(pdev);
  7006. if (netif_running(dev)) {
  7007. bnx2_set_power_state(bp, PCI_D0);
  7008. bnx2_init_nic(bp, 1);
  7009. }
  7010. result = PCI_ERS_RESULT_RECOVERED;
  7011. }
  7012. rtnl_unlock();
  7013. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7014. return result;
  7015. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7016. if (err) {
  7017. dev_err(&pdev->dev,
  7018. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7019. err); /* non-fatal, continue */
  7020. }
  7021. return result;
  7022. }
  7023. /**
  7024. * bnx2_io_resume - called when traffic can start flowing again.
  7025. * @pdev: Pointer to PCI device
  7026. *
  7027. * This callback is called when the error recovery driver tells us that
  7028. * its OK to resume normal operation.
  7029. */
  7030. static void bnx2_io_resume(struct pci_dev *pdev)
  7031. {
  7032. struct net_device *dev = pci_get_drvdata(pdev);
  7033. struct bnx2 *bp = netdev_priv(dev);
  7034. rtnl_lock();
  7035. if (netif_running(dev))
  7036. bnx2_netif_start(bp, true);
  7037. netif_device_attach(dev);
  7038. rtnl_unlock();
  7039. }
  7040. static struct pci_error_handlers bnx2_err_handler = {
  7041. .error_detected = bnx2_io_error_detected,
  7042. .slot_reset = bnx2_io_slot_reset,
  7043. .resume = bnx2_io_resume,
  7044. };
  7045. static struct pci_driver bnx2_pci_driver = {
  7046. .name = DRV_MODULE_NAME,
  7047. .id_table = bnx2_pci_tbl,
  7048. .probe = bnx2_init_one,
  7049. .remove = __devexit_p(bnx2_remove_one),
  7050. .suspend = bnx2_suspend,
  7051. .resume = bnx2_resume,
  7052. .err_handler = &bnx2_err_handler,
  7053. };
  7054. static int __init bnx2_init(void)
  7055. {
  7056. return pci_register_driver(&bnx2_pci_driver);
  7057. }
  7058. static void __exit bnx2_cleanup(void)
  7059. {
  7060. pci_unregister_driver(&bnx2_pci_driver);
  7061. }
  7062. module_init(bnx2_init);
  7063. module_exit(bnx2_cleanup);