dm-thin-metadata.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  291. struct dm_block **sblock)
  292. {
  293. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  294. &sb_validator, sblock);
  295. }
  296. static int superblock_lock(struct dm_pool_metadata *pmd,
  297. struct dm_block **sblock)
  298. {
  299. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  300. &sb_validator, sblock);
  301. }
  302. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  303. {
  304. int r;
  305. unsigned i;
  306. struct dm_block *b;
  307. __le64 *data_le, zero = cpu_to_le64(0);
  308. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  309. /*
  310. * We can't use a validator here - it may be all zeroes.
  311. */
  312. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  313. if (r)
  314. return r;
  315. data_le = dm_block_data(b);
  316. *result = 1;
  317. for (i = 0; i < block_size; i++) {
  318. if (data_le[i] != zero) {
  319. *result = 0;
  320. break;
  321. }
  322. }
  323. return dm_bm_unlock(b);
  324. }
  325. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  326. {
  327. pmd->info.tm = pmd->tm;
  328. pmd->info.levels = 2;
  329. pmd->info.value_type.context = pmd->data_sm;
  330. pmd->info.value_type.size = sizeof(__le64);
  331. pmd->info.value_type.inc = data_block_inc;
  332. pmd->info.value_type.dec = data_block_dec;
  333. pmd->info.value_type.equal = data_block_equal;
  334. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  335. pmd->nb_info.tm = pmd->nb_tm;
  336. pmd->tl_info.tm = pmd->tm;
  337. pmd->tl_info.levels = 1;
  338. pmd->tl_info.value_type.context = &pmd->info;
  339. pmd->tl_info.value_type.size = sizeof(__le64);
  340. pmd->tl_info.value_type.inc = subtree_inc;
  341. pmd->tl_info.value_type.dec = subtree_dec;
  342. pmd->tl_info.value_type.equal = subtree_equal;
  343. pmd->bl_info.tm = pmd->tm;
  344. pmd->bl_info.levels = 1;
  345. pmd->bl_info.value_type.context = pmd->data_sm;
  346. pmd->bl_info.value_type.size = sizeof(__le64);
  347. pmd->bl_info.value_type.inc = data_block_inc;
  348. pmd->bl_info.value_type.dec = data_block_dec;
  349. pmd->bl_info.value_type.equal = data_block_equal;
  350. pmd->details_info.tm = pmd->tm;
  351. pmd->details_info.levels = 1;
  352. pmd->details_info.value_type.context = NULL;
  353. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  354. pmd->details_info.value_type.inc = NULL;
  355. pmd->details_info.value_type.dec = NULL;
  356. pmd->details_info.value_type.equal = NULL;
  357. }
  358. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  359. {
  360. int r;
  361. struct dm_block *sblock;
  362. struct thin_disk_superblock *disk_super;
  363. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  364. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  365. bdev_size = THIN_METADATA_MAX_SECTORS;
  366. r = superblock_lock_zero(pmd, &sblock);
  367. if (r)
  368. return r;
  369. disk_super = dm_block_data(sblock);
  370. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  371. disk_super->version = cpu_to_le32(THIN_VERSION);
  372. disk_super->time = 0;
  373. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  374. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  375. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  376. r = dm_bm_unlock(sblock);
  377. if (r)
  378. return r;
  379. pmd->flags = 0;
  380. r = dm_pool_commit_metadata(pmd);
  381. if (r < 0)
  382. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  383. __func__, r);
  384. return r;
  385. }
  386. static int __open_or_format_metadata(struct dm_pool_metadata *pmd,
  387. struct dm_block_manager *bm,
  388. dm_block_t nr_blocks, int create)
  389. {
  390. int r;
  391. struct dm_space_map *sm, *data_sm;
  392. struct dm_transaction_manager *tm;
  393. struct dm_block *sblock;
  394. if (create) {
  395. r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION, &tm, &sm);
  396. if (r < 0) {
  397. DMERR("tm_create_with_sm failed");
  398. return r;
  399. }
  400. data_sm = dm_sm_disk_create(tm, nr_blocks);
  401. if (IS_ERR(data_sm)) {
  402. DMERR("sm_disk_create failed");
  403. r = PTR_ERR(data_sm);
  404. goto bad;
  405. }
  406. } else {
  407. struct thin_disk_superblock *disk_super;
  408. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION,
  409. &sb_validator, &sblock);
  410. if (r < 0) {
  411. DMERR("couldn't read superblock");
  412. return r;
  413. }
  414. disk_super = dm_block_data(sblock);
  415. r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  416. disk_super->metadata_space_map_root,
  417. sizeof(disk_super->metadata_space_map_root),
  418. &tm, &sm);
  419. if (r < 0) {
  420. DMERR("tm_open_with_sm failed");
  421. dm_bm_unlock(sblock);
  422. return r;
  423. }
  424. data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
  425. sizeof(disk_super->data_space_map_root));
  426. if (IS_ERR(data_sm)) {
  427. DMERR("sm_disk_open failed");
  428. dm_bm_unlock(sblock);
  429. r = PTR_ERR(data_sm);
  430. goto bad;
  431. }
  432. dm_bm_unlock(sblock);
  433. }
  434. pmd->bm = bm;
  435. pmd->metadata_sm = sm;
  436. pmd->data_sm = data_sm;
  437. pmd->tm = tm;
  438. pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
  439. if (!pmd->nb_tm) {
  440. DMERR("could not create clone tm");
  441. r = -ENOMEM;
  442. goto bad_data_sm;
  443. }
  444. __setup_btree_details(pmd);
  445. pmd->root = 0;
  446. pmd->details_root = 0;
  447. pmd->trans_id = 0;
  448. pmd->flags = 0;
  449. if (!create)
  450. return 0;
  451. r = dm_btree_empty(&pmd->info, &pmd->root);
  452. if (r < 0)
  453. goto bad_data_sm;
  454. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  455. if (r < 0) {
  456. DMERR("couldn't create devices root");
  457. goto bad_data_sm;
  458. }
  459. r = __write_initial_superblock(pmd);
  460. if (r)
  461. goto bad_data_sm;
  462. return 0;
  463. bad_data_sm:
  464. dm_sm_destroy(data_sm);
  465. bad:
  466. dm_tm_destroy(tm);
  467. dm_sm_destroy(sm);
  468. return r;
  469. }
  470. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd,
  471. dm_block_t nr_blocks, int *create)
  472. {
  473. int r;
  474. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
  475. THIN_METADATA_CACHE_SIZE,
  476. THIN_MAX_CONCURRENT_LOCKS);
  477. if (IS_ERR(pmd->bm)) {
  478. DMERR("could not create block manager");
  479. return PTR_ERR(pmd->bm);
  480. }
  481. r = __superblock_all_zeroes(pmd->bm, create);
  482. if (r) {
  483. dm_block_manager_destroy(pmd->bm);
  484. return r;
  485. }
  486. r = __open_or_format_metadata(pmd, pmd->bm, nr_blocks, *create);
  487. if (r)
  488. dm_block_manager_destroy(pmd->bm);
  489. return r;
  490. }
  491. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  492. {
  493. dm_sm_destroy(pmd->data_sm);
  494. dm_sm_destroy(pmd->metadata_sm);
  495. dm_tm_destroy(pmd->nb_tm);
  496. dm_tm_destroy(pmd->tm);
  497. dm_block_manager_destroy(pmd->bm);
  498. }
  499. static int __begin_transaction(struct dm_pool_metadata *pmd)
  500. {
  501. int r;
  502. u32 features;
  503. struct thin_disk_superblock *disk_super;
  504. struct dm_block *sblock;
  505. /*
  506. * We re-read the superblock every time. Shouldn't need to do this
  507. * really.
  508. */
  509. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  510. &sb_validator, &sblock);
  511. if (r)
  512. return r;
  513. disk_super = dm_block_data(sblock);
  514. pmd->time = le32_to_cpu(disk_super->time);
  515. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  516. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  517. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  518. pmd->flags = le32_to_cpu(disk_super->flags);
  519. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  520. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  521. if (features) {
  522. DMERR("could not access metadata due to "
  523. "unsupported optional features (%lx).",
  524. (unsigned long)features);
  525. r = -EINVAL;
  526. goto out;
  527. }
  528. /*
  529. * Check for read-only metadata to skip the following RDWR checks.
  530. */
  531. if (get_disk_ro(pmd->bdev->bd_disk))
  532. goto out;
  533. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  534. if (features) {
  535. DMERR("could not access metadata RDWR due to "
  536. "unsupported optional features (%lx).",
  537. (unsigned long)features);
  538. r = -EINVAL;
  539. }
  540. out:
  541. dm_bm_unlock(sblock);
  542. return r;
  543. }
  544. static int __write_changed_details(struct dm_pool_metadata *pmd)
  545. {
  546. int r;
  547. struct dm_thin_device *td, *tmp;
  548. struct disk_device_details details;
  549. uint64_t key;
  550. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  551. if (!td->changed)
  552. continue;
  553. key = td->id;
  554. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  555. details.transaction_id = cpu_to_le64(td->transaction_id);
  556. details.creation_time = cpu_to_le32(td->creation_time);
  557. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  558. __dm_bless_for_disk(&details);
  559. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  560. &key, &details, &pmd->details_root);
  561. if (r)
  562. return r;
  563. if (td->open_count)
  564. td->changed = 0;
  565. else {
  566. list_del(&td->list);
  567. kfree(td);
  568. }
  569. }
  570. return 0;
  571. }
  572. static int __commit_transaction(struct dm_pool_metadata *pmd)
  573. {
  574. /*
  575. * FIXME: Associated pool should be made read-only on failure.
  576. */
  577. int r;
  578. size_t metadata_len, data_len;
  579. struct thin_disk_superblock *disk_super;
  580. struct dm_block *sblock;
  581. /*
  582. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  583. */
  584. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  585. r = __write_changed_details(pmd);
  586. if (r < 0)
  587. return r;
  588. r = dm_sm_commit(pmd->data_sm);
  589. if (r < 0)
  590. return r;
  591. r = dm_tm_pre_commit(pmd->tm);
  592. if (r < 0)
  593. return r;
  594. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  595. if (r < 0)
  596. return r;
  597. r = dm_sm_root_size(pmd->data_sm, &data_len);
  598. if (r < 0)
  599. return r;
  600. r = superblock_lock(pmd, &sblock);
  601. if (r)
  602. return r;
  603. disk_super = dm_block_data(sblock);
  604. disk_super->time = cpu_to_le32(pmd->time);
  605. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  606. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  607. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  608. disk_super->flags = cpu_to_le32(pmd->flags);
  609. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  610. metadata_len);
  611. if (r < 0)
  612. goto out_locked;
  613. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  614. data_len);
  615. if (r < 0)
  616. goto out_locked;
  617. return dm_tm_commit(pmd->tm, sblock);
  618. out_locked:
  619. dm_bm_unlock(sblock);
  620. return r;
  621. }
  622. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  623. sector_t data_block_size)
  624. {
  625. int r;
  626. struct dm_pool_metadata *pmd;
  627. int create;
  628. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  629. if (!pmd) {
  630. DMERR("could not allocate metadata struct");
  631. return ERR_PTR(-ENOMEM);
  632. }
  633. init_rwsem(&pmd->root_lock);
  634. pmd->time = 0;
  635. INIT_LIST_HEAD(&pmd->thin_devices);
  636. pmd->bdev = bdev;
  637. pmd->data_block_size = data_block_size;
  638. r = __create_persistent_data_objects(pmd, 0, &create);
  639. if (r) {
  640. kfree(pmd);
  641. return ERR_PTR(r);
  642. }
  643. if (!create) {
  644. r = __begin_transaction(pmd);
  645. if (r < 0) {
  646. if (dm_pool_metadata_close(pmd) < 0)
  647. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  648. return ERR_PTR(r);
  649. }
  650. }
  651. return pmd;
  652. }
  653. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  654. {
  655. int r;
  656. unsigned open_devices = 0;
  657. struct dm_thin_device *td, *tmp;
  658. down_read(&pmd->root_lock);
  659. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  660. if (td->open_count)
  661. open_devices++;
  662. else {
  663. list_del(&td->list);
  664. kfree(td);
  665. }
  666. }
  667. up_read(&pmd->root_lock);
  668. if (open_devices) {
  669. DMERR("attempt to close pmd when %u device(s) are still open",
  670. open_devices);
  671. return -EBUSY;
  672. }
  673. r = __commit_transaction(pmd);
  674. if (r < 0)
  675. DMWARN("%s: __commit_transaction() failed, error = %d",
  676. __func__, r);
  677. __destroy_persistent_data_objects(pmd);
  678. kfree(pmd);
  679. return 0;
  680. }
  681. /*
  682. * __open_device: Returns @td corresponding to device with id @dev,
  683. * creating it if @create is set and incrementing @td->open_count.
  684. * On failure, @td is undefined.
  685. */
  686. static int __open_device(struct dm_pool_metadata *pmd,
  687. dm_thin_id dev, int create,
  688. struct dm_thin_device **td)
  689. {
  690. int r, changed = 0;
  691. struct dm_thin_device *td2;
  692. uint64_t key = dev;
  693. struct disk_device_details details_le;
  694. /*
  695. * If the device is already open, return it.
  696. */
  697. list_for_each_entry(td2, &pmd->thin_devices, list)
  698. if (td2->id == dev) {
  699. /*
  700. * May not create an already-open device.
  701. */
  702. if (create)
  703. return -EEXIST;
  704. td2->open_count++;
  705. *td = td2;
  706. return 0;
  707. }
  708. /*
  709. * Check the device exists.
  710. */
  711. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  712. &key, &details_le);
  713. if (r) {
  714. if (r != -ENODATA || !create)
  715. return r;
  716. /*
  717. * Create new device.
  718. */
  719. changed = 1;
  720. details_le.mapped_blocks = 0;
  721. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  722. details_le.creation_time = cpu_to_le32(pmd->time);
  723. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  724. }
  725. *td = kmalloc(sizeof(**td), GFP_NOIO);
  726. if (!*td)
  727. return -ENOMEM;
  728. (*td)->pmd = pmd;
  729. (*td)->id = dev;
  730. (*td)->open_count = 1;
  731. (*td)->changed = changed;
  732. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  733. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  734. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  735. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  736. list_add(&(*td)->list, &pmd->thin_devices);
  737. return 0;
  738. }
  739. static void __close_device(struct dm_thin_device *td)
  740. {
  741. --td->open_count;
  742. }
  743. static int __create_thin(struct dm_pool_metadata *pmd,
  744. dm_thin_id dev)
  745. {
  746. int r;
  747. dm_block_t dev_root;
  748. uint64_t key = dev;
  749. struct disk_device_details details_le;
  750. struct dm_thin_device *td;
  751. __le64 value;
  752. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  753. &key, &details_le);
  754. if (!r)
  755. return -EEXIST;
  756. /*
  757. * Create an empty btree for the mappings.
  758. */
  759. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  760. if (r)
  761. return r;
  762. /*
  763. * Insert it into the main mapping tree.
  764. */
  765. value = cpu_to_le64(dev_root);
  766. __dm_bless_for_disk(&value);
  767. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  768. if (r) {
  769. dm_btree_del(&pmd->bl_info, dev_root);
  770. return r;
  771. }
  772. r = __open_device(pmd, dev, 1, &td);
  773. if (r) {
  774. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  775. dm_btree_del(&pmd->bl_info, dev_root);
  776. return r;
  777. }
  778. __close_device(td);
  779. return r;
  780. }
  781. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  782. {
  783. int r;
  784. down_write(&pmd->root_lock);
  785. r = __create_thin(pmd, dev);
  786. up_write(&pmd->root_lock);
  787. return r;
  788. }
  789. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  790. struct dm_thin_device *snap,
  791. dm_thin_id origin, uint32_t time)
  792. {
  793. int r;
  794. struct dm_thin_device *td;
  795. r = __open_device(pmd, origin, 0, &td);
  796. if (r)
  797. return r;
  798. td->changed = 1;
  799. td->snapshotted_time = time;
  800. snap->mapped_blocks = td->mapped_blocks;
  801. snap->snapshotted_time = time;
  802. __close_device(td);
  803. return 0;
  804. }
  805. static int __create_snap(struct dm_pool_metadata *pmd,
  806. dm_thin_id dev, dm_thin_id origin)
  807. {
  808. int r;
  809. dm_block_t origin_root;
  810. uint64_t key = origin, dev_key = dev;
  811. struct dm_thin_device *td;
  812. struct disk_device_details details_le;
  813. __le64 value;
  814. /* check this device is unused */
  815. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  816. &dev_key, &details_le);
  817. if (!r)
  818. return -EEXIST;
  819. /* find the mapping tree for the origin */
  820. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  821. if (r)
  822. return r;
  823. origin_root = le64_to_cpu(value);
  824. /* clone the origin, an inc will do */
  825. dm_tm_inc(pmd->tm, origin_root);
  826. /* insert into the main mapping tree */
  827. value = cpu_to_le64(origin_root);
  828. __dm_bless_for_disk(&value);
  829. key = dev;
  830. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  831. if (r) {
  832. dm_tm_dec(pmd->tm, origin_root);
  833. return r;
  834. }
  835. pmd->time++;
  836. r = __open_device(pmd, dev, 1, &td);
  837. if (r)
  838. goto bad;
  839. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  840. __close_device(td);
  841. if (r)
  842. goto bad;
  843. return 0;
  844. bad:
  845. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  846. dm_btree_remove(&pmd->details_info, pmd->details_root,
  847. &key, &pmd->details_root);
  848. return r;
  849. }
  850. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  851. dm_thin_id dev,
  852. dm_thin_id origin)
  853. {
  854. int r;
  855. down_write(&pmd->root_lock);
  856. r = __create_snap(pmd, dev, origin);
  857. up_write(&pmd->root_lock);
  858. return r;
  859. }
  860. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  861. {
  862. int r;
  863. uint64_t key = dev;
  864. struct dm_thin_device *td;
  865. /* TODO: failure should mark the transaction invalid */
  866. r = __open_device(pmd, dev, 0, &td);
  867. if (r)
  868. return r;
  869. if (td->open_count > 1) {
  870. __close_device(td);
  871. return -EBUSY;
  872. }
  873. list_del(&td->list);
  874. kfree(td);
  875. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  876. &key, &pmd->details_root);
  877. if (r)
  878. return r;
  879. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  880. if (r)
  881. return r;
  882. return 0;
  883. }
  884. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  885. dm_thin_id dev)
  886. {
  887. int r;
  888. down_write(&pmd->root_lock);
  889. r = __delete_device(pmd, dev);
  890. up_write(&pmd->root_lock);
  891. return r;
  892. }
  893. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  894. uint64_t current_id,
  895. uint64_t new_id)
  896. {
  897. down_write(&pmd->root_lock);
  898. if (pmd->trans_id != current_id) {
  899. up_write(&pmd->root_lock);
  900. DMERR("mismatched transaction id");
  901. return -EINVAL;
  902. }
  903. pmd->trans_id = new_id;
  904. up_write(&pmd->root_lock);
  905. return 0;
  906. }
  907. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  908. uint64_t *result)
  909. {
  910. down_read(&pmd->root_lock);
  911. *result = pmd->trans_id;
  912. up_read(&pmd->root_lock);
  913. return 0;
  914. }
  915. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  916. {
  917. int r, inc;
  918. struct thin_disk_superblock *disk_super;
  919. struct dm_block *copy, *sblock;
  920. dm_block_t held_root;
  921. /*
  922. * Copy the superblock.
  923. */
  924. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  925. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  926. &sb_validator, &copy, &inc);
  927. if (r)
  928. return r;
  929. BUG_ON(!inc);
  930. held_root = dm_block_location(copy);
  931. disk_super = dm_block_data(copy);
  932. if (le64_to_cpu(disk_super->held_root)) {
  933. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  934. dm_tm_dec(pmd->tm, held_root);
  935. dm_tm_unlock(pmd->tm, copy);
  936. return -EBUSY;
  937. }
  938. /*
  939. * Wipe the spacemap since we're not publishing this.
  940. */
  941. memset(&disk_super->data_space_map_root, 0,
  942. sizeof(disk_super->data_space_map_root));
  943. memset(&disk_super->metadata_space_map_root, 0,
  944. sizeof(disk_super->metadata_space_map_root));
  945. /*
  946. * Increment the data structures that need to be preserved.
  947. */
  948. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  949. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  950. dm_tm_unlock(pmd->tm, copy);
  951. /*
  952. * Write the held root into the superblock.
  953. */
  954. r = superblock_lock(pmd, &sblock);
  955. if (r) {
  956. dm_tm_dec(pmd->tm, held_root);
  957. return r;
  958. }
  959. disk_super = dm_block_data(sblock);
  960. disk_super->held_root = cpu_to_le64(held_root);
  961. dm_bm_unlock(sblock);
  962. return 0;
  963. }
  964. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  965. {
  966. int r;
  967. down_write(&pmd->root_lock);
  968. r = __reserve_metadata_snap(pmd);
  969. up_write(&pmd->root_lock);
  970. return r;
  971. }
  972. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  973. {
  974. int r;
  975. struct thin_disk_superblock *disk_super;
  976. struct dm_block *sblock, *copy;
  977. dm_block_t held_root;
  978. r = superblock_lock(pmd, &sblock);
  979. if (r)
  980. return r;
  981. disk_super = dm_block_data(sblock);
  982. held_root = le64_to_cpu(disk_super->held_root);
  983. disk_super->held_root = cpu_to_le64(0);
  984. dm_bm_unlock(sblock);
  985. if (!held_root) {
  986. DMWARN("No pool metadata snapshot found: nothing to release.");
  987. return -EINVAL;
  988. }
  989. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  990. if (r)
  991. return r;
  992. disk_super = dm_block_data(copy);
  993. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  994. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  995. dm_sm_dec_block(pmd->metadata_sm, held_root);
  996. return dm_tm_unlock(pmd->tm, copy);
  997. }
  998. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  999. {
  1000. int r;
  1001. down_write(&pmd->root_lock);
  1002. r = __release_metadata_snap(pmd);
  1003. up_write(&pmd->root_lock);
  1004. return r;
  1005. }
  1006. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1007. dm_block_t *result)
  1008. {
  1009. int r;
  1010. struct thin_disk_superblock *disk_super;
  1011. struct dm_block *sblock;
  1012. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1013. &sb_validator, &sblock);
  1014. if (r)
  1015. return r;
  1016. disk_super = dm_block_data(sblock);
  1017. *result = le64_to_cpu(disk_super->held_root);
  1018. return dm_bm_unlock(sblock);
  1019. }
  1020. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1021. dm_block_t *result)
  1022. {
  1023. int r;
  1024. down_read(&pmd->root_lock);
  1025. r = __get_metadata_snap(pmd, result);
  1026. up_read(&pmd->root_lock);
  1027. return r;
  1028. }
  1029. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1030. struct dm_thin_device **td)
  1031. {
  1032. int r;
  1033. down_write(&pmd->root_lock);
  1034. r = __open_device(pmd, dev, 0, td);
  1035. up_write(&pmd->root_lock);
  1036. return r;
  1037. }
  1038. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1039. {
  1040. down_write(&td->pmd->root_lock);
  1041. __close_device(td);
  1042. up_write(&td->pmd->root_lock);
  1043. return 0;
  1044. }
  1045. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1046. {
  1047. return td->id;
  1048. }
  1049. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1050. {
  1051. return td->snapshotted_time > time;
  1052. }
  1053. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1054. int can_block, struct dm_thin_lookup_result *result)
  1055. {
  1056. int r;
  1057. uint64_t block_time = 0;
  1058. __le64 value;
  1059. struct dm_pool_metadata *pmd = td->pmd;
  1060. dm_block_t keys[2] = { td->id, block };
  1061. if (can_block) {
  1062. down_read(&pmd->root_lock);
  1063. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1064. if (!r)
  1065. block_time = le64_to_cpu(value);
  1066. up_read(&pmd->root_lock);
  1067. } else if (down_read_trylock(&pmd->root_lock)) {
  1068. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1069. if (!r)
  1070. block_time = le64_to_cpu(value);
  1071. up_read(&pmd->root_lock);
  1072. } else
  1073. return -EWOULDBLOCK;
  1074. if (!r) {
  1075. dm_block_t exception_block;
  1076. uint32_t exception_time;
  1077. unpack_block_time(block_time, &exception_block,
  1078. &exception_time);
  1079. result->block = exception_block;
  1080. result->shared = __snapshotted_since(td, exception_time);
  1081. }
  1082. return r;
  1083. }
  1084. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1085. dm_block_t data_block)
  1086. {
  1087. int r, inserted;
  1088. __le64 value;
  1089. struct dm_pool_metadata *pmd = td->pmd;
  1090. dm_block_t keys[2] = { td->id, block };
  1091. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1092. __dm_bless_for_disk(&value);
  1093. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1094. &pmd->root, &inserted);
  1095. if (r)
  1096. return r;
  1097. if (inserted) {
  1098. td->mapped_blocks++;
  1099. td->changed = 1;
  1100. }
  1101. return 0;
  1102. }
  1103. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1104. dm_block_t data_block)
  1105. {
  1106. int r;
  1107. down_write(&td->pmd->root_lock);
  1108. r = __insert(td, block, data_block);
  1109. up_write(&td->pmd->root_lock);
  1110. return r;
  1111. }
  1112. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1113. {
  1114. int r;
  1115. struct dm_pool_metadata *pmd = td->pmd;
  1116. dm_block_t keys[2] = { td->id, block };
  1117. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1118. if (r)
  1119. return r;
  1120. td->mapped_blocks--;
  1121. td->changed = 1;
  1122. return 0;
  1123. }
  1124. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1125. {
  1126. int r;
  1127. down_write(&td->pmd->root_lock);
  1128. r = __remove(td, block);
  1129. up_write(&td->pmd->root_lock);
  1130. return r;
  1131. }
  1132. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1133. {
  1134. int r;
  1135. down_write(&pmd->root_lock);
  1136. r = dm_sm_new_block(pmd->data_sm, result);
  1137. up_write(&pmd->root_lock);
  1138. return r;
  1139. }
  1140. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1141. {
  1142. int r;
  1143. down_write(&pmd->root_lock);
  1144. r = __commit_transaction(pmd);
  1145. if (r <= 0)
  1146. goto out;
  1147. /*
  1148. * Open the next transaction.
  1149. */
  1150. r = __begin_transaction(pmd);
  1151. out:
  1152. up_write(&pmd->root_lock);
  1153. return r;
  1154. }
  1155. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1156. {
  1157. int r;
  1158. down_read(&pmd->root_lock);
  1159. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1160. up_read(&pmd->root_lock);
  1161. return r;
  1162. }
  1163. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1164. dm_block_t *result)
  1165. {
  1166. int r;
  1167. down_read(&pmd->root_lock);
  1168. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1169. up_read(&pmd->root_lock);
  1170. return r;
  1171. }
  1172. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1173. dm_block_t *result)
  1174. {
  1175. int r;
  1176. down_read(&pmd->root_lock);
  1177. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1178. up_read(&pmd->root_lock);
  1179. return r;
  1180. }
  1181. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1182. {
  1183. down_read(&pmd->root_lock);
  1184. *result = pmd->data_block_size;
  1185. up_read(&pmd->root_lock);
  1186. return 0;
  1187. }
  1188. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1189. {
  1190. int r;
  1191. down_read(&pmd->root_lock);
  1192. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1193. up_read(&pmd->root_lock);
  1194. return r;
  1195. }
  1196. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1197. {
  1198. struct dm_pool_metadata *pmd = td->pmd;
  1199. down_read(&pmd->root_lock);
  1200. *result = td->mapped_blocks;
  1201. up_read(&pmd->root_lock);
  1202. return 0;
  1203. }
  1204. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1205. {
  1206. int r;
  1207. __le64 value_le;
  1208. dm_block_t thin_root;
  1209. struct dm_pool_metadata *pmd = td->pmd;
  1210. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1211. if (r)
  1212. return r;
  1213. thin_root = le64_to_cpu(value_le);
  1214. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1215. }
  1216. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1217. dm_block_t *result)
  1218. {
  1219. int r;
  1220. struct dm_pool_metadata *pmd = td->pmd;
  1221. down_read(&pmd->root_lock);
  1222. r = __highest_block(td, result);
  1223. up_read(&pmd->root_lock);
  1224. return r;
  1225. }
  1226. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1227. {
  1228. int r;
  1229. dm_block_t old_count;
  1230. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1231. if (r)
  1232. return r;
  1233. if (new_count == old_count)
  1234. return 0;
  1235. if (new_count < old_count) {
  1236. DMERR("cannot reduce size of data device");
  1237. return -EINVAL;
  1238. }
  1239. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1240. }
  1241. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1242. {
  1243. int r;
  1244. down_write(&pmd->root_lock);
  1245. r = __resize_data_dev(pmd, new_count);
  1246. up_write(&pmd->root_lock);
  1247. return r;
  1248. }