fsldma.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097
  1. /*
  2. * Freescale MPC85xx, MPC83xx DMA Engine support
  3. *
  4. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  5. *
  6. * Author:
  7. * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
  8. * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  9. *
  10. * Description:
  11. * DMA engine driver for Freescale MPC8540 DMA controller, which is
  12. * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13. * The support for MPC8349 DMA contorller is also added.
  14. *
  15. * This is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. */
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/pci.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/of_platform.h>
  30. #include "fsldma.h"
  31. static void dma_init(struct fsl_dma_chan *fsl_chan)
  32. {
  33. /* Reset the channel */
  34. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
  35. switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
  36. case FSL_DMA_IP_85XX:
  37. /* Set the channel to below modes:
  38. * EIE - Error interrupt enable
  39. * EOSIE - End of segments interrupt enable (basic mode)
  40. * EOLNIE - End of links interrupt enable
  41. */
  42. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
  43. | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
  44. break;
  45. case FSL_DMA_IP_83XX:
  46. /* Set the channel to below modes:
  47. * EOTIE - End-of-transfer interrupt enable
  48. */
  49. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
  50. 32);
  51. break;
  52. }
  53. }
  54. static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
  55. {
  56. DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
  57. }
  58. static u32 get_sr(struct fsl_dma_chan *fsl_chan)
  59. {
  60. return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
  61. }
  62. static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
  63. struct fsl_dma_ld_hw *hw, u32 count)
  64. {
  65. hw->count = CPU_TO_DMA(fsl_chan, count, 32);
  66. }
  67. static void set_desc_src(struct fsl_dma_chan *fsl_chan,
  68. struct fsl_dma_ld_hw *hw, dma_addr_t src)
  69. {
  70. u64 snoop_bits;
  71. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  72. ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  73. hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
  74. }
  75. static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
  76. struct fsl_dma_ld_hw *hw, dma_addr_t dest)
  77. {
  78. u64 snoop_bits;
  79. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  80. ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
  81. hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
  82. }
  83. static void set_desc_next(struct fsl_dma_chan *fsl_chan,
  84. struct fsl_dma_ld_hw *hw, dma_addr_t next)
  85. {
  86. u64 snoop_bits;
  87. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  88. ? FSL_DMA_SNEN : 0;
  89. hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
  90. }
  91. static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  92. {
  93. DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
  94. }
  95. static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
  96. {
  97. return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
  98. }
  99. static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  100. {
  101. DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
  102. }
  103. static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
  104. {
  105. return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
  106. }
  107. static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
  108. {
  109. u32 sr = get_sr(fsl_chan);
  110. return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
  111. }
  112. static void dma_start(struct fsl_dma_chan *fsl_chan)
  113. {
  114. u32 mr_set = 0;;
  115. if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
  116. DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
  117. mr_set |= FSL_DMA_MR_EMP_EN;
  118. } else
  119. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  120. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  121. & ~FSL_DMA_MR_EMP_EN, 32);
  122. if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
  123. mr_set |= FSL_DMA_MR_EMS_EN;
  124. else
  125. mr_set |= FSL_DMA_MR_CS;
  126. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  127. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  128. | mr_set, 32);
  129. }
  130. static void dma_halt(struct fsl_dma_chan *fsl_chan)
  131. {
  132. int i = 0;
  133. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  134. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
  135. 32);
  136. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  137. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
  138. | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
  139. while (!dma_is_idle(fsl_chan) && (i++ < 100))
  140. udelay(10);
  141. if (i >= 100 && !dma_is_idle(fsl_chan))
  142. dev_err(fsl_chan->dev, "DMA halt timeout!\n");
  143. }
  144. static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
  145. struct fsl_desc_sw *desc)
  146. {
  147. desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  148. DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL,
  149. 64);
  150. }
  151. static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
  152. struct fsl_desc_sw *new_desc)
  153. {
  154. struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
  155. if (list_empty(&fsl_chan->ld_queue))
  156. return;
  157. /* Link to the new descriptor physical address and
  158. * Enable End-of-segment interrupt for
  159. * the last link descriptor.
  160. * (the previous node's next link descriptor)
  161. *
  162. * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
  163. */
  164. queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  165. new_desc->async_tx.phys | FSL_DMA_EOSIE |
  166. (((fsl_chan->feature & FSL_DMA_IP_MASK)
  167. == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
  168. }
  169. /**
  170. * fsl_chan_set_src_loop_size - Set source address hold transfer size
  171. * @fsl_chan : Freescale DMA channel
  172. * @size : Address loop size, 0 for disable loop
  173. *
  174. * The set source address hold transfer size. The source
  175. * address hold or loop transfer size is when the DMA transfer
  176. * data from source address (SA), if the loop size is 4, the DMA will
  177. * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
  178. * SA + 1 ... and so on.
  179. */
  180. static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  181. {
  182. switch (size) {
  183. case 0:
  184. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  185. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  186. (~FSL_DMA_MR_SAHE), 32);
  187. break;
  188. case 1:
  189. case 2:
  190. case 4:
  191. case 8:
  192. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  193. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  194. FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
  195. 32);
  196. break;
  197. }
  198. }
  199. /**
  200. * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
  201. * @fsl_chan : Freescale DMA channel
  202. * @size : Address loop size, 0 for disable loop
  203. *
  204. * The set destination address hold transfer size. The destination
  205. * address hold or loop transfer size is when the DMA transfer
  206. * data to destination address (TA), if the loop size is 4, the DMA will
  207. * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
  208. * TA + 1 ... and so on.
  209. */
  210. static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  211. {
  212. switch (size) {
  213. case 0:
  214. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  215. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  216. (~FSL_DMA_MR_DAHE), 32);
  217. break;
  218. case 1:
  219. case 2:
  220. case 4:
  221. case 8:
  222. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  223. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  224. FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
  225. 32);
  226. break;
  227. }
  228. }
  229. /**
  230. * fsl_chan_toggle_ext_pause - Toggle channel external pause status
  231. * @fsl_chan : Freescale DMA channel
  232. * @size : Pause control size, 0 for disable external pause control.
  233. * The maximum is 1024.
  234. *
  235. * The Freescale DMA channel can be controlled by the external
  236. * signal DREQ#. The pause control size is how many bytes are allowed
  237. * to transfer before pausing the channel, after which a new assertion
  238. * of DREQ# resumes channel operation.
  239. */
  240. static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
  241. {
  242. if (size > 1024)
  243. return;
  244. if (size) {
  245. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  246. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  247. | ((__ilog2(size) << 24) & 0x0f000000),
  248. 32);
  249. fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
  250. } else
  251. fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
  252. }
  253. /**
  254. * fsl_chan_toggle_ext_start - Toggle channel external start status
  255. * @fsl_chan : Freescale DMA channel
  256. * @enable : 0 is disabled, 1 is enabled.
  257. *
  258. * If enable the external start, the channel can be started by an
  259. * external DMA start pin. So the dma_start() does not start the
  260. * transfer immediately. The DMA channel will wait for the
  261. * control pin asserted.
  262. */
  263. static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
  264. {
  265. if (enable)
  266. fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
  267. else
  268. fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
  269. }
  270. static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  271. {
  272. struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
  273. struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
  274. unsigned long flags;
  275. dma_cookie_t cookie;
  276. /* cookie increment and adding to ld_queue must be atomic */
  277. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  278. cookie = fsl_chan->common.cookie;
  279. cookie++;
  280. if (cookie < 0)
  281. cookie = 1;
  282. desc->async_tx.cookie = cookie;
  283. fsl_chan->common.cookie = desc->async_tx.cookie;
  284. append_ld_queue(fsl_chan, desc);
  285. list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev);
  286. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  287. return cookie;
  288. }
  289. /**
  290. * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
  291. * @fsl_chan : Freescale DMA channel
  292. *
  293. * Return - The descriptor allocated. NULL for failed.
  294. */
  295. static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
  296. struct fsl_dma_chan *fsl_chan)
  297. {
  298. dma_addr_t pdesc;
  299. struct fsl_desc_sw *desc_sw;
  300. desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
  301. if (desc_sw) {
  302. memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
  303. dma_async_tx_descriptor_init(&desc_sw->async_tx,
  304. &fsl_chan->common);
  305. desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
  306. INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
  307. desc_sw->async_tx.phys = pdesc;
  308. }
  309. return desc_sw;
  310. }
  311. /**
  312. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
  313. * @fsl_chan : Freescale DMA channel
  314. *
  315. * This function will create a dma pool for descriptor allocation.
  316. *
  317. * Return - The number of descriptors allocated.
  318. */
  319. static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
  320. {
  321. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  322. LIST_HEAD(tmp_list);
  323. /* We need the descriptor to be aligned to 32bytes
  324. * for meeting FSL DMA specification requirement.
  325. */
  326. fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
  327. fsl_chan->dev, sizeof(struct fsl_desc_sw),
  328. 32, 0);
  329. if (!fsl_chan->desc_pool) {
  330. dev_err(fsl_chan->dev, "No memory for channel %d "
  331. "descriptor dma pool.\n", fsl_chan->id);
  332. return 0;
  333. }
  334. return 1;
  335. }
  336. /**
  337. * fsl_dma_free_chan_resources - Free all resources of the channel.
  338. * @fsl_chan : Freescale DMA channel
  339. */
  340. static void fsl_dma_free_chan_resources(struct dma_chan *chan)
  341. {
  342. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  343. struct fsl_desc_sw *desc, *_desc;
  344. unsigned long flags;
  345. dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
  346. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  347. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  348. #ifdef FSL_DMA_LD_DEBUG
  349. dev_dbg(fsl_chan->dev,
  350. "LD %p will be released.\n", desc);
  351. #endif
  352. list_del(&desc->node);
  353. /* free link descriptor */
  354. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  355. }
  356. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  357. dma_pool_destroy(fsl_chan->desc_pool);
  358. }
  359. static struct dma_async_tx_descriptor *
  360. fsl_dma_prep_interrupt(struct dma_chan *chan)
  361. {
  362. struct fsl_dma_chan *fsl_chan;
  363. struct fsl_desc_sw *new;
  364. if (!chan)
  365. return NULL;
  366. fsl_chan = to_fsl_chan(chan);
  367. new = fsl_dma_alloc_descriptor(fsl_chan);
  368. if (!new) {
  369. dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
  370. return NULL;
  371. }
  372. new->async_tx.cookie = -EBUSY;
  373. new->async_tx.ack = 0;
  374. /* Set End-of-link to the last link descriptor of new list*/
  375. set_ld_eol(fsl_chan, new);
  376. return &new->async_tx;
  377. }
  378. static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
  379. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  380. size_t len, unsigned long flags)
  381. {
  382. struct fsl_dma_chan *fsl_chan;
  383. struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
  384. size_t copy;
  385. LIST_HEAD(link_chain);
  386. if (!chan)
  387. return NULL;
  388. if (!len)
  389. return NULL;
  390. fsl_chan = to_fsl_chan(chan);
  391. do {
  392. /* Allocate the link descriptor from DMA pool */
  393. new = fsl_dma_alloc_descriptor(fsl_chan);
  394. if (!new) {
  395. dev_err(fsl_chan->dev,
  396. "No free memory for link descriptor\n");
  397. return NULL;
  398. }
  399. #ifdef FSL_DMA_LD_DEBUG
  400. dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
  401. #endif
  402. copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
  403. set_desc_cnt(fsl_chan, &new->hw, copy);
  404. set_desc_src(fsl_chan, &new->hw, dma_src);
  405. set_desc_dest(fsl_chan, &new->hw, dma_dest);
  406. if (!first)
  407. first = new;
  408. else
  409. set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
  410. new->async_tx.cookie = 0;
  411. new->async_tx.ack = 1;
  412. prev = new;
  413. len -= copy;
  414. dma_src += copy;
  415. dma_dest += copy;
  416. /* Insert the link descriptor to the LD ring */
  417. list_add_tail(&new->node, &first->async_tx.tx_list);
  418. } while (len);
  419. new->async_tx.ack = 0; /* client is in control of this ack */
  420. new->async_tx.cookie = -EBUSY;
  421. /* Set End-of-link to the last link descriptor of new list*/
  422. set_ld_eol(fsl_chan, new);
  423. return first ? &first->async_tx : NULL;
  424. }
  425. /**
  426. * fsl_dma_update_completed_cookie - Update the completed cookie.
  427. * @fsl_chan : Freescale DMA channel
  428. */
  429. static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
  430. {
  431. struct fsl_desc_sw *cur_desc, *desc;
  432. dma_addr_t ld_phy;
  433. ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
  434. if (ld_phy) {
  435. cur_desc = NULL;
  436. list_for_each_entry(desc, &fsl_chan->ld_queue, node)
  437. if (desc->async_tx.phys == ld_phy) {
  438. cur_desc = desc;
  439. break;
  440. }
  441. if (cur_desc && cur_desc->async_tx.cookie) {
  442. if (dma_is_idle(fsl_chan))
  443. fsl_chan->completed_cookie =
  444. cur_desc->async_tx.cookie;
  445. else
  446. fsl_chan->completed_cookie =
  447. cur_desc->async_tx.cookie - 1;
  448. }
  449. }
  450. }
  451. /**
  452. * fsl_chan_ld_cleanup - Clean up link descriptors
  453. * @fsl_chan : Freescale DMA channel
  454. *
  455. * This function clean up the ld_queue of DMA channel.
  456. * If 'in_intr' is set, the function will move the link descriptor to
  457. * the recycle list. Otherwise, free it directly.
  458. */
  459. static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
  460. {
  461. struct fsl_desc_sw *desc, *_desc;
  462. unsigned long flags;
  463. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  464. dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
  465. fsl_chan->completed_cookie);
  466. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  467. dma_async_tx_callback callback;
  468. void *callback_param;
  469. if (dma_async_is_complete(desc->async_tx.cookie,
  470. fsl_chan->completed_cookie, fsl_chan->common.cookie)
  471. == DMA_IN_PROGRESS)
  472. break;
  473. callback = desc->async_tx.callback;
  474. callback_param = desc->async_tx.callback_param;
  475. /* Remove from ld_queue list */
  476. list_del(&desc->node);
  477. dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
  478. desc);
  479. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  480. /* Run the link descriptor callback function */
  481. if (callback) {
  482. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  483. dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
  484. desc);
  485. callback(callback_param);
  486. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  487. }
  488. }
  489. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  490. }
  491. /**
  492. * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
  493. * @fsl_chan : Freescale DMA channel
  494. */
  495. static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
  496. {
  497. struct list_head *ld_node;
  498. dma_addr_t next_dest_addr;
  499. unsigned long flags;
  500. if (!dma_is_idle(fsl_chan))
  501. return;
  502. dma_halt(fsl_chan);
  503. /* If there are some link descriptors
  504. * not transfered in queue. We need to start it.
  505. */
  506. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  507. /* Find the first un-transfer desciptor */
  508. for (ld_node = fsl_chan->ld_queue.next;
  509. (ld_node != &fsl_chan->ld_queue)
  510. && (dma_async_is_complete(
  511. to_fsl_desc(ld_node)->async_tx.cookie,
  512. fsl_chan->completed_cookie,
  513. fsl_chan->common.cookie) == DMA_SUCCESS);
  514. ld_node = ld_node->next);
  515. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  516. if (ld_node != &fsl_chan->ld_queue) {
  517. /* Get the ld start address from ld_queue */
  518. next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
  519. dev_dbg(fsl_chan->dev, "xfer LDs staring from %p\n",
  520. (void *)next_dest_addr);
  521. set_cdar(fsl_chan, next_dest_addr);
  522. dma_start(fsl_chan);
  523. } else {
  524. set_cdar(fsl_chan, 0);
  525. set_ndar(fsl_chan, 0);
  526. }
  527. }
  528. /**
  529. * fsl_dma_memcpy_issue_pending - Issue the DMA start command
  530. * @fsl_chan : Freescale DMA channel
  531. */
  532. static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
  533. {
  534. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  535. #ifdef FSL_DMA_LD_DEBUG
  536. struct fsl_desc_sw *ld;
  537. unsigned long flags;
  538. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  539. if (list_empty(&fsl_chan->ld_queue)) {
  540. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  541. return;
  542. }
  543. dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
  544. list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
  545. int i;
  546. dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
  547. fsl_chan->id, ld->async_tx.phys);
  548. for (i = 0; i < 8; i++)
  549. dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
  550. i, *(((u32 *)&ld->hw) + i));
  551. }
  552. dev_dbg(fsl_chan->dev, "----------------\n");
  553. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  554. #endif
  555. fsl_chan_xfer_ld_queue(fsl_chan);
  556. }
  557. static void fsl_dma_dependency_added(struct dma_chan *chan)
  558. {
  559. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  560. fsl_chan_ld_cleanup(fsl_chan);
  561. }
  562. /**
  563. * fsl_dma_is_complete - Determine the DMA status
  564. * @fsl_chan : Freescale DMA channel
  565. */
  566. static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
  567. dma_cookie_t cookie,
  568. dma_cookie_t *done,
  569. dma_cookie_t *used)
  570. {
  571. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  572. dma_cookie_t last_used;
  573. dma_cookie_t last_complete;
  574. fsl_chan_ld_cleanup(fsl_chan);
  575. last_used = chan->cookie;
  576. last_complete = fsl_chan->completed_cookie;
  577. if (done)
  578. *done = last_complete;
  579. if (used)
  580. *used = last_used;
  581. return dma_async_is_complete(cookie, last_complete, last_used);
  582. }
  583. static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
  584. {
  585. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  586. u32 stat;
  587. stat = get_sr(fsl_chan);
  588. dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
  589. fsl_chan->id, stat);
  590. set_sr(fsl_chan, stat); /* Clear the event register */
  591. stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
  592. if (!stat)
  593. return IRQ_NONE;
  594. if (stat & FSL_DMA_SR_TE)
  595. dev_err(fsl_chan->dev, "Transfer Error!\n");
  596. /* If the link descriptor segment transfer finishes,
  597. * we will recycle the used descriptor.
  598. */
  599. if (stat & FSL_DMA_SR_EOSI) {
  600. dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
  601. dev_dbg(fsl_chan->dev, "event: clndar %p, nlndar %p\n",
  602. (void *)get_cdar(fsl_chan), (void *)get_ndar(fsl_chan));
  603. stat &= ~FSL_DMA_SR_EOSI;
  604. fsl_dma_update_completed_cookie(fsl_chan);
  605. }
  606. /* If it current transfer is the end-of-transfer,
  607. * we should clear the Channel Start bit for
  608. * prepare next transfer.
  609. */
  610. if (stat & (FSL_DMA_SR_EOLNI | FSL_DMA_SR_EOCDI)) {
  611. dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
  612. stat &= ~FSL_DMA_SR_EOLNI;
  613. fsl_chan_xfer_ld_queue(fsl_chan);
  614. }
  615. if (stat)
  616. dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
  617. stat);
  618. dev_dbg(fsl_chan->dev, "event: Exit\n");
  619. tasklet_schedule(&fsl_chan->tasklet);
  620. return IRQ_HANDLED;
  621. }
  622. static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
  623. {
  624. struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
  625. u32 gsr;
  626. int ch_nr;
  627. gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
  628. : in_le32(fdev->reg_base);
  629. ch_nr = (32 - ffs(gsr)) / 8;
  630. return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
  631. fdev->chan[ch_nr]) : IRQ_NONE;
  632. }
  633. static void dma_do_tasklet(unsigned long data)
  634. {
  635. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  636. fsl_chan_ld_cleanup(fsl_chan);
  637. }
  638. #ifdef FSL_DMA_CALLBACKTEST
  639. static void fsl_dma_callback_test(struct fsl_dma_chan *fsl_chan)
  640. {
  641. if (fsl_chan)
  642. dev_info(fsl_chan->dev, "selftest: callback is ok!\n");
  643. }
  644. #endif
  645. #ifdef CONFIG_FSL_DMA_SELFTEST
  646. static int fsl_dma_self_test(struct fsl_dma_chan *fsl_chan)
  647. {
  648. struct dma_chan *chan;
  649. int err = 0;
  650. dma_addr_t dma_dest, dma_src;
  651. dma_cookie_t cookie;
  652. u8 *src, *dest;
  653. int i;
  654. size_t test_size;
  655. struct dma_async_tx_descriptor *tx1, *tx2, *tx3;
  656. test_size = 4096;
  657. src = kmalloc(test_size * 2, GFP_KERNEL);
  658. if (!src) {
  659. dev_err(fsl_chan->dev,
  660. "selftest: Cannot alloc memory for test!\n");
  661. err = -ENOMEM;
  662. goto out;
  663. }
  664. dest = src + test_size;
  665. for (i = 0; i < test_size; i++)
  666. src[i] = (u8) i;
  667. chan = &fsl_chan->common;
  668. if (fsl_dma_alloc_chan_resources(chan) < 1) {
  669. dev_err(fsl_chan->dev,
  670. "selftest: Cannot alloc resources for DMA\n");
  671. err = -ENODEV;
  672. goto out;
  673. }
  674. /* TX 1 */
  675. dma_src = dma_map_single(fsl_chan->dev, src, test_size / 2,
  676. DMA_TO_DEVICE);
  677. dma_dest = dma_map_single(fsl_chan->dev, dest, test_size / 2,
  678. DMA_FROM_DEVICE);
  679. tx1 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 2, 0);
  680. async_tx_ack(tx1);
  681. cookie = fsl_dma_tx_submit(tx1);
  682. fsl_dma_memcpy_issue_pending(chan);
  683. msleep(2);
  684. if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  685. dev_err(fsl_chan->dev, "selftest: Time out!\n");
  686. err = -ENODEV;
  687. goto out;
  688. }
  689. /* Test free and re-alloc channel resources */
  690. fsl_dma_free_chan_resources(chan);
  691. if (fsl_dma_alloc_chan_resources(chan) < 1) {
  692. dev_err(fsl_chan->dev,
  693. "selftest: Cannot alloc resources for DMA\n");
  694. err = -ENODEV;
  695. goto free_resources;
  696. }
  697. /* Continue to test
  698. * TX 2
  699. */
  700. dma_src = dma_map_single(fsl_chan->dev, src + test_size / 2,
  701. test_size / 4, DMA_TO_DEVICE);
  702. dma_dest = dma_map_single(fsl_chan->dev, dest + test_size / 2,
  703. test_size / 4, DMA_FROM_DEVICE);
  704. tx2 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
  705. async_tx_ack(tx2);
  706. /* TX 3 */
  707. dma_src = dma_map_single(fsl_chan->dev, src + test_size * 3 / 4,
  708. test_size / 4, DMA_TO_DEVICE);
  709. dma_dest = dma_map_single(fsl_chan->dev, dest + test_size * 3 / 4,
  710. test_size / 4, DMA_FROM_DEVICE);
  711. tx3 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
  712. async_tx_ack(tx3);
  713. /* Test exchanging the prepared tx sort */
  714. cookie = fsl_dma_tx_submit(tx3);
  715. cookie = fsl_dma_tx_submit(tx2);
  716. #ifdef FSL_DMA_CALLBACKTEST
  717. if (dma_has_cap(DMA_INTERRUPT, ((struct fsl_dma_device *)
  718. dev_get_drvdata(fsl_chan->dev->parent))->common.cap_mask)) {
  719. tx3->callback = fsl_dma_callback_test;
  720. tx3->callback_param = fsl_chan;
  721. }
  722. #endif
  723. fsl_dma_memcpy_issue_pending(chan);
  724. msleep(2);
  725. if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  726. dev_err(fsl_chan->dev, "selftest: Time out!\n");
  727. err = -ENODEV;
  728. goto free_resources;
  729. }
  730. err = memcmp(src, dest, test_size);
  731. if (err) {
  732. for (i = 0; (*(src + i) == *(dest + i)) && (i < test_size);
  733. i++);
  734. dev_err(fsl_chan->dev, "selftest: Test failed, data %d/%ld is "
  735. "error! src 0x%x, dest 0x%x\n",
  736. i, (long)test_size, *(src + i), *(dest + i));
  737. }
  738. free_resources:
  739. fsl_dma_free_chan_resources(chan);
  740. out:
  741. kfree(src);
  742. return err;
  743. }
  744. #endif
  745. static int __devinit of_fsl_dma_chan_probe(struct of_device *dev,
  746. const struct of_device_id *match)
  747. {
  748. struct fsl_dma_device *fdev;
  749. struct fsl_dma_chan *new_fsl_chan;
  750. int err;
  751. fdev = dev_get_drvdata(dev->dev.parent);
  752. BUG_ON(!fdev);
  753. /* alloc channel */
  754. new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
  755. if (!new_fsl_chan) {
  756. dev_err(&dev->dev, "No free memory for allocating "
  757. "dma channels!\n");
  758. err = -ENOMEM;
  759. goto err;
  760. }
  761. /* get dma channel register base */
  762. err = of_address_to_resource(dev->node, 0, &new_fsl_chan->reg);
  763. if (err) {
  764. dev_err(&dev->dev, "Can't get %s property 'reg'\n",
  765. dev->node->full_name);
  766. goto err;
  767. }
  768. new_fsl_chan->feature = *(u32 *)match->data;
  769. if (!fdev->feature)
  770. fdev->feature = new_fsl_chan->feature;
  771. /* If the DMA device's feature is different than its channels',
  772. * report the bug.
  773. */
  774. WARN_ON(fdev->feature != new_fsl_chan->feature);
  775. new_fsl_chan->dev = &dev->dev;
  776. new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
  777. new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
  778. new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
  779. if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) {
  780. dev_err(&dev->dev, "There is no %d channel!\n",
  781. new_fsl_chan->id);
  782. err = -EINVAL;
  783. goto err;
  784. }
  785. fdev->chan[new_fsl_chan->id] = new_fsl_chan;
  786. tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
  787. (unsigned long)new_fsl_chan);
  788. /* Init the channel */
  789. dma_init(new_fsl_chan);
  790. /* Clear cdar registers */
  791. set_cdar(new_fsl_chan, 0);
  792. switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
  793. case FSL_DMA_IP_85XX:
  794. new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
  795. new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
  796. case FSL_DMA_IP_83XX:
  797. new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
  798. new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
  799. }
  800. spin_lock_init(&new_fsl_chan->desc_lock);
  801. INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
  802. new_fsl_chan->common.device = &fdev->common;
  803. /* Add the channel to DMA device channel list */
  804. list_add_tail(&new_fsl_chan->common.device_node,
  805. &fdev->common.channels);
  806. fdev->common.chancnt++;
  807. new_fsl_chan->irq = irq_of_parse_and_map(dev->node, 0);
  808. if (new_fsl_chan->irq != NO_IRQ) {
  809. err = request_irq(new_fsl_chan->irq,
  810. &fsl_dma_chan_do_interrupt, IRQF_SHARED,
  811. "fsldma-channel", new_fsl_chan);
  812. if (err) {
  813. dev_err(&dev->dev, "DMA channel %s request_irq error "
  814. "with return %d\n", dev->node->full_name, err);
  815. goto err;
  816. }
  817. }
  818. #ifdef CONFIG_FSL_DMA_SELFTEST
  819. err = fsl_dma_self_test(new_fsl_chan);
  820. if (err)
  821. goto err;
  822. #endif
  823. dev_info(&dev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
  824. match->compatible, new_fsl_chan->irq);
  825. return 0;
  826. err:
  827. dma_halt(new_fsl_chan);
  828. iounmap(new_fsl_chan->reg_base);
  829. free_irq(new_fsl_chan->irq, new_fsl_chan);
  830. list_del(&new_fsl_chan->common.device_node);
  831. kfree(new_fsl_chan);
  832. return err;
  833. }
  834. const u32 mpc8540_dma_ip_feature = FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN;
  835. const u32 mpc8349_dma_ip_feature = FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN;
  836. static struct of_device_id of_fsl_dma_chan_ids[] = {
  837. {
  838. .compatible = "fsl,mpc8540-dma-channel",
  839. .data = (void *)&mpc8540_dma_ip_feature,
  840. },
  841. {
  842. .compatible = "fsl,mpc8349-dma-channel",
  843. .data = (void *)&mpc8349_dma_ip_feature,
  844. },
  845. {}
  846. };
  847. static struct of_platform_driver of_fsl_dma_chan_driver = {
  848. .name = "of-fsl-dma-channel",
  849. .match_table = of_fsl_dma_chan_ids,
  850. .probe = of_fsl_dma_chan_probe,
  851. };
  852. static __init int of_fsl_dma_chan_init(void)
  853. {
  854. return of_register_platform_driver(&of_fsl_dma_chan_driver);
  855. }
  856. static int __devinit of_fsl_dma_probe(struct of_device *dev,
  857. const struct of_device_id *match)
  858. {
  859. int err;
  860. unsigned int irq;
  861. struct fsl_dma_device *fdev;
  862. fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
  863. if (!fdev) {
  864. dev_err(&dev->dev, "No enough memory for 'priv'\n");
  865. err = -ENOMEM;
  866. goto err;
  867. }
  868. fdev->dev = &dev->dev;
  869. INIT_LIST_HEAD(&fdev->common.channels);
  870. /* get DMA controller register base */
  871. err = of_address_to_resource(dev->node, 0, &fdev->reg);
  872. if (err) {
  873. dev_err(&dev->dev, "Can't get %s property 'reg'\n",
  874. dev->node->full_name);
  875. goto err;
  876. }
  877. dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
  878. "controller at %p...\n",
  879. match->compatible, (void *)fdev->reg.start);
  880. fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
  881. - fdev->reg.start + 1);
  882. dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
  883. dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
  884. fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
  885. fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
  886. fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
  887. fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
  888. fdev->common.device_is_tx_complete = fsl_dma_is_complete;
  889. fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
  890. fdev->common.device_dependency_added = fsl_dma_dependency_added;
  891. fdev->common.dev = &dev->dev;
  892. irq = irq_of_parse_and_map(dev->node, 0);
  893. if (irq != NO_IRQ) {
  894. err = request_irq(irq, &fsl_dma_do_interrupt, IRQF_SHARED,
  895. "fsldma-device", fdev);
  896. if (err) {
  897. dev_err(&dev->dev, "DMA device request_irq error "
  898. "with return %d\n", err);
  899. goto err;
  900. }
  901. }
  902. dev_set_drvdata(&(dev->dev), fdev);
  903. of_platform_bus_probe(dev->node, of_fsl_dma_chan_ids, &dev->dev);
  904. dma_async_device_register(&fdev->common);
  905. return 0;
  906. err:
  907. iounmap(fdev->reg_base);
  908. kfree(fdev);
  909. return err;
  910. }
  911. static struct of_device_id of_fsl_dma_ids[] = {
  912. { .compatible = "fsl,mpc8540-dma", },
  913. { .compatible = "fsl,mpc8349-dma", },
  914. {}
  915. };
  916. static struct of_platform_driver of_fsl_dma_driver = {
  917. .name = "of-fsl-dma",
  918. .match_table = of_fsl_dma_ids,
  919. .probe = of_fsl_dma_probe,
  920. };
  921. static __init int of_fsl_dma_init(void)
  922. {
  923. return of_register_platform_driver(&of_fsl_dma_driver);
  924. }
  925. subsys_initcall(of_fsl_dma_chan_init);
  926. subsys_initcall(of_fsl_dma_init);