transaction.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/blkdev.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "locking.h"
  28. #include "tree-log.h"
  29. #include "inode-map.h"
  30. #define BTRFS_ROOT_TRANS_TAG 0
  31. static noinline void put_transaction(struct btrfs_transaction *transaction)
  32. {
  33. WARN_ON(atomic_read(&transaction->use_count) == 0);
  34. if (atomic_dec_and_test(&transaction->use_count)) {
  35. BUG_ON(!list_empty(&transaction->list));
  36. memset(transaction, 0, sizeof(*transaction));
  37. kmem_cache_free(btrfs_transaction_cachep, transaction);
  38. }
  39. }
  40. static noinline void switch_commit_root(struct btrfs_root *root)
  41. {
  42. free_extent_buffer(root->commit_root);
  43. root->commit_root = btrfs_root_node(root);
  44. }
  45. /*
  46. * either allocate a new transaction or hop into the existing one
  47. */
  48. static noinline int join_transaction(struct btrfs_root *root, int nofail)
  49. {
  50. struct btrfs_transaction *cur_trans;
  51. spin_lock(&root->fs_info->trans_lock);
  52. if (root->fs_info->trans_no_join) {
  53. if (!nofail) {
  54. spin_unlock(&root->fs_info->trans_lock);
  55. return -EBUSY;
  56. }
  57. }
  58. cur_trans = root->fs_info->running_transaction;
  59. if (cur_trans) {
  60. atomic_inc(&cur_trans->use_count);
  61. atomic_inc(&cur_trans->num_writers);
  62. cur_trans->num_joined++;
  63. spin_unlock(&root->fs_info->trans_lock);
  64. return 0;
  65. }
  66. spin_unlock(&root->fs_info->trans_lock);
  67. cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  68. if (!cur_trans)
  69. return -ENOMEM;
  70. spin_lock(&root->fs_info->trans_lock);
  71. if (root->fs_info->running_transaction) {
  72. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  73. cur_trans = root->fs_info->running_transaction;
  74. atomic_inc(&cur_trans->use_count);
  75. atomic_inc(&cur_trans->num_writers);
  76. cur_trans->num_joined++;
  77. spin_unlock(&root->fs_info->trans_lock);
  78. return 0;
  79. }
  80. atomic_set(&cur_trans->num_writers, 1);
  81. cur_trans->num_joined = 0;
  82. init_waitqueue_head(&cur_trans->writer_wait);
  83. init_waitqueue_head(&cur_trans->commit_wait);
  84. cur_trans->in_commit = 0;
  85. cur_trans->blocked = 0;
  86. /*
  87. * One for this trans handle, one so it will live on until we
  88. * commit the transaction.
  89. */
  90. atomic_set(&cur_trans->use_count, 2);
  91. cur_trans->commit_done = 0;
  92. cur_trans->start_time = get_seconds();
  93. cur_trans->delayed_refs.root = RB_ROOT;
  94. cur_trans->delayed_refs.num_entries = 0;
  95. cur_trans->delayed_refs.num_heads_ready = 0;
  96. cur_trans->delayed_refs.num_heads = 0;
  97. cur_trans->delayed_refs.flushing = 0;
  98. cur_trans->delayed_refs.run_delayed_start = 0;
  99. spin_lock_init(&cur_trans->commit_lock);
  100. spin_lock_init(&cur_trans->delayed_refs.lock);
  101. INIT_LIST_HEAD(&cur_trans->pending_snapshots);
  102. list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
  103. extent_io_tree_init(&cur_trans->dirty_pages,
  104. root->fs_info->btree_inode->i_mapping);
  105. root->fs_info->generation++;
  106. cur_trans->transid = root->fs_info->generation;
  107. root->fs_info->running_transaction = cur_trans;
  108. spin_unlock(&root->fs_info->trans_lock);
  109. return 0;
  110. }
  111. /*
  112. * this does all the record keeping required to make sure that a reference
  113. * counted root is properly recorded in a given transaction. This is required
  114. * to make sure the old root from before we joined the transaction is deleted
  115. * when the transaction commits
  116. */
  117. static int record_root_in_trans(struct btrfs_trans_handle *trans,
  118. struct btrfs_root *root)
  119. {
  120. if (root->ref_cows && root->last_trans < trans->transid) {
  121. WARN_ON(root == root->fs_info->extent_root);
  122. WARN_ON(root->commit_root != root->node);
  123. /*
  124. * see below for in_trans_setup usage rules
  125. * we have the reloc mutex held now, so there
  126. * is only one writer in this function
  127. */
  128. root->in_trans_setup = 1;
  129. /* make sure readers find in_trans_setup before
  130. * they find our root->last_trans update
  131. */
  132. smp_wmb();
  133. spin_lock(&root->fs_info->fs_roots_radix_lock);
  134. if (root->last_trans == trans->transid) {
  135. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  136. return 0;
  137. }
  138. radix_tree_tag_set(&root->fs_info->fs_roots_radix,
  139. (unsigned long)root->root_key.objectid,
  140. BTRFS_ROOT_TRANS_TAG);
  141. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  142. root->last_trans = trans->transid;
  143. /* this is pretty tricky. We don't want to
  144. * take the relocation lock in btrfs_record_root_in_trans
  145. * unless we're really doing the first setup for this root in
  146. * this transaction.
  147. *
  148. * Normally we'd use root->last_trans as a flag to decide
  149. * if we want to take the expensive mutex.
  150. *
  151. * But, we have to set root->last_trans before we
  152. * init the relocation root, otherwise, we trip over warnings
  153. * in ctree.c. The solution used here is to flag ourselves
  154. * with root->in_trans_setup. When this is 1, we're still
  155. * fixing up the reloc trees and everyone must wait.
  156. *
  157. * When this is zero, they can trust root->last_trans and fly
  158. * through btrfs_record_root_in_trans without having to take the
  159. * lock. smp_wmb() makes sure that all the writes above are
  160. * done before we pop in the zero below
  161. */
  162. btrfs_init_reloc_root(trans, root);
  163. smp_wmb();
  164. root->in_trans_setup = 0;
  165. }
  166. return 0;
  167. }
  168. int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
  169. struct btrfs_root *root)
  170. {
  171. if (!root->ref_cows)
  172. return 0;
  173. /*
  174. * see record_root_in_trans for comments about in_trans_setup usage
  175. * and barriers
  176. */
  177. smp_rmb();
  178. if (root->last_trans == trans->transid &&
  179. !root->in_trans_setup)
  180. return 0;
  181. mutex_lock(&root->fs_info->reloc_mutex);
  182. record_root_in_trans(trans, root);
  183. mutex_unlock(&root->fs_info->reloc_mutex);
  184. return 0;
  185. }
  186. /* wait for commit against the current transaction to become unblocked
  187. * when this is done, it is safe to start a new transaction, but the current
  188. * transaction might not be fully on disk.
  189. */
  190. static void wait_current_trans(struct btrfs_root *root)
  191. {
  192. struct btrfs_transaction *cur_trans;
  193. spin_lock(&root->fs_info->trans_lock);
  194. cur_trans = root->fs_info->running_transaction;
  195. if (cur_trans && cur_trans->blocked) {
  196. atomic_inc(&cur_trans->use_count);
  197. spin_unlock(&root->fs_info->trans_lock);
  198. wait_event(root->fs_info->transaction_wait,
  199. !cur_trans->blocked);
  200. put_transaction(cur_trans);
  201. } else {
  202. spin_unlock(&root->fs_info->trans_lock);
  203. }
  204. }
  205. enum btrfs_trans_type {
  206. TRANS_START,
  207. TRANS_JOIN,
  208. TRANS_USERSPACE,
  209. TRANS_JOIN_NOLOCK,
  210. };
  211. static int may_wait_transaction(struct btrfs_root *root, int type)
  212. {
  213. if (root->fs_info->log_root_recovering)
  214. return 0;
  215. if (type == TRANS_USERSPACE)
  216. return 1;
  217. if (type == TRANS_START &&
  218. !atomic_read(&root->fs_info->open_ioctl_trans))
  219. return 1;
  220. return 0;
  221. }
  222. static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
  223. u64 num_items, int type)
  224. {
  225. struct btrfs_trans_handle *h;
  226. struct btrfs_transaction *cur_trans;
  227. u64 num_bytes = 0;
  228. int ret;
  229. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  230. return ERR_PTR(-EROFS);
  231. if (current->journal_info) {
  232. WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
  233. h = current->journal_info;
  234. h->use_count++;
  235. h->orig_rsv = h->block_rsv;
  236. h->block_rsv = NULL;
  237. goto got_it;
  238. }
  239. /*
  240. * Do the reservation before we join the transaction so we can do all
  241. * the appropriate flushing if need be.
  242. */
  243. if (num_items > 0 && root != root->fs_info->chunk_root) {
  244. num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
  245. ret = btrfs_block_rsv_add(root,
  246. &root->fs_info->trans_block_rsv,
  247. num_bytes);
  248. if (ret)
  249. return ERR_PTR(ret);
  250. }
  251. again:
  252. h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
  253. if (!h)
  254. return ERR_PTR(-ENOMEM);
  255. if (may_wait_transaction(root, type))
  256. wait_current_trans(root);
  257. do {
  258. ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
  259. if (ret == -EBUSY)
  260. wait_current_trans(root);
  261. } while (ret == -EBUSY);
  262. if (ret < 0) {
  263. kmem_cache_free(btrfs_trans_handle_cachep, h);
  264. return ERR_PTR(ret);
  265. }
  266. cur_trans = root->fs_info->running_transaction;
  267. h->transid = cur_trans->transid;
  268. h->transaction = cur_trans;
  269. h->blocks_used = 0;
  270. h->bytes_reserved = 0;
  271. h->delayed_ref_updates = 0;
  272. h->use_count = 1;
  273. h->block_rsv = NULL;
  274. h->orig_rsv = NULL;
  275. smp_mb();
  276. if (cur_trans->blocked && may_wait_transaction(root, type)) {
  277. btrfs_commit_transaction(h, root);
  278. goto again;
  279. }
  280. if (num_bytes) {
  281. h->block_rsv = &root->fs_info->trans_block_rsv;
  282. h->bytes_reserved = num_bytes;
  283. }
  284. got_it:
  285. btrfs_record_root_in_trans(h, root);
  286. if (!current->journal_info && type != TRANS_USERSPACE)
  287. current->journal_info = h;
  288. return h;
  289. }
  290. struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
  291. int num_items)
  292. {
  293. return start_transaction(root, num_items, TRANS_START);
  294. }
  295. struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
  296. {
  297. return start_transaction(root, 0, TRANS_JOIN);
  298. }
  299. struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
  300. {
  301. return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
  302. }
  303. struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
  304. {
  305. return start_transaction(root, 0, TRANS_USERSPACE);
  306. }
  307. /* wait for a transaction commit to be fully complete */
  308. static noinline void wait_for_commit(struct btrfs_root *root,
  309. struct btrfs_transaction *commit)
  310. {
  311. wait_event(commit->commit_wait, commit->commit_done);
  312. }
  313. int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
  314. {
  315. struct btrfs_transaction *cur_trans = NULL, *t;
  316. int ret;
  317. ret = 0;
  318. if (transid) {
  319. if (transid <= root->fs_info->last_trans_committed)
  320. goto out;
  321. /* find specified transaction */
  322. spin_lock(&root->fs_info->trans_lock);
  323. list_for_each_entry(t, &root->fs_info->trans_list, list) {
  324. if (t->transid == transid) {
  325. cur_trans = t;
  326. atomic_inc(&cur_trans->use_count);
  327. break;
  328. }
  329. if (t->transid > transid)
  330. break;
  331. }
  332. spin_unlock(&root->fs_info->trans_lock);
  333. ret = -EINVAL;
  334. if (!cur_trans)
  335. goto out; /* bad transid */
  336. } else {
  337. /* find newest transaction that is committing | committed */
  338. spin_lock(&root->fs_info->trans_lock);
  339. list_for_each_entry_reverse(t, &root->fs_info->trans_list,
  340. list) {
  341. if (t->in_commit) {
  342. if (t->commit_done)
  343. break;
  344. cur_trans = t;
  345. atomic_inc(&cur_trans->use_count);
  346. break;
  347. }
  348. }
  349. spin_unlock(&root->fs_info->trans_lock);
  350. if (!cur_trans)
  351. goto out; /* nothing committing|committed */
  352. }
  353. wait_for_commit(root, cur_trans);
  354. put_transaction(cur_trans);
  355. ret = 0;
  356. out:
  357. return ret;
  358. }
  359. void btrfs_throttle(struct btrfs_root *root)
  360. {
  361. if (!atomic_read(&root->fs_info->open_ioctl_trans))
  362. wait_current_trans(root);
  363. }
  364. static int should_end_transaction(struct btrfs_trans_handle *trans,
  365. struct btrfs_root *root)
  366. {
  367. int ret;
  368. ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 0,
  369. 5, 0);
  370. return ret ? 1 : 0;
  371. }
  372. int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
  373. struct btrfs_root *root)
  374. {
  375. struct btrfs_transaction *cur_trans = trans->transaction;
  376. struct btrfs_block_rsv *rsv = trans->block_rsv;
  377. int updates;
  378. smp_mb();
  379. if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
  380. return 1;
  381. /*
  382. * We need to do this in case we're deleting csums so the global block
  383. * rsv get's used instead of the csum block rsv.
  384. */
  385. trans->block_rsv = NULL;
  386. updates = trans->delayed_ref_updates;
  387. trans->delayed_ref_updates = 0;
  388. if (updates)
  389. btrfs_run_delayed_refs(trans, root, updates);
  390. trans->block_rsv = rsv;
  391. return should_end_transaction(trans, root);
  392. }
  393. static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
  394. struct btrfs_root *root, int throttle, int lock)
  395. {
  396. struct btrfs_transaction *cur_trans = trans->transaction;
  397. struct btrfs_fs_info *info = root->fs_info;
  398. int count = 0;
  399. if (--trans->use_count) {
  400. trans->block_rsv = trans->orig_rsv;
  401. return 0;
  402. }
  403. trans->block_rsv = NULL;
  404. while (count < 4) {
  405. unsigned long cur = trans->delayed_ref_updates;
  406. trans->delayed_ref_updates = 0;
  407. if (cur &&
  408. trans->transaction->delayed_refs.num_heads_ready > 64) {
  409. trans->delayed_ref_updates = 0;
  410. /*
  411. * do a full flush if the transaction is trying
  412. * to close
  413. */
  414. if (trans->transaction->delayed_refs.flushing)
  415. cur = 0;
  416. btrfs_run_delayed_refs(trans, root, cur);
  417. } else {
  418. break;
  419. }
  420. count++;
  421. }
  422. btrfs_trans_release_metadata(trans, root);
  423. if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
  424. should_end_transaction(trans, root)) {
  425. trans->transaction->blocked = 1;
  426. smp_wmb();
  427. }
  428. if (lock && cur_trans->blocked && !cur_trans->in_commit) {
  429. if (throttle) {
  430. /*
  431. * We may race with somebody else here so end up having
  432. * to call end_transaction on ourselves again, so inc
  433. * our use_count.
  434. */
  435. trans->use_count++;
  436. return btrfs_commit_transaction(trans, root);
  437. } else {
  438. wake_up_process(info->transaction_kthread);
  439. }
  440. }
  441. WARN_ON(cur_trans != info->running_transaction);
  442. WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
  443. atomic_dec(&cur_trans->num_writers);
  444. smp_mb();
  445. if (waitqueue_active(&cur_trans->writer_wait))
  446. wake_up(&cur_trans->writer_wait);
  447. put_transaction(cur_trans);
  448. if (current->journal_info == trans)
  449. current->journal_info = NULL;
  450. memset(trans, 0, sizeof(*trans));
  451. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  452. if (throttle)
  453. btrfs_run_delayed_iputs(root);
  454. return 0;
  455. }
  456. int btrfs_end_transaction(struct btrfs_trans_handle *trans,
  457. struct btrfs_root *root)
  458. {
  459. int ret;
  460. ret = __btrfs_end_transaction(trans, root, 0, 1);
  461. if (ret)
  462. return ret;
  463. return 0;
  464. }
  465. int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
  466. struct btrfs_root *root)
  467. {
  468. int ret;
  469. ret = __btrfs_end_transaction(trans, root, 1, 1);
  470. if (ret)
  471. return ret;
  472. return 0;
  473. }
  474. int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
  475. struct btrfs_root *root)
  476. {
  477. int ret;
  478. ret = __btrfs_end_transaction(trans, root, 0, 0);
  479. if (ret)
  480. return ret;
  481. return 0;
  482. }
  483. int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
  484. struct btrfs_root *root)
  485. {
  486. return __btrfs_end_transaction(trans, root, 1, 1);
  487. }
  488. /*
  489. * when btree blocks are allocated, they have some corresponding bits set for
  490. * them in one of two extent_io trees. This is used to make sure all of
  491. * those extents are sent to disk but does not wait on them
  492. */
  493. int btrfs_write_marked_extents(struct btrfs_root *root,
  494. struct extent_io_tree *dirty_pages, int mark)
  495. {
  496. int ret;
  497. int err = 0;
  498. int werr = 0;
  499. struct page *page;
  500. struct inode *btree_inode = root->fs_info->btree_inode;
  501. u64 start = 0;
  502. u64 end;
  503. unsigned long index;
  504. while (1) {
  505. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  506. mark);
  507. if (ret)
  508. break;
  509. while (start <= end) {
  510. cond_resched();
  511. index = start >> PAGE_CACHE_SHIFT;
  512. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  513. page = find_get_page(btree_inode->i_mapping, index);
  514. if (!page)
  515. continue;
  516. btree_lock_page_hook(page);
  517. if (!page->mapping) {
  518. unlock_page(page);
  519. page_cache_release(page);
  520. continue;
  521. }
  522. if (PageWriteback(page)) {
  523. if (PageDirty(page))
  524. wait_on_page_writeback(page);
  525. else {
  526. unlock_page(page);
  527. page_cache_release(page);
  528. continue;
  529. }
  530. }
  531. err = write_one_page(page, 0);
  532. if (err)
  533. werr = err;
  534. page_cache_release(page);
  535. }
  536. }
  537. if (err)
  538. werr = err;
  539. return werr;
  540. }
  541. /*
  542. * when btree blocks are allocated, they have some corresponding bits set for
  543. * them in one of two extent_io trees. This is used to make sure all of
  544. * those extents are on disk for transaction or log commit. We wait
  545. * on all the pages and clear them from the dirty pages state tree
  546. */
  547. int btrfs_wait_marked_extents(struct btrfs_root *root,
  548. struct extent_io_tree *dirty_pages, int mark)
  549. {
  550. int ret;
  551. int err = 0;
  552. int werr = 0;
  553. struct page *page;
  554. struct inode *btree_inode = root->fs_info->btree_inode;
  555. u64 start = 0;
  556. u64 end;
  557. unsigned long index;
  558. while (1) {
  559. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  560. mark);
  561. if (ret)
  562. break;
  563. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  564. while (start <= end) {
  565. index = start >> PAGE_CACHE_SHIFT;
  566. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  567. page = find_get_page(btree_inode->i_mapping, index);
  568. if (!page)
  569. continue;
  570. if (PageDirty(page)) {
  571. btree_lock_page_hook(page);
  572. wait_on_page_writeback(page);
  573. err = write_one_page(page, 0);
  574. if (err)
  575. werr = err;
  576. }
  577. wait_on_page_writeback(page);
  578. page_cache_release(page);
  579. cond_resched();
  580. }
  581. }
  582. if (err)
  583. werr = err;
  584. return werr;
  585. }
  586. /*
  587. * when btree blocks are allocated, they have some corresponding bits set for
  588. * them in one of two extent_io trees. This is used to make sure all of
  589. * those extents are on disk for transaction or log commit
  590. */
  591. int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
  592. struct extent_io_tree *dirty_pages, int mark)
  593. {
  594. int ret;
  595. int ret2;
  596. ret = btrfs_write_marked_extents(root, dirty_pages, mark);
  597. ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
  598. return ret || ret2;
  599. }
  600. int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
  601. struct btrfs_root *root)
  602. {
  603. if (!trans || !trans->transaction) {
  604. struct inode *btree_inode;
  605. btree_inode = root->fs_info->btree_inode;
  606. return filemap_write_and_wait(btree_inode->i_mapping);
  607. }
  608. return btrfs_write_and_wait_marked_extents(root,
  609. &trans->transaction->dirty_pages,
  610. EXTENT_DIRTY);
  611. }
  612. /*
  613. * this is used to update the root pointer in the tree of tree roots.
  614. *
  615. * But, in the case of the extent allocation tree, updating the root
  616. * pointer may allocate blocks which may change the root of the extent
  617. * allocation tree.
  618. *
  619. * So, this loops and repeats and makes sure the cowonly root didn't
  620. * change while the root pointer was being updated in the metadata.
  621. */
  622. static int update_cowonly_root(struct btrfs_trans_handle *trans,
  623. struct btrfs_root *root)
  624. {
  625. int ret;
  626. u64 old_root_bytenr;
  627. u64 old_root_used;
  628. struct btrfs_root *tree_root = root->fs_info->tree_root;
  629. old_root_used = btrfs_root_used(&root->root_item);
  630. btrfs_write_dirty_block_groups(trans, root);
  631. while (1) {
  632. old_root_bytenr = btrfs_root_bytenr(&root->root_item);
  633. if (old_root_bytenr == root->node->start &&
  634. old_root_used == btrfs_root_used(&root->root_item))
  635. break;
  636. btrfs_set_root_node(&root->root_item, root->node);
  637. ret = btrfs_update_root(trans, tree_root,
  638. &root->root_key,
  639. &root->root_item);
  640. BUG_ON(ret);
  641. old_root_used = btrfs_root_used(&root->root_item);
  642. ret = btrfs_write_dirty_block_groups(trans, root);
  643. BUG_ON(ret);
  644. }
  645. if (root != root->fs_info->extent_root)
  646. switch_commit_root(root);
  647. return 0;
  648. }
  649. /*
  650. * update all the cowonly tree roots on disk
  651. */
  652. static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
  653. struct btrfs_root *root)
  654. {
  655. struct btrfs_fs_info *fs_info = root->fs_info;
  656. struct list_head *next;
  657. struct extent_buffer *eb;
  658. int ret;
  659. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  660. BUG_ON(ret);
  661. eb = btrfs_lock_root_node(fs_info->tree_root);
  662. btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
  663. btrfs_tree_unlock(eb);
  664. free_extent_buffer(eb);
  665. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  666. BUG_ON(ret);
  667. while (!list_empty(&fs_info->dirty_cowonly_roots)) {
  668. next = fs_info->dirty_cowonly_roots.next;
  669. list_del_init(next);
  670. root = list_entry(next, struct btrfs_root, dirty_list);
  671. update_cowonly_root(trans, root);
  672. }
  673. down_write(&fs_info->extent_commit_sem);
  674. switch_commit_root(fs_info->extent_root);
  675. up_write(&fs_info->extent_commit_sem);
  676. return 0;
  677. }
  678. /*
  679. * dead roots are old snapshots that need to be deleted. This allocates
  680. * a dirty root struct and adds it into the list of dead roots that need to
  681. * be deleted
  682. */
  683. int btrfs_add_dead_root(struct btrfs_root *root)
  684. {
  685. spin_lock(&root->fs_info->trans_lock);
  686. list_add(&root->root_list, &root->fs_info->dead_roots);
  687. spin_unlock(&root->fs_info->trans_lock);
  688. return 0;
  689. }
  690. /*
  691. * update all the cowonly tree roots on disk
  692. */
  693. static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
  694. struct btrfs_root *root)
  695. {
  696. struct btrfs_root *gang[8];
  697. struct btrfs_fs_info *fs_info = root->fs_info;
  698. int i;
  699. int ret;
  700. int err = 0;
  701. spin_lock(&fs_info->fs_roots_radix_lock);
  702. while (1) {
  703. ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
  704. (void **)gang, 0,
  705. ARRAY_SIZE(gang),
  706. BTRFS_ROOT_TRANS_TAG);
  707. if (ret == 0)
  708. break;
  709. for (i = 0; i < ret; i++) {
  710. root = gang[i];
  711. radix_tree_tag_clear(&fs_info->fs_roots_radix,
  712. (unsigned long)root->root_key.objectid,
  713. BTRFS_ROOT_TRANS_TAG);
  714. spin_unlock(&fs_info->fs_roots_radix_lock);
  715. btrfs_free_log(trans, root);
  716. btrfs_update_reloc_root(trans, root);
  717. btrfs_orphan_commit_root(trans, root);
  718. btrfs_save_ino_cache(root, trans);
  719. if (root->commit_root != root->node) {
  720. mutex_lock(&root->fs_commit_mutex);
  721. switch_commit_root(root);
  722. btrfs_unpin_free_ino(root);
  723. mutex_unlock(&root->fs_commit_mutex);
  724. btrfs_set_root_node(&root->root_item,
  725. root->node);
  726. }
  727. err = btrfs_update_root(trans, fs_info->tree_root,
  728. &root->root_key,
  729. &root->root_item);
  730. spin_lock(&fs_info->fs_roots_radix_lock);
  731. if (err)
  732. break;
  733. }
  734. }
  735. spin_unlock(&fs_info->fs_roots_radix_lock);
  736. return err;
  737. }
  738. /*
  739. * defrag a given btree. If cacheonly == 1, this won't read from the disk,
  740. * otherwise every leaf in the btree is read and defragged.
  741. */
  742. int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
  743. {
  744. struct btrfs_fs_info *info = root->fs_info;
  745. struct btrfs_trans_handle *trans;
  746. int ret;
  747. unsigned long nr;
  748. if (xchg(&root->defrag_running, 1))
  749. return 0;
  750. while (1) {
  751. trans = btrfs_start_transaction(root, 0);
  752. if (IS_ERR(trans))
  753. return PTR_ERR(trans);
  754. ret = btrfs_defrag_leaves(trans, root, cacheonly);
  755. nr = trans->blocks_used;
  756. btrfs_end_transaction(trans, root);
  757. btrfs_btree_balance_dirty(info->tree_root, nr);
  758. cond_resched();
  759. if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
  760. break;
  761. }
  762. root->defrag_running = 0;
  763. return ret;
  764. }
  765. /*
  766. * new snapshots need to be created at a very specific time in the
  767. * transaction commit. This does the actual creation
  768. */
  769. static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
  770. struct btrfs_fs_info *fs_info,
  771. struct btrfs_pending_snapshot *pending)
  772. {
  773. struct btrfs_key key;
  774. struct btrfs_root_item *new_root_item;
  775. struct btrfs_root *tree_root = fs_info->tree_root;
  776. struct btrfs_root *root = pending->root;
  777. struct btrfs_root *parent_root;
  778. struct btrfs_block_rsv *rsv;
  779. struct inode *parent_inode;
  780. struct dentry *parent;
  781. struct dentry *dentry;
  782. struct extent_buffer *tmp;
  783. struct extent_buffer *old;
  784. int ret;
  785. u64 to_reserve = 0;
  786. u64 index = 0;
  787. u64 objectid;
  788. u64 root_flags;
  789. rsv = trans->block_rsv;
  790. new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
  791. if (!new_root_item) {
  792. pending->error = -ENOMEM;
  793. goto fail;
  794. }
  795. ret = btrfs_find_free_objectid(tree_root, &objectid);
  796. if (ret) {
  797. pending->error = ret;
  798. goto fail;
  799. }
  800. btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
  801. if (to_reserve > 0) {
  802. ret = btrfs_block_rsv_add(root, &pending->block_rsv,
  803. to_reserve);
  804. if (ret) {
  805. pending->error = ret;
  806. goto fail;
  807. }
  808. }
  809. key.objectid = objectid;
  810. key.offset = (u64)-1;
  811. key.type = BTRFS_ROOT_ITEM_KEY;
  812. trans->block_rsv = &pending->block_rsv;
  813. dentry = pending->dentry;
  814. parent = dget_parent(dentry);
  815. parent_inode = parent->d_inode;
  816. parent_root = BTRFS_I(parent_inode)->root;
  817. record_root_in_trans(trans, parent_root);
  818. /*
  819. * insert the directory item
  820. */
  821. ret = btrfs_set_inode_index(parent_inode, &index);
  822. BUG_ON(ret);
  823. ret = btrfs_insert_dir_item(trans, parent_root,
  824. dentry->d_name.name, dentry->d_name.len,
  825. parent_inode, &key,
  826. BTRFS_FT_DIR, index);
  827. BUG_ON(ret);
  828. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  829. dentry->d_name.len * 2);
  830. ret = btrfs_update_inode(trans, parent_root, parent_inode);
  831. BUG_ON(ret);
  832. /*
  833. * pull in the delayed directory update
  834. * and the delayed inode item
  835. * otherwise we corrupt the FS during
  836. * snapshot
  837. */
  838. ret = btrfs_run_delayed_items(trans, root);
  839. BUG_ON(ret);
  840. record_root_in_trans(trans, root);
  841. btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
  842. memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
  843. btrfs_check_and_init_root_item(new_root_item);
  844. root_flags = btrfs_root_flags(new_root_item);
  845. if (pending->readonly)
  846. root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
  847. else
  848. root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
  849. btrfs_set_root_flags(new_root_item, root_flags);
  850. old = btrfs_lock_root_node(root);
  851. btrfs_cow_block(trans, root, old, NULL, 0, &old);
  852. btrfs_set_lock_blocking(old);
  853. btrfs_copy_root(trans, root, old, &tmp, objectid);
  854. btrfs_tree_unlock(old);
  855. free_extent_buffer(old);
  856. btrfs_set_root_node(new_root_item, tmp);
  857. /* record when the snapshot was created in key.offset */
  858. key.offset = trans->transid;
  859. ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
  860. btrfs_tree_unlock(tmp);
  861. free_extent_buffer(tmp);
  862. BUG_ON(ret);
  863. /*
  864. * insert root back/forward references
  865. */
  866. ret = btrfs_add_root_ref(trans, tree_root, objectid,
  867. parent_root->root_key.objectid,
  868. btrfs_ino(parent_inode), index,
  869. dentry->d_name.name, dentry->d_name.len);
  870. BUG_ON(ret);
  871. dput(parent);
  872. key.offset = (u64)-1;
  873. pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
  874. BUG_ON(IS_ERR(pending->snap));
  875. btrfs_reloc_post_snapshot(trans, pending);
  876. fail:
  877. kfree(new_root_item);
  878. trans->block_rsv = rsv;
  879. btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
  880. return 0;
  881. }
  882. /*
  883. * create all the snapshots we've scheduled for creation
  884. */
  885. static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
  886. struct btrfs_fs_info *fs_info)
  887. {
  888. struct btrfs_pending_snapshot *pending;
  889. struct list_head *head = &trans->transaction->pending_snapshots;
  890. int ret;
  891. list_for_each_entry(pending, head, list) {
  892. ret = create_pending_snapshot(trans, fs_info, pending);
  893. BUG_ON(ret);
  894. }
  895. return 0;
  896. }
  897. static void update_super_roots(struct btrfs_root *root)
  898. {
  899. struct btrfs_root_item *root_item;
  900. struct btrfs_super_block *super;
  901. super = &root->fs_info->super_copy;
  902. root_item = &root->fs_info->chunk_root->root_item;
  903. super->chunk_root = root_item->bytenr;
  904. super->chunk_root_generation = root_item->generation;
  905. super->chunk_root_level = root_item->level;
  906. root_item = &root->fs_info->tree_root->root_item;
  907. super->root = root_item->bytenr;
  908. super->generation = root_item->generation;
  909. super->root_level = root_item->level;
  910. if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
  911. super->cache_generation = root_item->generation;
  912. }
  913. int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
  914. {
  915. int ret = 0;
  916. spin_lock(&info->trans_lock);
  917. if (info->running_transaction)
  918. ret = info->running_transaction->in_commit;
  919. spin_unlock(&info->trans_lock);
  920. return ret;
  921. }
  922. int btrfs_transaction_blocked(struct btrfs_fs_info *info)
  923. {
  924. int ret = 0;
  925. spin_lock(&info->trans_lock);
  926. if (info->running_transaction)
  927. ret = info->running_transaction->blocked;
  928. spin_unlock(&info->trans_lock);
  929. return ret;
  930. }
  931. /*
  932. * wait for the current transaction commit to start and block subsequent
  933. * transaction joins
  934. */
  935. static void wait_current_trans_commit_start(struct btrfs_root *root,
  936. struct btrfs_transaction *trans)
  937. {
  938. wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
  939. }
  940. /*
  941. * wait for the current transaction to start and then become unblocked.
  942. * caller holds ref.
  943. */
  944. static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
  945. struct btrfs_transaction *trans)
  946. {
  947. wait_event(root->fs_info->transaction_wait,
  948. trans->commit_done || (trans->in_commit && !trans->blocked));
  949. }
  950. /*
  951. * commit transactions asynchronously. once btrfs_commit_transaction_async
  952. * returns, any subsequent transaction will not be allowed to join.
  953. */
  954. struct btrfs_async_commit {
  955. struct btrfs_trans_handle *newtrans;
  956. struct btrfs_root *root;
  957. struct delayed_work work;
  958. };
  959. static void do_async_commit(struct work_struct *work)
  960. {
  961. struct btrfs_async_commit *ac =
  962. container_of(work, struct btrfs_async_commit, work.work);
  963. btrfs_commit_transaction(ac->newtrans, ac->root);
  964. kfree(ac);
  965. }
  966. int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
  967. struct btrfs_root *root,
  968. int wait_for_unblock)
  969. {
  970. struct btrfs_async_commit *ac;
  971. struct btrfs_transaction *cur_trans;
  972. ac = kmalloc(sizeof(*ac), GFP_NOFS);
  973. if (!ac)
  974. return -ENOMEM;
  975. INIT_DELAYED_WORK(&ac->work, do_async_commit);
  976. ac->root = root;
  977. ac->newtrans = btrfs_join_transaction(root);
  978. if (IS_ERR(ac->newtrans)) {
  979. int err = PTR_ERR(ac->newtrans);
  980. kfree(ac);
  981. return err;
  982. }
  983. /* take transaction reference */
  984. cur_trans = trans->transaction;
  985. atomic_inc(&cur_trans->use_count);
  986. btrfs_end_transaction(trans, root);
  987. schedule_delayed_work(&ac->work, 0);
  988. /* wait for transaction to start and unblock */
  989. if (wait_for_unblock)
  990. wait_current_trans_commit_start_and_unblock(root, cur_trans);
  991. else
  992. wait_current_trans_commit_start(root, cur_trans);
  993. if (current->journal_info == trans)
  994. current->journal_info = NULL;
  995. put_transaction(cur_trans);
  996. return 0;
  997. }
  998. /*
  999. * btrfs_transaction state sequence:
  1000. * in_commit = 0, blocked = 0 (initial)
  1001. * in_commit = 1, blocked = 1
  1002. * blocked = 0
  1003. * commit_done = 1
  1004. */
  1005. int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
  1006. struct btrfs_root *root)
  1007. {
  1008. unsigned long joined = 0;
  1009. struct btrfs_transaction *cur_trans;
  1010. struct btrfs_transaction *prev_trans = NULL;
  1011. DEFINE_WAIT(wait);
  1012. int ret;
  1013. int should_grow = 0;
  1014. unsigned long now = get_seconds();
  1015. int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
  1016. btrfs_run_ordered_operations(root, 0);
  1017. trans->block_rsv = NULL;
  1018. /* make a pass through all the delayed refs we have so far
  1019. * any runnings procs may add more while we are here
  1020. */
  1021. ret = btrfs_run_delayed_refs(trans, root, 0);
  1022. BUG_ON(ret);
  1023. btrfs_trans_release_metadata(trans, root);
  1024. cur_trans = trans->transaction;
  1025. /*
  1026. * set the flushing flag so procs in this transaction have to
  1027. * start sending their work down.
  1028. */
  1029. cur_trans->delayed_refs.flushing = 1;
  1030. ret = btrfs_run_delayed_refs(trans, root, 0);
  1031. BUG_ON(ret);
  1032. spin_lock(&cur_trans->commit_lock);
  1033. if (cur_trans->in_commit) {
  1034. spin_unlock(&cur_trans->commit_lock);
  1035. atomic_inc(&cur_trans->use_count);
  1036. btrfs_end_transaction(trans, root);
  1037. wait_for_commit(root, cur_trans);
  1038. put_transaction(cur_trans);
  1039. return 0;
  1040. }
  1041. trans->transaction->in_commit = 1;
  1042. trans->transaction->blocked = 1;
  1043. spin_unlock(&cur_trans->commit_lock);
  1044. wake_up(&root->fs_info->transaction_blocked_wait);
  1045. spin_lock(&root->fs_info->trans_lock);
  1046. if (cur_trans->list.prev != &root->fs_info->trans_list) {
  1047. prev_trans = list_entry(cur_trans->list.prev,
  1048. struct btrfs_transaction, list);
  1049. if (!prev_trans->commit_done) {
  1050. atomic_inc(&prev_trans->use_count);
  1051. spin_unlock(&root->fs_info->trans_lock);
  1052. wait_for_commit(root, prev_trans);
  1053. put_transaction(prev_trans);
  1054. } else {
  1055. spin_unlock(&root->fs_info->trans_lock);
  1056. }
  1057. } else {
  1058. spin_unlock(&root->fs_info->trans_lock);
  1059. }
  1060. if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
  1061. should_grow = 1;
  1062. do {
  1063. int snap_pending = 0;
  1064. joined = cur_trans->num_joined;
  1065. if (!list_empty(&trans->transaction->pending_snapshots))
  1066. snap_pending = 1;
  1067. WARN_ON(cur_trans != trans->transaction);
  1068. if (flush_on_commit || snap_pending) {
  1069. btrfs_start_delalloc_inodes(root, 1);
  1070. ret = btrfs_wait_ordered_extents(root, 0, 1);
  1071. BUG_ON(ret);
  1072. }
  1073. ret = btrfs_run_delayed_items(trans, root);
  1074. BUG_ON(ret);
  1075. /*
  1076. * rename don't use btrfs_join_transaction, so, once we
  1077. * set the transaction to blocked above, we aren't going
  1078. * to get any new ordered operations. We can safely run
  1079. * it here and no for sure that nothing new will be added
  1080. * to the list
  1081. */
  1082. btrfs_run_ordered_operations(root, 1);
  1083. prepare_to_wait(&cur_trans->writer_wait, &wait,
  1084. TASK_UNINTERRUPTIBLE);
  1085. if (atomic_read(&cur_trans->num_writers) > 1)
  1086. schedule_timeout(MAX_SCHEDULE_TIMEOUT);
  1087. else if (should_grow)
  1088. schedule_timeout(1);
  1089. finish_wait(&cur_trans->writer_wait, &wait);
  1090. } while (atomic_read(&cur_trans->num_writers) > 1 ||
  1091. (should_grow && cur_trans->num_joined != joined));
  1092. /*
  1093. * Ok now we need to make sure to block out any other joins while we
  1094. * commit the transaction. We could have started a join before setting
  1095. * no_join so make sure to wait for num_writers to == 1 again.
  1096. */
  1097. spin_lock(&root->fs_info->trans_lock);
  1098. root->fs_info->trans_no_join = 1;
  1099. spin_unlock(&root->fs_info->trans_lock);
  1100. wait_event(cur_trans->writer_wait,
  1101. atomic_read(&cur_trans->num_writers) == 1);
  1102. /*
  1103. * the reloc mutex makes sure that we stop
  1104. * the balancing code from coming in and moving
  1105. * extents around in the middle of the commit
  1106. */
  1107. mutex_lock(&root->fs_info->reloc_mutex);
  1108. ret = btrfs_run_delayed_items(trans, root);
  1109. BUG_ON(ret);
  1110. ret = create_pending_snapshots(trans, root->fs_info);
  1111. BUG_ON(ret);
  1112. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1113. BUG_ON(ret);
  1114. /*
  1115. * make sure none of the code above managed to slip in a
  1116. * delayed item
  1117. */
  1118. btrfs_assert_delayed_root_empty(root);
  1119. WARN_ON(cur_trans != trans->transaction);
  1120. btrfs_scrub_pause(root);
  1121. /* btrfs_commit_tree_roots is responsible for getting the
  1122. * various roots consistent with each other. Every pointer
  1123. * in the tree of tree roots has to point to the most up to date
  1124. * root for every subvolume and other tree. So, we have to keep
  1125. * the tree logging code from jumping in and changing any
  1126. * of the trees.
  1127. *
  1128. * At this point in the commit, there can't be any tree-log
  1129. * writers, but a little lower down we drop the trans mutex
  1130. * and let new people in. By holding the tree_log_mutex
  1131. * from now until after the super is written, we avoid races
  1132. * with the tree-log code.
  1133. */
  1134. mutex_lock(&root->fs_info->tree_log_mutex);
  1135. ret = commit_fs_roots(trans, root);
  1136. BUG_ON(ret);
  1137. /* commit_fs_roots gets rid of all the tree log roots, it is now
  1138. * safe to free the root of tree log roots
  1139. */
  1140. btrfs_free_log_root_tree(trans, root->fs_info);
  1141. ret = commit_cowonly_roots(trans, root);
  1142. BUG_ON(ret);
  1143. btrfs_prepare_extent_commit(trans, root);
  1144. cur_trans = root->fs_info->running_transaction;
  1145. btrfs_set_root_node(&root->fs_info->tree_root->root_item,
  1146. root->fs_info->tree_root->node);
  1147. switch_commit_root(root->fs_info->tree_root);
  1148. btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
  1149. root->fs_info->chunk_root->node);
  1150. switch_commit_root(root->fs_info->chunk_root);
  1151. update_super_roots(root);
  1152. if (!root->fs_info->log_root_recovering) {
  1153. btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
  1154. btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
  1155. }
  1156. memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
  1157. sizeof(root->fs_info->super_copy));
  1158. trans->transaction->blocked = 0;
  1159. spin_lock(&root->fs_info->trans_lock);
  1160. root->fs_info->running_transaction = NULL;
  1161. root->fs_info->trans_no_join = 0;
  1162. spin_unlock(&root->fs_info->trans_lock);
  1163. mutex_unlock(&root->fs_info->reloc_mutex);
  1164. wake_up(&root->fs_info->transaction_wait);
  1165. ret = btrfs_write_and_wait_transaction(trans, root);
  1166. BUG_ON(ret);
  1167. write_ctree_super(trans, root, 0);
  1168. /*
  1169. * the super is written, we can safely allow the tree-loggers
  1170. * to go about their business
  1171. */
  1172. mutex_unlock(&root->fs_info->tree_log_mutex);
  1173. btrfs_finish_extent_commit(trans, root);
  1174. cur_trans->commit_done = 1;
  1175. root->fs_info->last_trans_committed = cur_trans->transid;
  1176. wake_up(&cur_trans->commit_wait);
  1177. spin_lock(&root->fs_info->trans_lock);
  1178. list_del_init(&cur_trans->list);
  1179. spin_unlock(&root->fs_info->trans_lock);
  1180. put_transaction(cur_trans);
  1181. put_transaction(cur_trans);
  1182. trace_btrfs_transaction_commit(root);
  1183. btrfs_scrub_continue(root);
  1184. if (current->journal_info == trans)
  1185. current->journal_info = NULL;
  1186. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1187. if (current != root->fs_info->transaction_kthread)
  1188. btrfs_run_delayed_iputs(root);
  1189. return ret;
  1190. }
  1191. /*
  1192. * interface function to delete all the snapshots we have scheduled for deletion
  1193. */
  1194. int btrfs_clean_old_snapshots(struct btrfs_root *root)
  1195. {
  1196. LIST_HEAD(list);
  1197. struct btrfs_fs_info *fs_info = root->fs_info;
  1198. spin_lock(&fs_info->trans_lock);
  1199. list_splice_init(&fs_info->dead_roots, &list);
  1200. spin_unlock(&fs_info->trans_lock);
  1201. while (!list_empty(&list)) {
  1202. root = list_entry(list.next, struct btrfs_root, root_list);
  1203. list_del(&root->root_list);
  1204. btrfs_kill_all_delayed_nodes(root);
  1205. if (btrfs_header_backref_rev(root->node) <
  1206. BTRFS_MIXED_BACKREF_REV)
  1207. btrfs_drop_snapshot(root, NULL, 0);
  1208. else
  1209. btrfs_drop_snapshot(root, NULL, 1);
  1210. }
  1211. return 0;
  1212. }