slab.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/poison.h>
  92. #include <linux/swap.h>
  93. #include <linux/cache.h>
  94. #include <linux/interrupt.h>
  95. #include <linux/init.h>
  96. #include <linux/compiler.h>
  97. #include <linux/cpuset.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <asm/uaccess.h>
  110. #include <asm/cacheflush.h>
  111. #include <asm/tlbflush.h>
  112. #include <asm/page.h>
  113. /*
  114. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  115. * SLAB_RED_ZONE & SLAB_POISON.
  116. * 0 for faster, smaller code (especially in the critical paths).
  117. *
  118. * STATS - 1 to collect stats for /proc/slabinfo.
  119. * 0 for faster, smaller code (especially in the critical paths).
  120. *
  121. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  122. */
  123. #ifdef CONFIG_DEBUG_SLAB
  124. #define DEBUG 1
  125. #define STATS 1
  126. #define FORCED_DEBUG 1
  127. #else
  128. #define DEBUG 0
  129. #define STATS 0
  130. #define FORCED_DEBUG 0
  131. #endif
  132. /* Shouldn't this be in a header file somewhere? */
  133. #define BYTES_PER_WORD sizeof(void *)
  134. #ifndef cache_line_size
  135. #define cache_line_size() L1_CACHE_BYTES
  136. #endif
  137. #ifndef ARCH_KMALLOC_MINALIGN
  138. /*
  139. * Enforce a minimum alignment for the kmalloc caches.
  140. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  141. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  142. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  143. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  144. * Note that this flag disables some debug features.
  145. */
  146. #define ARCH_KMALLOC_MINALIGN 0
  147. #endif
  148. #ifndef ARCH_SLAB_MINALIGN
  149. /*
  150. * Enforce a minimum alignment for all caches.
  151. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  152. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  153. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  154. * some debug features.
  155. */
  156. #define ARCH_SLAB_MINALIGN 0
  157. #endif
  158. #ifndef ARCH_KMALLOC_FLAGS
  159. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  160. #endif
  161. /* Legal flag mask for kmem_cache_create(). */
  162. #if DEBUG
  163. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  164. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  165. SLAB_CACHE_DMA | \
  166. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  167. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  168. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  169. #else
  170. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  171. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  172. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  173. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  174. #endif
  175. /*
  176. * kmem_bufctl_t:
  177. *
  178. * Bufctl's are used for linking objs within a slab
  179. * linked offsets.
  180. *
  181. * This implementation relies on "struct page" for locating the cache &
  182. * slab an object belongs to.
  183. * This allows the bufctl structure to be small (one int), but limits
  184. * the number of objects a slab (not a cache) can contain when off-slab
  185. * bufctls are used. The limit is the size of the largest general cache
  186. * that does not use off-slab slabs.
  187. * For 32bit archs with 4 kB pages, is this 56.
  188. * This is not serious, as it is only for large objects, when it is unwise
  189. * to have too many per slab.
  190. * Note: This limit can be raised by introducing a general cache whose size
  191. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  192. */
  193. typedef unsigned int kmem_bufctl_t;
  194. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  195. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  196. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  197. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  198. /*
  199. * struct slab
  200. *
  201. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  202. * for a slab, or allocated from an general cache.
  203. * Slabs are chained into three list: fully used, partial, fully free slabs.
  204. */
  205. struct slab {
  206. struct list_head list;
  207. unsigned long colouroff;
  208. void *s_mem; /* including colour offset */
  209. unsigned int inuse; /* num of objs active in slab */
  210. kmem_bufctl_t free;
  211. unsigned short nodeid;
  212. };
  213. /*
  214. * struct slab_rcu
  215. *
  216. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  217. * arrange for kmem_freepages to be called via RCU. This is useful if
  218. * we need to approach a kernel structure obliquely, from its address
  219. * obtained without the usual locking. We can lock the structure to
  220. * stabilize it and check it's still at the given address, only if we
  221. * can be sure that the memory has not been meanwhile reused for some
  222. * other kind of object (which our subsystem's lock might corrupt).
  223. *
  224. * rcu_read_lock before reading the address, then rcu_read_unlock after
  225. * taking the spinlock within the structure expected at that address.
  226. *
  227. * We assume struct slab_rcu can overlay struct slab when destroying.
  228. */
  229. struct slab_rcu {
  230. struct rcu_head head;
  231. struct kmem_cache *cachep;
  232. void *addr;
  233. };
  234. /*
  235. * struct array_cache
  236. *
  237. * Purpose:
  238. * - LIFO ordering, to hand out cache-warm objects from _alloc
  239. * - reduce the number of linked list operations
  240. * - reduce spinlock operations
  241. *
  242. * The limit is stored in the per-cpu structure to reduce the data cache
  243. * footprint.
  244. *
  245. */
  246. struct array_cache {
  247. unsigned int avail;
  248. unsigned int limit;
  249. unsigned int batchcount;
  250. unsigned int touched;
  251. spinlock_t lock;
  252. void *entry[0]; /*
  253. * Must have this definition in here for the proper
  254. * alignment of array_cache. Also simplifies accessing
  255. * the entries.
  256. * [0] is for gcc 2.95. It should really be [].
  257. */
  258. };
  259. /*
  260. * bootstrap: The caches do not work without cpuarrays anymore, but the
  261. * cpuarrays are allocated from the generic caches...
  262. */
  263. #define BOOT_CPUCACHE_ENTRIES 1
  264. struct arraycache_init {
  265. struct array_cache cache;
  266. void *entries[BOOT_CPUCACHE_ENTRIES];
  267. };
  268. /*
  269. * The slab lists for all objects.
  270. */
  271. struct kmem_list3 {
  272. struct list_head slabs_partial; /* partial list first, better asm code */
  273. struct list_head slabs_full;
  274. struct list_head slabs_free;
  275. unsigned long free_objects;
  276. unsigned int free_limit;
  277. unsigned int colour_next; /* Per-node cache coloring */
  278. spinlock_t list_lock;
  279. struct array_cache *shared; /* shared per node */
  280. struct array_cache **alien; /* on other nodes */
  281. unsigned long next_reap; /* updated without locking */
  282. int free_touched; /* updated without locking */
  283. };
  284. /*
  285. * Need this for bootstrapping a per node allocator.
  286. */
  287. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  288. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  289. #define CACHE_CACHE 0
  290. #define SIZE_AC 1
  291. #define SIZE_L3 (1 + MAX_NUMNODES)
  292. /*
  293. * This function must be completely optimized away if a constant is passed to
  294. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  295. */
  296. static __always_inline int index_of(const size_t size)
  297. {
  298. extern void __bad_size(void);
  299. if (__builtin_constant_p(size)) {
  300. int i = 0;
  301. #define CACHE(x) \
  302. if (size <=x) \
  303. return i; \
  304. else \
  305. i++;
  306. #include "linux/kmalloc_sizes.h"
  307. #undef CACHE
  308. __bad_size();
  309. } else
  310. __bad_size();
  311. return 0;
  312. }
  313. static int slab_early_init = 1;
  314. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  315. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  316. static void kmem_list3_init(struct kmem_list3 *parent)
  317. {
  318. INIT_LIST_HEAD(&parent->slabs_full);
  319. INIT_LIST_HEAD(&parent->slabs_partial);
  320. INIT_LIST_HEAD(&parent->slabs_free);
  321. parent->shared = NULL;
  322. parent->alien = NULL;
  323. parent->colour_next = 0;
  324. spin_lock_init(&parent->list_lock);
  325. parent->free_objects = 0;
  326. parent->free_touched = 0;
  327. }
  328. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  329. do { \
  330. INIT_LIST_HEAD(listp); \
  331. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  332. } while (0)
  333. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  334. do { \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  338. } while (0)
  339. /*
  340. * struct kmem_cache
  341. *
  342. * manages a cache.
  343. */
  344. struct kmem_cache {
  345. /* 1) per-cpu data, touched during every alloc/free */
  346. struct array_cache *array[NR_CPUS];
  347. /* 2) Cache tunables. Protected by cache_chain_mutex */
  348. unsigned int batchcount;
  349. unsigned int limit;
  350. unsigned int shared;
  351. unsigned int buffer_size;
  352. /* 3) touched by every alloc & free from the backend */
  353. struct kmem_list3 *nodelists[MAX_NUMNODES];
  354. unsigned int flags; /* constant flags */
  355. unsigned int num; /* # of objs per slab */
  356. /* 4) cache_grow/shrink */
  357. /* order of pgs per slab (2^n) */
  358. unsigned int gfporder;
  359. /* force GFP flags, e.g. GFP_DMA */
  360. gfp_t gfpflags;
  361. size_t colour; /* cache colouring range */
  362. unsigned int colour_off; /* colour offset */
  363. struct kmem_cache *slabp_cache;
  364. unsigned int slab_size;
  365. unsigned int dflags; /* dynamic flags */
  366. /* constructor func */
  367. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  368. /* de-constructor func */
  369. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  370. /* 5) cache creation/removal */
  371. const char *name;
  372. struct list_head next;
  373. /* 6) statistics */
  374. #if STATS
  375. unsigned long num_active;
  376. unsigned long num_allocations;
  377. unsigned long high_mark;
  378. unsigned long grown;
  379. unsigned long reaped;
  380. unsigned long errors;
  381. unsigned long max_freeable;
  382. unsigned long node_allocs;
  383. unsigned long node_frees;
  384. unsigned long node_overflow;
  385. atomic_t allochit;
  386. atomic_t allocmiss;
  387. atomic_t freehit;
  388. atomic_t freemiss;
  389. #endif
  390. #if DEBUG
  391. /*
  392. * If debugging is enabled, then the allocator can add additional
  393. * fields and/or padding to every object. buffer_size contains the total
  394. * object size including these internal fields, the following two
  395. * variables contain the offset to the user object and its size.
  396. */
  397. int obj_offset;
  398. int obj_size;
  399. #endif
  400. };
  401. #define CFLGS_OFF_SLAB (0x80000000UL)
  402. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  403. #define BATCHREFILL_LIMIT 16
  404. /*
  405. * Optimization question: fewer reaps means less probability for unnessary
  406. * cpucache drain/refill cycles.
  407. *
  408. * OTOH the cpuarrays can contain lots of objects,
  409. * which could lock up otherwise freeable slabs.
  410. */
  411. #define REAPTIMEOUT_CPUC (2*HZ)
  412. #define REAPTIMEOUT_LIST3 (4*HZ)
  413. #if STATS
  414. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  415. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  416. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  417. #define STATS_INC_GROWN(x) ((x)->grown++)
  418. #define STATS_INC_REAPED(x) ((x)->reaped++)
  419. #define STATS_SET_HIGH(x) \
  420. do { \
  421. if ((x)->num_active > (x)->high_mark) \
  422. (x)->high_mark = (x)->num_active; \
  423. } while (0)
  424. #define STATS_INC_ERR(x) ((x)->errors++)
  425. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  426. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  427. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  428. #define STATS_SET_FREEABLE(x, i) \
  429. do { \
  430. if ((x)->max_freeable < i) \
  431. (x)->max_freeable = i; \
  432. } while (0)
  433. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  434. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  435. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  436. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  437. #else
  438. #define STATS_INC_ACTIVE(x) do { } while (0)
  439. #define STATS_DEC_ACTIVE(x) do { } while (0)
  440. #define STATS_INC_ALLOCED(x) do { } while (0)
  441. #define STATS_INC_GROWN(x) do { } while (0)
  442. #define STATS_INC_REAPED(x) do { } while (0)
  443. #define STATS_SET_HIGH(x) do { } while (0)
  444. #define STATS_INC_ERR(x) do { } while (0)
  445. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  446. #define STATS_INC_NODEFREES(x) do { } while (0)
  447. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  448. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  449. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  450. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  451. #define STATS_INC_FREEHIT(x) do { } while (0)
  452. #define STATS_INC_FREEMISS(x) do { } while (0)
  453. #endif
  454. #if DEBUG
  455. /*
  456. * memory layout of objects:
  457. * 0 : objp
  458. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  459. * the end of an object is aligned with the end of the real
  460. * allocation. Catches writes behind the end of the allocation.
  461. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  462. * redzone word.
  463. * cachep->obj_offset: The real object.
  464. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  465. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  466. * [BYTES_PER_WORD long]
  467. */
  468. static int obj_offset(struct kmem_cache *cachep)
  469. {
  470. return cachep->obj_offset;
  471. }
  472. static int obj_size(struct kmem_cache *cachep)
  473. {
  474. return cachep->obj_size;
  475. }
  476. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  477. {
  478. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  479. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  480. }
  481. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  482. {
  483. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  484. if (cachep->flags & SLAB_STORE_USER)
  485. return (unsigned long *)(objp + cachep->buffer_size -
  486. 2 * BYTES_PER_WORD);
  487. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  488. }
  489. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  490. {
  491. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  492. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  493. }
  494. #else
  495. #define obj_offset(x) 0
  496. #define obj_size(cachep) (cachep->buffer_size)
  497. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  498. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  499. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  500. #endif
  501. /*
  502. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  503. * order.
  504. */
  505. #if defined(CONFIG_LARGE_ALLOCS)
  506. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  507. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  508. #elif defined(CONFIG_MMU)
  509. #define MAX_OBJ_ORDER 5 /* 32 pages */
  510. #define MAX_GFP_ORDER 5 /* 32 pages */
  511. #else
  512. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  513. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  514. #endif
  515. /*
  516. * Do not go above this order unless 0 objects fit into the slab.
  517. */
  518. #define BREAK_GFP_ORDER_HI 1
  519. #define BREAK_GFP_ORDER_LO 0
  520. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  521. /*
  522. * Functions for storing/retrieving the cachep and or slab from the page
  523. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  524. * these are used to find the cache which an obj belongs to.
  525. */
  526. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  527. {
  528. page->lru.next = (struct list_head *)cache;
  529. }
  530. static inline struct kmem_cache *page_get_cache(struct page *page)
  531. {
  532. if (unlikely(PageCompound(page)))
  533. page = (struct page *)page_private(page);
  534. BUG_ON(!PageSlab(page));
  535. return (struct kmem_cache *)page->lru.next;
  536. }
  537. static inline void page_set_slab(struct page *page, struct slab *slab)
  538. {
  539. page->lru.prev = (struct list_head *)slab;
  540. }
  541. static inline struct slab *page_get_slab(struct page *page)
  542. {
  543. if (unlikely(PageCompound(page)))
  544. page = (struct page *)page_private(page);
  545. BUG_ON(!PageSlab(page));
  546. return (struct slab *)page->lru.prev;
  547. }
  548. static inline struct kmem_cache *virt_to_cache(const void *obj)
  549. {
  550. struct page *page = virt_to_page(obj);
  551. return page_get_cache(page);
  552. }
  553. static inline struct slab *virt_to_slab(const void *obj)
  554. {
  555. struct page *page = virt_to_page(obj);
  556. return page_get_slab(page);
  557. }
  558. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  559. unsigned int idx)
  560. {
  561. return slab->s_mem + cache->buffer_size * idx;
  562. }
  563. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  564. struct slab *slab, void *obj)
  565. {
  566. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  567. }
  568. /*
  569. * These are the default caches for kmalloc. Custom caches can have other sizes.
  570. */
  571. struct cache_sizes malloc_sizes[] = {
  572. #define CACHE(x) { .cs_size = (x) },
  573. #include <linux/kmalloc_sizes.h>
  574. CACHE(ULONG_MAX)
  575. #undef CACHE
  576. };
  577. EXPORT_SYMBOL(malloc_sizes);
  578. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  579. struct cache_names {
  580. char *name;
  581. char *name_dma;
  582. };
  583. static struct cache_names __initdata cache_names[] = {
  584. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  585. #include <linux/kmalloc_sizes.h>
  586. {NULL,}
  587. #undef CACHE
  588. };
  589. static struct arraycache_init initarray_cache __initdata =
  590. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  591. static struct arraycache_init initarray_generic =
  592. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  593. /* internal cache of cache description objs */
  594. static struct kmem_cache cache_cache = {
  595. .batchcount = 1,
  596. .limit = BOOT_CPUCACHE_ENTRIES,
  597. .shared = 1,
  598. .buffer_size = sizeof(struct kmem_cache),
  599. .name = "kmem_cache",
  600. #if DEBUG
  601. .obj_size = sizeof(struct kmem_cache),
  602. #endif
  603. };
  604. /* Guard access to the cache-chain. */
  605. static DEFINE_MUTEX(cache_chain_mutex);
  606. static struct list_head cache_chain;
  607. /*
  608. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  609. * are possibly freeable under pressure
  610. *
  611. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  612. */
  613. atomic_t slab_reclaim_pages;
  614. /*
  615. * chicken and egg problem: delay the per-cpu array allocation
  616. * until the general caches are up.
  617. */
  618. static enum {
  619. NONE,
  620. PARTIAL_AC,
  621. PARTIAL_L3,
  622. FULL
  623. } g_cpucache_up;
  624. /*
  625. * used by boot code to determine if it can use slab based allocator
  626. */
  627. int slab_is_available(void)
  628. {
  629. return g_cpucache_up == FULL;
  630. }
  631. static DEFINE_PER_CPU(struct work_struct, reap_work);
  632. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  633. int node);
  634. static void enable_cpucache(struct kmem_cache *cachep);
  635. static void cache_reap(void *unused);
  636. static int __node_shrink(struct kmem_cache *cachep, int node);
  637. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  638. {
  639. return cachep->array[smp_processor_id()];
  640. }
  641. static inline struct kmem_cache *__find_general_cachep(size_t size,
  642. gfp_t gfpflags)
  643. {
  644. struct cache_sizes *csizep = malloc_sizes;
  645. #if DEBUG
  646. /* This happens if someone tries to call
  647. * kmem_cache_create(), or __kmalloc(), before
  648. * the generic caches are initialized.
  649. */
  650. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  651. #endif
  652. while (size > csizep->cs_size)
  653. csizep++;
  654. /*
  655. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  656. * has cs_{dma,}cachep==NULL. Thus no special case
  657. * for large kmalloc calls required.
  658. */
  659. if (unlikely(gfpflags & GFP_DMA))
  660. return csizep->cs_dmacachep;
  661. return csizep->cs_cachep;
  662. }
  663. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  664. {
  665. return __find_general_cachep(size, gfpflags);
  666. }
  667. EXPORT_SYMBOL(kmem_find_general_cachep);
  668. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  669. {
  670. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  671. }
  672. /*
  673. * Calculate the number of objects and left-over bytes for a given buffer size.
  674. */
  675. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  676. size_t align, int flags, size_t *left_over,
  677. unsigned int *num)
  678. {
  679. int nr_objs;
  680. size_t mgmt_size;
  681. size_t slab_size = PAGE_SIZE << gfporder;
  682. /*
  683. * The slab management structure can be either off the slab or
  684. * on it. For the latter case, the memory allocated for a
  685. * slab is used for:
  686. *
  687. * - The struct slab
  688. * - One kmem_bufctl_t for each object
  689. * - Padding to respect alignment of @align
  690. * - @buffer_size bytes for each object
  691. *
  692. * If the slab management structure is off the slab, then the
  693. * alignment will already be calculated into the size. Because
  694. * the slabs are all pages aligned, the objects will be at the
  695. * correct alignment when allocated.
  696. */
  697. if (flags & CFLGS_OFF_SLAB) {
  698. mgmt_size = 0;
  699. nr_objs = slab_size / buffer_size;
  700. if (nr_objs > SLAB_LIMIT)
  701. nr_objs = SLAB_LIMIT;
  702. } else {
  703. /*
  704. * Ignore padding for the initial guess. The padding
  705. * is at most @align-1 bytes, and @buffer_size is at
  706. * least @align. In the worst case, this result will
  707. * be one greater than the number of objects that fit
  708. * into the memory allocation when taking the padding
  709. * into account.
  710. */
  711. nr_objs = (slab_size - sizeof(struct slab)) /
  712. (buffer_size + sizeof(kmem_bufctl_t));
  713. /*
  714. * This calculated number will be either the right
  715. * amount, or one greater than what we want.
  716. */
  717. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  718. > slab_size)
  719. nr_objs--;
  720. if (nr_objs > SLAB_LIMIT)
  721. nr_objs = SLAB_LIMIT;
  722. mgmt_size = slab_mgmt_size(nr_objs, align);
  723. }
  724. *num = nr_objs;
  725. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  726. }
  727. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  728. static void __slab_error(const char *function, struct kmem_cache *cachep,
  729. char *msg)
  730. {
  731. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  732. function, cachep->name, msg);
  733. dump_stack();
  734. }
  735. #ifdef CONFIG_NUMA
  736. /*
  737. * Special reaping functions for NUMA systems called from cache_reap().
  738. * These take care of doing round robin flushing of alien caches (containing
  739. * objects freed on different nodes from which they were allocated) and the
  740. * flushing of remote pcps by calling drain_node_pages.
  741. */
  742. static DEFINE_PER_CPU(unsigned long, reap_node);
  743. static void init_reap_node(int cpu)
  744. {
  745. int node;
  746. node = next_node(cpu_to_node(cpu), node_online_map);
  747. if (node == MAX_NUMNODES)
  748. node = first_node(node_online_map);
  749. __get_cpu_var(reap_node) = node;
  750. }
  751. static void next_reap_node(void)
  752. {
  753. int node = __get_cpu_var(reap_node);
  754. /*
  755. * Also drain per cpu pages on remote zones
  756. */
  757. if (node != numa_node_id())
  758. drain_node_pages(node);
  759. node = next_node(node, node_online_map);
  760. if (unlikely(node >= MAX_NUMNODES))
  761. node = first_node(node_online_map);
  762. __get_cpu_var(reap_node) = node;
  763. }
  764. #else
  765. #define init_reap_node(cpu) do { } while (0)
  766. #define next_reap_node(void) do { } while (0)
  767. #endif
  768. /*
  769. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  770. * via the workqueue/eventd.
  771. * Add the CPU number into the expiration time to minimize the possibility of
  772. * the CPUs getting into lockstep and contending for the global cache chain
  773. * lock.
  774. */
  775. static void __devinit start_cpu_timer(int cpu)
  776. {
  777. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  778. /*
  779. * When this gets called from do_initcalls via cpucache_init(),
  780. * init_workqueues() has already run, so keventd will be setup
  781. * at that time.
  782. */
  783. if (keventd_up() && reap_work->func == NULL) {
  784. init_reap_node(cpu);
  785. INIT_WORK(reap_work, cache_reap, NULL);
  786. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  787. }
  788. }
  789. static struct array_cache *alloc_arraycache(int node, int entries,
  790. int batchcount)
  791. {
  792. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  793. struct array_cache *nc = NULL;
  794. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  795. if (nc) {
  796. nc->avail = 0;
  797. nc->limit = entries;
  798. nc->batchcount = batchcount;
  799. nc->touched = 0;
  800. spin_lock_init(&nc->lock);
  801. }
  802. return nc;
  803. }
  804. /*
  805. * Transfer objects in one arraycache to another.
  806. * Locking must be handled by the caller.
  807. *
  808. * Return the number of entries transferred.
  809. */
  810. static int transfer_objects(struct array_cache *to,
  811. struct array_cache *from, unsigned int max)
  812. {
  813. /* Figure out how many entries to transfer */
  814. int nr = min(min(from->avail, max), to->limit - to->avail);
  815. if (!nr)
  816. return 0;
  817. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  818. sizeof(void *) *nr);
  819. from->avail -= nr;
  820. to->avail += nr;
  821. to->touched = 1;
  822. return nr;
  823. }
  824. #ifdef CONFIG_NUMA
  825. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  826. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  827. static struct array_cache **alloc_alien_cache(int node, int limit)
  828. {
  829. struct array_cache **ac_ptr;
  830. int memsize = sizeof(void *) * MAX_NUMNODES;
  831. int i;
  832. if (limit > 1)
  833. limit = 12;
  834. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  835. if (ac_ptr) {
  836. for_each_node(i) {
  837. if (i == node || !node_online(i)) {
  838. ac_ptr[i] = NULL;
  839. continue;
  840. }
  841. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  842. if (!ac_ptr[i]) {
  843. for (i--; i <= 0; i--)
  844. kfree(ac_ptr[i]);
  845. kfree(ac_ptr);
  846. return NULL;
  847. }
  848. }
  849. }
  850. return ac_ptr;
  851. }
  852. static void free_alien_cache(struct array_cache **ac_ptr)
  853. {
  854. int i;
  855. if (!ac_ptr)
  856. return;
  857. for_each_node(i)
  858. kfree(ac_ptr[i]);
  859. kfree(ac_ptr);
  860. }
  861. static void __drain_alien_cache(struct kmem_cache *cachep,
  862. struct array_cache *ac, int node)
  863. {
  864. struct kmem_list3 *rl3 = cachep->nodelists[node];
  865. if (ac->avail) {
  866. spin_lock(&rl3->list_lock);
  867. /*
  868. * Stuff objects into the remote nodes shared array first.
  869. * That way we could avoid the overhead of putting the objects
  870. * into the free lists and getting them back later.
  871. */
  872. if (rl3->shared)
  873. transfer_objects(rl3->shared, ac, ac->limit);
  874. free_block(cachep, ac->entry, ac->avail, node);
  875. ac->avail = 0;
  876. spin_unlock(&rl3->list_lock);
  877. }
  878. }
  879. /*
  880. * Called from cache_reap() to regularly drain alien caches round robin.
  881. */
  882. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  883. {
  884. int node = __get_cpu_var(reap_node);
  885. if (l3->alien) {
  886. struct array_cache *ac = l3->alien[node];
  887. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  888. __drain_alien_cache(cachep, ac, node);
  889. spin_unlock_irq(&ac->lock);
  890. }
  891. }
  892. }
  893. static void drain_alien_cache(struct kmem_cache *cachep,
  894. struct array_cache **alien)
  895. {
  896. int i = 0;
  897. struct array_cache *ac;
  898. unsigned long flags;
  899. for_each_online_node(i) {
  900. ac = alien[i];
  901. if (ac) {
  902. spin_lock_irqsave(&ac->lock, flags);
  903. __drain_alien_cache(cachep, ac, i);
  904. spin_unlock_irqrestore(&ac->lock, flags);
  905. }
  906. }
  907. }
  908. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  909. {
  910. struct slab *slabp = virt_to_slab(objp);
  911. int nodeid = slabp->nodeid;
  912. struct kmem_list3 *l3;
  913. struct array_cache *alien = NULL;
  914. /*
  915. * Make sure we are not freeing a object from another node to the array
  916. * cache on this cpu.
  917. */
  918. if (likely(slabp->nodeid == numa_node_id()))
  919. return 0;
  920. l3 = cachep->nodelists[numa_node_id()];
  921. STATS_INC_NODEFREES(cachep);
  922. if (l3->alien && l3->alien[nodeid]) {
  923. alien = l3->alien[nodeid];
  924. spin_lock(&alien->lock);
  925. if (unlikely(alien->avail == alien->limit)) {
  926. STATS_INC_ACOVERFLOW(cachep);
  927. __drain_alien_cache(cachep, alien, nodeid);
  928. }
  929. alien->entry[alien->avail++] = objp;
  930. spin_unlock(&alien->lock);
  931. } else {
  932. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  933. free_block(cachep, &objp, 1, nodeid);
  934. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  935. }
  936. return 1;
  937. }
  938. #else
  939. #define drain_alien_cache(cachep, alien) do { } while (0)
  940. #define reap_alien(cachep, l3) do { } while (0)
  941. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  942. {
  943. return (struct array_cache **) 0x01020304ul;
  944. }
  945. static inline void free_alien_cache(struct array_cache **ac_ptr)
  946. {
  947. }
  948. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  949. {
  950. return 0;
  951. }
  952. #endif
  953. static int __devinit cpuup_callback(struct notifier_block *nfb,
  954. unsigned long action, void *hcpu)
  955. {
  956. long cpu = (long)hcpu;
  957. struct kmem_cache *cachep;
  958. struct kmem_list3 *l3 = NULL;
  959. int node = cpu_to_node(cpu);
  960. int memsize = sizeof(struct kmem_list3);
  961. switch (action) {
  962. case CPU_UP_PREPARE:
  963. mutex_lock(&cache_chain_mutex);
  964. /*
  965. * We need to do this right in the beginning since
  966. * alloc_arraycache's are going to use this list.
  967. * kmalloc_node allows us to add the slab to the right
  968. * kmem_list3 and not this cpu's kmem_list3
  969. */
  970. list_for_each_entry(cachep, &cache_chain, next) {
  971. /*
  972. * Set up the size64 kmemlist for cpu before we can
  973. * begin anything. Make sure some other cpu on this
  974. * node has not already allocated this
  975. */
  976. if (!cachep->nodelists[node]) {
  977. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  978. if (!l3)
  979. goto bad;
  980. kmem_list3_init(l3);
  981. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  982. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  983. /*
  984. * The l3s don't come and go as CPUs come and
  985. * go. cache_chain_mutex is sufficient
  986. * protection here.
  987. */
  988. cachep->nodelists[node] = l3;
  989. }
  990. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  991. cachep->nodelists[node]->free_limit =
  992. (1 + nr_cpus_node(node)) *
  993. cachep->batchcount + cachep->num;
  994. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  995. }
  996. /*
  997. * Now we can go ahead with allocating the shared arrays and
  998. * array caches
  999. */
  1000. list_for_each_entry(cachep, &cache_chain, next) {
  1001. struct array_cache *nc;
  1002. struct array_cache *shared;
  1003. struct array_cache **alien;
  1004. nc = alloc_arraycache(node, cachep->limit,
  1005. cachep->batchcount);
  1006. if (!nc)
  1007. goto bad;
  1008. shared = alloc_arraycache(node,
  1009. cachep->shared * cachep->batchcount,
  1010. 0xbaadf00d);
  1011. if (!shared)
  1012. goto bad;
  1013. alien = alloc_alien_cache(node, cachep->limit);
  1014. if (!alien)
  1015. goto bad;
  1016. cachep->array[cpu] = nc;
  1017. l3 = cachep->nodelists[node];
  1018. BUG_ON(!l3);
  1019. spin_lock_irq(&l3->list_lock);
  1020. if (!l3->shared) {
  1021. /*
  1022. * We are serialised from CPU_DEAD or
  1023. * CPU_UP_CANCELLED by the cpucontrol lock
  1024. */
  1025. l3->shared = shared;
  1026. shared = NULL;
  1027. }
  1028. #ifdef CONFIG_NUMA
  1029. if (!l3->alien) {
  1030. l3->alien = alien;
  1031. alien = NULL;
  1032. }
  1033. #endif
  1034. spin_unlock_irq(&l3->list_lock);
  1035. kfree(shared);
  1036. free_alien_cache(alien);
  1037. }
  1038. mutex_unlock(&cache_chain_mutex);
  1039. break;
  1040. case CPU_ONLINE:
  1041. start_cpu_timer(cpu);
  1042. break;
  1043. #ifdef CONFIG_HOTPLUG_CPU
  1044. case CPU_DEAD:
  1045. /*
  1046. * Even if all the cpus of a node are down, we don't free the
  1047. * kmem_list3 of any cache. This to avoid a race between
  1048. * cpu_down, and a kmalloc allocation from another cpu for
  1049. * memory from the node of the cpu going down. The list3
  1050. * structure is usually allocated from kmem_cache_create() and
  1051. * gets destroyed at kmem_cache_destroy().
  1052. */
  1053. /* fall thru */
  1054. case CPU_UP_CANCELED:
  1055. mutex_lock(&cache_chain_mutex);
  1056. list_for_each_entry(cachep, &cache_chain, next) {
  1057. struct array_cache *nc;
  1058. struct array_cache *shared;
  1059. struct array_cache **alien;
  1060. cpumask_t mask;
  1061. mask = node_to_cpumask(node);
  1062. /* cpu is dead; no one can alloc from it. */
  1063. nc = cachep->array[cpu];
  1064. cachep->array[cpu] = NULL;
  1065. l3 = cachep->nodelists[node];
  1066. if (!l3)
  1067. goto free_array_cache;
  1068. spin_lock_irq(&l3->list_lock);
  1069. /* Free limit for this kmem_list3 */
  1070. l3->free_limit -= cachep->batchcount;
  1071. if (nc)
  1072. free_block(cachep, nc->entry, nc->avail, node);
  1073. if (!cpus_empty(mask)) {
  1074. spin_unlock_irq(&l3->list_lock);
  1075. goto free_array_cache;
  1076. }
  1077. shared = l3->shared;
  1078. if (shared) {
  1079. free_block(cachep, l3->shared->entry,
  1080. l3->shared->avail, node);
  1081. l3->shared = NULL;
  1082. }
  1083. alien = l3->alien;
  1084. l3->alien = NULL;
  1085. spin_unlock_irq(&l3->list_lock);
  1086. kfree(shared);
  1087. if (alien) {
  1088. drain_alien_cache(cachep, alien);
  1089. free_alien_cache(alien);
  1090. }
  1091. free_array_cache:
  1092. kfree(nc);
  1093. }
  1094. /*
  1095. * In the previous loop, all the objects were freed to
  1096. * the respective cache's slabs, now we can go ahead and
  1097. * shrink each nodelist to its limit.
  1098. */
  1099. list_for_each_entry(cachep, &cache_chain, next) {
  1100. l3 = cachep->nodelists[node];
  1101. if (!l3)
  1102. continue;
  1103. spin_lock_irq(&l3->list_lock);
  1104. /* free slabs belonging to this node */
  1105. __node_shrink(cachep, node);
  1106. spin_unlock_irq(&l3->list_lock);
  1107. }
  1108. mutex_unlock(&cache_chain_mutex);
  1109. break;
  1110. #endif
  1111. }
  1112. return NOTIFY_OK;
  1113. bad:
  1114. mutex_unlock(&cache_chain_mutex);
  1115. return NOTIFY_BAD;
  1116. }
  1117. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1118. /*
  1119. * swap the static kmem_list3 with kmalloced memory
  1120. */
  1121. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1122. int nodeid)
  1123. {
  1124. struct kmem_list3 *ptr;
  1125. BUG_ON(cachep->nodelists[nodeid] != list);
  1126. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1127. BUG_ON(!ptr);
  1128. local_irq_disable();
  1129. memcpy(ptr, list, sizeof(struct kmem_list3));
  1130. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1131. cachep->nodelists[nodeid] = ptr;
  1132. local_irq_enable();
  1133. }
  1134. /*
  1135. * Initialisation. Called after the page allocator have been initialised and
  1136. * before smp_init().
  1137. */
  1138. void __init kmem_cache_init(void)
  1139. {
  1140. size_t left_over;
  1141. struct cache_sizes *sizes;
  1142. struct cache_names *names;
  1143. int i;
  1144. int order;
  1145. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1146. kmem_list3_init(&initkmem_list3[i]);
  1147. if (i < MAX_NUMNODES)
  1148. cache_cache.nodelists[i] = NULL;
  1149. }
  1150. /*
  1151. * Fragmentation resistance on low memory - only use bigger
  1152. * page orders on machines with more than 32MB of memory.
  1153. */
  1154. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1155. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1156. /* Bootstrap is tricky, because several objects are allocated
  1157. * from caches that do not exist yet:
  1158. * 1) initialize the cache_cache cache: it contains the struct
  1159. * kmem_cache structures of all caches, except cache_cache itself:
  1160. * cache_cache is statically allocated.
  1161. * Initially an __init data area is used for the head array and the
  1162. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1163. * array at the end of the bootstrap.
  1164. * 2) Create the first kmalloc cache.
  1165. * The struct kmem_cache for the new cache is allocated normally.
  1166. * An __init data area is used for the head array.
  1167. * 3) Create the remaining kmalloc caches, with minimally sized
  1168. * head arrays.
  1169. * 4) Replace the __init data head arrays for cache_cache and the first
  1170. * kmalloc cache with kmalloc allocated arrays.
  1171. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1172. * the other cache's with kmalloc allocated memory.
  1173. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1174. */
  1175. /* 1) create the cache_cache */
  1176. INIT_LIST_HEAD(&cache_chain);
  1177. list_add(&cache_cache.next, &cache_chain);
  1178. cache_cache.colour_off = cache_line_size();
  1179. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1180. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1181. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1182. cache_line_size());
  1183. for (order = 0; order < MAX_ORDER; order++) {
  1184. cache_estimate(order, cache_cache.buffer_size,
  1185. cache_line_size(), 0, &left_over, &cache_cache.num);
  1186. if (cache_cache.num)
  1187. break;
  1188. }
  1189. BUG_ON(!cache_cache.num);
  1190. cache_cache.gfporder = order;
  1191. cache_cache.colour = left_over / cache_cache.colour_off;
  1192. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1193. sizeof(struct slab), cache_line_size());
  1194. /* 2+3) create the kmalloc caches */
  1195. sizes = malloc_sizes;
  1196. names = cache_names;
  1197. /*
  1198. * Initialize the caches that provide memory for the array cache and the
  1199. * kmem_list3 structures first. Without this, further allocations will
  1200. * bug.
  1201. */
  1202. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1203. sizes[INDEX_AC].cs_size,
  1204. ARCH_KMALLOC_MINALIGN,
  1205. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1206. NULL, NULL);
  1207. if (INDEX_AC != INDEX_L3) {
  1208. sizes[INDEX_L3].cs_cachep =
  1209. kmem_cache_create(names[INDEX_L3].name,
  1210. sizes[INDEX_L3].cs_size,
  1211. ARCH_KMALLOC_MINALIGN,
  1212. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1213. NULL, NULL);
  1214. }
  1215. slab_early_init = 0;
  1216. while (sizes->cs_size != ULONG_MAX) {
  1217. /*
  1218. * For performance, all the general caches are L1 aligned.
  1219. * This should be particularly beneficial on SMP boxes, as it
  1220. * eliminates "false sharing".
  1221. * Note for systems short on memory removing the alignment will
  1222. * allow tighter packing of the smaller caches.
  1223. */
  1224. if (!sizes->cs_cachep) {
  1225. sizes->cs_cachep = kmem_cache_create(names->name,
  1226. sizes->cs_size,
  1227. ARCH_KMALLOC_MINALIGN,
  1228. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1229. NULL, NULL);
  1230. }
  1231. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1232. sizes->cs_size,
  1233. ARCH_KMALLOC_MINALIGN,
  1234. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1235. SLAB_PANIC,
  1236. NULL, NULL);
  1237. sizes++;
  1238. names++;
  1239. }
  1240. /* 4) Replace the bootstrap head arrays */
  1241. {
  1242. void *ptr;
  1243. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1244. local_irq_disable();
  1245. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1246. memcpy(ptr, cpu_cache_get(&cache_cache),
  1247. sizeof(struct arraycache_init));
  1248. cache_cache.array[smp_processor_id()] = ptr;
  1249. local_irq_enable();
  1250. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1251. local_irq_disable();
  1252. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1253. != &initarray_generic.cache);
  1254. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1255. sizeof(struct arraycache_init));
  1256. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1257. ptr;
  1258. local_irq_enable();
  1259. }
  1260. /* 5) Replace the bootstrap kmem_list3's */
  1261. {
  1262. int node;
  1263. /* Replace the static kmem_list3 structures for the boot cpu */
  1264. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1265. numa_node_id());
  1266. for_each_online_node(node) {
  1267. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1268. &initkmem_list3[SIZE_AC + node], node);
  1269. if (INDEX_AC != INDEX_L3) {
  1270. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1271. &initkmem_list3[SIZE_L3 + node],
  1272. node);
  1273. }
  1274. }
  1275. }
  1276. /* 6) resize the head arrays to their final sizes */
  1277. {
  1278. struct kmem_cache *cachep;
  1279. mutex_lock(&cache_chain_mutex);
  1280. list_for_each_entry(cachep, &cache_chain, next)
  1281. enable_cpucache(cachep);
  1282. mutex_unlock(&cache_chain_mutex);
  1283. }
  1284. /* Done! */
  1285. g_cpucache_up = FULL;
  1286. /*
  1287. * Register a cpu startup notifier callback that initializes
  1288. * cpu_cache_get for all new cpus
  1289. */
  1290. register_cpu_notifier(&cpucache_notifier);
  1291. /*
  1292. * The reap timers are started later, with a module init call: That part
  1293. * of the kernel is not yet operational.
  1294. */
  1295. }
  1296. static int __init cpucache_init(void)
  1297. {
  1298. int cpu;
  1299. /*
  1300. * Register the timers that return unneeded pages to the page allocator
  1301. */
  1302. for_each_online_cpu(cpu)
  1303. start_cpu_timer(cpu);
  1304. return 0;
  1305. }
  1306. __initcall(cpucache_init);
  1307. /*
  1308. * Interface to system's page allocator. No need to hold the cache-lock.
  1309. *
  1310. * If we requested dmaable memory, we will get it. Even if we
  1311. * did not request dmaable memory, we might get it, but that
  1312. * would be relatively rare and ignorable.
  1313. */
  1314. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1315. {
  1316. struct page *page;
  1317. int nr_pages;
  1318. int i;
  1319. #ifndef CONFIG_MMU
  1320. /*
  1321. * Nommu uses slab's for process anonymous memory allocations, and thus
  1322. * requires __GFP_COMP to properly refcount higher order allocations
  1323. */
  1324. flags |= __GFP_COMP;
  1325. #endif
  1326. flags |= cachep->gfpflags;
  1327. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1328. if (!page)
  1329. return NULL;
  1330. nr_pages = (1 << cachep->gfporder);
  1331. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1332. atomic_add(nr_pages, &slab_reclaim_pages);
  1333. add_page_state(nr_slab, nr_pages);
  1334. for (i = 0; i < nr_pages; i++)
  1335. __SetPageSlab(page + i);
  1336. return page_address(page);
  1337. }
  1338. /*
  1339. * Interface to system's page release.
  1340. */
  1341. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1342. {
  1343. unsigned long i = (1 << cachep->gfporder);
  1344. struct page *page = virt_to_page(addr);
  1345. const unsigned long nr_freed = i;
  1346. while (i--) {
  1347. BUG_ON(!PageSlab(page));
  1348. __ClearPageSlab(page);
  1349. page++;
  1350. }
  1351. sub_page_state(nr_slab, nr_freed);
  1352. if (current->reclaim_state)
  1353. current->reclaim_state->reclaimed_slab += nr_freed;
  1354. free_pages((unsigned long)addr, cachep->gfporder);
  1355. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1356. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1357. }
  1358. static void kmem_rcu_free(struct rcu_head *head)
  1359. {
  1360. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1361. struct kmem_cache *cachep = slab_rcu->cachep;
  1362. kmem_freepages(cachep, slab_rcu->addr);
  1363. if (OFF_SLAB(cachep))
  1364. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1365. }
  1366. #if DEBUG
  1367. #ifdef CONFIG_DEBUG_PAGEALLOC
  1368. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1369. unsigned long caller)
  1370. {
  1371. int size = obj_size(cachep);
  1372. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1373. if (size < 5 * sizeof(unsigned long))
  1374. return;
  1375. *addr++ = 0x12345678;
  1376. *addr++ = caller;
  1377. *addr++ = smp_processor_id();
  1378. size -= 3 * sizeof(unsigned long);
  1379. {
  1380. unsigned long *sptr = &caller;
  1381. unsigned long svalue;
  1382. while (!kstack_end(sptr)) {
  1383. svalue = *sptr++;
  1384. if (kernel_text_address(svalue)) {
  1385. *addr++ = svalue;
  1386. size -= sizeof(unsigned long);
  1387. if (size <= sizeof(unsigned long))
  1388. break;
  1389. }
  1390. }
  1391. }
  1392. *addr++ = 0x87654321;
  1393. }
  1394. #endif
  1395. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1396. {
  1397. int size = obj_size(cachep);
  1398. addr = &((char *)addr)[obj_offset(cachep)];
  1399. memset(addr, val, size);
  1400. *(unsigned char *)(addr + size - 1) = POISON_END;
  1401. }
  1402. static void dump_line(char *data, int offset, int limit)
  1403. {
  1404. int i;
  1405. printk(KERN_ERR "%03x:", offset);
  1406. for (i = 0; i < limit; i++)
  1407. printk(" %02x", (unsigned char)data[offset + i]);
  1408. printk("\n");
  1409. }
  1410. #endif
  1411. #if DEBUG
  1412. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1413. {
  1414. int i, size;
  1415. char *realobj;
  1416. if (cachep->flags & SLAB_RED_ZONE) {
  1417. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1418. *dbg_redzone1(cachep, objp),
  1419. *dbg_redzone2(cachep, objp));
  1420. }
  1421. if (cachep->flags & SLAB_STORE_USER) {
  1422. printk(KERN_ERR "Last user: [<%p>]",
  1423. *dbg_userword(cachep, objp));
  1424. print_symbol("(%s)",
  1425. (unsigned long)*dbg_userword(cachep, objp));
  1426. printk("\n");
  1427. }
  1428. realobj = (char *)objp + obj_offset(cachep);
  1429. size = obj_size(cachep);
  1430. for (i = 0; i < size && lines; i += 16, lines--) {
  1431. int limit;
  1432. limit = 16;
  1433. if (i + limit > size)
  1434. limit = size - i;
  1435. dump_line(realobj, i, limit);
  1436. }
  1437. }
  1438. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1439. {
  1440. char *realobj;
  1441. int size, i;
  1442. int lines = 0;
  1443. realobj = (char *)objp + obj_offset(cachep);
  1444. size = obj_size(cachep);
  1445. for (i = 0; i < size; i++) {
  1446. char exp = POISON_FREE;
  1447. if (i == size - 1)
  1448. exp = POISON_END;
  1449. if (realobj[i] != exp) {
  1450. int limit;
  1451. /* Mismatch ! */
  1452. /* Print header */
  1453. if (lines == 0) {
  1454. printk(KERN_ERR
  1455. "Slab corruption: start=%p, len=%d\n",
  1456. realobj, size);
  1457. print_objinfo(cachep, objp, 0);
  1458. }
  1459. /* Hexdump the affected line */
  1460. i = (i / 16) * 16;
  1461. limit = 16;
  1462. if (i + limit > size)
  1463. limit = size - i;
  1464. dump_line(realobj, i, limit);
  1465. i += 16;
  1466. lines++;
  1467. /* Limit to 5 lines */
  1468. if (lines > 5)
  1469. break;
  1470. }
  1471. }
  1472. if (lines != 0) {
  1473. /* Print some data about the neighboring objects, if they
  1474. * exist:
  1475. */
  1476. struct slab *slabp = virt_to_slab(objp);
  1477. unsigned int objnr;
  1478. objnr = obj_to_index(cachep, slabp, objp);
  1479. if (objnr) {
  1480. objp = index_to_obj(cachep, slabp, objnr - 1);
  1481. realobj = (char *)objp + obj_offset(cachep);
  1482. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1483. realobj, size);
  1484. print_objinfo(cachep, objp, 2);
  1485. }
  1486. if (objnr + 1 < cachep->num) {
  1487. objp = index_to_obj(cachep, slabp, objnr + 1);
  1488. realobj = (char *)objp + obj_offset(cachep);
  1489. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1490. realobj, size);
  1491. print_objinfo(cachep, objp, 2);
  1492. }
  1493. }
  1494. }
  1495. #endif
  1496. #if DEBUG
  1497. /**
  1498. * slab_destroy_objs - destroy a slab and its objects
  1499. * @cachep: cache pointer being destroyed
  1500. * @slabp: slab pointer being destroyed
  1501. *
  1502. * Call the registered destructor for each object in a slab that is being
  1503. * destroyed.
  1504. */
  1505. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1506. {
  1507. int i;
  1508. for (i = 0; i < cachep->num; i++) {
  1509. void *objp = index_to_obj(cachep, slabp, i);
  1510. if (cachep->flags & SLAB_POISON) {
  1511. #ifdef CONFIG_DEBUG_PAGEALLOC
  1512. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1513. OFF_SLAB(cachep))
  1514. kernel_map_pages(virt_to_page(objp),
  1515. cachep->buffer_size / PAGE_SIZE, 1);
  1516. else
  1517. check_poison_obj(cachep, objp);
  1518. #else
  1519. check_poison_obj(cachep, objp);
  1520. #endif
  1521. }
  1522. if (cachep->flags & SLAB_RED_ZONE) {
  1523. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1524. slab_error(cachep, "start of a freed object "
  1525. "was overwritten");
  1526. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1527. slab_error(cachep, "end of a freed object "
  1528. "was overwritten");
  1529. }
  1530. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1531. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1532. }
  1533. }
  1534. #else
  1535. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1536. {
  1537. if (cachep->dtor) {
  1538. int i;
  1539. for (i = 0; i < cachep->num; i++) {
  1540. void *objp = index_to_obj(cachep, slabp, i);
  1541. (cachep->dtor) (objp, cachep, 0);
  1542. }
  1543. }
  1544. }
  1545. #endif
  1546. /**
  1547. * slab_destroy - destroy and release all objects in a slab
  1548. * @cachep: cache pointer being destroyed
  1549. * @slabp: slab pointer being destroyed
  1550. *
  1551. * Destroy all the objs in a slab, and release the mem back to the system.
  1552. * Before calling the slab must have been unlinked from the cache. The
  1553. * cache-lock is not held/needed.
  1554. */
  1555. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1556. {
  1557. void *addr = slabp->s_mem - slabp->colouroff;
  1558. slab_destroy_objs(cachep, slabp);
  1559. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1560. struct slab_rcu *slab_rcu;
  1561. slab_rcu = (struct slab_rcu *)slabp;
  1562. slab_rcu->cachep = cachep;
  1563. slab_rcu->addr = addr;
  1564. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1565. } else {
  1566. kmem_freepages(cachep, addr);
  1567. if (OFF_SLAB(cachep))
  1568. kmem_cache_free(cachep->slabp_cache, slabp);
  1569. }
  1570. }
  1571. /*
  1572. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1573. * size of kmem_list3.
  1574. */
  1575. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1576. {
  1577. int node;
  1578. for_each_online_node(node) {
  1579. cachep->nodelists[node] = &initkmem_list3[index + node];
  1580. cachep->nodelists[node]->next_reap = jiffies +
  1581. REAPTIMEOUT_LIST3 +
  1582. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1583. }
  1584. }
  1585. /**
  1586. * calculate_slab_order - calculate size (page order) of slabs
  1587. * @cachep: pointer to the cache that is being created
  1588. * @size: size of objects to be created in this cache.
  1589. * @align: required alignment for the objects.
  1590. * @flags: slab allocation flags
  1591. *
  1592. * Also calculates the number of objects per slab.
  1593. *
  1594. * This could be made much more intelligent. For now, try to avoid using
  1595. * high order pages for slabs. When the gfp() functions are more friendly
  1596. * towards high-order requests, this should be changed.
  1597. */
  1598. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1599. size_t size, size_t align, unsigned long flags)
  1600. {
  1601. unsigned long offslab_limit;
  1602. size_t left_over = 0;
  1603. int gfporder;
  1604. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1605. unsigned int num;
  1606. size_t remainder;
  1607. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1608. if (!num)
  1609. continue;
  1610. if (flags & CFLGS_OFF_SLAB) {
  1611. /*
  1612. * Max number of objs-per-slab for caches which
  1613. * use off-slab slabs. Needed to avoid a possible
  1614. * looping condition in cache_grow().
  1615. */
  1616. offslab_limit = size - sizeof(struct slab);
  1617. offslab_limit /= sizeof(kmem_bufctl_t);
  1618. if (num > offslab_limit)
  1619. break;
  1620. }
  1621. /* Found something acceptable - save it away */
  1622. cachep->num = num;
  1623. cachep->gfporder = gfporder;
  1624. left_over = remainder;
  1625. /*
  1626. * A VFS-reclaimable slab tends to have most allocations
  1627. * as GFP_NOFS and we really don't want to have to be allocating
  1628. * higher-order pages when we are unable to shrink dcache.
  1629. */
  1630. if (flags & SLAB_RECLAIM_ACCOUNT)
  1631. break;
  1632. /*
  1633. * Large number of objects is good, but very large slabs are
  1634. * currently bad for the gfp()s.
  1635. */
  1636. if (gfporder >= slab_break_gfp_order)
  1637. break;
  1638. /*
  1639. * Acceptable internal fragmentation?
  1640. */
  1641. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1642. break;
  1643. }
  1644. return left_over;
  1645. }
  1646. static void setup_cpu_cache(struct kmem_cache *cachep)
  1647. {
  1648. if (g_cpucache_up == FULL) {
  1649. enable_cpucache(cachep);
  1650. return;
  1651. }
  1652. if (g_cpucache_up == NONE) {
  1653. /*
  1654. * Note: the first kmem_cache_create must create the cache
  1655. * that's used by kmalloc(24), otherwise the creation of
  1656. * further caches will BUG().
  1657. */
  1658. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1659. /*
  1660. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1661. * the first cache, then we need to set up all its list3s,
  1662. * otherwise the creation of further caches will BUG().
  1663. */
  1664. set_up_list3s(cachep, SIZE_AC);
  1665. if (INDEX_AC == INDEX_L3)
  1666. g_cpucache_up = PARTIAL_L3;
  1667. else
  1668. g_cpucache_up = PARTIAL_AC;
  1669. } else {
  1670. cachep->array[smp_processor_id()] =
  1671. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1672. if (g_cpucache_up == PARTIAL_AC) {
  1673. set_up_list3s(cachep, SIZE_L3);
  1674. g_cpucache_up = PARTIAL_L3;
  1675. } else {
  1676. int node;
  1677. for_each_online_node(node) {
  1678. cachep->nodelists[node] =
  1679. kmalloc_node(sizeof(struct kmem_list3),
  1680. GFP_KERNEL, node);
  1681. BUG_ON(!cachep->nodelists[node]);
  1682. kmem_list3_init(cachep->nodelists[node]);
  1683. }
  1684. }
  1685. }
  1686. cachep->nodelists[numa_node_id()]->next_reap =
  1687. jiffies + REAPTIMEOUT_LIST3 +
  1688. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1689. cpu_cache_get(cachep)->avail = 0;
  1690. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1691. cpu_cache_get(cachep)->batchcount = 1;
  1692. cpu_cache_get(cachep)->touched = 0;
  1693. cachep->batchcount = 1;
  1694. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1695. }
  1696. /**
  1697. * kmem_cache_create - Create a cache.
  1698. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1699. * @size: The size of objects to be created in this cache.
  1700. * @align: The required alignment for the objects.
  1701. * @flags: SLAB flags
  1702. * @ctor: A constructor for the objects.
  1703. * @dtor: A destructor for the objects.
  1704. *
  1705. * Returns a ptr to the cache on success, NULL on failure.
  1706. * Cannot be called within a int, but can be interrupted.
  1707. * The @ctor is run when new pages are allocated by the cache
  1708. * and the @dtor is run before the pages are handed back.
  1709. *
  1710. * @name must be valid until the cache is destroyed. This implies that
  1711. * the module calling this has to destroy the cache before getting unloaded.
  1712. *
  1713. * The flags are
  1714. *
  1715. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1716. * to catch references to uninitialised memory.
  1717. *
  1718. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1719. * for buffer overruns.
  1720. *
  1721. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1722. * cacheline. This can be beneficial if you're counting cycles as closely
  1723. * as davem.
  1724. */
  1725. struct kmem_cache *
  1726. kmem_cache_create (const char *name, size_t size, size_t align,
  1727. unsigned long flags,
  1728. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1729. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1730. {
  1731. size_t left_over, slab_size, ralign;
  1732. struct kmem_cache *cachep = NULL, *pc;
  1733. /*
  1734. * Sanity checks... these are all serious usage bugs.
  1735. */
  1736. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1737. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1738. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1739. name);
  1740. BUG();
  1741. }
  1742. /*
  1743. * Prevent CPUs from coming and going.
  1744. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1745. */
  1746. lock_cpu_hotplug();
  1747. mutex_lock(&cache_chain_mutex);
  1748. list_for_each_entry(pc, &cache_chain, next) {
  1749. mm_segment_t old_fs = get_fs();
  1750. char tmp;
  1751. int res;
  1752. /*
  1753. * This happens when the module gets unloaded and doesn't
  1754. * destroy its slab cache and no-one else reuses the vmalloc
  1755. * area of the module. Print a warning.
  1756. */
  1757. set_fs(KERNEL_DS);
  1758. res = __get_user(tmp, pc->name);
  1759. set_fs(old_fs);
  1760. if (res) {
  1761. printk("SLAB: cache with size %d has lost its name\n",
  1762. pc->buffer_size);
  1763. continue;
  1764. }
  1765. if (!strcmp(pc->name, name)) {
  1766. printk("kmem_cache_create: duplicate cache %s\n", name);
  1767. dump_stack();
  1768. goto oops;
  1769. }
  1770. }
  1771. #if DEBUG
  1772. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1773. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1774. /* No constructor, but inital state check requested */
  1775. printk(KERN_ERR "%s: No con, but init state check "
  1776. "requested - %s\n", __FUNCTION__, name);
  1777. flags &= ~SLAB_DEBUG_INITIAL;
  1778. }
  1779. #if FORCED_DEBUG
  1780. /*
  1781. * Enable redzoning and last user accounting, except for caches with
  1782. * large objects, if the increased size would increase the object size
  1783. * above the next power of two: caches with object sizes just above a
  1784. * power of two have a significant amount of internal fragmentation.
  1785. */
  1786. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1787. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1788. if (!(flags & SLAB_DESTROY_BY_RCU))
  1789. flags |= SLAB_POISON;
  1790. #endif
  1791. if (flags & SLAB_DESTROY_BY_RCU)
  1792. BUG_ON(flags & SLAB_POISON);
  1793. #endif
  1794. if (flags & SLAB_DESTROY_BY_RCU)
  1795. BUG_ON(dtor);
  1796. /*
  1797. * Always checks flags, a caller might be expecting debug support which
  1798. * isn't available.
  1799. */
  1800. BUG_ON(flags & ~CREATE_MASK);
  1801. /*
  1802. * Check that size is in terms of words. This is needed to avoid
  1803. * unaligned accesses for some archs when redzoning is used, and makes
  1804. * sure any on-slab bufctl's are also correctly aligned.
  1805. */
  1806. if (size & (BYTES_PER_WORD - 1)) {
  1807. size += (BYTES_PER_WORD - 1);
  1808. size &= ~(BYTES_PER_WORD - 1);
  1809. }
  1810. /* calculate the final buffer alignment: */
  1811. /* 1) arch recommendation: can be overridden for debug */
  1812. if (flags & SLAB_HWCACHE_ALIGN) {
  1813. /*
  1814. * Default alignment: as specified by the arch code. Except if
  1815. * an object is really small, then squeeze multiple objects into
  1816. * one cacheline.
  1817. */
  1818. ralign = cache_line_size();
  1819. while (size <= ralign / 2)
  1820. ralign /= 2;
  1821. } else {
  1822. ralign = BYTES_PER_WORD;
  1823. }
  1824. /* 2) arch mandated alignment: disables debug if necessary */
  1825. if (ralign < ARCH_SLAB_MINALIGN) {
  1826. ralign = ARCH_SLAB_MINALIGN;
  1827. if (ralign > BYTES_PER_WORD)
  1828. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1829. }
  1830. /* 3) caller mandated alignment: disables debug if necessary */
  1831. if (ralign < align) {
  1832. ralign = align;
  1833. if (ralign > BYTES_PER_WORD)
  1834. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1835. }
  1836. /*
  1837. * 4) Store it. Note that the debug code below can reduce
  1838. * the alignment to BYTES_PER_WORD.
  1839. */
  1840. align = ralign;
  1841. /* Get cache's description obj. */
  1842. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1843. if (!cachep)
  1844. goto oops;
  1845. #if DEBUG
  1846. cachep->obj_size = size;
  1847. if (flags & SLAB_RED_ZONE) {
  1848. /* redzoning only works with word aligned caches */
  1849. align = BYTES_PER_WORD;
  1850. /* add space for red zone words */
  1851. cachep->obj_offset += BYTES_PER_WORD;
  1852. size += 2 * BYTES_PER_WORD;
  1853. }
  1854. if (flags & SLAB_STORE_USER) {
  1855. /* user store requires word alignment and
  1856. * one word storage behind the end of the real
  1857. * object.
  1858. */
  1859. align = BYTES_PER_WORD;
  1860. size += BYTES_PER_WORD;
  1861. }
  1862. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1863. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1864. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1865. cachep->obj_offset += PAGE_SIZE - size;
  1866. size = PAGE_SIZE;
  1867. }
  1868. #endif
  1869. #endif
  1870. /*
  1871. * Determine if the slab management is 'on' or 'off' slab.
  1872. * (bootstrapping cannot cope with offslab caches so don't do
  1873. * it too early on.)
  1874. */
  1875. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  1876. /*
  1877. * Size is large, assume best to place the slab management obj
  1878. * off-slab (should allow better packing of objs).
  1879. */
  1880. flags |= CFLGS_OFF_SLAB;
  1881. size = ALIGN(size, align);
  1882. left_over = calculate_slab_order(cachep, size, align, flags);
  1883. if (!cachep->num) {
  1884. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1885. kmem_cache_free(&cache_cache, cachep);
  1886. cachep = NULL;
  1887. goto oops;
  1888. }
  1889. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1890. + sizeof(struct slab), align);
  1891. /*
  1892. * If the slab has been placed off-slab, and we have enough space then
  1893. * move it on-slab. This is at the expense of any extra colouring.
  1894. */
  1895. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1896. flags &= ~CFLGS_OFF_SLAB;
  1897. left_over -= slab_size;
  1898. }
  1899. if (flags & CFLGS_OFF_SLAB) {
  1900. /* really off slab. No need for manual alignment */
  1901. slab_size =
  1902. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1903. }
  1904. cachep->colour_off = cache_line_size();
  1905. /* Offset must be a multiple of the alignment. */
  1906. if (cachep->colour_off < align)
  1907. cachep->colour_off = align;
  1908. cachep->colour = left_over / cachep->colour_off;
  1909. cachep->slab_size = slab_size;
  1910. cachep->flags = flags;
  1911. cachep->gfpflags = 0;
  1912. if (flags & SLAB_CACHE_DMA)
  1913. cachep->gfpflags |= GFP_DMA;
  1914. cachep->buffer_size = size;
  1915. if (flags & CFLGS_OFF_SLAB)
  1916. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1917. cachep->ctor = ctor;
  1918. cachep->dtor = dtor;
  1919. cachep->name = name;
  1920. setup_cpu_cache(cachep);
  1921. /* cache setup completed, link it into the list */
  1922. list_add(&cachep->next, &cache_chain);
  1923. oops:
  1924. if (!cachep && (flags & SLAB_PANIC))
  1925. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1926. name);
  1927. mutex_unlock(&cache_chain_mutex);
  1928. unlock_cpu_hotplug();
  1929. return cachep;
  1930. }
  1931. EXPORT_SYMBOL(kmem_cache_create);
  1932. #if DEBUG
  1933. static void check_irq_off(void)
  1934. {
  1935. BUG_ON(!irqs_disabled());
  1936. }
  1937. static void check_irq_on(void)
  1938. {
  1939. BUG_ON(irqs_disabled());
  1940. }
  1941. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1942. {
  1943. #ifdef CONFIG_SMP
  1944. check_irq_off();
  1945. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1946. #endif
  1947. }
  1948. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1949. {
  1950. #ifdef CONFIG_SMP
  1951. check_irq_off();
  1952. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1953. #endif
  1954. }
  1955. #else
  1956. #define check_irq_off() do { } while(0)
  1957. #define check_irq_on() do { } while(0)
  1958. #define check_spinlock_acquired(x) do { } while(0)
  1959. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1960. #endif
  1961. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1962. struct array_cache *ac,
  1963. int force, int node);
  1964. static void do_drain(void *arg)
  1965. {
  1966. struct kmem_cache *cachep = arg;
  1967. struct array_cache *ac;
  1968. int node = numa_node_id();
  1969. check_irq_off();
  1970. ac = cpu_cache_get(cachep);
  1971. spin_lock(&cachep->nodelists[node]->list_lock);
  1972. free_block(cachep, ac->entry, ac->avail, node);
  1973. spin_unlock(&cachep->nodelists[node]->list_lock);
  1974. ac->avail = 0;
  1975. }
  1976. static void drain_cpu_caches(struct kmem_cache *cachep)
  1977. {
  1978. struct kmem_list3 *l3;
  1979. int node;
  1980. on_each_cpu(do_drain, cachep, 1, 1);
  1981. check_irq_on();
  1982. for_each_online_node(node) {
  1983. l3 = cachep->nodelists[node];
  1984. if (l3 && l3->alien)
  1985. drain_alien_cache(cachep, l3->alien);
  1986. }
  1987. for_each_online_node(node) {
  1988. l3 = cachep->nodelists[node];
  1989. if (l3)
  1990. drain_array(cachep, l3, l3->shared, 1, node);
  1991. }
  1992. }
  1993. static int __node_shrink(struct kmem_cache *cachep, int node)
  1994. {
  1995. struct slab *slabp;
  1996. struct kmem_list3 *l3 = cachep->nodelists[node];
  1997. int ret;
  1998. for (;;) {
  1999. struct list_head *p;
  2000. p = l3->slabs_free.prev;
  2001. if (p == &l3->slabs_free)
  2002. break;
  2003. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  2004. #if DEBUG
  2005. BUG_ON(slabp->inuse);
  2006. #endif
  2007. list_del(&slabp->list);
  2008. l3->free_objects -= cachep->num;
  2009. spin_unlock_irq(&l3->list_lock);
  2010. slab_destroy(cachep, slabp);
  2011. spin_lock_irq(&l3->list_lock);
  2012. }
  2013. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  2014. return ret;
  2015. }
  2016. static int __cache_shrink(struct kmem_cache *cachep)
  2017. {
  2018. int ret = 0, i = 0;
  2019. struct kmem_list3 *l3;
  2020. drain_cpu_caches(cachep);
  2021. check_irq_on();
  2022. for_each_online_node(i) {
  2023. l3 = cachep->nodelists[i];
  2024. if (l3) {
  2025. spin_lock_irq(&l3->list_lock);
  2026. ret += __node_shrink(cachep, i);
  2027. spin_unlock_irq(&l3->list_lock);
  2028. }
  2029. }
  2030. return (ret ? 1 : 0);
  2031. }
  2032. /**
  2033. * kmem_cache_shrink - Shrink a cache.
  2034. * @cachep: The cache to shrink.
  2035. *
  2036. * Releases as many slabs as possible for a cache.
  2037. * To help debugging, a zero exit status indicates all slabs were released.
  2038. */
  2039. int kmem_cache_shrink(struct kmem_cache *cachep)
  2040. {
  2041. BUG_ON(!cachep || in_interrupt());
  2042. return __cache_shrink(cachep);
  2043. }
  2044. EXPORT_SYMBOL(kmem_cache_shrink);
  2045. /**
  2046. * kmem_cache_destroy - delete a cache
  2047. * @cachep: the cache to destroy
  2048. *
  2049. * Remove a struct kmem_cache object from the slab cache.
  2050. * Returns 0 on success.
  2051. *
  2052. * It is expected this function will be called by a module when it is
  2053. * unloaded. This will remove the cache completely, and avoid a duplicate
  2054. * cache being allocated each time a module is loaded and unloaded, if the
  2055. * module doesn't have persistent in-kernel storage across loads and unloads.
  2056. *
  2057. * The cache must be empty before calling this function.
  2058. *
  2059. * The caller must guarantee that noone will allocate memory from the cache
  2060. * during the kmem_cache_destroy().
  2061. */
  2062. int kmem_cache_destroy(struct kmem_cache *cachep)
  2063. {
  2064. int i;
  2065. struct kmem_list3 *l3;
  2066. BUG_ON(!cachep || in_interrupt());
  2067. /* Don't let CPUs to come and go */
  2068. lock_cpu_hotplug();
  2069. /* Find the cache in the chain of caches. */
  2070. mutex_lock(&cache_chain_mutex);
  2071. /*
  2072. * the chain is never empty, cache_cache is never destroyed
  2073. */
  2074. list_del(&cachep->next);
  2075. mutex_unlock(&cache_chain_mutex);
  2076. if (__cache_shrink(cachep)) {
  2077. slab_error(cachep, "Can't free all objects");
  2078. mutex_lock(&cache_chain_mutex);
  2079. list_add(&cachep->next, &cache_chain);
  2080. mutex_unlock(&cache_chain_mutex);
  2081. unlock_cpu_hotplug();
  2082. return 1;
  2083. }
  2084. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2085. synchronize_rcu();
  2086. for_each_online_cpu(i)
  2087. kfree(cachep->array[i]);
  2088. /* NUMA: free the list3 structures */
  2089. for_each_online_node(i) {
  2090. l3 = cachep->nodelists[i];
  2091. if (l3) {
  2092. kfree(l3->shared);
  2093. free_alien_cache(l3->alien);
  2094. kfree(l3);
  2095. }
  2096. }
  2097. kmem_cache_free(&cache_cache, cachep);
  2098. unlock_cpu_hotplug();
  2099. return 0;
  2100. }
  2101. EXPORT_SYMBOL(kmem_cache_destroy);
  2102. /* Get the memory for a slab management obj. */
  2103. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2104. int colour_off, gfp_t local_flags,
  2105. int nodeid)
  2106. {
  2107. struct slab *slabp;
  2108. if (OFF_SLAB(cachep)) {
  2109. /* Slab management obj is off-slab. */
  2110. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2111. local_flags, nodeid);
  2112. if (!slabp)
  2113. return NULL;
  2114. } else {
  2115. slabp = objp + colour_off;
  2116. colour_off += cachep->slab_size;
  2117. }
  2118. slabp->inuse = 0;
  2119. slabp->colouroff = colour_off;
  2120. slabp->s_mem = objp + colour_off;
  2121. slabp->nodeid = nodeid;
  2122. return slabp;
  2123. }
  2124. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2125. {
  2126. return (kmem_bufctl_t *) (slabp + 1);
  2127. }
  2128. static void cache_init_objs(struct kmem_cache *cachep,
  2129. struct slab *slabp, unsigned long ctor_flags)
  2130. {
  2131. int i;
  2132. for (i = 0; i < cachep->num; i++) {
  2133. void *objp = index_to_obj(cachep, slabp, i);
  2134. #if DEBUG
  2135. /* need to poison the objs? */
  2136. if (cachep->flags & SLAB_POISON)
  2137. poison_obj(cachep, objp, POISON_FREE);
  2138. if (cachep->flags & SLAB_STORE_USER)
  2139. *dbg_userword(cachep, objp) = NULL;
  2140. if (cachep->flags & SLAB_RED_ZONE) {
  2141. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2142. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2143. }
  2144. /*
  2145. * Constructors are not allowed to allocate memory from the same
  2146. * cache which they are a constructor for. Otherwise, deadlock.
  2147. * They must also be threaded.
  2148. */
  2149. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2150. cachep->ctor(objp + obj_offset(cachep), cachep,
  2151. ctor_flags);
  2152. if (cachep->flags & SLAB_RED_ZONE) {
  2153. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2154. slab_error(cachep, "constructor overwrote the"
  2155. " end of an object");
  2156. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2157. slab_error(cachep, "constructor overwrote the"
  2158. " start of an object");
  2159. }
  2160. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2161. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2162. kernel_map_pages(virt_to_page(objp),
  2163. cachep->buffer_size / PAGE_SIZE, 0);
  2164. #else
  2165. if (cachep->ctor)
  2166. cachep->ctor(objp, cachep, ctor_flags);
  2167. #endif
  2168. slab_bufctl(slabp)[i] = i + 1;
  2169. }
  2170. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2171. slabp->free = 0;
  2172. }
  2173. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2174. {
  2175. if (flags & SLAB_DMA)
  2176. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2177. else
  2178. BUG_ON(cachep->gfpflags & GFP_DMA);
  2179. }
  2180. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2181. int nodeid)
  2182. {
  2183. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2184. kmem_bufctl_t next;
  2185. slabp->inuse++;
  2186. next = slab_bufctl(slabp)[slabp->free];
  2187. #if DEBUG
  2188. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2189. WARN_ON(slabp->nodeid != nodeid);
  2190. #endif
  2191. slabp->free = next;
  2192. return objp;
  2193. }
  2194. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2195. void *objp, int nodeid)
  2196. {
  2197. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2198. #if DEBUG
  2199. /* Verify that the slab belongs to the intended node */
  2200. WARN_ON(slabp->nodeid != nodeid);
  2201. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2202. printk(KERN_ERR "slab: double free detected in cache "
  2203. "'%s', objp %p\n", cachep->name, objp);
  2204. BUG();
  2205. }
  2206. #endif
  2207. slab_bufctl(slabp)[objnr] = slabp->free;
  2208. slabp->free = objnr;
  2209. slabp->inuse--;
  2210. }
  2211. /*
  2212. * Map pages beginning at addr to the given cache and slab. This is required
  2213. * for the slab allocator to be able to lookup the cache and slab of a
  2214. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2215. */
  2216. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2217. void *addr)
  2218. {
  2219. int nr_pages;
  2220. struct page *page;
  2221. page = virt_to_page(addr);
  2222. nr_pages = 1;
  2223. if (likely(!PageCompound(page)))
  2224. nr_pages <<= cache->gfporder;
  2225. do {
  2226. page_set_cache(page, cache);
  2227. page_set_slab(page, slab);
  2228. page++;
  2229. } while (--nr_pages);
  2230. }
  2231. /*
  2232. * Grow (by 1) the number of slabs within a cache. This is called by
  2233. * kmem_cache_alloc() when there are no active objs left in a cache.
  2234. */
  2235. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2236. {
  2237. struct slab *slabp;
  2238. void *objp;
  2239. size_t offset;
  2240. gfp_t local_flags;
  2241. unsigned long ctor_flags;
  2242. struct kmem_list3 *l3;
  2243. /*
  2244. * Be lazy and only check for valid flags here, keeping it out of the
  2245. * critical path in kmem_cache_alloc().
  2246. */
  2247. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2248. if (flags & SLAB_NO_GROW)
  2249. return 0;
  2250. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2251. local_flags = (flags & SLAB_LEVEL_MASK);
  2252. if (!(local_flags & __GFP_WAIT))
  2253. /*
  2254. * Not allowed to sleep. Need to tell a constructor about
  2255. * this - it might need to know...
  2256. */
  2257. ctor_flags |= SLAB_CTOR_ATOMIC;
  2258. /* Take the l3 list lock to change the colour_next on this node */
  2259. check_irq_off();
  2260. l3 = cachep->nodelists[nodeid];
  2261. spin_lock(&l3->list_lock);
  2262. /* Get colour for the slab, and cal the next value. */
  2263. offset = l3->colour_next;
  2264. l3->colour_next++;
  2265. if (l3->colour_next >= cachep->colour)
  2266. l3->colour_next = 0;
  2267. spin_unlock(&l3->list_lock);
  2268. offset *= cachep->colour_off;
  2269. if (local_flags & __GFP_WAIT)
  2270. local_irq_enable();
  2271. /*
  2272. * The test for missing atomic flag is performed here, rather than
  2273. * the more obvious place, simply to reduce the critical path length
  2274. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2275. * will eventually be caught here (where it matters).
  2276. */
  2277. kmem_flagcheck(cachep, flags);
  2278. /*
  2279. * Get mem for the objs. Attempt to allocate a physical page from
  2280. * 'nodeid'.
  2281. */
  2282. objp = kmem_getpages(cachep, flags, nodeid);
  2283. if (!objp)
  2284. goto failed;
  2285. /* Get slab management. */
  2286. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2287. if (!slabp)
  2288. goto opps1;
  2289. slabp->nodeid = nodeid;
  2290. slab_map_pages(cachep, slabp, objp);
  2291. cache_init_objs(cachep, slabp, ctor_flags);
  2292. if (local_flags & __GFP_WAIT)
  2293. local_irq_disable();
  2294. check_irq_off();
  2295. spin_lock(&l3->list_lock);
  2296. /* Make slab active. */
  2297. list_add_tail(&slabp->list, &(l3->slabs_free));
  2298. STATS_INC_GROWN(cachep);
  2299. l3->free_objects += cachep->num;
  2300. spin_unlock(&l3->list_lock);
  2301. return 1;
  2302. opps1:
  2303. kmem_freepages(cachep, objp);
  2304. failed:
  2305. if (local_flags & __GFP_WAIT)
  2306. local_irq_disable();
  2307. return 0;
  2308. }
  2309. #if DEBUG
  2310. /*
  2311. * Perform extra freeing checks:
  2312. * - detect bad pointers.
  2313. * - POISON/RED_ZONE checking
  2314. * - destructor calls, for caches with POISON+dtor
  2315. */
  2316. static void kfree_debugcheck(const void *objp)
  2317. {
  2318. struct page *page;
  2319. if (!virt_addr_valid(objp)) {
  2320. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2321. (unsigned long)objp);
  2322. BUG();
  2323. }
  2324. page = virt_to_page(objp);
  2325. if (!PageSlab(page)) {
  2326. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2327. (unsigned long)objp);
  2328. BUG();
  2329. }
  2330. }
  2331. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2332. {
  2333. unsigned long redzone1, redzone2;
  2334. redzone1 = *dbg_redzone1(cache, obj);
  2335. redzone2 = *dbg_redzone2(cache, obj);
  2336. /*
  2337. * Redzone is ok.
  2338. */
  2339. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2340. return;
  2341. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2342. slab_error(cache, "double free detected");
  2343. else
  2344. slab_error(cache, "memory outside object was overwritten");
  2345. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2346. obj, redzone1, redzone2);
  2347. }
  2348. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2349. void *caller)
  2350. {
  2351. struct page *page;
  2352. unsigned int objnr;
  2353. struct slab *slabp;
  2354. objp -= obj_offset(cachep);
  2355. kfree_debugcheck(objp);
  2356. page = virt_to_page(objp);
  2357. slabp = page_get_slab(page);
  2358. if (cachep->flags & SLAB_RED_ZONE) {
  2359. verify_redzone_free(cachep, objp);
  2360. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2361. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2362. }
  2363. if (cachep->flags & SLAB_STORE_USER)
  2364. *dbg_userword(cachep, objp) = caller;
  2365. objnr = obj_to_index(cachep, slabp, objp);
  2366. BUG_ON(objnr >= cachep->num);
  2367. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2368. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2369. /*
  2370. * Need to call the slab's constructor so the caller can
  2371. * perform a verify of its state (debugging). Called without
  2372. * the cache-lock held.
  2373. */
  2374. cachep->ctor(objp + obj_offset(cachep),
  2375. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2376. }
  2377. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2378. /* we want to cache poison the object,
  2379. * call the destruction callback
  2380. */
  2381. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2382. }
  2383. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2384. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2385. #endif
  2386. if (cachep->flags & SLAB_POISON) {
  2387. #ifdef CONFIG_DEBUG_PAGEALLOC
  2388. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2389. store_stackinfo(cachep, objp, (unsigned long)caller);
  2390. kernel_map_pages(virt_to_page(objp),
  2391. cachep->buffer_size / PAGE_SIZE, 0);
  2392. } else {
  2393. poison_obj(cachep, objp, POISON_FREE);
  2394. }
  2395. #else
  2396. poison_obj(cachep, objp, POISON_FREE);
  2397. #endif
  2398. }
  2399. return objp;
  2400. }
  2401. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2402. {
  2403. kmem_bufctl_t i;
  2404. int entries = 0;
  2405. /* Check slab's freelist to see if this obj is there. */
  2406. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2407. entries++;
  2408. if (entries > cachep->num || i >= cachep->num)
  2409. goto bad;
  2410. }
  2411. if (entries != cachep->num - slabp->inuse) {
  2412. bad:
  2413. printk(KERN_ERR "slab: Internal list corruption detected in "
  2414. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2415. cachep->name, cachep->num, slabp, slabp->inuse);
  2416. for (i = 0;
  2417. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2418. i++) {
  2419. if (i % 16 == 0)
  2420. printk("\n%03x:", i);
  2421. printk(" %02x", ((unsigned char *)slabp)[i]);
  2422. }
  2423. printk("\n");
  2424. BUG();
  2425. }
  2426. }
  2427. #else
  2428. #define kfree_debugcheck(x) do { } while(0)
  2429. #define cache_free_debugcheck(x,objp,z) (objp)
  2430. #define check_slabp(x,y) do { } while(0)
  2431. #endif
  2432. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2433. {
  2434. int batchcount;
  2435. struct kmem_list3 *l3;
  2436. struct array_cache *ac;
  2437. check_irq_off();
  2438. ac = cpu_cache_get(cachep);
  2439. retry:
  2440. batchcount = ac->batchcount;
  2441. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2442. /*
  2443. * If there was little recent activity on this cache, then
  2444. * perform only a partial refill. Otherwise we could generate
  2445. * refill bouncing.
  2446. */
  2447. batchcount = BATCHREFILL_LIMIT;
  2448. }
  2449. l3 = cachep->nodelists[numa_node_id()];
  2450. BUG_ON(ac->avail > 0 || !l3);
  2451. spin_lock(&l3->list_lock);
  2452. /* See if we can refill from the shared array */
  2453. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2454. goto alloc_done;
  2455. while (batchcount > 0) {
  2456. struct list_head *entry;
  2457. struct slab *slabp;
  2458. /* Get slab alloc is to come from. */
  2459. entry = l3->slabs_partial.next;
  2460. if (entry == &l3->slabs_partial) {
  2461. l3->free_touched = 1;
  2462. entry = l3->slabs_free.next;
  2463. if (entry == &l3->slabs_free)
  2464. goto must_grow;
  2465. }
  2466. slabp = list_entry(entry, struct slab, list);
  2467. check_slabp(cachep, slabp);
  2468. check_spinlock_acquired(cachep);
  2469. while (slabp->inuse < cachep->num && batchcount--) {
  2470. STATS_INC_ALLOCED(cachep);
  2471. STATS_INC_ACTIVE(cachep);
  2472. STATS_SET_HIGH(cachep);
  2473. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2474. numa_node_id());
  2475. }
  2476. check_slabp(cachep, slabp);
  2477. /* move slabp to correct slabp list: */
  2478. list_del(&slabp->list);
  2479. if (slabp->free == BUFCTL_END)
  2480. list_add(&slabp->list, &l3->slabs_full);
  2481. else
  2482. list_add(&slabp->list, &l3->slabs_partial);
  2483. }
  2484. must_grow:
  2485. l3->free_objects -= ac->avail;
  2486. alloc_done:
  2487. spin_unlock(&l3->list_lock);
  2488. if (unlikely(!ac->avail)) {
  2489. int x;
  2490. x = cache_grow(cachep, flags, numa_node_id());
  2491. /* cache_grow can reenable interrupts, then ac could change. */
  2492. ac = cpu_cache_get(cachep);
  2493. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2494. return NULL;
  2495. if (!ac->avail) /* objects refilled by interrupt? */
  2496. goto retry;
  2497. }
  2498. ac->touched = 1;
  2499. return ac->entry[--ac->avail];
  2500. }
  2501. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2502. gfp_t flags)
  2503. {
  2504. might_sleep_if(flags & __GFP_WAIT);
  2505. #if DEBUG
  2506. kmem_flagcheck(cachep, flags);
  2507. #endif
  2508. }
  2509. #if DEBUG
  2510. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2511. gfp_t flags, void *objp, void *caller)
  2512. {
  2513. if (!objp)
  2514. return objp;
  2515. if (cachep->flags & SLAB_POISON) {
  2516. #ifdef CONFIG_DEBUG_PAGEALLOC
  2517. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2518. kernel_map_pages(virt_to_page(objp),
  2519. cachep->buffer_size / PAGE_SIZE, 1);
  2520. else
  2521. check_poison_obj(cachep, objp);
  2522. #else
  2523. check_poison_obj(cachep, objp);
  2524. #endif
  2525. poison_obj(cachep, objp, POISON_INUSE);
  2526. }
  2527. if (cachep->flags & SLAB_STORE_USER)
  2528. *dbg_userword(cachep, objp) = caller;
  2529. if (cachep->flags & SLAB_RED_ZONE) {
  2530. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2531. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2532. slab_error(cachep, "double free, or memory outside"
  2533. " object was overwritten");
  2534. printk(KERN_ERR
  2535. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2536. objp, *dbg_redzone1(cachep, objp),
  2537. *dbg_redzone2(cachep, objp));
  2538. }
  2539. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2540. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2541. }
  2542. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2543. {
  2544. struct slab *slabp;
  2545. unsigned objnr;
  2546. slabp = page_get_slab(virt_to_page(objp));
  2547. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2548. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2549. }
  2550. #endif
  2551. objp += obj_offset(cachep);
  2552. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2553. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2554. if (!(flags & __GFP_WAIT))
  2555. ctor_flags |= SLAB_CTOR_ATOMIC;
  2556. cachep->ctor(objp, cachep, ctor_flags);
  2557. }
  2558. return objp;
  2559. }
  2560. #else
  2561. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2562. #endif
  2563. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2564. {
  2565. void *objp;
  2566. struct array_cache *ac;
  2567. #ifdef CONFIG_NUMA
  2568. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2569. objp = alternate_node_alloc(cachep, flags);
  2570. if (objp != NULL)
  2571. return objp;
  2572. }
  2573. #endif
  2574. check_irq_off();
  2575. ac = cpu_cache_get(cachep);
  2576. if (likely(ac->avail)) {
  2577. STATS_INC_ALLOCHIT(cachep);
  2578. ac->touched = 1;
  2579. objp = ac->entry[--ac->avail];
  2580. } else {
  2581. STATS_INC_ALLOCMISS(cachep);
  2582. objp = cache_alloc_refill(cachep, flags);
  2583. }
  2584. return objp;
  2585. }
  2586. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2587. gfp_t flags, void *caller)
  2588. {
  2589. unsigned long save_flags;
  2590. void *objp;
  2591. cache_alloc_debugcheck_before(cachep, flags);
  2592. local_irq_save(save_flags);
  2593. objp = ____cache_alloc(cachep, flags);
  2594. local_irq_restore(save_flags);
  2595. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2596. caller);
  2597. prefetchw(objp);
  2598. return objp;
  2599. }
  2600. #ifdef CONFIG_NUMA
  2601. /*
  2602. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2603. *
  2604. * If we are in_interrupt, then process context, including cpusets and
  2605. * mempolicy, may not apply and should not be used for allocation policy.
  2606. */
  2607. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2608. {
  2609. int nid_alloc, nid_here;
  2610. if (in_interrupt())
  2611. return NULL;
  2612. nid_alloc = nid_here = numa_node_id();
  2613. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2614. nid_alloc = cpuset_mem_spread_node();
  2615. else if (current->mempolicy)
  2616. nid_alloc = slab_node(current->mempolicy);
  2617. if (nid_alloc != nid_here)
  2618. return __cache_alloc_node(cachep, flags, nid_alloc);
  2619. return NULL;
  2620. }
  2621. /*
  2622. * A interface to enable slab creation on nodeid
  2623. */
  2624. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2625. int nodeid)
  2626. {
  2627. struct list_head *entry;
  2628. struct slab *slabp;
  2629. struct kmem_list3 *l3;
  2630. void *obj;
  2631. int x;
  2632. l3 = cachep->nodelists[nodeid];
  2633. BUG_ON(!l3);
  2634. retry:
  2635. check_irq_off();
  2636. spin_lock(&l3->list_lock);
  2637. entry = l3->slabs_partial.next;
  2638. if (entry == &l3->slabs_partial) {
  2639. l3->free_touched = 1;
  2640. entry = l3->slabs_free.next;
  2641. if (entry == &l3->slabs_free)
  2642. goto must_grow;
  2643. }
  2644. slabp = list_entry(entry, struct slab, list);
  2645. check_spinlock_acquired_node(cachep, nodeid);
  2646. check_slabp(cachep, slabp);
  2647. STATS_INC_NODEALLOCS(cachep);
  2648. STATS_INC_ACTIVE(cachep);
  2649. STATS_SET_HIGH(cachep);
  2650. BUG_ON(slabp->inuse == cachep->num);
  2651. obj = slab_get_obj(cachep, slabp, nodeid);
  2652. check_slabp(cachep, slabp);
  2653. l3->free_objects--;
  2654. /* move slabp to correct slabp list: */
  2655. list_del(&slabp->list);
  2656. if (slabp->free == BUFCTL_END)
  2657. list_add(&slabp->list, &l3->slabs_full);
  2658. else
  2659. list_add(&slabp->list, &l3->slabs_partial);
  2660. spin_unlock(&l3->list_lock);
  2661. goto done;
  2662. must_grow:
  2663. spin_unlock(&l3->list_lock);
  2664. x = cache_grow(cachep, flags, nodeid);
  2665. if (!x)
  2666. return NULL;
  2667. goto retry;
  2668. done:
  2669. return obj;
  2670. }
  2671. #endif
  2672. /*
  2673. * Caller needs to acquire correct kmem_list's list_lock
  2674. */
  2675. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2676. int node)
  2677. {
  2678. int i;
  2679. struct kmem_list3 *l3;
  2680. for (i = 0; i < nr_objects; i++) {
  2681. void *objp = objpp[i];
  2682. struct slab *slabp;
  2683. slabp = virt_to_slab(objp);
  2684. l3 = cachep->nodelists[node];
  2685. list_del(&slabp->list);
  2686. check_spinlock_acquired_node(cachep, node);
  2687. check_slabp(cachep, slabp);
  2688. slab_put_obj(cachep, slabp, objp, node);
  2689. STATS_DEC_ACTIVE(cachep);
  2690. l3->free_objects++;
  2691. check_slabp(cachep, slabp);
  2692. /* fixup slab chains */
  2693. if (slabp->inuse == 0) {
  2694. if (l3->free_objects > l3->free_limit) {
  2695. l3->free_objects -= cachep->num;
  2696. slab_destroy(cachep, slabp);
  2697. } else {
  2698. list_add(&slabp->list, &l3->slabs_free);
  2699. }
  2700. } else {
  2701. /* Unconditionally move a slab to the end of the
  2702. * partial list on free - maximum time for the
  2703. * other objects to be freed, too.
  2704. */
  2705. list_add_tail(&slabp->list, &l3->slabs_partial);
  2706. }
  2707. }
  2708. }
  2709. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2710. {
  2711. int batchcount;
  2712. struct kmem_list3 *l3;
  2713. int node = numa_node_id();
  2714. batchcount = ac->batchcount;
  2715. #if DEBUG
  2716. BUG_ON(!batchcount || batchcount > ac->avail);
  2717. #endif
  2718. check_irq_off();
  2719. l3 = cachep->nodelists[node];
  2720. spin_lock(&l3->list_lock);
  2721. if (l3->shared) {
  2722. struct array_cache *shared_array = l3->shared;
  2723. int max = shared_array->limit - shared_array->avail;
  2724. if (max) {
  2725. if (batchcount > max)
  2726. batchcount = max;
  2727. memcpy(&(shared_array->entry[shared_array->avail]),
  2728. ac->entry, sizeof(void *) * batchcount);
  2729. shared_array->avail += batchcount;
  2730. goto free_done;
  2731. }
  2732. }
  2733. free_block(cachep, ac->entry, batchcount, node);
  2734. free_done:
  2735. #if STATS
  2736. {
  2737. int i = 0;
  2738. struct list_head *p;
  2739. p = l3->slabs_free.next;
  2740. while (p != &(l3->slabs_free)) {
  2741. struct slab *slabp;
  2742. slabp = list_entry(p, struct slab, list);
  2743. BUG_ON(slabp->inuse);
  2744. i++;
  2745. p = p->next;
  2746. }
  2747. STATS_SET_FREEABLE(cachep, i);
  2748. }
  2749. #endif
  2750. spin_unlock(&l3->list_lock);
  2751. ac->avail -= batchcount;
  2752. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2753. }
  2754. /*
  2755. * Release an obj back to its cache. If the obj has a constructed state, it must
  2756. * be in this state _before_ it is released. Called with disabled ints.
  2757. */
  2758. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2759. {
  2760. struct array_cache *ac = cpu_cache_get(cachep);
  2761. check_irq_off();
  2762. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2763. if (cache_free_alien(cachep, objp))
  2764. return;
  2765. if (likely(ac->avail < ac->limit)) {
  2766. STATS_INC_FREEHIT(cachep);
  2767. ac->entry[ac->avail++] = objp;
  2768. return;
  2769. } else {
  2770. STATS_INC_FREEMISS(cachep);
  2771. cache_flusharray(cachep, ac);
  2772. ac->entry[ac->avail++] = objp;
  2773. }
  2774. }
  2775. /**
  2776. * kmem_cache_alloc - Allocate an object
  2777. * @cachep: The cache to allocate from.
  2778. * @flags: See kmalloc().
  2779. *
  2780. * Allocate an object from this cache. The flags are only relevant
  2781. * if the cache has no available objects.
  2782. */
  2783. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2784. {
  2785. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2786. }
  2787. EXPORT_SYMBOL(kmem_cache_alloc);
  2788. /**
  2789. * kmem_cache_alloc - Allocate an object. The memory is set to zero.
  2790. * @cache: The cache to allocate from.
  2791. * @flags: See kmalloc().
  2792. *
  2793. * Allocate an object from this cache and set the allocated memory to zero.
  2794. * The flags are only relevant if the cache has no available objects.
  2795. */
  2796. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2797. {
  2798. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2799. if (ret)
  2800. memset(ret, 0, obj_size(cache));
  2801. return ret;
  2802. }
  2803. EXPORT_SYMBOL(kmem_cache_zalloc);
  2804. /**
  2805. * kmem_ptr_validate - check if an untrusted pointer might
  2806. * be a slab entry.
  2807. * @cachep: the cache we're checking against
  2808. * @ptr: pointer to validate
  2809. *
  2810. * This verifies that the untrusted pointer looks sane:
  2811. * it is _not_ a guarantee that the pointer is actually
  2812. * part of the slab cache in question, but it at least
  2813. * validates that the pointer can be dereferenced and
  2814. * looks half-way sane.
  2815. *
  2816. * Currently only used for dentry validation.
  2817. */
  2818. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2819. {
  2820. unsigned long addr = (unsigned long)ptr;
  2821. unsigned long min_addr = PAGE_OFFSET;
  2822. unsigned long align_mask = BYTES_PER_WORD - 1;
  2823. unsigned long size = cachep->buffer_size;
  2824. struct page *page;
  2825. if (unlikely(addr < min_addr))
  2826. goto out;
  2827. if (unlikely(addr > (unsigned long)high_memory - size))
  2828. goto out;
  2829. if (unlikely(addr & align_mask))
  2830. goto out;
  2831. if (unlikely(!kern_addr_valid(addr)))
  2832. goto out;
  2833. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2834. goto out;
  2835. page = virt_to_page(ptr);
  2836. if (unlikely(!PageSlab(page)))
  2837. goto out;
  2838. if (unlikely(page_get_cache(page) != cachep))
  2839. goto out;
  2840. return 1;
  2841. out:
  2842. return 0;
  2843. }
  2844. #ifdef CONFIG_NUMA
  2845. /**
  2846. * kmem_cache_alloc_node - Allocate an object on the specified node
  2847. * @cachep: The cache to allocate from.
  2848. * @flags: See kmalloc().
  2849. * @nodeid: node number of the target node.
  2850. *
  2851. * Identical to kmem_cache_alloc, except that this function is slow
  2852. * and can sleep. And it will allocate memory on the given node, which
  2853. * can improve the performance for cpu bound structures.
  2854. * New and improved: it will now make sure that the object gets
  2855. * put on the correct node list so that there is no false sharing.
  2856. */
  2857. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2858. {
  2859. unsigned long save_flags;
  2860. void *ptr;
  2861. cache_alloc_debugcheck_before(cachep, flags);
  2862. local_irq_save(save_flags);
  2863. if (nodeid == -1 || nodeid == numa_node_id() ||
  2864. !cachep->nodelists[nodeid])
  2865. ptr = ____cache_alloc(cachep, flags);
  2866. else
  2867. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2868. local_irq_restore(save_flags);
  2869. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2870. __builtin_return_address(0));
  2871. return ptr;
  2872. }
  2873. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2874. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2875. {
  2876. struct kmem_cache *cachep;
  2877. cachep = kmem_find_general_cachep(size, flags);
  2878. if (unlikely(cachep == NULL))
  2879. return NULL;
  2880. return kmem_cache_alloc_node(cachep, flags, node);
  2881. }
  2882. EXPORT_SYMBOL(kmalloc_node);
  2883. #endif
  2884. /**
  2885. * __do_kmalloc - allocate memory
  2886. * @size: how many bytes of memory are required.
  2887. * @flags: the type of memory to allocate (see kmalloc).
  2888. * @caller: function caller for debug tracking of the caller
  2889. */
  2890. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2891. void *caller)
  2892. {
  2893. struct kmem_cache *cachep;
  2894. /* If you want to save a few bytes .text space: replace
  2895. * __ with kmem_.
  2896. * Then kmalloc uses the uninlined functions instead of the inline
  2897. * functions.
  2898. */
  2899. cachep = __find_general_cachep(size, flags);
  2900. if (unlikely(cachep == NULL))
  2901. return NULL;
  2902. return __cache_alloc(cachep, flags, caller);
  2903. }
  2904. void *__kmalloc(size_t size, gfp_t flags)
  2905. {
  2906. #ifndef CONFIG_DEBUG_SLAB
  2907. return __do_kmalloc(size, flags, NULL);
  2908. #else
  2909. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2910. #endif
  2911. }
  2912. EXPORT_SYMBOL(__kmalloc);
  2913. #ifdef CONFIG_DEBUG_SLAB
  2914. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2915. {
  2916. return __do_kmalloc(size, flags, caller);
  2917. }
  2918. EXPORT_SYMBOL(__kmalloc_track_caller);
  2919. #endif
  2920. #ifdef CONFIG_SMP
  2921. /**
  2922. * __alloc_percpu - allocate one copy of the object for every present
  2923. * cpu in the system, zeroing them.
  2924. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2925. *
  2926. * @size: how many bytes of memory are required.
  2927. */
  2928. void *__alloc_percpu(size_t size)
  2929. {
  2930. int i;
  2931. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2932. if (!pdata)
  2933. return NULL;
  2934. /*
  2935. * Cannot use for_each_online_cpu since a cpu may come online
  2936. * and we have no way of figuring out how to fix the array
  2937. * that we have allocated then....
  2938. */
  2939. for_each_possible_cpu(i) {
  2940. int node = cpu_to_node(i);
  2941. if (node_online(node))
  2942. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2943. else
  2944. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2945. if (!pdata->ptrs[i])
  2946. goto unwind_oom;
  2947. memset(pdata->ptrs[i], 0, size);
  2948. }
  2949. /* Catch derefs w/o wrappers */
  2950. return (void *)(~(unsigned long)pdata);
  2951. unwind_oom:
  2952. while (--i >= 0) {
  2953. if (!cpu_possible(i))
  2954. continue;
  2955. kfree(pdata->ptrs[i]);
  2956. }
  2957. kfree(pdata);
  2958. return NULL;
  2959. }
  2960. EXPORT_SYMBOL(__alloc_percpu);
  2961. #endif
  2962. /**
  2963. * kmem_cache_free - Deallocate an object
  2964. * @cachep: The cache the allocation was from.
  2965. * @objp: The previously allocated object.
  2966. *
  2967. * Free an object which was previously allocated from this
  2968. * cache.
  2969. */
  2970. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2971. {
  2972. unsigned long flags;
  2973. BUG_ON(virt_to_cache(objp) != cachep);
  2974. local_irq_save(flags);
  2975. __cache_free(cachep, objp);
  2976. local_irq_restore(flags);
  2977. }
  2978. EXPORT_SYMBOL(kmem_cache_free);
  2979. /**
  2980. * kfree - free previously allocated memory
  2981. * @objp: pointer returned by kmalloc.
  2982. *
  2983. * If @objp is NULL, no operation is performed.
  2984. *
  2985. * Don't free memory not originally allocated by kmalloc()
  2986. * or you will run into trouble.
  2987. */
  2988. void kfree(const void *objp)
  2989. {
  2990. struct kmem_cache *c;
  2991. unsigned long flags;
  2992. if (unlikely(!objp))
  2993. return;
  2994. local_irq_save(flags);
  2995. kfree_debugcheck(objp);
  2996. c = virt_to_cache(objp);
  2997. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2998. __cache_free(c, (void *)objp);
  2999. local_irq_restore(flags);
  3000. }
  3001. EXPORT_SYMBOL(kfree);
  3002. #ifdef CONFIG_SMP
  3003. /**
  3004. * free_percpu - free previously allocated percpu memory
  3005. * @objp: pointer returned by alloc_percpu.
  3006. *
  3007. * Don't free memory not originally allocated by alloc_percpu()
  3008. * The complemented objp is to check for that.
  3009. */
  3010. void free_percpu(const void *objp)
  3011. {
  3012. int i;
  3013. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3014. /*
  3015. * We allocate for all cpus so we cannot use for online cpu here.
  3016. */
  3017. for_each_possible_cpu(i)
  3018. kfree(p->ptrs[i]);
  3019. kfree(p);
  3020. }
  3021. EXPORT_SYMBOL(free_percpu);
  3022. #endif
  3023. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3024. {
  3025. return obj_size(cachep);
  3026. }
  3027. EXPORT_SYMBOL(kmem_cache_size);
  3028. const char *kmem_cache_name(struct kmem_cache *cachep)
  3029. {
  3030. return cachep->name;
  3031. }
  3032. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3033. /*
  3034. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3035. */
  3036. static int alloc_kmemlist(struct kmem_cache *cachep)
  3037. {
  3038. int node;
  3039. struct kmem_list3 *l3;
  3040. struct array_cache *new_shared;
  3041. struct array_cache **new_alien;
  3042. for_each_online_node(node) {
  3043. new_alien = alloc_alien_cache(node, cachep->limit);
  3044. if (!new_alien)
  3045. goto fail;
  3046. new_shared = alloc_arraycache(node,
  3047. cachep->shared*cachep->batchcount,
  3048. 0xbaadf00d);
  3049. if (!new_shared) {
  3050. free_alien_cache(new_alien);
  3051. goto fail;
  3052. }
  3053. l3 = cachep->nodelists[node];
  3054. if (l3) {
  3055. struct array_cache *shared = l3->shared;
  3056. spin_lock_irq(&l3->list_lock);
  3057. if (shared)
  3058. free_block(cachep, shared->entry,
  3059. shared->avail, node);
  3060. l3->shared = new_shared;
  3061. if (!l3->alien) {
  3062. l3->alien = new_alien;
  3063. new_alien = NULL;
  3064. }
  3065. l3->free_limit = (1 + nr_cpus_node(node)) *
  3066. cachep->batchcount + cachep->num;
  3067. spin_unlock_irq(&l3->list_lock);
  3068. kfree(shared);
  3069. free_alien_cache(new_alien);
  3070. continue;
  3071. }
  3072. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3073. if (!l3) {
  3074. free_alien_cache(new_alien);
  3075. kfree(new_shared);
  3076. goto fail;
  3077. }
  3078. kmem_list3_init(l3);
  3079. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3080. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3081. l3->shared = new_shared;
  3082. l3->alien = new_alien;
  3083. l3->free_limit = (1 + nr_cpus_node(node)) *
  3084. cachep->batchcount + cachep->num;
  3085. cachep->nodelists[node] = l3;
  3086. }
  3087. return 0;
  3088. fail:
  3089. if (!cachep->next.next) {
  3090. /* Cache is not active yet. Roll back what we did */
  3091. node--;
  3092. while (node >= 0) {
  3093. if (cachep->nodelists[node]) {
  3094. l3 = cachep->nodelists[node];
  3095. kfree(l3->shared);
  3096. free_alien_cache(l3->alien);
  3097. kfree(l3);
  3098. cachep->nodelists[node] = NULL;
  3099. }
  3100. node--;
  3101. }
  3102. }
  3103. return -ENOMEM;
  3104. }
  3105. struct ccupdate_struct {
  3106. struct kmem_cache *cachep;
  3107. struct array_cache *new[NR_CPUS];
  3108. };
  3109. static void do_ccupdate_local(void *info)
  3110. {
  3111. struct ccupdate_struct *new = info;
  3112. struct array_cache *old;
  3113. check_irq_off();
  3114. old = cpu_cache_get(new->cachep);
  3115. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3116. new->new[smp_processor_id()] = old;
  3117. }
  3118. /* Always called with the cache_chain_mutex held */
  3119. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3120. int batchcount, int shared)
  3121. {
  3122. struct ccupdate_struct new;
  3123. int i, err;
  3124. memset(&new.new, 0, sizeof(new.new));
  3125. for_each_online_cpu(i) {
  3126. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3127. batchcount);
  3128. if (!new.new[i]) {
  3129. for (i--; i >= 0; i--)
  3130. kfree(new.new[i]);
  3131. return -ENOMEM;
  3132. }
  3133. }
  3134. new.cachep = cachep;
  3135. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3136. check_irq_on();
  3137. cachep->batchcount = batchcount;
  3138. cachep->limit = limit;
  3139. cachep->shared = shared;
  3140. for_each_online_cpu(i) {
  3141. struct array_cache *ccold = new.new[i];
  3142. if (!ccold)
  3143. continue;
  3144. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3145. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3146. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3147. kfree(ccold);
  3148. }
  3149. err = alloc_kmemlist(cachep);
  3150. if (err) {
  3151. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3152. cachep->name, -err);
  3153. BUG();
  3154. }
  3155. return 0;
  3156. }
  3157. /* Called with cache_chain_mutex held always */
  3158. static void enable_cpucache(struct kmem_cache *cachep)
  3159. {
  3160. int err;
  3161. int limit, shared;
  3162. /*
  3163. * The head array serves three purposes:
  3164. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3165. * - reduce the number of spinlock operations.
  3166. * - reduce the number of linked list operations on the slab and
  3167. * bufctl chains: array operations are cheaper.
  3168. * The numbers are guessed, we should auto-tune as described by
  3169. * Bonwick.
  3170. */
  3171. if (cachep->buffer_size > 131072)
  3172. limit = 1;
  3173. else if (cachep->buffer_size > PAGE_SIZE)
  3174. limit = 8;
  3175. else if (cachep->buffer_size > 1024)
  3176. limit = 24;
  3177. else if (cachep->buffer_size > 256)
  3178. limit = 54;
  3179. else
  3180. limit = 120;
  3181. /*
  3182. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3183. * allocation behaviour: Most allocs on one cpu, most free operations
  3184. * on another cpu. For these cases, an efficient object passing between
  3185. * cpus is necessary. This is provided by a shared array. The array
  3186. * replaces Bonwick's magazine layer.
  3187. * On uniprocessor, it's functionally equivalent (but less efficient)
  3188. * to a larger limit. Thus disabled by default.
  3189. */
  3190. shared = 0;
  3191. #ifdef CONFIG_SMP
  3192. if (cachep->buffer_size <= PAGE_SIZE)
  3193. shared = 8;
  3194. #endif
  3195. #if DEBUG
  3196. /*
  3197. * With debugging enabled, large batchcount lead to excessively long
  3198. * periods with disabled local interrupts. Limit the batchcount
  3199. */
  3200. if (limit > 32)
  3201. limit = 32;
  3202. #endif
  3203. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3204. if (err)
  3205. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3206. cachep->name, -err);
  3207. }
  3208. /*
  3209. * Drain an array if it contains any elements taking the l3 lock only if
  3210. * necessary. Note that the l3 listlock also protects the array_cache
  3211. * if drain_array() is used on the shared array.
  3212. */
  3213. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3214. struct array_cache *ac, int force, int node)
  3215. {
  3216. int tofree;
  3217. if (!ac || !ac->avail)
  3218. return;
  3219. if (ac->touched && !force) {
  3220. ac->touched = 0;
  3221. } else {
  3222. spin_lock_irq(&l3->list_lock);
  3223. if (ac->avail) {
  3224. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3225. if (tofree > ac->avail)
  3226. tofree = (ac->avail + 1) / 2;
  3227. free_block(cachep, ac->entry, tofree, node);
  3228. ac->avail -= tofree;
  3229. memmove(ac->entry, &(ac->entry[tofree]),
  3230. sizeof(void *) * ac->avail);
  3231. }
  3232. spin_unlock_irq(&l3->list_lock);
  3233. }
  3234. }
  3235. /**
  3236. * cache_reap - Reclaim memory from caches.
  3237. * @unused: unused parameter
  3238. *
  3239. * Called from workqueue/eventd every few seconds.
  3240. * Purpose:
  3241. * - clear the per-cpu caches for this CPU.
  3242. * - return freeable pages to the main free memory pool.
  3243. *
  3244. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3245. * again on the next iteration.
  3246. */
  3247. static void cache_reap(void *unused)
  3248. {
  3249. struct kmem_cache *searchp;
  3250. struct kmem_list3 *l3;
  3251. int node = numa_node_id();
  3252. if (!mutex_trylock(&cache_chain_mutex)) {
  3253. /* Give up. Setup the next iteration. */
  3254. schedule_delayed_work(&__get_cpu_var(reap_work),
  3255. REAPTIMEOUT_CPUC);
  3256. return;
  3257. }
  3258. list_for_each_entry(searchp, &cache_chain, next) {
  3259. struct list_head *p;
  3260. int tofree;
  3261. struct slab *slabp;
  3262. check_irq_on();
  3263. /*
  3264. * We only take the l3 lock if absolutely necessary and we
  3265. * have established with reasonable certainty that
  3266. * we can do some work if the lock was obtained.
  3267. */
  3268. l3 = searchp->nodelists[node];
  3269. reap_alien(searchp, l3);
  3270. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3271. /*
  3272. * These are racy checks but it does not matter
  3273. * if we skip one check or scan twice.
  3274. */
  3275. if (time_after(l3->next_reap, jiffies))
  3276. goto next;
  3277. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3278. drain_array(searchp, l3, l3->shared, 0, node);
  3279. if (l3->free_touched) {
  3280. l3->free_touched = 0;
  3281. goto next;
  3282. }
  3283. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3284. (5 * searchp->num);
  3285. do {
  3286. /*
  3287. * Do not lock if there are no free blocks.
  3288. */
  3289. if (list_empty(&l3->slabs_free))
  3290. break;
  3291. spin_lock_irq(&l3->list_lock);
  3292. p = l3->slabs_free.next;
  3293. if (p == &(l3->slabs_free)) {
  3294. spin_unlock_irq(&l3->list_lock);
  3295. break;
  3296. }
  3297. slabp = list_entry(p, struct slab, list);
  3298. BUG_ON(slabp->inuse);
  3299. list_del(&slabp->list);
  3300. STATS_INC_REAPED(searchp);
  3301. /*
  3302. * Safe to drop the lock. The slab is no longer linked
  3303. * to the cache. searchp cannot disappear, we hold
  3304. * cache_chain_lock
  3305. */
  3306. l3->free_objects -= searchp->num;
  3307. spin_unlock_irq(&l3->list_lock);
  3308. slab_destroy(searchp, slabp);
  3309. } while (--tofree > 0);
  3310. next:
  3311. cond_resched();
  3312. }
  3313. check_irq_on();
  3314. mutex_unlock(&cache_chain_mutex);
  3315. next_reap_node();
  3316. /* Set up the next iteration */
  3317. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3318. }
  3319. #ifdef CONFIG_PROC_FS
  3320. static void print_slabinfo_header(struct seq_file *m)
  3321. {
  3322. /*
  3323. * Output format version, so at least we can change it
  3324. * without _too_ many complaints.
  3325. */
  3326. #if STATS
  3327. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3328. #else
  3329. seq_puts(m, "slabinfo - version: 2.1\n");
  3330. #endif
  3331. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3332. "<objperslab> <pagesperslab>");
  3333. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3334. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3335. #if STATS
  3336. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3337. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3338. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3339. #endif
  3340. seq_putc(m, '\n');
  3341. }
  3342. static void *s_start(struct seq_file *m, loff_t *pos)
  3343. {
  3344. loff_t n = *pos;
  3345. struct list_head *p;
  3346. mutex_lock(&cache_chain_mutex);
  3347. if (!n)
  3348. print_slabinfo_header(m);
  3349. p = cache_chain.next;
  3350. while (n--) {
  3351. p = p->next;
  3352. if (p == &cache_chain)
  3353. return NULL;
  3354. }
  3355. return list_entry(p, struct kmem_cache, next);
  3356. }
  3357. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3358. {
  3359. struct kmem_cache *cachep = p;
  3360. ++*pos;
  3361. return cachep->next.next == &cache_chain ?
  3362. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3363. }
  3364. static void s_stop(struct seq_file *m, void *p)
  3365. {
  3366. mutex_unlock(&cache_chain_mutex);
  3367. }
  3368. static int s_show(struct seq_file *m, void *p)
  3369. {
  3370. struct kmem_cache *cachep = p;
  3371. struct slab *slabp;
  3372. unsigned long active_objs;
  3373. unsigned long num_objs;
  3374. unsigned long active_slabs = 0;
  3375. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3376. const char *name;
  3377. char *error = NULL;
  3378. int node;
  3379. struct kmem_list3 *l3;
  3380. active_objs = 0;
  3381. num_slabs = 0;
  3382. for_each_online_node(node) {
  3383. l3 = cachep->nodelists[node];
  3384. if (!l3)
  3385. continue;
  3386. check_irq_on();
  3387. spin_lock_irq(&l3->list_lock);
  3388. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3389. if (slabp->inuse != cachep->num && !error)
  3390. error = "slabs_full accounting error";
  3391. active_objs += cachep->num;
  3392. active_slabs++;
  3393. }
  3394. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3395. if (slabp->inuse == cachep->num && !error)
  3396. error = "slabs_partial inuse accounting error";
  3397. if (!slabp->inuse && !error)
  3398. error = "slabs_partial/inuse accounting error";
  3399. active_objs += slabp->inuse;
  3400. active_slabs++;
  3401. }
  3402. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3403. if (slabp->inuse && !error)
  3404. error = "slabs_free/inuse accounting error";
  3405. num_slabs++;
  3406. }
  3407. free_objects += l3->free_objects;
  3408. if (l3->shared)
  3409. shared_avail += l3->shared->avail;
  3410. spin_unlock_irq(&l3->list_lock);
  3411. }
  3412. num_slabs += active_slabs;
  3413. num_objs = num_slabs * cachep->num;
  3414. if (num_objs - active_objs != free_objects && !error)
  3415. error = "free_objects accounting error";
  3416. name = cachep->name;
  3417. if (error)
  3418. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3419. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3420. name, active_objs, num_objs, cachep->buffer_size,
  3421. cachep->num, (1 << cachep->gfporder));
  3422. seq_printf(m, " : tunables %4u %4u %4u",
  3423. cachep->limit, cachep->batchcount, cachep->shared);
  3424. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3425. active_slabs, num_slabs, shared_avail);
  3426. #if STATS
  3427. { /* list3 stats */
  3428. unsigned long high = cachep->high_mark;
  3429. unsigned long allocs = cachep->num_allocations;
  3430. unsigned long grown = cachep->grown;
  3431. unsigned long reaped = cachep->reaped;
  3432. unsigned long errors = cachep->errors;
  3433. unsigned long max_freeable = cachep->max_freeable;
  3434. unsigned long node_allocs = cachep->node_allocs;
  3435. unsigned long node_frees = cachep->node_frees;
  3436. unsigned long overflows = cachep->node_overflow;
  3437. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3438. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3439. reaped, errors, max_freeable, node_allocs,
  3440. node_frees, overflows);
  3441. }
  3442. /* cpu stats */
  3443. {
  3444. unsigned long allochit = atomic_read(&cachep->allochit);
  3445. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3446. unsigned long freehit = atomic_read(&cachep->freehit);
  3447. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3448. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3449. allochit, allocmiss, freehit, freemiss);
  3450. }
  3451. #endif
  3452. seq_putc(m, '\n');
  3453. return 0;
  3454. }
  3455. /*
  3456. * slabinfo_op - iterator that generates /proc/slabinfo
  3457. *
  3458. * Output layout:
  3459. * cache-name
  3460. * num-active-objs
  3461. * total-objs
  3462. * object size
  3463. * num-active-slabs
  3464. * total-slabs
  3465. * num-pages-per-slab
  3466. * + further values on SMP and with statistics enabled
  3467. */
  3468. struct seq_operations slabinfo_op = {
  3469. .start = s_start,
  3470. .next = s_next,
  3471. .stop = s_stop,
  3472. .show = s_show,
  3473. };
  3474. #define MAX_SLABINFO_WRITE 128
  3475. /**
  3476. * slabinfo_write - Tuning for the slab allocator
  3477. * @file: unused
  3478. * @buffer: user buffer
  3479. * @count: data length
  3480. * @ppos: unused
  3481. */
  3482. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3483. size_t count, loff_t *ppos)
  3484. {
  3485. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3486. int limit, batchcount, shared, res;
  3487. struct kmem_cache *cachep;
  3488. if (count > MAX_SLABINFO_WRITE)
  3489. return -EINVAL;
  3490. if (copy_from_user(&kbuf, buffer, count))
  3491. return -EFAULT;
  3492. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3493. tmp = strchr(kbuf, ' ');
  3494. if (!tmp)
  3495. return -EINVAL;
  3496. *tmp = '\0';
  3497. tmp++;
  3498. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3499. return -EINVAL;
  3500. /* Find the cache in the chain of caches. */
  3501. mutex_lock(&cache_chain_mutex);
  3502. res = -EINVAL;
  3503. list_for_each_entry(cachep, &cache_chain, next) {
  3504. if (!strcmp(cachep->name, kbuf)) {
  3505. if (limit < 1 || batchcount < 1 ||
  3506. batchcount > limit || shared < 0) {
  3507. res = 0;
  3508. } else {
  3509. res = do_tune_cpucache(cachep, limit,
  3510. batchcount, shared);
  3511. }
  3512. break;
  3513. }
  3514. }
  3515. mutex_unlock(&cache_chain_mutex);
  3516. if (res >= 0)
  3517. res = count;
  3518. return res;
  3519. }
  3520. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3521. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3522. {
  3523. loff_t n = *pos;
  3524. struct list_head *p;
  3525. mutex_lock(&cache_chain_mutex);
  3526. p = cache_chain.next;
  3527. while (n--) {
  3528. p = p->next;
  3529. if (p == &cache_chain)
  3530. return NULL;
  3531. }
  3532. return list_entry(p, struct kmem_cache, next);
  3533. }
  3534. static inline int add_caller(unsigned long *n, unsigned long v)
  3535. {
  3536. unsigned long *p;
  3537. int l;
  3538. if (!v)
  3539. return 1;
  3540. l = n[1];
  3541. p = n + 2;
  3542. while (l) {
  3543. int i = l/2;
  3544. unsigned long *q = p + 2 * i;
  3545. if (*q == v) {
  3546. q[1]++;
  3547. return 1;
  3548. }
  3549. if (*q > v) {
  3550. l = i;
  3551. } else {
  3552. p = q + 2;
  3553. l -= i + 1;
  3554. }
  3555. }
  3556. if (++n[1] == n[0])
  3557. return 0;
  3558. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3559. p[0] = v;
  3560. p[1] = 1;
  3561. return 1;
  3562. }
  3563. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3564. {
  3565. void *p;
  3566. int i;
  3567. if (n[0] == n[1])
  3568. return;
  3569. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3570. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3571. continue;
  3572. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3573. return;
  3574. }
  3575. }
  3576. static void show_symbol(struct seq_file *m, unsigned long address)
  3577. {
  3578. #ifdef CONFIG_KALLSYMS
  3579. char *modname;
  3580. const char *name;
  3581. unsigned long offset, size;
  3582. char namebuf[KSYM_NAME_LEN+1];
  3583. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3584. if (name) {
  3585. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3586. if (modname)
  3587. seq_printf(m, " [%s]", modname);
  3588. return;
  3589. }
  3590. #endif
  3591. seq_printf(m, "%p", (void *)address);
  3592. }
  3593. static int leaks_show(struct seq_file *m, void *p)
  3594. {
  3595. struct kmem_cache *cachep = p;
  3596. struct slab *slabp;
  3597. struct kmem_list3 *l3;
  3598. const char *name;
  3599. unsigned long *n = m->private;
  3600. int node;
  3601. int i;
  3602. if (!(cachep->flags & SLAB_STORE_USER))
  3603. return 0;
  3604. if (!(cachep->flags & SLAB_RED_ZONE))
  3605. return 0;
  3606. /* OK, we can do it */
  3607. n[1] = 0;
  3608. for_each_online_node(node) {
  3609. l3 = cachep->nodelists[node];
  3610. if (!l3)
  3611. continue;
  3612. check_irq_on();
  3613. spin_lock_irq(&l3->list_lock);
  3614. list_for_each_entry(slabp, &l3->slabs_full, list)
  3615. handle_slab(n, cachep, slabp);
  3616. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3617. handle_slab(n, cachep, slabp);
  3618. spin_unlock_irq(&l3->list_lock);
  3619. }
  3620. name = cachep->name;
  3621. if (n[0] == n[1]) {
  3622. /* Increase the buffer size */
  3623. mutex_unlock(&cache_chain_mutex);
  3624. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3625. if (!m->private) {
  3626. /* Too bad, we are really out */
  3627. m->private = n;
  3628. mutex_lock(&cache_chain_mutex);
  3629. return -ENOMEM;
  3630. }
  3631. *(unsigned long *)m->private = n[0] * 2;
  3632. kfree(n);
  3633. mutex_lock(&cache_chain_mutex);
  3634. /* Now make sure this entry will be retried */
  3635. m->count = m->size;
  3636. return 0;
  3637. }
  3638. for (i = 0; i < n[1]; i++) {
  3639. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3640. show_symbol(m, n[2*i+2]);
  3641. seq_putc(m, '\n');
  3642. }
  3643. return 0;
  3644. }
  3645. struct seq_operations slabstats_op = {
  3646. .start = leaks_start,
  3647. .next = s_next,
  3648. .stop = s_stop,
  3649. .show = leaks_show,
  3650. };
  3651. #endif
  3652. #endif
  3653. /**
  3654. * ksize - get the actual amount of memory allocated for a given object
  3655. * @objp: Pointer to the object
  3656. *
  3657. * kmalloc may internally round up allocations and return more memory
  3658. * than requested. ksize() can be used to determine the actual amount of
  3659. * memory allocated. The caller may use this additional memory, even though
  3660. * a smaller amount of memory was initially specified with the kmalloc call.
  3661. * The caller must guarantee that objp points to a valid object previously
  3662. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3663. * must not be freed during the duration of the call.
  3664. */
  3665. unsigned int ksize(const void *objp)
  3666. {
  3667. if (unlikely(objp == NULL))
  3668. return 0;
  3669. return obj_size(virt_to_cache(objp));
  3670. }